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Abstract—The iris is considered as the biometric trait with
the highest unique probability. The iris location is an important
task for biometrics systems, affecting directly the results obtained
in specific applications such as iris recognition, spoofing and
contact lenses detection, among others. This work defines the
iris location problem as the delimitation of the smallest squared
window that encompasses the iris region. In order to build a
benchmark for iris location we annotate (iris squared bounding
boxes) four databases from different biometric applications and
make them publicly available to the community. Besides these
4 annotated databases, we include 2 others from the literature.
We perform experiments on these six databases, five obtained
with near infra-red sensors and one with visible light sensor.
We compare the classical and outstanding Daugman iris location
approach with two window based detectors: 1) a sliding window
detector based on features from Histogram of Oriented Gradients
(HOG) and a linear Support Vector Machines (SVM) classifier;
2) a deep learning based detector fine-tuned from YOLO object
detector. Experimental results showed that the deep learning
based detector outperforms the other ones in terms of accuracy
and runtime (GPUs version) and should be chosen whenever
possible.

Index Terms—Iris location; Daugman detector; HOG & linear
SVM; YOLO; Deep Learning.

I. INTRODUCTION

Biometrics systems have significantly improved person
identification and authentication, performing an important role
in personal, national and global security [1]. In biometry,
the iris appears as one of the main biological characteristics,
since it remains unchanged over time and is unique for each
person [2]. Furthermore, the identification process is non-
invasive, in other words, there is no need of physical contact
to obtain an iris image and analyze it [3]. Figure la illustrates
the iris and other structures of a human eye.

Iris location is usually the initial step in recognition, authen-
tication and identification systems [4] and thus can directly
affect their performance [5], [6]. In this sense, how the
iris location step influences those systems is an interesting
question to be studied. For achieving such aim, here, we
propose to benchmark/evaluate baseline methods that can be
applied to iris location. Initially, we survey some methods in
the literature.

The pioneer and maybe the most well known methods for
iris location is the one proposed by Daugman [6], which
defines an integro-differential operator to identify the circular
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Figure 1. (a) Periocular region and its main structures. (b) Manual iris location
through a bounding box and a circle.

borders present in the images. This operator takes into account
the circular shape of the iris in order to find the correct
position, by maximizing the partial derivative with respect to
the radius.

Wildes [5] proposed another relevant method for iris lo-
cation by using border detection and the Hough transform.
First, the iris is isolated by using Gaussian filters of low pass
followed by a spatial sub-sampling. Subsequently, the Hough
transform is applied and those elements that better fit a circle
according to a defined condition are selected.

Tisse et al. [7], present a modification of Daugman’s algo-
rithm. This approach applies a Hough transform on a gradient
decomposition to find an approximation of the pupil center.
Then, the integro-differential operator is applied to locate the
iris boundaries. It has the advantage of eliminating the errors
caused by specular reflections.

Rodriguez & Rubio [8] used two strategies to locate inner
and outer iris contours. For locating the inner contour of the
iris, the operator proposed by Daugman is used. Then, for
determining the outer boundary of the iris, three points are
detected, which represent the vertexes of a triangle inscribed in
a circumference that models the iris boundary. This approach
presented no better accuracy than the Daugman method, but
makes full use of the local texture variation and does not use
any optimization procedure. For this reason, it can reduce the
computational cost [8].

Alvarez-Betancourt & Garcia-Silvente [9] presented an iris
location method based on the detection of circular boundaries
under an approach of gradient analysis in points of interest



of successive arcs. The quantified majority operator QMA-
OWA [10] was used in order to obtain a representative value
for each successive arc. The identification of the iris boundary
is given by obtaining the arc with the greatest representative
value. The authors reported similar results to those achieved
by the Daugman method, with improvements in processing
time.

In the method proposed by ZhuYu & Cui [11], the first step
is to remove the eyelashes by dual-threshold method, which
can be an advantage over other iris location approaches. Next,
the facula is removed through erosion method. Finally, the
accurate location is obtained through Hough Transform and
least-squares method.

