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Abstract

This paper presents an efficient and layout-independent Automatic License Plate Recog-
nition (ALPR) system based on the state-of-the-art you only look once (YOLO) object
detector that contains a unified approach for license plate (LP) detection and layout clas-
sification to improve the recognition results using post-processing rules. The system is
conceived by evaluating and optimizing different models, aiming at achieving the best
speed/accuracy trade-off at each stage. The networks are trained using images from sev-
eral datasets, with the addition of various data augmentation techniques, so that they are
robust under different conditions. The proposed system achieved an average end-to-end
recognition rate of 96.9% across eight public datasets (from five different regions) used in
the experiments, outperforming both previous works and commercial systems in the Chi-
neseLP, OpenALPR-EU, SSIG-SegPlate and UFPR-ALPR datasets. In the other datasets,
the proposed approach achieved competitive results to those attained by the baselines.
The authors’ system also achieved impressive frames per second (FPS) rates on a high-
end GPU, being able to perform in real time even when there are four vehicles in the
scene. An additional contribution is that the authors manually labelled 38,351 bounding
boxes on 6,239 images from public datasets and made the annotations publicly available to
the research community.

1 INTRODUCTION

Automatic License Plate Recognition (ALPR) became an
important topic of research since the appearance of the first
works in the early 1990s [1, 2]. A variety of ALPR systems and
commercial products have been produced over the years due
to many practical applications such as automatic toll collec-
tion, border control, traffic law enforcement and road traffic
monitoring [3, 4].

ALPR systems typically include three phases, namely: license
plate (LP) detection, character segmentation and character
recognition, which refer to (i) locating the LP region in
the acquired image, (ii) segmenting each character within the
detected LP and (iii) classifying each segmented character. The
earlier stages require higher accuracy since a failure would prob-
ably lead to another failure in the subsequent stages.
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Many authors have proposed approaches with a vehicle
detection stage prior to LP detection, aiming to eliminate false
positives (FPs) and reduce processing time [5–7]. Regarding
character segmentation, it has become common the use of
segmentation-free approaches for LP recognition [8–11], as the
character segmentation by itself is a challenging task that is
prone to be influenced by uneven lighting conditions, shadows
and noise [12].

Despite the major advances (in terms of both accuracy and
efficiency) that have been achieved in computer vision using
deep learning [13], several solutions are still not robust enough
to be executed in real-world scenarios. Such solutions com-
monly depend on certain constraints such as specific cameras
or viewing angles, simple backgrounds, good lighting condi-
tions, search in a fixed region and certain types of vehicles. In
addition, many authors still propose computationally expensive
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approaches that are not able to process frames in real time, even
when the experiments are performed on a high-end GPU [12,
14, 15] (if a system does not perform in real time using a high-
end GPU, it is very unlikely to run fast enough on the mid-end
GPUs that are often employed in real-world applications). In
the literature, generally a system is considered ‘real-time’ if it
can process at least 30 frames per second (FPS) since commer-
cial cameras usually record videos at that frame rate [8, 16, 17].

ALPR systems must also be capable of recognizing multiple
LP layouts since there might be various LP layouts in the same
country or region. However, as stated in [18], most of the exist-
ing solutions work only for a specific LP layout. Even though
most authors claim that their approaches could be extended
with small modifications to detect/segment/recognize LPs of
different layouts [14, 19–21], this may not be an easy task. For
instance, a character segmentation approach designed for LPs
with simple backgrounds is likely to fail on LPs with complex
backgrounds and logos that touch and overlap some characters
(e.g. Florida LPs) [9].

A robust and efficient ALPR system can play a key role
in various applications in the context of intelligent transporta-
tion systems. For example, vehicle re-identification, which refers
to identifying a target vehicle in different cameras with non-
overlapping views [22], is known to be a very challenging prob-
lem since different vehicles with the same model and colour are
highly similar to each other. Although in these situations the LP
information must be considered for precise vehicle search [23,
24], it is generally not explored due to the limitations of exist-
ing ALPR systems in unconstrained scenarios [25, 26].

Considering the above discussion, we propose an end-to-end,
efficient and layout-independent ALPR system exploring you
only look once (YOLO)-based models at all stages. YOLO [16,
27, 28] is a real-time object detector that achieved impressive
results in terms of speed/accuracy trade-off in the Pascal visual
object classes (VOC) [29] and Microsoft common objects in
context (COCO) [30] detection tasks. We locate the vehicles in
the input image and then their LPs within the vehicle bound-
ing box. Considering that the bottleneck of ALPR systems is
the LP recognition stage (see Section 2.3), in this paper we pro-
pose a unified approach for LP detection and layout classification

to improve the recognition results using post-processing rules
(this is the first time a layout classification stage is proposed to
improve LP recognition, to the best of our knowledge). After-
wards, all LP characters are recognized simultaneously, i.e. the
entire LP patch is fed into the network, avoiding the challenging
character segmentation task.

We eliminate various constraints commonly found in ALPR
systems by training a single network for each task using images
from several datasets, which were collected under different con-
ditions and reproduce distinct real-world applications. More-
over, we perform several data augmentation tricks and modi-
fied the chosen networks (e.g. we explored various models with
changes in the input size, as well as in the number of layers,
filters, output classes and anchors) aiming to achieve the best
speed/accuracy trade-off at each stage.

Our experimental evaluation demonstrates the effective-
ness of the proposed approach, which outperforms previous

works and two commercial systems in the ChineseLP [31],
OpenALPR-EU [32], SSIG-SegPlate [33] and UFPR-ALPR [17]
datasets, and achieves competitive results to those attained by
the baselines in other four public datasets. Our system also
achieved an impressive trade-off between accuracy and speed.
Specifically, on a high-end GPU (i.e. an NVIDIA Titan XP),
the proposed system is able to process images in real time even
when there are four vehicles in the scene.

In summary, the main contributions of this work are:

∙ A new end-to-end, efficient and layout-independent ALPR system
that explores YOLO-based Convolutional Neural Networks
(CNNs) at all stages.1

◦ LP layout classification (along with heuristic rules) greatly
improves the recognition results and also enables our sys-
tem to be easily adjusted for additional/different LP lay-
outs.

◦ As the proposed ALPR system processes more than
70 FPS on a high-end GPU, we believe it can be deployed
even in mid-end setups/GPUs for several real-world appli-
cations.

∙ A comparative and detailed evaluation of our approach, pre-
vious works in the literature and two commercial systems
in eight publicly available datasets that have been frequently
used to train and/or evaluate algorithms in the ALPR con-
text.
◦ We are not aware of any work in the literature where so

many publicly available datasets were used in the experi-
ments.

∙ Annotations regarding the position of the vehicles, LPs and
characters, as well as their classes, in each image of the public
datasets used in this work that have no annotations or con-
tain labels only for part of the ALPR pipeline. Precisely, we
manually labelled 38,351 bounding boxes on 6,239 images.
◦ These annotations will considerably assist the develop-

ment and evaluation of new ALPR approaches, as well as
the fair comparison among published works.

A preliminary version of the system described in this paper
was published at the 2018 International Joint Conference
on Neural Networks (IJCNN) [17]. The approach described
here differs from that version in several aspects. For instance,
in the current version, the LP layout is classified prior to
LP recognition (together with LP detection), the recognition
of all characters is performed simultaneously (instead of first
segmenting and then recognizing each of them) and mod-
ifications were made to all networks (e.g. in the input size,
number of layers, filters and anchors, among others) to make
them faster and more robust. In this way, we overcome the
limitations of the system presented in [17] and were able to
considerably improve both the execution time (from 28 to 14
ms) and the recognition results (e.g. from 64.89% to 90% in

1 The entire ALPR system, i.e. the architectures and weights, along with all anno-
tations made by us are publicly available at https://web.inf.ufpr.br/vri/publications/
layout-independent-alpr/.
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the UFPR-ALPR dataset). This version was also evaluated on a
broader and deeper manner.

The remainder of this paper is organized as follows. We
review related works in Section 2. The proposed system is pre-
sented in Section 3. In Section 4, the experimental setup is thor-
oughly described. We report and discuss the results in Section 5.
Finally, conclusions and future works are given in Section 6.

2 RELATED WORK

In this section, we review recent works that use deep learning
approaches in the context of ALPR. For relevant studies using
conventional image processing techniques, please refer to Refs.
[3, 4]. We first discuss works related to the LP detection and
recognition stages, and then conclude with final remarks.

2.1 LP detection

Many authors have addressed the LP detection stage using
object detection CNNs. Silva and Jung [6] noticed that the Fast-
YOLO model [16] achieved a low recall rate when detecting
LPs without prior vehicle detection. Therefore, they used the
Fast-YOLO model arranged in a cascaded manner to first detect
the frontal view of the cars and then their LPs in the detected
patches, attaining high precision and recall rates on a dataset
with Brazilian LPs.

Hsu et al. [34] customized the YOLO and YOLOv2 mod-
els exclusively for LP detection. Despite the fact that the modi-
fied versions of YOLO performed better and were able to pro-
cess 54 FPS on a high-end GPU, we believe that LP detection
approaches should be even faster (i.e. 150+ FPS) since the LP
characters still need to be recognized. Kurpiel et al. [35] parti-
tioned the input image in sub-regions, forming an overlapping
grid. A score for each region was produced using a CNN and
the LPs were detected by analysing the outputs of neighbour-
ing sub-regions. On a GT-740M GPU, it took 230 ms to detect
Brazilian LPs in images with multiple vehicles, achieving a recall
rate of 83% on a public dataset introduced by them.

Li et al. [12] trained a CNN based on characters cropped from
general text to perform a character-based LP detection. The
network was employed in a sliding-window fashion across the
entire image to generate a text salience map. Text-like regions
were extracted based on the clustering nature of the characters.
Connected Component Analysis (CCA) is subsequently applied
to produce the initial candidate boxes. Then, another LP/non-
LP CNN was trained to remove FPs. Although the precision
and recall rates obtained were higher than those achieved in pre-
vious works, such a sequence of methods is too expensive for
real-time applications, taking more than 2 s to process a single
image when running on a Tesla K40c GPU.

Xie et al. [36] proposed a YOLO-based model to predict
the LP rotation angle in addition to its coordinates and con-
fidence value. Prior to that, another CNN was applied to
determine the attention region in the input image, assuming
that some distance will inevitably exist between any two LPs.

By cascading both models, their approach outperformed all
baselines in three public datasets, while still running in real time.
Despite the impressive results, it is important to highlight two
limitations in their work: (i) the authors simplified the problem
by forcing their ALPR system to output only one bounding box
per image; (ii) motorcycle LPs might be lost when determining
the attention region since, in some scenarios (e.g. traffic lights),
they might be very close. Kessentini et al. [18] detected the LP
directly in the input image using YOLOv2 without any change
or refinement. However, they also considered only one LP
per image (mainly to eliminate FPs in the background), which
makes their approach unsuitable for many real-world applica-
tions that contain multiple vehicles in the scene [8, 34, 35].

