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Abstract

In current multi-core processors and future many-core
processors, the memory project plays a key role due to its
demanding of high data throughput, coherence and data
exchange between threads. Based on this scenario, we pro-
pose to use an intermediary cache memory level between
the first private level and second shared level of the mem-
ory hierarchy. This intermediate shared cache has a lower
capacity and latency than the next cache level, creating
and attractive space for a fast data exchange and interac-
tion between different execution threads distributed among
the multiple cores. The results evaluating the intermedi-
ary cache over traditional cache organizations show a per-
formance improvement of up to 44% running the synthetic
workload and up to 55% of speedup with the real workload
when the intermediary cache level was used.

1 Introduction

The innovations on integration technology, lead to an in-
crease on the number of transistors per chip. In this sce-
nario, the multi-core and many-core chips became alterna-
tives to support performance gains for the next years, shift-
ing the focus from instruction level parallelism (ILP) and
traditional techniques [5] [13] such as pipelining and su-
perscalarity to explore the thread level parallelism (TLP)
with multi-threaded [15] and multi-core [11] processors.
Moreover, these new architectures allowed designers to im-
prove the performance of parallel applications, maintaining
or even reducing the total power dissipation. However, the
cache memory hierarchy became more important on these
data hungry processors, which requires high data through-
put to support all the processing elements.

Nowadays, commercial multi-core processors show dif-
ferent memory organizations. For instance, one can find pri-
vate L2 caches or shared L2 cache, and also shared multi-

sliced cache on the state-of-the-art processors. Therefore,
the definition of cache organization for next multi-core and
many-core generations do not considers a specific layout to
improve the performance of data sharing, which has a great
impact on the performance of different application types.

For many years, the design considerations between the
primary and secondary cache memories are different [12].
In a given cache hierarchy with two levels, the first level
should be designed to minimize the data access penalty,
while the second cache level should be focused on reducing
the data misses rate, and reducing the long latency penalty
for accessing the main memory.

For the current multi-core processors, cache memories
have to aggregate thread-to-thread interaction functions,
such as synchronization and communication for threads
running on different processor cores. That is, besides pro-
viding the necessary data for the instruction flows running
on a particular processor core, cache memories are now re-
sponsible for improving the performance of data exchange
and interactions among the different cores. The cache
should treat data exchange every time that two or more
threads need to share some data or buffer.

In this multi-core context, we propose the inclusion of
one intermediate cache in the memory hierarchy, between
the first and second cache levels. This new level shall be
shared among multiple cores and should be faster than the
subsequent level, in order to be responsible for fast com-
munication and synchronization between the various cores.
This approach of shared intermediary cache is quite differ-
ent from the traditional cache architecture, once it is pro-
posed for leverage the data sharing. Thus, in future this
approach may vary the cache size dynamically depending
on the application data sharing

For evaluation, an ISA level full-system simulator named
Simics was used to model and simulate an 8 core processor
with different cache organizations in order to analyze and
validate the performance of our proposal, comparing two
architectures with the intermediary cache memory organi-



zation over two traditional architectures without the middle
cache. In addition, it was used a producer-consumer syn-
thetic workload and a real workload, consisting of 4 appli-
cations of computational fluid dynamics from NAS parallel
benchmark, in order to exercise the simulated models.

This paper is organized as follows: Section 2 presents
some related work. Section 3 presents some information
about the simulator and the cache memory organizations
modeled. Section 4 shows the synthetic and the real par-
allel benchmarks. Section 5 brings some results and anal-
ysis about the performance and cache behavior. Section 6
presents some conclusion and future work.

2 Related Research

In [3], Fide and Jenks present a proposal to include new
instructions to control block eviction on private caches. The
programmer must use these instructions to decide when a
particular block should be removed from the private cache
and sent to the cache memory level which is shared among
multiple cores. The authors demonstrate performance gains
from 8% to 28% by using a shared L3 cache memory to-
gether with the new cache control instruction.

Kandemir et al. [8], use a shared scratch-pad memory to
increase communication and synchronization performance
in embedded systems. In this proposal, the programmer
must select and send to the scratch-pad all the data that must
be shared among the processor cores. The results show re-
ductions of up to 33.8% (24.3% on average) on the energy
consumption.