Zhou et al. [12] presented a method for iris location based
on Vector Field Convolution (VFC), which is used to estimate
the initial location of the iris. This initial estimate makes pupil
location much closer to the real boundary instead of circle fit-
ting, improving location accuracy and reducing computational
cost. The final result is obtained using the algorithm proposed
by Daugman [6].

Zhang et al. [13] used an algorithm which adopts a mo-
mentum based level set method [14], [15] to locate the
pupil boundary. Finally, the Daugman’s method was used
in order to locate the iris. Determine the initial contour for
momentum based level set by minimum average gray level
method decreases the time consumption and improves the
results obtained by the Daugman’s method. This improvement
happens because this initial contour, as well as the Zhou et
al. [12] approach, is generally close to the real iris inner
boundary [13].

Su et al. [16] proposed an iris location algorithm based on
regional property and iterative searching. The pupil area is
extracted using the regional attribute of the iris image, and
the iris inner edge is fitted by iterating, comparing and sorting
the pupil edge points. The outer edge location is completed
in an iterative searching method on the basis of the extracted
pupil centre and radius.

As can be seen, several works in the literature have proposed
methods to perform iris location by determining a circle that
delimits it (as shown in red in Figure 1b), since in many
applications it is necessary to perform the iris normalization.
Normalization consists in transforming the circular region
of the iris from the Cartesian space into a polar coordinate
system, so that the iris is represented by a rectangle. Usually,
representations and characteristics used on further processes
are extracted from the transformed image.

In contrast, with the increasing success of deep learning
techniques and Convolutional Neural Networks (CNNs) in
computer vision problems [1], [17]-[21], it has become inter-
esting also in iris-related biometrics problems (besides faces)
the use of the entire iris region, including the pupil and some
sclera region, without the need for normalization.

In this sense, this work defines the iris location task as
the determination of the smallest squared bounding box that
encompasses the entire region of the iris as show in yellow
in Figure 1b. Thus we propose to evaluate, as baselines, the

following window-based detectors: 1) a sliding window detec-
tor based on features from Histogram of Oriented Gradients
(HOG) and a linear Support Vector Machines (SVM) classifier,
i.e., an adaptation from the human detection method proposed
by Dalal & Triggs [22]; 2) a deep learning based detector
fine-tuned from YOLO object detector [23], [24].

We compare our results with the well-known method of
Daugman [4], since its notoriety and one fair implementation
can be publicly found'. The experiments were performed in six
databases and the reported results show that the use of deep
learning to iris location is promising. The fine-tuned model
from YOLO object detector yielded real-time location with
high accuracy, overcoming problems such as noise, eyelids,
eyelashes and reflections.

This paper is structured as follows: Section II presents
the databases used in the experiments; Section III describes
the baseline methods used in this work; Section IV reports
our experiments and discusses our results; Finally, Section V
concludes the work.

II. DATABASES

Six databases were used for the experiments performed in
this work: IIIT-Delhi Contact Lens Iris (IIIT-D CLI) [25],
Notre Dame Contact Lens Detection 2015 (NDCLD15) [26],
MobBIOfake [27], Notre Dame Cosmetic Contact Lenses
(NDCCL) [28], CASIA-IrisV3 Interval [29] and BERC
mobile-iris database [30].

Except the NDCLDI15, all other databases were manually
annotated from a single annotator’. The NDCLD15 annota-
tions were provided by the database authors [26].

Bellow we present a brief description of these databases and
how they were used in the experiments.

HIT-Delhi Contact Lens Iris: The IIIT-D CLI database
consists of 6570 iris images of 101 individuals. Three classes
of images were used for the composition of the database:
individuals who are not using contact lenses, individuals using
transparent lenses and individuals using color cosmetic lenses.
In order to study the effect of the acquisition device, iris
images were captured using two sensors: Cogent iris sensor
and VistaFA2E single iris sensor [25].