2.2 LP recognition

In [6], a YOLO-based model was proposed to simultane-
ously detect and recognize all characters within a cropped LP.
While impressive FPS rates (i.e. 448 FPS on a high-end GPU)
were attained in experiments carried out in the SSIG-SegPlate
dataset [33], less than 65% of the LPs were correctly recog-
nized. According to the authors, the accuracy bottleneck of
their approach was letter recognition since the training set of
characters was highly unbalanced (in particular, letters). Silva
and Jung [7, 37] retrained that model with an enlarged train-
ing set composed of real and artificially generated images using
font types similar to the LPs of certain regions. In this way,
the retrained network became much more robust for the detec-
tion and classification of real characters, outperforming previ-
ous works and commercial systems in three public datasets.

Li et al. [12] proposed to perform character recognition
as a sequence labelling problem, also without the character-
level segmentation. Sequential features were first extracted from
the entire LP patch using a CNN in a sliding window man-
ner. Then, Bidirectional Recurrent Neural Networks (BRNNs)
with Long Short-Term Memory (LSTM) were applied to label
the sequential features. Lastly, Connectionist Temporal Clas-
sification (CTC) was employed for sequence decoding. The
results showed that this method attained better recognition rates
than the baselines. Nonetheless, only LPs from the Taiwan
region were used in their experiments and the execution time
was not reported.

Dong et al. [14] claimed that the method proposed in [12]
is very fragile to distortions caused by viewpoint change and
therefore is not suitable for LP recognition in the wild. Thus,
an LP rectification step is employed first in their approach.
Afterwards, a CNN was trained to recognize Chinese charac-
ters, while a shared-weight CNN recognizer was used for dig-
its and English letters, making full use of the limited training
data. The recognition rate attained on a private dataset with LPs
from mainland China was 89.05%. The authors did not report
the execution time of this particular stage.

Zhuang et al. [38] proposed a semantic segmentation tech-
nique followed by a character count refinement module to rec-
ognize the characters of an LP. For semantic segmentation, they
simplified the DeepLabV2 (ResNet-101) model by removing
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the multi-scaling process, increasing computational efficiency.
Then, the character areas were generated through CCA. Finally,
Inception-v3 and AlexNet were adopted as the character clas-
sification and character counting models, respectively. The
authors claimed that both an outstanding recognition perfor-
mance and a high computational efficiency were attained. Nev-
ertheless, they assumed that LP detection is easily accomplished
and used cropped patches containing only the LP with almost
no background (i.e. the ground truth) as input. Furthermore,
their system is not able to process images in real time, especially
when considering the time required for the LP detection stage,
which is often more time-consuming than the recognition one.

Some papers focus on deblurring the LPs, which is very use-
ful for LP recognition. Lu et al. [39] proposed a scheme based
on sparse representation to identify the blur kernel, while Svo-
boda et al. [40] employed a text deblurring CNN for reconstruc-
tion of blurred LPs. Despite achieving exceptional qualitative
results, the additional computational cost of a deblurring stage
usually is prohibitive for real-time ALPR applications.

2.3 Final remarks

The approaches developed for ALPR are still limited in various
ways. Many authors only addressed part of the ALPR pipeline,
e.g. LP detection [35, 36, 41] or character/LP recognition [38,
42, 43] or performed their experiments on private datasets [9,
14, 43], making it difficult to accurately evaluate the presented
methods. Note that works focused on a single stage do not

consider localization errors (i.e. correct but not so accurate
detections) in earlier stages [10, 38]. Such errors directly affect
the recognition results. As an example, Gonçalves et al. [8]
improved their results by 20% by skipping the LP detec-
tion stage, that is, by feeding the LPs manually cropped into
their recognition network.

In this work, the proposed end-to-end system is evaluated
in eight public datasets that present a great variety in the way
they were collected, with images of various types of vehicles
(including motorcycles) and numerous LP layouts. It should be
noted that, in most of the works in the literature, no more than
three datasets were used in the experiments (e.g. [12, 17, 18,
38]). In addition, despite the fact that motorcycles are one of
the most popular transportation means in metropolitan areas
[44], motorcycle images have not been used in the assessment
of most ALPR systems in the literature [8, 37].

Most of the approaches are not capable of recognizing LPs
in real time (i.e. 30 FPS) [7, 15, 38], even running on high-end
GPUs, making it impossible for them to be applied in some real-
world applications (especially considering that the purchase of
high-end setups is not practicable for various commercial appli-
cations [45]). Furthermore, several authors do not report the
execution time of the proposed methods or report the time
required only for a specific stage [12, 14, 43], making it diffi-
cult an accurate analysis of their speed/accuracy trade-off, as
well as their applicability. In this sense, we explore different
YOLO models at each stage, carefully optimizing and combin-
ing them to achieve the best speed/accuracy trade-off. In our

experiments, both the accuracy and execution time are reported
to enable fair comparisons in future works.

It is important to highlight that although outstanding results
in terms of mean Average Precision (mAP) have been achieved
with other object detectors such as single shot multibox detec-
tor (SSD) [46] and RetinaNet [47], in this work we adapt YOLO
since it focuses on an extreme speed/accuracy trade-off [47],
which is essential in intelligent transportation systems [48],
being able to process more than twice as many FPS as other
detectors while still achieving competitive results [27, 28].

Although YOLO has already been employed in the ALPR
context, previous works present several limitations (as detailed
in Sections 2.1 and 2.2), with the authors commonly overlook-
ing many factors that may limit the accuracy or speed (or even
both) achieved by YOLO-based models, such as the dimen-
sions of the input images, number of network layers, filters
and anchors and/or using data augmentation strategies that can
actually impair the network learning. These factors have not
been discussed/analysed sufficiently in the literature.

We consider LP recognition as the current bottleneck of
ALPR systems since (i) impressive LP detection results have
been reported in recent works [17, 36, 49], both in terms of
recall rate and execution time; (ii) Optical Character Recogni-
tion (OCR) approaches must work as close as possible to the
optimality (i.e. 100% of character recognition rate) in the ALPR
context, as a single mistake may imply in incorrect identifica-
tion of the vehicle [5]. Thus, in this work, we propose a uni-
fied approach for LP detection and layout classification in order to
improve the recognition results using heuristic rules. In addi-
tion, we design and apply data augmentation techniques to sim-
ulate LPs of other layouts and also to generate LP images with
characters that have few instances in the training set. Hence,
unlike [6, 43], we avoid errors in the recognition stage due to
highly unbalanced training sets of LP characters.

3 PROPOSED ALPR SYSTEM

The nature of traffic images might be very problematic to LP
detection approaches that work directly on the frames (i.e. with-
out vehicle detection) since (i) there are many textual blocks
that can be confused with LPs such as traffic signs and phone
numbers on storefronts, and (ii) LPs might occupy very small
portions of the original image and object detectors commonly
struggle to detect small objects [16, 37, 50]. Therefore, we pro-
pose to first locate the vehicles in the input image and then
detect their respective LPs in the vehicle patches. Afterwards,
we detect and recognize all characters simultaneously by feed-
ing the entire LP patch into the network. In this way, we do not
need to deal with the character segmentation task.

Although some approaches with such characteristics (i.e. con-
taining a vehicle detection stage prior to LP detection and/or
avoiding character segmentation) have already been proposed in
the literature, none of them presented robustness for different
LP layouts in both accuracy and processing time. In [6] and [8],
for instance, the authors designed real-time ALPR systems able
to process more than 50 FPS on high-end GPUs, however, both
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systems were evaluated only on LPs from a single country and
presented poor recognition rates in at least one dataset in which
they were evaluated. On the other hand, outstanding results
were achieved on different scenarios in some recent works [7,
12, 15], however, the methods presented in these works are
computationally expensive and cannot be applied in real time.
This makes them unsuitable for use in many real-world applica-
tions, especially those where multiple vehicles can appear on the
scene at the same time [8].

In order to develop an ALPR system that is robust for differ-
ent LP layouts, we propose a layout classification stage after LP
detection. However, instead of performing both stages sepa-
rately, we merge the LP detection and layout classification tasks
by training an object detection network that outputs a distinct
class for each LP layout. In this way, with almost no additional
cost, we employ layout-specific approaches for LP recognition
in cases where the LP and its layout are predicted with a con-
fidence value above a pre-defined threshold. For example, all
Brazilian LPs have seven characters: three letters and four dig-
its (in that order), and thus a post-processing method is applied
to avoid errors in characters that are often misclassified, such
as ‘B’ and ‘8’, ‘G’ and ‘6’, ‘I’ and ‘1’, among others. In cases
where the LP and its layout are detected with confidence below
the pre-defined threshold, a generic approach is applied. To the
best of our knowledge, this is the first time a layout classification
stage is proposed to improve the recognition results.

It is worth noting that although the LP layout is known
a priori in some real-world applications, there are various
regions/countries around the world where multiple LP layouts
coexist. As an example, Mercosur countries (Argentina, Brazil,
Paraguay and Uruguay) are adopting a new standard of LPs
for newly purchased vehicles, inspired by the integrated system
adopted several years ago by European Union countries [51].
As changing to the new LP layout is not free of charge [52] and
is not mandatory for used vehicles [53], the old and new lay-
outs will coexist for many years in these countries. In fact, such
a situation will occur in any country/region that adopts a new
LP layout without drivers being required to update their current
LPs, as occurred in most European Union countries in the past.
Hence, in such cases, an ALPR system capable of classifying
the LP layout is essential to avoid errors in the number of pre-
dicted characters to be considered and also in similar letters and
digits, since the number of characters and/or the positions for
letters and digits often differ in the old and new LP layouts (e.g.
Argentine ‘old’ LPs consist of exactly three letters and three dig-
its, whereas the initial pattern adopted in Argentina for Merco-
sur LPs consists of two letters, three digits and two letters, in
that order).

In this context, although layout-dependent factors can be
addressed by developing a tailored ALPR system for the spe-
cific subset of LP layouts that coexist in a given region, such sys-
tems must be verified/modified if a new LP layout is adopted in
that region (or if authorities want to start recognizing LPs from
neighbouring countries) since some previously used strategies
may no longer be applicable. On the other hand, for the pro-
posed approach to work for additional LP layouts, we only need
to retrain our network for LP detection and layout classification

with images of the new LP layout (in addition to images of the
known layouts) and adjust the expected pattern (i.e. the number
of characters and fixed positions of digits and letters) in a con-
figuration file. In other words, layout classification (along with
heuristic rules) enables the proposed ALPR system to be easily
adjusted to work for additional/different LP layouts.