Chen et al. [2], evaluate a network-on-chip (NoC) in-
terconnection to exchange data between cores, focusing on
the influence of the communication latency on final per-
formance. The theoretical results are based on a matrix
multiplication, and show that NoC interconnections have
great potential to offer performance gains increasing the
data throughput. However, the study does not address the
problem of programming parallel applications with the NoC
message passing.

Jaleel et al. [6], describe an evaluation of shared cache
memory. The focus was on the last level of cache memory
using parallel workloads in bio-informatics. According to
their results, the main characteristic of this workload is the
high degree of data sharing, over 95%. This paper affirms
that multiple private cache memories can reduce the per-
formance on application with high data sharing behavior.
The same conclusion was achieved by Marino [10] using
the SPLASH workload and the Simics simulator, but none
of these papers considers the high latency of a large shared
cache.

Zahran [17] describes the importance of memory hier-
archy and coherency protocols. The evaluation method-
ology is based on a trace-driven simulator called CHESS

(Cache Hierarchy Estimator using Scalable Simulator) and
the benchmark suite was SPLASH. The environment was
designed to simulate 1, 2, 4 and 8 processing cores. The
results point out to performance gains when L1 and L2 pri-
vate caches are used in accordance with a good coherency
protocol for L2 cache.

Our previous work [1] presented an investigation about
the L2 cache shared by 32 processing cores in a many-core
system. In this study, using the NAS parallel applications, it
was emphasized that the choice for a memory hierarchy for
many-core processors is still unclear. Nevertheless, the re-
sults show that performance for many-core processors shall
degrade if one shared cache for all cores were adopted. This
performance degradation is caused by the high latency of
this big shared cache memory, and shows that the shared
cache latency is the key point for performance gains.

Concerning the related work, this approach of shared in-
termediary cache is transparent for the programmer. Thus,
the proposed organization does not increase the complexity
of parallel programming for future multi-core and many-
core processors. Moreover, it is possible to conclude that
the use of shared memory for communication is still valid,
even when using a NoC interconnection, as presented by
Wang [16]. This way, even changing the interconnection
model, it is not necessary to change the shared memory
parallel programming paradigm, that is considered easier to
program than the message passing model [4].

Regarding the high latency of large shared caches, this
paper proposes a structure that reduces the impact of shared
memory by inserting an intermediate cache level with low
latency for data exchange and synchronization.

3 Intermediary Level Cache Simulation

For a general-purpose computer architecture evaluation
with complex memory organization, simulations offer good
features, once it neither needs the high cost prototyping nor
analytical formulations, which use to be imprecise and hard
to model. Thus, for this paper, all the evaluations were made
using simulation.

The simulation environment used was the Simics version
3.0.30 from Virtutech AB [9], which was chosen because it
is a full-system ISA level simulator. It supports the model-
ing of various machines and processors types. For the ex-
periments, the machine chosen was the SunFire, modeling
Sun Enterprise 3500 - 6500 class servers with native sup-
port of up to 30 UltraSPARC II processors. To model the
cache latencies it was used the memory access time, given
by the CACTI memory modeling tool [14], then converted
to clock cycles considering the given clock frequency that is
used inside the Simics. Moreover, the operation frequency
outside the processor is considered the ideal and does not
cause great influence in the simulation latency.



The general cache parameters were chosen based on the
Intel Clovertown, which is a quad-core processing state of
the art and represents a commonly used cache configuration
from different companies. Beyond that, to study the next
generation of processors and to increase the data throughput
requirement, an 8-core processor was modeled. A list of
fixed parameters and the values modeled in the experiments
is shown in Table 1.

Table 1. Fixed simulation parameters.