For the training set, 1500 images of each sensor were
randomly selected. The remaining images (3570) were used to
compose the test set. All images have resolution of 640 x 480
pixels and were manually annotated. Figure 2a and Figure 2b
show, respectively, examples of images obtained by VistaFA2E
and Cogent sensors.

CASIA-IrisV3 Interval - This database consists of 2639 iris
images with resolution of 320 x 280 pixels, obtained in two
sections. The images were captured with their own developed
camera and an example can be seen in Figure 2f. The main
characteristic of this database is that a circular near-infrared
led illumination was used when the images were captured,
thus this database can be used for studies on the detailing of

Uhttps://github.com/Qingbaofiris
2The iris location annotations are publicly available to the research com-
munity at https://web.inf.ufpr.br/vri/databases/iris-location-annotations/
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Figure 2. Examples of images from the databases used.

texture features in iris images [29]. For training, 1500 images
were randomly selected. The remaining images were used for
testing.

Notre Dame Cosmetic Contact Lenses - The images from
the NDCCL database have resolution of 640 x 480 pixels
and were captured under near-infrared illumination. Two iris
cameras were used: IrisGuard AD100 (Figure 2g and IrisAc-
cess LG4000 sensor (Figure 2h), composing two subsets. The
IrisAccess LG4000 subset has a training set with 3000 images
and a test set of 1200 images. IrisGuard AD100 subset has
600 images for training and 300 for testing [31], [32]. The
database contains images of individuals divided into three
classes: no contact lenses, non-textured contact lenses and
textured contact lenses.

MobBIOfake - The MobBIOfake database was created
with the purpose of studying the liveliness detection in iris
images obtained from mobile devices in uncontrolled envi-
ronments [27]. This database is composed of 1600 fake iris
images of 250 x 200 pixels, obtained from a subset of 800
images belonging to the MobBIO database [33].

For the creation of the fake images, the original images were
grouped by each subject and a pre-processing was performed
in order to improve the contrast. The images were then printed
using a professional printer in a high quality photo paper and
recaptured using the same device. Finally, the images were
cropped and resized to unify the dimensions. The database is
equally divided into training and test sets, in other words, 400
real images and 400 fake images were destined for the training
sets. Figure 2d and Figure 2e are examples of fake and real
images, respectively.

Notre Dame Contact Lens Detection 2015 - The NDCLD15
database is composed of 7300 iris images with resolution of
640 x 480 pixels. This database is composed of 6000 images
for training and 1300 images for evaluation. Images were
acquired using either IrisAccess LG4000 sensor or Iris-Guard
AD100 sensor. All iris images were captured in a windowless
indoor lab under consistent lighting conditions. This database
was created with the purpose of studying the classification of
iris images between types of contact lenses [26]. Therefore,
the database contains images of individuals divided into three
classes: no contact lenses, non-textured contact lenses and
textured contact lenses. An example image of this database
can be seen in Figure 2i.

BERC Mobile-iris Database - The BERC database is com-
posed of images obtained in near-infrared wavelength with a
resolution of 1280 x 960 pixels. The images were captured by a
mobile device under vertical position, in sequences composed
of 90 images [30]. In order to simulate the situation where
the user moves the mobile phone back and forth to adjust the
focus, the sequences of images were obtained by moving the
mobile phone to the iris at 3 distances: 40 to 15 cm, 15 to
25 cm and 25 to 15 cm. The best images of each sequence
were selected, totaling 500 iris images of 100 subjects. An
example image of this database can be seen in Figure 2c. In
this database, 400 images were randomly selected for training
and 100 for testing.

IIT. BASELINES

In this work, we use two approaches to perform iris location.
One of them is based on HOG and SVM, which is an
adaptation of the human detection method proposed by Dalal
& Triggs [22]. We use this approach together with the sliding
window technique presented on the face detection method,
proposed by Viola & Jones [34], [35]. The other approach is
based on deep learning, using YOLO CNNs [23].

A. Histogram of Oriented Gradients and Support Vector Ma-
chines

Despite image acquisition with different devices, lighting
conditions, variations of translation, rotation and scale [2],
the iris presents a common structure, following patterns of
texture, shape and edge orientations, which can be described
by a feature descriptor and interpreted by a classifier.