As great advances in object detection have been achieved
using YOLO-inspired models [54–56], we decided to special-
ize it for ALPR. We use specific models for each stage. Thus,
we can tune the parameters separately in order to improve the
performance of each task. The models adapted are YOLOv2
[27], Fast-YOLOv2 and CR-NET [6], which is an architec-
ture inspired by YOLO for character detection and recogni-
tion. We explored several data augmentation techniques and
performed modifications to each network (e.g. changes in the
input size, number of filters, layers and anchors) to achieve the
best speed/accuracy trade-off at each stage.

In this work, unlike [17, 38, 57], for each stage, we train a sin-
gle network on images from several datasets (described in Sec-
tion 4.1) to make our networks robust for distinct ALPR appli-
cations or scenarios with considerably less manual effort since
their parameters are adjusted only once for all datasets.

This remainder of this section describes the proposed
approach and it is divided into three subsections, one for each
stage of our end-to-end ALPR system: (i) vehicle detection,
(ii) LP detection and layout classification and (iii) LP recogni-
tion. Figure 1 illustrates the system pipeline, explained through-
out this section.

3.1 Vehicle detection

In this stage, we explored the following models: Fast-YOLOv2,
YOLOv2 [27], Fast-YOLOv3 and YOLOv3 [28]. Although the
Fast-YOLO variants correctly located the vehicles in most cases,
they failed in challenging scenarios such as images in which one
or more vehicles are partially occluded or appear in the back-
ground. On the other hand, impressive results (i.e. F -measure
rates above 98% in the validation set2) were obtained with both
YOLOv2 and YOLOv3, which successfully detected vehicles
even in those cases where the smaller models failed. As the com-
putational cost is one of our main concerns and YOLOv3 is
much more complex than its predecessor, we further improve
the YOLOv2 model for vehicle detection.

First, we changed the network input size from 416 × 416 to
448 × 288 pixels since the images used as input to ALPR sys-
tems generally have a width greater than height. Hence, our net-
work processes less distorted images and performs faster, as
the new input size is 25% smaller than the original. The new
dimensions were chosen based on speed/accuracy assessments
with different input sizes (from 448 × 288 to 832 × 576 pixels).
Then, we recalculate the anchor boxes for the new input size as
well as for the datasets employed in our experiments using the
k-means clustering algorithm. Finally, we reduced the number

2 The division of the images of each dataset into training, test and validation sets is detailed
in Section 4.2.
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Vehicles PatchesVehicle Detection LPs Patches/LayoutsLP Detection and 
Layout Classification LP Recognition

ZY-0887

280-BGY

TW

TW

Heuristic Rules

FIGURE 1 The pipeline of the proposed ALPR system. First, all vehicles are detected in the input image. Then, in a single stage, the LP of each vehicle is detected
and its layout is classified (in the example above, the vehicles/LPs are from the Taiwan region). Finally, all characters of each LP are recognized simultaneously, with
heuristic rules being applied to adapt the results according to the predicted layout class

of filters in the last convolutional layer to match the number
of classes. YOLOv2 uses A anchor boxes to predict bounding
boxes (we use A= 5), each with four coordinates (x, y, w, h), con-
fidence and C class probabilities [27], so the number of filters is
given by

filters = (C + 5) × A . (1)

As we intend to detect cars and motorcycles (two classes), the
number of filters in the last convolutional layer must be 35 ((2 +
5) × 5). According to preliminary experiments, the results were
better when using two classes instead of just one regarding both
types of vehicles.

The modified YOLOv2 architecture for vehicle detection
is shown in Table 1. We exploit various data augmentation
strategies, such as flipping, rescaling and shearing, to train our
network. Thus, we prevent overfitting by creating many other
images with different characteristics from a single labelled one.

Silva and Jung [7] slightly modified their pipeline by directly
applying their LP detector (i.e. skipping the vehicle detection
stage) when dealing with images in which the vehicles are very
close to the camera, as their detector failed in several of those
cases. We believe this is not the best way to handle the prob-
lem. Instead, we do not skip the vehicle detection stage even
when only a small part of the vehicle is visible. The entire image
is labelled as ground truth in cases where the vehicles are very
close to the camera. Therefore, our network also learns to select
the Region of Interest (ROI) in such cases.

In the validation set, we evaluate several confidence thresh-
olds to detect as many vehicles as possible while maintaining
a low FP rate. Furthermore, we apply a Non-Maximum Sup-
pression (NMS) algorithm to eliminate redundant detections
(those with Intersection over Union (IoU) ≥ 0.25) since the
same vehicle might be detected more than once by the network.
A negative recognition result is given in cases where no vehi-
cle is found.

3.2 LP detection and layout classification

In this work, we detect the LP and simultaneously classify its
layout into one of the following classes: American, Brazilian,

TABLE 1 The YOLOv2 architecture, modified for vehicle detection

# Layer Filters Size Input Output

0 conv 32 3 × 3∕1 448 × 288 × 3 448 × 288 × 32

1 max 2 × 2∕2 448 × 288 × 32 224 × 144 × 32

2 conv 64 3 × 3∕1 224 × 144 × 32 224 × 144 × 64

3 max 2 × 2∕2 224 × 144 × 64 112 × 72 × 64

4 conv 128 3 × 3∕1 112 × 72 × 64 112 × 72 × 128

5 conv 64 1 × 1∕1 112 × 72 × 128 112 × 72 × 64

6 conv 128 3 × 3∕1 112 × 72 × 64 112 × 72 × 128

7 max 2 × 2∕2 112 × 72 × 128 56 × 36 × 128

8 conv 256 3 × 3∕1 56 × 36 × 128 56 × 36 × 256

9 conv 128 1 × 1∕1 56 × 36 × 256 56 × 36 × 128

10 conv 256 3 × 3∕1 56 × 36 × 128 56 × 36 × 256

11 max 2 × 2∕2 56 × 36 × 256 28 × 18 × 256

12 conv 512 3 × 3∕1 28 × 18 × 256 28 × 18 × 512

13 conv 256 1 × 1∕1 28 × 18 × 512 28 × 18 × 256

14 conv 512 3 × 3∕1 28 × 18 × 256 28 × 18 × 512

15 conv 256 1 × 1∕1 28 × 18 × 512 28 × 18 × 256

16 conv 512 3 × 3∕1 28 × 18 × 256 28 × 18 × 512

17 max 2 × 2∕2 28 × 18 × 512 14 × 9 × 512

18 conv 1024 3 × 3∕1 14 × 9 × 512 14 × 9 × 1024

19 conv 512 1 × 1∕1 14 × 9 × 1024 14 × 9 × 512

20 conv 1024 3 × 3∕1 14 × 9 × 512 14 × 9 × 1024

21 conv 512 1 × 1∕1 14 × 9 × 1024 14 × 9 × 512

22 conv 1024 3 × 3∕1 14 × 9 × 512 14 × 9 × 1024

23 conv 1024 3 × 3∕1 14 × 9 × 1024 14 × 9 × 1024

24 conv 1024 3 × 3∕1 14 × 9 × 1024 14 × 9 × 1024

25 route [16]

26 reorg ∕2 28 × 18 × 512 14 × 9 × 2048

27 route [26, 24]

28 conv 1024 3 × 3∕1 14 × 9 × 3072 14 × 9 × 1024

29 conv 35 1 × 1∕1 14 × 9 × 1024 14 × 9 × 35

30 detection

Note. The input size was changed from 416 × 416 to 448 × 288 pixels and the number of
filters in the last layer was reduced from 425 to 35.
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FIGURE 2 Examples of LPs of different layouts and classes (from top to
bottom: American, Brazilian, Chinese, European and Taiwanese). Observe the
wide variety in different ways on different LP layouts

Chinese (LPs of vehicles registered in mainland China), European

or Taiwanese (LPs of vehicles registered in the Taiwan region).
These classes were defined based on the public datasets found
in the literature [17, 31–33, 58–61] and also because there are
many ALPR systems designed primarily for LPs of one of those
regions [6, 43, 61]. It is worth noting that (i) among LPs with
different layouts (which may belong to the same class/region)
there is a wide variety in many factors, for example, in the aspect
ratio, colours, symbols, position of the characters, number of
characters, among others; (ii) we consider LPs from different
jurisdictions in the United States as a single class; the same is
done for LPs from European countries. LPs from the same
country or region may look quite different, but still share many
characteristics in common. Such common features can be
exploited to improve LP recognition. In Figure 2, we show
examples of LPs of different layouts and classes.

Looking for an efficient ALPR system, in this stage we per-
formed experiments with the Fast-YOLOv2 and Fast-YOLOv3
models. In the validation set, Fast-YOLOv2 obtained slightly
better results than its successor. This is due to the fact that
YOLOv3 and Fast-YOLOv3 have relatively high performance
on small objects (which is not the case since we first detect the
vehicles), but comparatively worse performance on medium and
larger size objects [28]. Accordingly, here we modified the Fast-
YOLOv2 model to adapt it to our application and to achieve
even better results.

First, we changed the kernel size of the next-to-last convolu-
tional layer from 3 × 3 to 1 × 1. Then, we added a 3 × 3 con-
volutional layer with twice the filters of that layer. In this way,
the network reached better results (F-measure ≈ 1% higher,
from 97.97% to 99.00%) almost without increasing the number
of floating-point operations (FLOP) required, i.e. from 5.35 to
5.53 billion floating-point operations (BFLOP), as alternating
1 × 1 convolutional layers between 3 × 3 convolutions reduce
the feature space from preceding layers [16, 27]. Finally, we
recalculate the anchors for our data and make adjustments to
the number of filters in the last layer. The modified architecture
is shown in Table 2.

TABLE 2 Fast-YOLOv2 modified for LP detection and layout
classification

# Layer Filters Size Input Output BFLOP

0 conv 16 3 × 3∕1 416 × 416 × 3 416 × 416 × 16 0.150

1 max 2 × 2∕2 416 × 416 × 16 208 × 208 × 16 0.003

2 conv 32 3 × 3∕1 208 × 208 × 16 208 × 208 × 32 0.399

3 max 2 × 2∕2 208 × 208 × 32 104 × 104 × 32 0.001

4 conv 64 3 × 3∕1 104 × 104 × 32 104 × 104 × 64 0.399

5 max 2 × 2∕2 104 × 104 × 64 52 × 52 × 64 0.001

6 conv 128 3 × 3∕1 52 × 52 × 64 52 × 52 × 128 0.399

7 max 2 × 2∕2 52 × 52 × 128 26 × 26 × 128 0.000

8 conv 256 3 × 3∕1 26 × 26 × 128 26 × 26 × 256 0.399

9 max 2 × 2∕2 26 × 26 × 256 13 × 13 × 256 0.000

10 conv 512 3 × 3∕1 13 × 13 × 256 13 × 13 × 512 0.399

11 max 2 × 2∕1 13 × 13 × 512 13 × 13 × 512 0.000

12 conv 1024 3 × 3∕1 13 × 13 × 512 13 × 13 × 1024 1.595

13 conv 512 1 × 1∕1 13 × 13 × 1024 13 × 13 × 512 0.177

14 conv 1024 3 × 3∕1 13 × 13 × 512 13 × 13 × 1024 1.595

15 conv 50 1 × 1∕1 13 × 13 × 1024 13 × 13 × 50 0.017

16 detection

Note. First, we reduced the kernel size of layer #13 from 3 × 3 to 1 × 1, and added
layer #14. Then, we reduced the number of filters in layer #15 from 425 to 50, as we
use five anchor boxes to detect five classes (see Equation 1).