OS Ubuntu 6.06.2 LTS SMP
Processing IPC (without cache) 1.0
Cores Pipeline Not modeled

Number of cores 8 Cores
Cores model UltraSparc II - V9
Clock frequency 2 GHz
Feature size 45 nm

Interconnection Type Cross-bar switch
Model Latency 1 Cycle / cache level
L1 Cache Data mapping 2 Way set associative
Memory Replacing policy LRU

Write policy Write-through
Feature size 45 nm
Size Inst./Data 16 KB / 16 KB
Access latency 2 Cycles
Line size 16 Bytes

Main Size 1 GB
Memory Access latency 78 Cycles

Feature size 65 nm

3.1 Proposed Model - L2-1MB L3-5MB

This first model brings the cache memory organization
with an intermediary level for rapid data exchange between
applications. With L2 cache size of 1 MB and a larger L3
cache of 5 MB, this organization has the necessary charac-
teristics for fast data exchange and synchronization between
multiple execution flows running on separate cores.

Figure 1 illustrates the proposed organization named L2-
1MB L3-5MB, which has a large difference between L2
and L3 cache access time. However, the L2 cache size is
generous enough to keep more than twice data allocated in
L1 cache. In the same way, the third cache level can also
allocate more data than those available inside the L2 cache.

3.2 Proposed Model - L2-2MB L3-4MB

This second model shows the cache memory organiza-
tion also with the proposed intermediary level for fast com-
munication, but this model brings a smaller size difference
between the second and third cache levels. The L2 cache

memory was modeled with 2 MB and the L3 cache with
4 MB, and this different modeling brings the same amount
of total cache size, and it aims to point out the trend when
the difference between latencies and capacities of memory
caches are reduced.

Figure 2 illustrates this second proposed model with in-
termediary cache. It can be noted that, although more
data can be allocated in the second cache level, this data
will have greater access latency. The nomenclature for this
model is L2-2MB L3-4MB.

3.3 Traditional - L2-1MB L3-0MB

This third model shows a cache memory organization
with just two levels of cache memory. The model repre-
sents a more traditional cache memory organization, with
only one level of shared memory. Moreover, this model
aims to generate data for comparison, simulating the current
memory system used on nowadays multi-core processors.

The model named L2-1MB L3-0MB, exhibited in Fig-
ure 3, presents the L2 cache equal to the L2 from the first
model, but without its third cache level. This model is
the only one which does no preserve the total amount of
cache memory, therefore some performance loss shall oc-
cur caused by the increase on the number of high latency
accesses to the main memory.

3.4 Traditional - L2-6MB L3-0MB

This fourth model presents another cache memory orga-
nization with only the first and second levels of cache mem-
ory. Thus, as the previous model, the organization is tra-
ditional, but the total amount of cache memory is the same
from the two first models.

Figure 4 shows the organization for this fourth model
L2-6MB L3-0MB, where it is possible to see the large L2
cache memory, which its size is equal to the sum of L2 and
L3 from the first model. With this cache of higher capacity,
it should have less need of main memory access with the
drawback of more penalty cycles.

4 Workloads

As workload for the simulated models, it was imple-
mented a synthetic producer-consumer algorithm to per-
form the preliminary tests, then, a subset of NAS-NPB ap-
plications was adopted to represent a real workload.

4.1 Producer-Consumer Benchmark

The producer-consumer is a classic problem in computer
science, and it is composed by two processes that share a
fixed size buffer. The first process is the producer, which
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Figure 1. First proposed model of the cache
memory organization.
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Figure 2. Second proposed model of the
cache memory organization.
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inserts (produces) information in the buffer, and the second
process is the consumer, that removes (consumes) the infor-
mation from the buffer.

Although it is a simple algorithm, due to its shared
buffer, the two processes need to exchange data between
the producer and the consumer. This way, the algorithm
has all the characteristics to stress the communication and
synchronization of different cache organizations.

The implementation of this synthetic workload was
made in C with OpenMP. For the complete control of what
is happening in the workload, some system calls were used
in order to set the affinity of each process to one particular
processor core.

The producer consumer algorithm was planned to work
with 4 different buffer sizes to analyze the data exchange
between processes. The sizes chosen were based on the
modeled size of the cache memories in order to reproduce
different data sharing loads. The small size (64KB) has
just 16,384 integers elements, the medium size (1MB) has
262,144 integers, the big size (2MB) has 524,288 integers
and finally, the huge size (4MB) has 1,048,576 integers.
Moreover, for each execution, the buffer is produced and
consumed 100 times in order to stress the synchronization
between the threads.