HOG is a feature descriptor used in computer vision for
object detection. This method quantizes the gradient orien-
tation occurrences in regions of an image, extracting shape
information from objects [22]. Figure 3 illustrates an image
described by HOG.

In this work, each window was divided into cells of 8 x 8
pixels. For each cell, the horizontal and vertical gradients in
all pixels are calculated. Thus, the orientations and magnitudes
of the gradient are obtained. The gradient orientations are then
quantified in nine directions.

In order to avoid effects of light and contrast variation, the
histograms of all cells on blocks (2 x 2 cells) are normalized.
The HOG feature vector that describes each iris window is then



Figure 3. Exemple of image described by HOG.

constructed by concatenating the normalized cell histograms
for all blocks. Finally, a feature vector (2 x 2 blocks x 8 cells
X 9 orientations) is obtained to describe each iris candidate
window.

The window containing the iris region (ground truth) from
each training image is extracted and used to compose the
examples of positive windows. Furthermore, windows that are
completely outside or have only a small intersection with the
iris region are extracted and considered negative windows.
We created 10 negative windows for each positive window.
Figures 4a and 4b illustrate, respectively, positive and negative
samples used for the training of the proposed approach.

(a) Positive samples

(b) Negative samples

Figure 4. Training samples used by SVM.

From these positive and negative samples, the SVM clas-
sifier is trained using a linear kernel and the constant is
determined by grid-search in the training set.

The SVM was first presented by Vladimir Vapknik [36],
and is one of the most used classification methods in recent
years [37], [38]. To find the decision boundary, the SVM
minimizes the upper limit of the generalization error, which is
obtained by maximizing the margin distance from the training
data.

In order to perform the iris location, a sliding window
approach with different scales is applied in each test image.
We adopted windows with size 50 x 50 pixels as canonical
scale. From this scale, we used 6 lower scales and 8 higher
scales by a factor of 5%. The image region that presents
the greatest similarity with the iris can be found through the
decision border generated by the SVM, which will return the
highest positive response for the best estimated iris location.

B. YOLO Object Detector

Currently, deep CNNs are one of the most efficient ways to
perform image classification, segmentation and object detec-
tion. In this work, we use the Darknet [39], which is an open
source neural network framework used to implement YOLO,
a state-of-the-art real-time object detection system [23].

The YOLO network, as most CNNs, is composed of three
main operation layers to object detection, which are: convolu-
tion, max pooling and classification, the latter occurs through
fully connected layers.

On Darknet, convolutional layers work as feature extraction,
in other words, a convolutional kernel is sliding in the input
image. The network architecture is inspired by the GoogLeNet
model for image classification [40]. The original YOLO has
24 convolutional layers that produce different feature maps
from the input.

The feature maps are then processed by max pooling layers,
which dimensionally reduces the previously obtained feature
map. max pooling divides the feature map into blocks and
reduces each block into one value. Instead of the inception
modules used by GoogLeNet, YOLO uses 1 x 1 reduction
layers followed by 3 x 3 convolutional layers, similar to Lin
et al. [41].

However, in this work we use an fast version of YOLO,
based on a neural network with fewer convolutional layers (9
instead of 24) and fewer filters in those layers. Other than the
size of the network, all training and testing parameters are the
same for both YOLO and Fast-YOLO.

IV. RESULTS AND DISCUSSION

In this work, we evaluate both HOG-SVM and YOLO
approaches, applied to iris location and compare them to
the well-known Daugman method. The experiments were
performed in the six databases described in Section II. All
experiments were performed on a NVIDIA Titan XP GPU
(3840 CUDA cores and 12 GB of RAM) and also using an
Intel (R) Core i7-5820K CPU @ 3.30GHz 12 core, 64GB of
DDR4 RAM.