In Table 2, we also list the number of FLOP required in
each layer to highlight how small the modified network is com-
pared to others, e.g. YOLOv2 and YOLOv3. For this task, our
network requires 5.53 BFLOP while YOLOv2 and YOLOv3
require 29.35 and 66.32 BFLOP, respectively. It is noteworthy
that we only need to increase the number of filters (following
Equation 1) in the last convolutional layer so that the network
can detect/classify additional LP layouts.

For LP detection and layout classification, we also use
data augmentation strategies to generate many other images
from a single labelled one. However, horizontal flipping is not
performed at this stage, as the network leverages information
such as the position of the characters and symbols on the
LP to predict its layout (besides the aspect ratio, colours and
other characteristics).

Only the detection with the highest confidence value is
considered in cases where more than one LP is predicted,
as each vehicle has only one LP. Then, we classify as ‘unde-
fined layout’ every LP that has its position and class predicted
with a confidence value below 0.75, regardless of which class
the network predicted (note that such LPs are not rejected,
instead, a generic approach is used in the recognition stage).
This threshold was chosen based on experiments performed
in the validation set, in which approximately 92% of the LPs
were predicted with a confidence value above 0.75. In each
of these cases, the LP layout was correctly classified. A neg-
ative result is given in cases where no LP is predicted by the
network.
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TABLE 3 The CR-NET model

# Layer Filters Size Input Output BFLOP

0 conv 32 3 × 3∕1 352 × 128 × 3 352 × 128 × 32 0.078

1 max 2 × 2∕2 352 × 128 × 32 176 × 64 × 32 0.001

2 conv 64 3 × 3∕1 176 × 64 × 32 176 × 64 × 64 0.415

3 max 2 × 2∕2 176 × 64 × 64 88 × 32 × 64 0.001

4 conv 128 3 × 3∕1 88 × 32 × 64 88 × 32 × 128 0.415

5 conv 64 1 × 1∕1 88 × 32 × 128 88 × 32 × 64 0.046

6 conv 128 3 × 3∕1 88 × 32 × 64 88 × 32 × 128 0.415

7 max 2 × 2∕2 88 × 32 × 128 44 × 16 × 128 0.000

8 conv 256 3 × 3∕1 44 × 16 × 128 44 × 16 × 256 0.415

9 conv 128 1 × 1∕1 44 × 16 × 256 44 × 16 × 128 0.046

10 conv 256 3 × 3∕1 44 × 16 × 128 44 × 16 × 256 0.415

11 conv 512 3 × 3∕1 44 × 16 × 256 44 × 16 × 512 1.661

12 conv 256 1 × 1∕1 44 × 16 × 512 44 × 16 × 256 0.185

13 conv 512 3 × 3∕1 44 × 16 × 256 44 × 16 × 512 1.661

14 conv 200 1 × 1∕1 44 × 16 × 512 44 × 16 × 200 0.144

15 detection

Note. We increased the input size from 240 × 80 to 352 × 128 pixels. The number of filters
in the last convolutional layer (#14) was defined following Equation (1) (using A = 5).

FIGURE 3 Two illustrations of enlargement of the LPs detected in the
previous stage. In this way, a single network is trained to recognize LPs of dif-
ferent layouts, regardless of their aspect ratios

3.3 LP recognition

Once the LP has been detected and its layout classified, we
employ CR-NET [6] for LP recognition (i.e. all characters are
recognized simultaneously by feeding the entire LP patch into
the network). CR-NET is a model that consists of the first 11
layers of YOLO and four other convolutional layers added to
improve non-linearity. This model was chosen for two main
reasons. First, it was capable of detecting and recognizing LP
characters at 448 FPS in [6] Secondly, very recently, it yielded
the best recognition results in the context of image-based auto-
matic meter reading [62], outperforming two segmentation-free
approaches based on deep learning.

The CR-NET architecture is shown in Table 3. We changed
its input size, which was originally defined based on Brazilian
LPs, from 240 × 80 to 352 × 128 pixels taking into account the
average aspect ratio of the LPs in the datasets used in our experi-
ments, in addition to results obtained in the validation set, where
several input sizes were evaluated (e.g. 256 × 96 and 384 × 128
pixels). As the same model is employed to recognize LPs of var-
ious layouts, we enlarge all LP patches (in both the training and
testing phases) so that they have aspect ratios (w∕h) between 2.5
and 3.0, as shown in Figure 3, considering that the input image

TABLE 4 The minimum and maximum number of characters to be
considered in LPs of each layout class

Characters American Brazilian Chinese European Taiwanese

Minimum 4 7 6 5 5

Maximum 7 7 6 8 6

has an aspect ratio of 2.75. The network is trained to predict 35
classes (0–9, A–Z, where the letter ‘O’ is detected/recognized
jointly with the digit ‘0’) using the LP patch as well as the class
and coordinates of each character as inputs.

It is worth to mention that the first character in Chinese LPs
(see Figure 2) is a Chinese character that represents the province
in which the vehicle is affiliated [43, 63]. Following [15], our net-
work was not trained/designed to recognize Chinese characters,
even though Chinese LPs are used in the experiments. In other
words, only digits and English letters are considered. The rea-
son is threefold: (i) there are less than 400 images in the Chi-
neseLP dataset [31] (only some of them are used for training),
which is employed in the experiments, and some provinces are
not represented; (ii) labelling the class of Chinese characters is
not a trivial task for non-Chinese people (we manually labelled
the position and class of the LP characters in the ChineseLP
dataset) and (iii) to fairly compare our system with others trained
only on digits and English letters. We remark that in the litera-
ture the approaches capable of recognizing Chinese characters,
digits and English letters were evaluated, for the most part, on
datasets containing only LPs from mainland China [20, 43, 63].

As the LP layout is classified in the previous stage, we design
heuristic rules to adapt the results produced by CR-NET accord-
ing to the predicted class. Based on the datasets employed in this
work, we defined the minimum and the maximum number of
characters to be considered in LPs of each layout. Brazilian and
Chinese LPs have a fixed number of characters, while American,
European and Taiwanese LPs do not (see Table 4). Initially, we
consider all characters predicted with a confidence value above
a pre-defined threshold. Afterwards, as in the vehicle detection
stage, an NMS algorithm is applied to remove redundant detec-
tions. Finally, if necessary, we discard the characters predicted
with lower confidence values or consider others previously dis-
carded (i.e. ignoring the confidence threshold) so that the num-
ber of characters considered is within the range defined for the
predicted class. We consider that the LP has between four and
eight characters in cases where its layout was classified with a
low confidence value (i.e. undefined layout).

In addition, inspired by Silva and Jung [6], we swap digits and
letters on Brazilian and Chinese LPs, as there are fixed positions
for digits or letters in those layouts. In Brazilian LPs, the first
three characters correspond to letters and the last four to digits;
while in Chinese LPs the second character is a letter that repre-
sents a city in the province in which the vehicle is affiliated. This
swap approach is not employed for LPs of other layouts since
each character position can be occupied by either a letter or a
digit in American, European and Taiwanese LPs. The specific
swaps are given by [1 ⇒ I; 2 ⇒ Z; 4 ⇒ A; 5 ⇒ S; 6 ⇒ G; 7 ⇒ Z;
8 ⇒ B] and [A ⇒ 4; B ⇒ 8; D ⇒ 0; G ⇒ 6; I ⇒ 1; J ⇒ 1; Q ⇒ 0;
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FIGURE 4 Examples of negative images created to simulate LPs of other
layouts. In Brazil, private vehicles have grey LPs, while buses, taxis and other
transportation vehicles have red LPs. In the United States, old California LPs
featured gold characters on a black background. Currently, they have blue char-
acters on a white background

S ⇒ 5; Z ⇒ 7]. In this way, we avoid errors in characters that are
often misclassified.

The LP characters might also be arranged in two rows instead
of one. We distinguish such cases based on the predictions of
the vehicle type, LP layout and character coordinates. In our
experiments, only two datasets have LPs with the characters
arranged in two rows. These datasets were captured in Brazil
and Croatia. In Brazil, car and motorcycle LPs have the charac-
ters arranged in one and two rows, respectively. Thus, we look
at the predicted class in the vehicle detection stage in those
cases. In Croatia, on the other hand, cars might also have LPs
with two rows of characters. Therefore, for European LPs, we
consider that the characters are arranged in two rows in cases
where the bounding boxes of half or more of the predicted
characters are located entirely below another character. In our
tests, this simple rule was sufficient to distinguish LPs with
one and two rows of characters even in cases where the LP
is considerably inclined. We emphasize that segmentation-free
approaches (e.g. [8–11]) cannot recognize LPs with two rows
of characters, contrarily to YOLO-based approaches, which are
better suited to recognize them thanks to YOLO’s versatility
and ability to learn general component features, regardless of
their positions [18].

In addition to using the original LP images, we design and
apply data augmentation techniques to train the CR-NET model
and improve its robustness. First, we double the number of
training samples by creating a negative image of each LP, as we
noticed that in some cases negative LPs are very similar to LPs
of other layouts. This is illustrated with Brazilian and Ameri-
can LPs in Figure 4. We also generate many other images by
randomly rescaling the LP patch and adding a margin to it, sim-
ulating more or less accurate detections of the LP in the previ-
ous stage.

The datasets for ALPR are generally very unbalanced in
terms of character classes due to LP allocation policies. It is well
known that unbalanced data is undesirable for neural network
classifiers since the learning of some patterns might be biased.
To address this issue, we permute on the LPs the characters
over-represented in the training set by those under-represented.
In this way, as in [8], we are able to create a balanced set of
images in which the order and frequency of the characters on
the LPs are chosen to uniformly distribute them across the posi-
tions. We maintain the initial arrangement of letters and digits

FIGURE 5 Examples of LP images generated by permuting the characters
on the LPs. The images in the first row are the originals and the others were
generated automatically

of each LP so that the network might also learn the positions of
letters and digits in certain LP layouts.

Figure 5 shows some artificially generated images by permut-
ing the characters on LPs of different layouts. We also perform
random variations of brightness, rotation and cropping to
increase even more the diversity of the generated images. The
parameters were empirically adjusted through visual inspection,
i.e. brightness variation of the pixels [0.85; 1.15], rotation angles
between −5◦ and 5◦ and cropping from −2% to 8% of the
LP size. Once these ranges were established, new images
were generated using random values within those ranges
for each parameter.