4.2 NAS Parallel Benchmark

The real workload used in this study was a subset of
the NAS Parallel Benchmark (NPB) version 3.3 parallelized
with OpenMP. The NPB has many applications related to
numerical methods of aerodynamic simulations for scien-
tific computing, designed to compare the performance of
parallel computers.

For performance evaluation, it was chosen only the
applications that simulate computational fluid dynamics
(CFD) solving Navier-Stokes equations, which reproduce
many of the data movements and computation found in full
CFD codes [7]. Below, there is a description of CFD appli-
cations used in the measurements.

• BT - Block Tridiagonal: To solve 3D compressible
Navier-Stokes equations with an implicit algorithm.
Based on Alternating Direction Implicit (ADI) finite
difference solver where the resulting system is Block-
Tridiagonal, which are solved sequentially along each
dimension. It uses approximately 2.6MB.

• MG - Multigrid: Multigrid V-cycle method used to
solve the 3D scalar Poisson’s equation. The algorithm
works between coarse and fine grids. It exercises both
short and long distance data movement. It uses approx-
imately 55.6MB.

• SP - Scalar Pentadiagonal: Computational fluid dy-
namics application similar to BT. The problem is based

on a Beam-Warming approximate factorization that
decouples in 3D. The resulting Scalar Pentadiagonal
system is solved sequentially along each dimension. It
uses approximately 9.8MB.

• LU - Lower and Upper triangular system: Simu-
lated CFD application that uses a symmetric succes-
sive over-relaxation (SSOR) method to the system re-
sulting from finite-difference discretization of Navier-
Stokes equations in 3D by splitting into a block Lower
and Upper triangular systems. It uses approximately
6.5MB.

5 Performance Results

This section brings performance and cache results re-
garding the execution of the producer-consumer workload
and the NAS parallel applications.

5.1 Producer-Consumer Workload

The first results obtained present in this section are re-
lated to the synthetic producer-consumer workload, planned
to validate the environment and the proposal, since this
workload implementation has strong synchronization due to
occupied wait and by several sharing data volumes. More-
over, once it is a controlled workload, it tends to expose
the system response for each architectural change. During
the executions, the producer and consumer were binded to
different processor cores using the Set-affinity system call.

Figure 5 shows the execution time given in milliseconds
and the speedup results for different cache organizations.
The speedup is based on the first proposal L2-1MB L3-
5MB. With these results, one can see the best performance
of the first proposal L2-1MB L3-5MB, where the first or-
ganization obtained gains of 8.06% over the organization
L2-2MB L3-4MB, obtained gains of 6.01% over the L2-
1MB L3-0MB and gains of 44.53% comparing with the L2-
6MB L3-0MB organization.

The second results for Producer-Consumer workload
presented on Figure 6 are about the number of lost cycles
due to misses on L1, L2 and L3 cache. For the organiza-
tions L2-1MB L3-5MB and L2-2MB L3-4MB, it is possi-
ble to see that lost cycles are spread over all the caches.
However, the L2-1MB L3-0MB organization had to face a
high number of lost cycles for access the main memory as
the buffer size increases, and on the other hand, the cycles
lost during the L1 cache misses for the L2-6MB L3-0MB
organization impacts more than the cycles lost due to main
memory access, which occurs because the L2 memory high
latency.
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Figure 5. Execution time and speedup for Producer-Consumer workload.
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Figure 6. Lost stall cycles during cache misses for Producer-Consumer workload.

Analyzing the results, one can see the good performance
using an intermediate cache level for fast communication
and synchronization between processors. However, for the
second proposal, L2-2MB L3-4MB, as the difference be-
tween the cache sizes and latencies decreases, reduced gains
were obtained.

Even with good results for L2-1MB L3-0MB organiza-
tion sharing small and medium vectors, as the vector in-
creases, more data must be fetched from main memory, and
this had a negative impact on performance.

Considering the large difference on latencies among the
memory hierarchy of the models, some great differences
on execution time were expected. However, considering
that each memory data request brings a big block for the
cache memory, and the shared buffer has great spatial local-
ity, even with buffer size changes, the results had smooth
variations between organizations that have a different to-
tal amount of memory, e.g. L2-1MB L3-5MB and L2-
1MB L3-0MB organizations.