In order to analyze the experiments, we employ the follow-
ing metrics: Recall, Precision, Accuracy and Intersection over
Union (IoU). These metrics are defined between the area of the
ground truth and predicted bounding boxes in terms of False
Positives (FP), False Negatives (FN), True Positives (TP), and
True Negatives (TN) pixels, and can formally be expressed as:

Recall = e
cat = TPYFN’
Precisi TP
recision = —_—
TP+ FP’
A TP+ TN
ccurac =
uracy TP+TN + FP+FN’
loU = rp
Y T FP+TP+FN



In the following, we describe experiments in three differ-
ent scenarios: intra-sensor, inter-sensor, multiple-sensors and
mixing of databases.

Intra-sensor: Table I shows the results obtained by intra-
sensor experiments, in other words, experiments in which the
models were trained and tested with images from the same
sensor. The YOLO CNN achieved the best averages in almost
all analyzed metrics and required less processing time for iris
location per image. The exception is for CASIA IrisV3 Interval
database where Daugman method presented slightly better
Precision (96.23% against 96.02%) and Accuracy (97.38%
against 97.10%). This surprising result can be explained by the
high level of cooperation and control in the image acquisition
of such database. That is, the Daugman method take somehow
advantage of the scenario. Anyway, the YOLO CNN locates
the iris in real-time (0.02 seconds per image, on average)
using our fast Titan XP GPU, whilst the Daugman method
and the HOG-SVM approach demand, on average, 3.5 and 5.2
seconds, respectively, to locate the iris in each image using a
single CPU core.

Inter-sensor: In addition, for databases containing images
acquired with more than one sensor, inter-sensor experiments
were performed and are presented in Table II. That is, we train
the detectors with images of one sensor and test/evaluate then
on the images from other sensor. These experiments show that
in some cases YOLO CNN did not achieve promising results
as previously shown. For example, in the database NDCCL,
when fine tunning/training the detector with images from the
AD100 sensor and testing with the ones from LG4000 sensor.
The reason for the poor result might lie in the fact that the
database for that specific sensor (AD100) has only 600 images,
thus not allowing a good generalization of the trained CNN.
In Figure 5a, we can observe some examples where the iris
location obtained by the YOLO method did not achieved good
results.

(b)

Figure 5. Samples of iris location obtained in the experiments: (a) poor results
due to a homogeneous training set; (b) good results achieved with images of
different sensors on training set.

Multiple-sensors: In order to better analyze and understand
the results of the inter-sensor experiments and to confirm
our hypothesis that the YOLO’s poor performance is due

to few/homogeneous training samples, experiments were per-
formed combining images from multiple sensors of the same
databases. The figures obtained in this new experiment can be
seen in Table III. It highlights the importance of a diverse
collection of images for the training set in CNNs. With a
larger number of images acquired from different sensors in the
training set, the CNN was able to better generalize, increasing
the correct iris location in most cases. Some examples of good
iris location can be seen in Figure 5b.

Mixing databases: Table IV contains the results obtained
by experiments where YOLO was trained with the training
sets of all the databases and tested in the test images of all
the databases. The results achieved by the Daugman method
applied to all the test images are also presented, and we
used specific parameters for each database. By analyzing these
figures, we observe that YOLO strikingly outperforms the
Daugman method in all analyzed metrics.

Figure 6 shows the behavior of the recall curve for the
experiment reported in Table IV. It depicts how the percentage
of images varies when we required a minimum Recall rate.
These curve highlights how YOLO is a promising alternative
to iris location, since all tested images achieved Recall values
above 80%. That is, at least 80% of the required region of a
iris is certainly located by the YOLO detector.
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Figure 6. Recall curve of both Daugman and YOLO methods applied to all
test sets.

V. CONCLUSION

The iris location is a preliminary but extremely important
task in specific applications such as iris recognition, spoofing
and liveness detection, as well as contact lens detection,
among others. In this work, two object detection approaches
were evaluated for the iris location. The experiments were
performed in six databases. We manually annotated four of
the six databases used in this work, and those annotations are
publicly available to the research community.