4 EXPERIMENTAL SETUP

All experiments were performed on a computer with an AMD
Ryzen Threadripper 1920X 3.5GHz CPU, 32 GB of RAM (2400
MHz), HDD 7200 RPM and an NVIDIA Titan Xp GPU. The
Darknet framework [64] was employed to train and test our net-
works. However, we used the ’s version of Darknet [65], which
has several improvements over the original, including improved
neural network performance by merging two layers into one
(convolutional and batch normalization), optimized memory
allocation during network resizing and many other code fixes.
For more details on this repository, refer to [65].

We also made use of the Darknet’s built-in data augmenta-
tion, which creates a number of randomly cropped and resized
images with changed colours (hue, saturation and exposure). We
manually implemented the flip operation only for the vehicle
detection stage, as this operation would probably impair the lay-
out classification and the LP recognition tasks. Similarly, we dis-
abled the colour-related data augmentation for the LP detection
and layout classification stage (further explained in Section 5.2).

4.1 Datasets

The experiments were carried out in eight publicly avail-
able datasets: Caltech Cars [58], EnglishLP [59], UCSD-
Stills [60], ChineseLP [31], AOLP [61], OpenALPR-EU [32],
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TABLE 5 An overview of the datasets used in our experiments

Dataset Year Images Resolution LP layout

Evaluation

protocol

Caltech Cars 1999 126 896 × 592 American No

EnglishLP 2003 509 640 × 480 European No

UCSD-Stills 2005 291 640 × 480 American Yes

ChineseLP 2012 411 Various Chinese No

AOLP 2013 2,049 Various Taiwanese No

OpenALPR-EU 2016 108 Various European No

SSIG-SegPlate 2016 2, 000 1920 × 1080 Brazilian Yes

UFPR-ALPR 2018 4, 500 1920 × 1080 Brazilian Yes

SSIG-SegPlate [33] and UFPR-ALPR [17]. These datasets are
often used to evaluate ALPR systems, contain multiple LP lay-
outs and were collected under different conditions/scenarios
(e.g. with variations in lighting, camera position and settings
and vehicle types). An overview of the datasets is presented in
Table 5. It is noteworthy that in most of the works in the litera-
ture, including some recent ones [12, 17, 18, 38], no more than
three datasets were used in the experiments.

The datasets collected in the United States (i.e. Caltech
Cars and UCSD-Stills) and in Europe (i.e. EnglishLP and
OpenALPR-EU) are relatively simple and have certain charac-
teristics in common, for example, most images were captured
with a hand-held camera and there is only one vehicle (gener-
ally well-centred) in each image. There are only a few cases in
which the LPs are not well aligned. The ChineseLP and AOLP
datasets, on the other hand, also contain images where the LP
is inclined/tilted, as well as images with more than one vehicle,
which may be occluded by others. Finally, the SSIG-SegPlate
and UFPR-ALPR data sets are composed of high-resolution
images, enabling LP recognition from distant vehicles. In both
data sets, there are several frames of each vehicle and, therefore,
redundant information may be used to improve the recogni-
tion results. Among the eight datasets used in our experiments,
we consider the UFPR-ALPR dataset the most challenging, as
three different non-static cameras were used to capture images
from different types of vehicles (cars, motorcycles, buses and
trucks) with complex backgrounds and under different light-
ing conditions [17]. Note that both the vehicles and the camera
(inside another vehicle) were moving and most LPs occupy a
very small region of the image.

Most datasets have no annotations or contain labels for a sin-
gle stage only (e.g. LP detection), despite the fact that they are
often used to train/evaluate algorithms in the ALPR context.
Therefore, in all images of these datasets, we manually labelled
the position of the vehicles (including those in the background
where the LP is also legible), LPs and characters, as well as
their classes.

In addition to using the training images of the datasets, we
downloaded and labelled more 772 images from the Internet
to train all stages of our ALPR system. This procedure was
adopted to eliminate biases from the datasets employed in our
experiments. For example, the Caltech Cars and UCSD-Stills

datasets have similar characteristics (e.g. there is one vehicle per
image, the vehicle is centred and occupies a large portion of the
image, and the resolutions of the images are not high), which
are different from those of the other data sets. Moreover, there
are many more examples of Brazilian and Taiwanese LPs in
our training data (note that the exact number of images used
for training, testing and validation in each data set is detailed
in the next section). Therefore, we downloaded images con-
taining vehicles with American, Chinese and European LPs so
that there are at least 500 images of LPs of each class/region
to train our networks. Specifically, we downloaded 257, 341
and 174 images containing American, Chinese and European
LPs, respectively.3

In our experiments, we did not make use of two datasets pro-
posed recently: AOLPE [34] (an extension of the AOLP dataset)
and Chinese City Parking Dataset (CCPD) [66]. The former has
not yet been made available by the authors, who are collecting
more data to make it even more challenging. The latter, although
already available, does not provide the position of the vehicles
and the characters in its 250,000 images and it would be imprac-
tical to label them to train/evaluate our networks (Xu et al. [66]
used more than 100,000 images for training in their experi-
ments).

4.2 Evaluation protocol

To evaluate the stages of (i) vehicle detection and (ii) LP detec-
tion and layout classification, we report the precision and recall
rates achieved by our networks. Each metric has its importance
since, for system efficiency, all vehicles/LPs must be detected
without many FPs. Note that the precision and recall rates are
equal in the LP detection and layout classification stage because
we consider only one LP per vehicle.

We consider as correct only the detections with IoU greater
than 0.5 with the ground truth. This bounding box evaluation,
defined in the PASCAL VOC Challenge [29] and employed in
previous works [15, 18, 21], is interesting since it penalizes both
over- and under-estimated objects. In the LP detection and lay-
out classification stage, we assess only the predicted bounding
box on LPs classified as undefined layout (see Section 3.2). In
other words, we consider as correct the predictions when the
LP position is correctly predicted but not its layout, as long as
the LP (and its layout) has not been predicted with a high confi-
dence value (i.e. below 0.75).

In the LP recognition stage, we report the number of cor-
rectly recognized LPs divided by the total number of LPs in
the test set. A correctly recognized LP means that all charac-
ters on the LP were correctly recognized, as a single character
recognized incorrectly may imply in incorrect identification of
the vehicle [5].

According to Table 5, only three of the eight datasets
used in this work contain an evaluation protocol (defined
by the respective authors) that can be reproduced perfectly:

3 The images were downloaded from www.platesmania.com. We also made their download
links and annotations publicly available.

http://www.platesmania.com
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TABLE 6 An overview of the number of images used for training, testing
and validation in each dataset

Dataset Training Validation Testing Discarded Total

Caltech Cars 62 16 46 2 126

EnglishLP 326 81 102 0 509

UCSD-Stills 181 39 60 11 291

ChineseLP 159 79 159 14 411

AOLP 1, 093 273 683 0 2, 049

OpenALPR-EU 0 0 108 0 108

SSIG-SegPlate 789 407 804 0 2, 000

UFPR-ALPR 1, 800 900 1, 800 0 4, 500

UCSD-Stills, SSIG-SegPlate and UFPR-ALPR. Thus, we split
their images into training, validation and test sets according
to their own protocols. We randomly divided the other five
datasets using the protocols employed in previous works,
aiming at a fair comparison with them. In the next paragraph,
such protocols (which we also provide for reproducibility purposes) are
specified.

We used 80 images of the Caltech Cars dataset for training
and 46 for testing, as in [67–69]. Then, we employed 16 of the 80
training images for validation (i.e. 20%). The EnglishLP dataset
was divided in the same way as in [57], with 80% of the images
being used for training and the remainder for testing. Also in
this dataset, 20% of the training images were employed for val-
idation. Regarding the ChineseLP dataset, we did not find any
previous work in which it was split into training/test sets, that is,
all its images were used either to train or to test the methods pro-
posed in [12, 19, 70, 71], often jointly with other datasets. Thus,
we adopted the same protocol of the SSIG-SegPlate and UFPR-
ALPR datasets, in which 40% of the images are used for train-
ing, 40% for testing and 20% for validation. The AOLP dataset
is categorized into three subsets, which represent three major
ALPR applications: access control (AC), traffic law enforcement
(LE), and road patrol (RP). As this dataset has been divided in
several ways in the literature, we divided each subset into train-
ing and test sets with a 2:1 ratio, following [36, 38]. Then, 20%
of the training images were employed for validation. Finally, all
images belonging to the OpenALPR-EU dataset were used for
testing in [7, 37, 72], while other public or private datasets were
employed for training. Therefore, we also did not use any image
of this dataset for training or validation, only for testing. An
overview of the number of images used for training, testing and
validation in each dataset can be seen in Table 6.

We discarded a few images from the Caltech Cars, UCSD-
Stills, and ChineseLP datasets.4 Although most images in these
datasets are reasonable, there are a few exceptions where (i) it is
impossible to recognize the vehicle’s LP due to occlusion, light-
ing or image acquisition problems etc.; (ii) the image does not
represent real ALPR scenarios, for example, a person holding

4 The list of discarded images can be found at https://web.inf.ufpr.br/vri/publications/
layout-independent-alpr/.

FIGURE 6 Examples of images discarded in our experiments

an LP. Three examples are shown in Figure 6. Such images were
also discarded in [72].

It is worth noting that we did not discard any image from
the test set of the UCSD-Stills data set and used the same num-
ber of test images in the Caltech Cars data set. In this way, we
can fairly compare our results with those obtained in previous
works. In fact, we used fewer images from those datasets to
train and validate our networks. In the ChineseLP dataset, on
the other hand, we first discard the few images with problems
and then split the remaining ones using the same protocol as the
SSIG-SegPlate and UFPR-ALPR datasets (i.e. 40%/20%/40%
for training, validation and testing, respectively) since, in the lit-
erature, a division protocol has not yet been proposed for the
ChineseLP dataset, to the best of our knowledge.

To avoid an overestimation or bias in the random division
of the images into the training, validation and test subsets, we
report in each stage the average result of five runs of the pro-
posed approach (note that most works in the literature, includ-
ing recent ones [7, 12, 15, 17, 38], report the results achieved
in a single run only). Thus, at each run, the images of the
datasets that do not have an evaluation protocol were ran-
domly redistributed into each subset (training/validation/test).
In the UCSD-Stills, SSIG-SegPlate and UFPR-ALPR datasets,
we employed the same division (i.e. the one proposed along with
the respective dataset) in all runs.

As pointed out in Section 4.1, we manually labelled the vehi-
cles in the background of the images in cases where their LPs
are legible. Nevertheless, in the testing phase, we considered
only the vehicles/LPs originally labelled in the datasets that
have annotations to perform a fair comparison with previous
works.