Concerning the L2-6MB L3-0MB organization, even
with a large block size, it is clear the problem of the 6MB
cache on the second level, where every access on L2 cache
has high latency, resulting in weak performance results.

5.2 NAS Workload

For this second part of the results, running the NAS
workload, all the experiments executed the parallel appli-
cations with 8 threads.

The first results from the NAS workload, are about the
execution time given in seconds and the speedup, both
present in Figure 7. For the workload executions, one
can see the gains on the organization L2-1MB L3-5MB
followed by organizations L2-2MB L3-4MB, L2-1MB L3-
0MB and L2-6MB L3-0MB respectively.
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Figure 7. Execution time and speedup for NAS parallel applications.
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It is also possible to infer that the difference in the vol-
ume of memory usage impacts on the final system perfor-
mance. Remembering that BT implementation occupies
2.6MB, MG occupies 55.6MB, SP occupies 9.8MB and
LU 6.5MB. This way, the application BT that uses fewer
amounts of memory, presents small execution time varia-
tions between the organizations L2-1MB L3-5MB and L2-
1MB L3-0MB, which were expected, since this applica-
tion may share data and do synchronization all inside the
L2 cache without accessing the next memory level. How-
ever, this application demonstrates more clearly the impact
of high L2 cache latency.

The second results for this workload, shown in Figure
7 are about speedup. The organization L2-1MB L3-5MB
presents performance improvements of up to 8.10% over the
organization L2-2MB L3-4MB, and gains of up to 18.49%
compared with L2-1MB L3-0MB and up to 55.36% over
the last organization L2-6MB L3-0MB. Note that organi-
zation L2-2MB L3-4MB running the application SP has

achieved a speedup of 7.56% over the first proposal L2-
1MB L3-5MB.

The second results about cache memories are shown in
Figure 8, presenting lost cycles caused by wait time during
cache misses. This plot shows a lot of cycles lost by the or-
ganization L2-1MB L3-0MB, accessing the main memory
due to the small L2 cache capacity, while the L2-6MB L3-
0MB organization had a small number o cycles lost during
main memory access but loss many cycles accessing the L2
cache during L1 cache misses.

Even considering the wide variation in the cache mem-
ory results, it is notable the behavior of each organization.
For the proposed organizations L2-1MB L3-5MB and L2-
2MB L3-4MB, the number of lost cycles was merged be-
tween the three cache levels, where most of the misses oc-
curring until the second level, with few misses on the third
cache level.

For the L2-1MB L3-0MB organization that had a small
number of data misses on the first cache level, the data



misses in the second level generate a great impact on its
final performance. On the other hand, the organization L2-
6MB L3-0MB had few data misses being fetched on the
main memory, but the misses in the first level generated
many lost cycles during the 6MB cache memory access.

6 Conclusion

With current multi-core processors, studies which show
alternative cache organizations and architectures are wel-
come to next-generation processor designers. In this con-
text, this paper presented a new cache memory organization
to improve communication and synchronization between
processor cores based on an intermediary level of cache
memory. For the evaluation a complete system simulation
tool and synthetic and real workloads, were used to compare
our proposal with other traditional architectures.

Evaluating the system with the synthetic workload with a
high use of synchronization and different volumes of shared
data make possible to note performance gains on the pro-
posed cache organization, with maximum gains of 30.81%,
and 15.28% on average comparing to traditional organiza-
tions.

For the simulations running real workloads, there are
performance gains of up to 35.64% with an average of
16.28%. Where the traditional organizations L2-1MB L3-
0MB and L2-6MB L3-0MB have large numbers of cycles
lost access to main memory and L2 cache memory access
respectively, the organizations proposed L2-1MB L3-5MB
and L2-2MB L3-4MB present a more spread distribution
of lost cycles among the memory hierarchy during cache
misses.

Although nowadays multi-cores processors has an in-
creasing levels of cache memory inside a single chip, the
obtained results show the importance of an intermediary
shared cache in order to support fast data communication
and synchronization.

As future work, the results motivate the research on data
exchange for multi-core processors. Thus, the study of ways
to increase the performance of parallel applications with
the automatic cache size reconfiguration for fast data shar-
ing shall produce performance improvements on multi-core
systems.
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