The experiments showed that the use of the YOLO object
detector, based on deep learning, applied to the iris location



TABLE 1
INTRA-SENSOR RESULTS (%)

Recall Precision Accuracy IoU
Database Daugman  HOG Daugman  HOG Daugman  HOG Daugman  HOG
(6] SVM YOLO (6] SVM YOLO (6] SVM YOLO (6] SVM YOLO
NDCCL
AD100 84.60 9239  98.78 82.49 9478  95.03 94.28 96.98  98.49 80.41 87.52  93.84
LG4000 93.41 96.72  97.81 92.15 90.80  97.73 97.53 97.24  99.05 89.67 8776  95.06
HIT-D CLI
Vista 85.49 9451  97.85 89.34 9224  93.71 95.38 98.10  98.28 80.82 87.23  91.76
Cogent 86.24 96.44  96.02 92.82 87.99  95.58 96.34 96.67  98.33 82.61 8476  91.84
MobBIO
Real 76.32 95.77 96.81 74.71 72.26 94.02 85.26 95.33 98.97 70.79 68.76 91.02
Fake 75.81 93.28  96.06 73.45 7433 95.05 84.81 9526  98.90 70.12 68.99  91.27
BERC 88.19 92.83  98.10 85.64 8795  93.56 98.72 98.49  99.711 79.10 85.10  91.15
CASIA IrisV3
Interval 96.38 96.97  97.79 96.23 88.48  96.02 97.38 9221 97.10 90.95 86.17  91.24
NDCLD15 91.63 96.04  97.28 89.76 9029 9571 96.67 97.14  98.54 85.34 86.85  93.25
TABLE II
INTER-SENSOR RESULTS (%)
Database Set Recall Precision Accuracy ToU
Train Test HOG-SVM YOLO HOG-SVM YOLO HOG-SVM YOLO HOG-SVM  YOLO
NDCCL AD100  LG4000 92.95 79.25 91.13 89.18 96.84 92.67 85.78 68.71
LG4000  ADI100 93.22 97.99 93.15 93.59 96.78 97.94 86.76 91.63
IIT-D CLI Vista Cogent 96.89 96.13 89.89 94.21 96.43 97.98 83.94 90.57
Cogent Vista 93.44 98.26 93.61 87.97 97.08 96.65 87.55 80.92
TABLE III
COMBINED SENSOR RESULTS (%), SAME DATABASES
Database Set Recall Precision Accuracy IoU
Train Test HOG-SVM  YOLO HOG-SVM YOLO HOG-SVM YOLO HOG-SVM  YOLO
NDCCL AD100 & LG4000  LG4000 95.37 99.29 92.93 99.68 97.48 99.77 88.63 98.91
AD100 & LG4000  AD100 91.77 99.37 94.77 97.42 96.85 99.36 86.91 96.85
[IIT-D CLI Vista & Cogent Cogent 96.73 97.26 87.15 96.48 96.50 98.49 84.17 92.50
Vista & Cogent Vista 94.20 98.34 92.74 93.79 97.01 98.55 87.41 91.78
TABLE IV
COMBINED SENSOR RESULTS (%), MIXED DATABASES
Method ) Set Recall Precision Accuracy IoU Time
Train Test
YOLO All training sets  All test sets ~ 97.13 95.20 98.32 92.54 0.02s
Daugman [6] - All test sets 86.45 86.28 94.04 81.09 350s

presents promising results for all studied databases. Moreover,
the iris location using this approach runs in real-time (0.02
seconds per image, on average) using a current and powerful
GPU (NVIDIA GeForce Titan XP Pascal). Another relevant
conclusion to be mentioned is that, similar to other deep
learning approaches, it is important to have a sufficiently large
number of images for training. The number and variety of
images in the training set directly affects the generalization
capability of the learned model.

As future work, we intend to perform experiments with
more visible and cross-spectral iris databases. In addition,
we intend to analyze the impact that iris location exerts on
iris recognition, spoofing, liveness, and contact lens detection
systems. Also, we plan to study how a short and shallow
network than YOLO one can be designed for our single object
detection problem, the iris location.
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