5 RESULTS AND DISCUSSION

In this section, we report the experiments carried out to verify
the effectiveness of the proposed ALPR system. We first assess
the detection stages separately since the regions used in the
LP recognition stage are from the detection results, rather than
cropped directly from the ground truth. This is done to provide
a realistic evaluation of the entire ALPR system, in which well-
performed vehicle and LP detections are essential for achiev-
ing outstanding recognition results. Afterwards, our system is
evaluated in an end-to-end manner and the results achieved are
compared with those obtained in previous works and by com-
mercial systems.

https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/
https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/
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TABLE 7 Vehicle detection results achieved across all datasets

Dataset Precision (%) Recall (%)

Caltech Cars 100.00 ± 0.00 100.00 ± 0.00

EnglishLP 99.04 ± 0.96 100.00 ± 0.00

UCSD-Stills 97.42 ± 1.40 100.00 ± 0.00

ChineseLP 99.26 ± 1.00 99.50 ± 0.52

AOLP 96.92 ± 0.37 99.91 ± 0.08

OpenALPR-EU 99.27 ± 0.76 100.00 ± 0.00

SSIG-SegPlate 95.47 ± 0.62 99.98 ± 0.06

UFPR-ALPR 99.57 ± 0.07 100.00 ± 0.00

Average 98.37 ± 0.65 99.92 ± 0.08

FIGURE 7 Some vehicle detection results achieved in distinct datasets.
Observe that vehicles of different types were correctly detected regardless of
lighting conditions (daytime and nighttime), occlusion, camera distance, and
other factors

5.1 Vehicle detection

In this stage, we employed a confidence threshold of 0.25
(defined empirically) to detect as many vehicles as possible,
while avoiding high FP rates and, consequently, a higher cost
of the proposed ALPR system. The following parameters were
used for training the network: 60K iterations (max batches)
and learning rate = [10−3, 10−4, 10−5] with steps at 48K
and 54K iterations.

The vehicle detection results are presented in Table 7. In
the average of five runs, our approach achieved a recall rate of
99.92% and a precision rate of 98.37%. It is remarkable that
the network was able to correctly detect all vehicles (i.e. recall
= 100%) in five of the eight datasets used in the experiments.
Some detection results are shown in Figure 7. As can be seen,
well-located predictions were attained on vehicles of different
types and under different conditions.

To the best of our knowledge, with the exception of the pre-
liminary version of this work [17], there is no other work in the
ALPR context where both cars and motorcycles are detected
at this stage. This is of paramount importance since motor-

FIGURE 8 FP and false negative (FN) predictions obtained in the vehicle
detection stage. As can be seen in (a), the predicted FPs are mostly unlabelled
vehicles in the background. In (b), one can see that the vehicles not predicted
by the network (i.e. the FNs) are predominantly those occluded or in the back-
ground

TABLE 8 Results attained in the LP detection and layout classification
stage

(a) (b)

Dataset Recall (%) Dataset Recall (%)

Caltech Cars 99.13 ± 1.19 Caltech Cars 99.13 ± 1.19

EnglishLP 100.00 ± 0.00 EnglishLP 100.00 ± 0.00

UCSD-Stills 100.00 ± 0.00 UCSD-Stills 100.00 ± 0.00

ChineseLP 100.00 ± 0.00 ChineseLP 99.63 ± 0.34

AOLP 99.94 ± 0.08 AOLP 99.85 ± 0.10

OpenALPR-EU 98.52 ± 0.51 OpenALPR-EU 98.52 ± 0.51

SSIG-SegPlate 99.83 ± 0.26 SSIG-SegPlate 99.80 ± 0.24

UFPR-ALPR 98.67 ± 0.25 UFPR-ALPR 98.67 ± 0.25

Average 99.51 ± 0.29 Average 99.45 ± 0.33

Note. The recall rates achieved in all datasets when disregarding the vehicles not detected
in the previous stage are presented in (a), while the recall rates obtained when considering
the entire test set are listed in (b)

cycles are one of the most popular transportation means in
metropolitan areas, especially in Asia [44]. Although motorcycle
LPs may be correctly located by LP detection approaches that
work directly on the frames, they can be detected with fewer
FPs if the motorcycles are detected first [73].

The precision rates obtained by the network were only not
higher due to unlabelled vehicles present in the background of
the images, especially in the AOLP and SSIG-SegPlate datasets.
Three examples are shown in Figure 8(a). In Figure 8(b), we
show some of the few cases where our network failed to detect
one or more vehicles in the image. As can be seen, such cases
are challenging since only a small part of each undetected vehicle
is visible.

5.2 LP detection and layout classification

In Table 8, we report the results obtained by the modified Fast-
YOLOv2 network in the LP detection and layout classification
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FIGURE 9 LPs correctly detected and classified by the proposed
approach. Observe the robustness for this task regardless of vehicle type, light-
ing conditions, camera distance and other factors

stage. As we consider only one LP per vehicle image, the pre-
cision and recall rates are identical. The average recall rate
obtained in all datasets was 99.51% when disregarding the vehi-
cles not detected in the previous stage and 99.45% when con-
sidering the entire test set. This result is particularly impressive
since we considered as incorrect the predictions in which the
LP layout was incorrectly classified with a high confidence value,
even in cases where the LP position was predicted correctly.

According to Figure 9, the proposed approach was able to
successfully detect and classify LPs of various layouts, including
those with few examples in the training set such as LPs issued in
the US states of Connecticut and Utah, or LPs of motorcycles
registered in the Taiwan region.

It should be noted that (i) the LPs may occupy a very small
portion of the original image and that (ii) textual blocks (e.g.
phone numbers) on the vehicles or in the background can be
confused with LPs. Therefore, as can be seen in Figure 10,
the vehicle detection stage is crucial for the effectiveness of our
ALPR system, as it helps to prevent both FPs and false negatives
(FNs).

Some images where our network failed either to detect the
LP or to classify the LP layout are shown in Figure 11. As can
be seen in Figure 11(a), our network failed to detect the LP in
cases where there is a textual block very similar to an LP in the
vehicle patch, or even when the LP of another vehicle appears
within the patch (a single case in our experiments). This is due

FIGURE 10 Comparison of the results achieved by detecting/classifying
the LPs directly in the original image (a) and in the vehicle regions predicted in
the vehicle detection stage (b)

FIGURE 11 Some images in which our network failed either to detect the
LP or to classify the LP layout

to the fact that one vehicle can be almost totally occluded by
another. Regarding the errors in which the LP layout was mis-
classified, they occurred mainly in cases where the LP is con-
siderably similar to LP of other layouts. For example, the left
image in Figure 11(b) shows a European LP (which has exactly
the same colours and number of characters as standard Chinese
LPs) incorrectly classified as Chinese.

It is important to note that it is still possible to correctly
recognize the characters in some cases where our network has
failed at this stage. For example, in the right image in Fig-
ure 11(a), the detected region contains exactly the same text as
the ground truth (i.e. the LP). Moreover, a Brazilian LP classi-
fied as European (e.g. the middle image in Figure 11b) can still
be correctly recognized in the next stage since the only post-
processing rule we apply to European LPs is that they have
between five and eight characters.

As mentioned earlier, in this stage we disabled the colour-
related data augmentation of the Darknet framework. In this
way, we eliminated more than half of the layout classification
errors obtained when the model was trained using images with
changed colours. We believe this is due to the fact that the net-
work leverages colour information (which may be distorted with
some data augmentation approaches) for layout classification, as
well as other characteristics such as the position of the charac-
ters and symbols on the LP.
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TABLE 9 Recognition rates (%) obtained by the proposed system, modified versions of our system, previous works and commercial systems in all datasets used
in our experiments. The best end-to-end recognition rate achieved in each dataset is shown in bold

Approach

Dataset [57] [38] [7] [37] [17] Sighthound OpenALPR

No vehicle

detectiona

No layout

classificationb Proposed

Caltech Cars − − − − − 95.7 ± 2.7 99.1 ± 1.2 98.3 ± 1.8 96.1 ± 1.8 98.7 ± 1.2

EnglishLP 97.0 − − − − 92.5 ± 3.7 78.6 ± 3.6 95.3 ± 1.6 95.5 ± 2.4 95.7 ± 2.3

UCSD-Stills − − − − − 98.3 98.3 98.0 ± 0.7 97.3 ± 1.9 98.0 ± 1.4

ChineseLP − − − − − 90.4 ± 2.4 92.6 ± 1.9 97.0 ± 0.7 95.4 ± 1.1 97.5 ± 0.9

AOLP −

99.8c
− − − 87.1 ± 0.8 − 98.8 ± 0.3 98.4 ± 0.7 99.2 ± 0.4

OpenALPR-EU − − 93.5 85.2 − 93.5 91.7 97.8 ± 0.5 96.7 ± 1.9 97.8 ± 0.5

SSIG-SegPlate − − 88.6 89.2 85.5 82.8 92.0 96.5 ± 0.9 96.9 ± 0.5 98.2 ± 0.5

UFPR-ALPR − − − − 64.9 62.3 82.2 59.6 ± 0.9 82.5 ± 1.1 90.0 ± 0.7

Average − − − − − 87.8 ± 2.4 90.7 ± 2.3 92.7 ± 0.9 94.8 ± 1.4 96.9 ± 1.0

Note. To the best of our knowledge, in the literature, only algorithms for LP detection and character segmentation were evaluated in the Caltech Cars, UCSD-Stills and ChineseLP datasets.
Therefore, our approaches are compared only with the commercial systems in these datasets.
aA modified version of our approach in which the LPs are detected (and their layouts classified) directly in the original image (i.e. without vehicle detection).
bThe proposed ALPR system assuming that all LP layouts were classified as undefined (i.e. without layout classification and heuristic rules).
cThe LP patches for the LP recognition stage were cropped directly from the ground truth in [38].

5.3 LP recognition (end-to-end)

As in the vehicle detection stage, we first evaluated different
confidence threshold values in the validation set in order to miss
as few characters as possible, while avoiding high FP rates. We
adopted a 0.5 confidence threshold for all LPs except Euro-
pean ones, where a higher threshold (i.e. 0.65) was adopted since
European LPs can have up to eight characters and several FPs
were predicted on LPs with fewer characters when using a lower
confidence threshold.

We considered the ‘1’ and ‘I’ characters as a single class in the
assessments performed in the SSIG-SegPlate and UFPR-ALPR
datasets, as those characters are identical but occupy different
positions on Brazilian LPs. The same procedure was done in
[7, 17].

For each dataset, we compared the proposed ALPR sys-
tem with state-of-the-art methods that were evaluated using the
same protocol as the one described in Section 4.2. In addition,
our results are compared with those obtained by Sighthound
[72] and OpenALPR [74], which are two commercial systems
often used as baselines in the ALPR literature [7, 8, 10, 17, 37].
According to the authors, both systems are robust for the detec-
tion and recognition of LPs of different layouts. It is important
to emphasize that although the commercial systems were not
tuned specifically for the datasets employed in our experiments,
they are trained in much larger private datasets, which is a great
advantage, especially in deep learning approaches.

OpenALPR contains specialized solutions for LPs from dif-
ferent regions (e.g. mainland China, Europe, among others) and
the user must enter the correct region before using its API,
that is, it requires prior knowledge regarding the LP layout.
Sighthound, on the other hand, uses a single model/approach
for LPs from different countries/regions, as well as the pro-
posed system.

The remainder of this section is divided into two parts. First,
in Section 5.4, we conduct an overall evaluation of the proposed
method across the eight datasets used in our experiments. The
time required for our system to process an input image is also
presented. Afterwards, in Section 5.5, we briefly present and dis-
cuss the results achieved by both the baselines and our ALPR
system on each dataset individually. Such an analysis is very
important to find out where the proposed system fails and the
baselines do not and vice versa.

5.4 Overall evaluation

The results obtained in all datasets by the proposed ALPR
system, previous works and commercial systems are shown in
Table 9. In the average of five runs, across all datasets, our
end-to-end system correctly recognized 96.9% of the LPs, out-
performing Sighthound and OpenALPR by 9.1% and 6.2%,
respectively. More specifically, the proposed system outper-
formed both previous works and commercial systems in the
ChineseLP, OpenALPR-EU, SSIG-SegPlate and UFPR-ALPR
datasets, and yielded competitive results to those attained by
the baselines in the other datasets.

The proposed system attained results similar to those
obtained by OpenALPR in the Caltech Cars dataset (98.7%
against 99.1%, which represents a difference of less than one LP
per run, on average, as there are only 46 testing images), even
though our system does not require prior knowledge. Regard-
ing the EnglishLP dataset, our system performed better than
the best baseline [57] in two of the five runs (this evaluation
highlights the importance of executing the proposed method
five times and then averaging the results). Although we used
the same number of images for testing, in [57] the dataset was
divided only once and the images used for testing were not
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specified. In the UCSD-Stills dataset, both commercial systems
reached a recognition rate of 98.3% while our system achieved
98% on average (with a standard deviation of 1.4%). Finally,
in the AOLP dataset, the proposed approach obtained similar
results to those reported by [38], even though in their work
the LP patches used as input in the LP recognition stage were
cropped directly from the ground truth (simplifying the prob-
lem, as explained in Section 2); in other words, they did not
take into account vehicles or LPs not detected in the earlier
stages, nor background noise in the LP patches due to less accu-
rate LP detections.

To further highlight the importance of the vehicle detection
stage, we included, in Table 9, the results achieved by a modified
version of our approach in which the LPs are detected (and
their layouts classified) directly in the original image (i.e. without
vehicle detection). Although comparable results were achieved
on datasets where the images were acquired on well-controlled
scenarios, the modified version failed to detect/classify LPs
in various images captured under less controlled conditions
(as illustrated in Figure 10b), e.g. with vehicles far from the
camera and shadows on the LPs, which explains the low
recognition rate achieved by that approach in the challenging
UFPR-ALPR dataset—where the images were taken from
inside a vehicle driving through regular traffic in an urban
environment, and most LPs occupy a very small region of the
image [17].

Similarly, to evaluate the impact of classifying the LP layout
prior to LP recognition (i.e. our main proposal), we also report
in Table 9 the results obtained when assuming that all LP lay-
outs were classified as undefined and that a generic approach
(i.e. without heuristic rules) was employed in the LP recogni-
tion stage. The mean recognition rate was improved by 2.1%.
We consider this strategy (layout classification + heuristic rules)
essential for accomplishing outstanding results in datasets that
contain LPs with fixed positions for letters and digits (e.g.
Brazilian and Chinese LPs), as the recognition rates attained in
the ChineseLP, SSIG-SegPlate and UFPR-ALPR datasets were
improved by 3.6% on average.

The robustness of our ALPR system is remarkable since it
achieved recognition rates higher than 95% in all datasets except
UFPR-ALPR (where it outperformed the best baseline by 7.8%). The
commercial systems, on the other hand, achieved similar results
only in the Caltech Cars and UCSD-Stills datasets, which con-
tain exclusively American LPs, and performed poorly (i.e. recog-
nition rates below 85%) in at least two datasets. This suggests
that the commercial systems are not so well trained for LPs
of other layouts and highlights the importance of carrying out
experiments on multiple datasets (with different characteristics)
and not just on one or two, as is generally done in most works
in the literature.

Although OpenALPR achieved better results than
Sighthound (on average across all datasets), the latter system
can be seen as more robust than the former since it does not
require prior knowledge regarding the LP layout. In addition,
OpenALPR does not support LPs from the Taiwan region. In
this sense, we tried to employ OpenALPR solutions designed
for LPs from other regions (including mainland China) in the

FIGURE 12 Examples of LPs that were correctly recognized by the pro-
posed ALPR system. From top to bottom: American, Brazilian, Chinese, Euro-
pean and Taiwanese LPs

FIGURE 13 Examples of LPs that were incorrectly recognized by the pro-
posed ALPR system. The ground truth is shown in parentheses

experiments performed in the AOLP dataset; however, very
low detection and recognition rates were obtained.

Figure 12 shows some examples of LPs that were correctly
recognized by the proposed approach. As can be seen, our sys-
tem can generalize well and correctly recognize LPs of different
layouts, even when the images were captured under challenging
conditions. It is noteworthy that, unlike [17, 38, 57], the exact
same networks were applied to all datasets; in other words, no
specific training procedure was used to tune the networks for
a given dataset or layout class. Instead, we use heuristic rules
in cases where the LP layout is classified with a high confi-
dence value.

Some LPs in which our system failed to correctly
detect/recognize all characters are shown in Figure 13. As one
may see, the errors occurred mainly in challenging LP images,
where even humans can make mistakes since, in some cases,
one character might become very similar to another due to the
inclination of the LP, the LP frame, shadows, blur, among other
factors. Note that, in this work, we did not apply pre-processing
techniques to the LP image in order not to increase the overall
cost of the proposed system.
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TABLE 10 The time required for each network in our system to process
an input on an NVIDIA Titan Xp GPU

ALPR stage Adapted model Time (ms) FPS

Vehicle detection YOLOv2 8.5382 117

LP detection and Layout classification Fast-YOLOv2 3.0854 324

LP recognition CR-NET 1.9935 502

End-to-end – 13.6171 73

TABLE 11 Execution times considering that there is a certain number of
vehicles in every image

# Vehicles Time (ms) FPS

1 13.6171 73

2 18.6960 53

3 23.7749 42

4 28.8538 35

5 33.9327 29

In Table 10, we report the time required for each network in
our system to process an input. As in [6, 17, 37], the reported
time is the average time spent processing all inputs in each stage,
assuming that the network weights are already loaded and that
there is a single vehicle in the scene. Although a relatively deep
model is explored for vehicle detection, our system is still able to
process 73 FPS using a high-end GPU. In this sense, we believe
that it can be employed for several real-world applications, such
as parking and toll monitoring systems, even in cheaper setups
(e.g. with a mid-end GPU).

It should be noted that practically all images from the datasets
used in our experiments contain only one labelled vehicle. How-
ever, to perform a more realistic analysis of the execution time,
we listed in Table 11 the time required for the proposed sys-
tem to process images assuming that there is a certain number
of vehicles in every image (note that vehicle detection is per-
formed only once, regardless of the number of vehicles in the
image). According to the results, our system can process more
than 30 FPS even when there are four vehicles in the scene. This
information is relevant since some ALPR approaches, including
the one proposed in our previous work [17], can only run in real
time if there is at most one vehicle in the scene.

The proposed approach achieved an outstanding trade-off
between accuracy and speed, unlike others recently proposed in
the literature. For example, the methods proposed in [6, 8] are
capable of processing more images per second than our system
but reached poor recognition rates (i.e. below 65%) in at least
one dataset in which they were evaluated. On the other hand,
impressive results were achieved on different scenarios in [7, 12,
15]. However, the methods presented in these works are com-
putationally expensive and cannot be applied in real time. The
Sighthound and OpenALPR commercial systems do not report
the execution time.

We remark that real-time processing may be affected by
many factors in practice. For example, we measured our sys-

tem’s execution time when there was no other process consum-
ing machine resources significantly. This is the standard proce-
dure in the literature since it enables/facilitates the comparison
of different approaches, despite the fact that it may not accu-
rately represent some real-world applications, where other tasks
must be performed simultaneously. Some other factors that may
affect real-time processing are the time it takes to transfer the
image from the camera to the processing unit, hardware char-
acteristics (e.g. CPU architecture, read/write speeds and data
transfer time between CPU and GPUs) and the versions of
the frameworks and libraries used (e.g. OpenCV, Darknet and
CUDA).

It is important to emphasize that, according to our exper-
iments, the proposed ALPR system is robust under different
conditions while being efficient essentially due to the meticulous
way in which we designed, optimized and combined its different
parts, always seeking the best trade-off between accuracy and
speed. All strategies adopted are very important in some way
for the robustness and/or efficiency of the proposed approach,
and no specific part contributes more than the others in every
scenario. For example, as shown in Table 9 and Figure 10, vehi-
cle detection mainly helps to prevent FPs and FNs on complex
scenarios, while layout classification (along with heuristic rules)
mainly improves the recognition of LPs with a fixed number
of characters and/or fixed positions for letters and digits. In
the same way, both tasks and also LP recognition would not
have been accomplished so successfully, or so efficiently, if
not for careful modifications to the networks and exploration
of data augmentation techniques (all details were given in
Section 3).

5.5 Evaluation by dataset

In this section, we briefly discuss the results achieved by both
the baselines and our ALPR system on each dataset individu-
ally, striving to clearly identify what types of errors are generally
made by each system. For each dataset, we show some quali-
tative results obtained by the commercial systems and the pro-
posed approach, since we know exactly which images/LPs these
systems recognized correctly or not. In the OpenALPR-EU,
SSIG-SegPlate and UFPR-ALPR datasets, we also show some
predictions obtained by the methods introduced in [7, 17], as
their architectures and pre-trained weights were made publicly
available by the respective authors. Note that, as we are compar-
ing different ALPR systems, the LP images shown in this section
were cropped directly from the ground truth. We focus on the
recognition stage for visualization purposes and also because
we consider this stage as the current bottleneck of ALPR sys-
tems. However, we pointed out cases where one or more sys-
tems did not return any predictions on multiple images from a
given dataset, which may indicate that the LPs were not prop-
erly detected.

Caltech Cars [58]: this is the dataset with fewer images for
testing (only 46). Hence, a single image recognized incorrectly
reduces the accuracy of the system being evaluated by more
than 2%. By carefully analysing the results, we found out that
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FIGURE 14 Some qualitative results obtained on Caltech Cars [58] by
Sighthound [72], OpenALPR [74] and the proposed system

TABLE 12 Recognition rates (%) achieved by Panahi and
Gholampour [57], Sighthound [72], OpenALPR [74] and our system on
EnglishLP [59]. The best end-to-end recognition rate achieved in each run is
shown in bold

Run [57] [72] [74] Proposed

# 1 − 98.0 82.4 96.1

# 2 − 94.1 79.4 97.1

# 3 − 91.2 76.5 98.0

# 4 − 91.2 73.5 95.1

# 5 − 88.2 81.4 92.2

Average 97.0 92.5 78.6 95.7

there is a challenging image in this dataset that neither the com-
mercial systems nor the proposed system could correctly recog-
nize. Note that, in some executions, this image was not in the
test subset, which explains the mean recognition rates above
98% attained by both our system and OpenALPR. As illus-
trated in Figure 14, while OpenALPR only made mistakes in
that image, the proposed system failed in another image as well
(where an ‘F’ looks like an ‘E’ due to the LP’s frame), and
Sighthound failed in some other LPs due to very similar char-
acters (e.g. ‘1’ and ‘I’) or FPs.

EnglishLP [59]: this dataset has several LP layouts and dif-
ferent types of vehicles such as cars, buses and trucks. Panahi
and Gholampour [57] reported a recognition rate of 97.0% in
this dataset, however, their method was executed only once
and the images used for testing were not specified. As can be
seen in Table 12, using the same number of test images, our
method achieved recognition rates above 97% in two of five
executions (Sighthound also surpassed 97% in one run). In this
sense, we consider that our system is as robust as the one pre-
sented in [57]. According to Figure 15, neither the commercial
systems nor the proposed system had difficulty in recognizing
LPs with two rows of characters in this dataset. Instead, as there
are many different LP layouts in Europe and thus the number of
characters on each LP is not fixed, most errors refer to a charac-
ter being lost (i.e. FNs) or, conversely, a non-existent character
being predicted (i.e. FPs). The low recognition rates achieved
by OpenALPR are due to the fact that it did not return any
predictions in some cases (as if there were no vehicles/LPs in
the image). In this sense, we conjecture that OpenALPR only

FIGURE 15 Some qualitative results obtained on EnglishLP [59] by
Sighthound [72], OpenALPR [74] and the proposed system

FIGURE 16 Some qualitative results obtained on UCSD-Stills [60] by
Sighthound [72], OpenALPR [74] and the proposed system

returns predictions obtained with a high confidence value and
that it is not as well trained for European LPs as it is for Ameri-
can/Brazilian ones.

UCSD-Stills [60]: as Caltech Cars, the UCSD-Stills dataset
also has few test images (only 60). Despite containing LPs
from distinct US states (i.e. different LP layouts) and under
several lighting conditions, all ALPR systems evaluated by us
achieved excellent results in this dataset. More specifically, both
Sighthound and OpenALPR failed in just one image (interest-
ingly, not in the same one). This is another indication that these
commercial systems are very well trained for American LPs.
Also very robustly, our system failed in just two images over
five runs, remarkably recognizing all 60 images correctly in one
of them. All images in which at least one system failed, as well
as other representative ones, are shown in Figure 16.

ChineseLP [31]: this dataset contains both images captured
by the authors and downloaded from the Internet. We used 159
images for testing in each run. An important feature of Chine-
seLP is that it has several images in which the LPs are tilted
or inclined, as shown in Figure 17. In fact, most of the pre-
diction errors obtained by commercial systems were in such
images. Our system, on the other hand, handled tilted/inclined
LPs well and mostly failed in cases where one character become
very similar to another due to the LP frame, shadows, blur etc. It
should be noted that Sighthound (90.4%) misclassified the Chi-
nese character (see Section 3.3 for details) as an English letter on
some occasions. This kind of recognition error was rarely made
by the proposed system (97.5%) and OpenALPR (92.6%).
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FIGURE 17 Some qualitative results obtained on ChineseLP [31] by
Sighthound [72], OpenALPR [74] and the proposed system

FIGURE 18 Some qualitative results obtained on the AOLP [61] dataset
by Sighthound [72] and the proposed system

AOLP [61]: this dataset has images collected in the Tai-
wan region from front/rear views of vehicles and various loca-
tions, time, traffic and weather conditions. In our experiments,
683 images were used for testing in each run. As OpenALPR
does not support LPs from the Taiwan region (as pointed
out in Section 5.4), here we compare the results obtained
by Sighthound (87.1%) and the proposed system (99.2%). As
shown in Figure 18, different from what we expected, both sys-
tems dealt well with inclined LPs in this dataset. While our sys-
tem failed mostly in challenging cases, such as very similar char-
acters (‘E’ and ‘F’, ‘B’ and ‘8’ etc.), Sighthound also failed in
simpler cases where our system had no difficulty in correctly
recognizing all LP characters.

OpenALPR-EU [32]: this dataset consists of 108 testing
images, generally with the vehicle well centred and occupying
a large portion of the image. Therefore, both our ALPR system
and the baselines performed well on this dataset. Over five exe-
cutions, the proposed system (97.8%) failed in just three differ-
ent images, while the baselines failed in a few more. Surprisingly,
as can be seen in Figure 19, the systems made distinct recogni-
tion errors and we were unable to find an explicit pattern among
the incorrect predictions made by each of them. In this sense,
we believe that the errors in this dataset are mainly due to the
great variability in the fonts of the characters in different LP
layouts. As an example, note in Figure 19 that the ‘W’ character
varies considerably depending on the LP layout.

SSIG-SegPlate [33]: this dataset contains 800 images for
testing. All images were taken with a static camera on the
campus of a Brazilian university. Here, the proposed system
achieved a high recognition rate of 98.2%, outperforming the
best baseline by 6.2%. As shown in Figure 20, as well as in other
datasets, our system failed mostly in challenging cases where one

FIGURE 19 Some qualitative results obtained on OpenALPR-EU [32] by
Sighthound [72], OpenALPR [74], Silva and Jung [7] and the proposed system

FIGURE 20 Some qualitative results obtained on SSIG-SegPlate [33] by
Sighthound [72], OpenALPR [74], Silva and Jung [7], the preliminary version of
our approach [17] and the proposed system

character becomes very similar to another due to motion blur,
the position of the camera and other factors. This was also the
reason for most of the errors made by OpenALPR and the sys-
tem designed by Silva and Jung [7]. However, these systems also
struggled to correctly recognize degraded LPs in which some
characters are distorted or erased. In addition to such errors,
Sighthound predicted six characters instead of seven on sev-
eral occasions, probably because it does not take advantage of
information regarding the LP layout. Finally, the preliminary
version of our approach [17], where the LP characters are first
segmented and then individually recognized, had difficulty seg-
menting the characters ‘I’ and ‘1’ in some cases, which resulted
in recognition errors.

UFPR-ALPR [17]: this challenging dataset includes 1800
testing images acquired from inside a vehicle driving through
regular traffic in an urban environment, that is, both the vehi-
cles and the camera (inside another vehicle) were moving and
most LPs occupy a very small region of the image. In this sense,
the commercial systems did not return any prediction in some
images from this dataset where the vehicles are far from the
camera. Regarding the recognition errors, they are very simi-
lar to those observed in the SSIG-SegPlate dataset. Sighthound
often confused similar letters and digits, while segmentation fail-
ures impaired the results obtained by the approach proposed in
our previous work [17]. According to Figure 21, the images were
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FIGURE 21 Some qualitative results obtained on UFPR-ALPR [17] by
Sighthound [72], OpenALPR [74], the preliminary version of our approach [17]
and the proposed system

collected under different lighting conditions and the four ALPR
systems found it difficult to correctly recognize certain LPs with
shadows or high exposure. It should be noted that motorcy-
cle LPs (those with two rows of characters) are challenging in
nature, as the characters are smaller and closely spaced. In this
context, some authors have evaluated their methods, which do
not work for motorcycles or for LPs with two rows of char-
acters, exclusively in images containing cars, overlooking those
with motorcycles [8, 37].

Final remarks: while being able to process in real time, the
proposed system is also capable of correctly recognizing LPs
from several countries/regions in images taken under different
conditions. In general, our ALPR system failed in challenging
cases where one character becomes very similar to another due
to factors such as shadows and occlusions (note that some of
the baselines also failed in most of these cases). We believe that
vehicle information, such as make and model, can be explored
in our system’s pipeline in order to make it even more robust
and prevent errors in such cases.

6 CONCLUSIONS

In this work, as our main contribution, we presented an end-
to-end, efficient and layout-independent ALPR system that
explores YOLO-based models at all stages. The proposed sys-
tem contains a unified approach for LP detection and layout
classification to improve the recognition results using post-
processing rules. This strategy proved essential for reaching out-
standing results since, depending on the LP layout, we avoided
errors in characters that are often misclassified and also in the
number of predicted characters to be considered.

Our system achieved an average recognition rate of 96.9%
across eight public datasets used in the experiments, out-
performing Sighthound and OpenALPR by 9.1% and 6.2%,
respectively. More specifically, the proposed system outper-
formed both previous works and commercial systems in the
ChineseLP, OpenALPR-EU, SSIG-SegPlate and UFPR-ALPR
datasets, and yielded competitive results to those attained by
the baselines in the other datasets.

We also carried out experiments to measure the execution
time. Compared to previous works, our system achieved an
impressive trade-off between accuracy and speed. Specifically,
even though the proposed approach achieves high recognition
rates (i.e. above 95%) in all datasets except UFPR-ALPR (where
it outperformed the best baseline by 7.8%), it is able to pro-
cess images in real time even when there are four vehicles in
the scene. In this sense, we believe that our ALPR system can
run fast enough even in mid-end setups/GPUs.

Another important contribution is that we manually labelled
the position of the vehicles, LPs and characters, as well as their
classes, in all datasets used in this work that have no annota-
tions or that contain labels only for part of the ALPR pipeline.
Note that the labelling process took a considerable amount of
time since there are several bounding boxes to be labelled on
each image (precisely, we manually labelled 38,351 bounding
boxes on 6,239 images). These annotations are publicly available

to the research community, assisting the development and eval-
uation of new ALPR approaches as well as the fair comparison
among published works.

We remark that the proposed system can be exploited in sev-
eral applications in the context of intelligent transportation sys-
tems. For example, it can clearly help re-identify vehicles of the
same model and colour in non-overlapping cameras through
LP recognition [24]—very similar vehicles can be easily dis-
tinguished if they have different LP layouts. Considering the
impressive results achieved for LP detection, it can also be
explored for the protection of privacy in images obtained in
urban environments by commercial systems such as Mapillary

and Google Street View [75].
As future work, we intend to design new CNN architectures

to further optimize (in terms of speed) vehicle detection. We
also plan to correct the alignment of the detected LPs and also
rectify them in order to achieve even better results in the LP
recognition stage. Finally, we want to investigate the impact of
various factors (e.g. concurrent processes, hardware character-
istics, frameworks/libraries used among others) on real-time
processing thoroughly. Such an investigation is of paramount
importance for real-world applications, but it has not been done
in the ALPR literature.
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