J. Parallel Distrib. Comput. 74 (2014) 2215-2228

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

Dynamic thread mapping of shared memory applications by

exploiting cache coherence protocols

CrossMark

Eduardo H.M. Cruz *, Matthias Diener, Marco A.Z. Alves, Philippe O.A. Navaux

Informatics Institute, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gongalves, 9500, Campus do Vale, Bloco 1V, Lab 201-67,

Postal Code 91501-970, Porto Alegre, RS, Brazil

HIGHLIGHTS

We detect the inter-thread communication in shared memory applications.

Using the detected communication, we map the threads to improve performance.

We reduce execution time, cache misses and traffic on interconnections.

°
o
e Provide a better usage of hardware resources.
°
L]

No need to modify applications or runtime environment.

ARTICLE INFO ABSTRACT

Article history:

Received 17 October 2012
Received in revised form

21 November 2013

Accepted 25 November 2013
Available online 6 December 2013

Keywords:

Thread mapping

Cache coherence protocols
Parallel applications
Shared memory

In current computer architectures, the communication performance between threads varies depending
on the memory hierarchy. This performance difference must be considered when mapping parallel
applications to processor cores. In parallel applications based on the shared memory paradigm, the
communication is difficult to detect because it is implicit. Furthermore, dynamic mapping introduces
several challenges, since it needs to find a suitable mapping and migrate the threads with a low overhead
during the execution of the application. We propose a mechanism to detect the communication pattern
of shared memory applications by monitoring cache coherence protocols. We also propose heuristics
that, combined with our communication detection mechanism, allow the mapping to be performed
dynamically by the operating system. Experiments with the NAS Parallel Benchmarks showed a reduction
of up to 13.9% of the execution time, 30.5% of the cache misses and 39.4% of the number of invalidation
messages.

Thread communication
Communication pattern

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

One of the main concerns regarding multi-core architectures is
the communication between threads [24]. Communication implies
data movement between the cores and impacts the performance
and energy efficiency of parallel applications [6]. In most multi-
core architectures, some levels of the memory hierarchy are shared
by more than one core, which causes a difference in the commu-
nication latencies and bandwidths between the cores. Moreover,
some architectures have more than one processor, each consisting
of several cores. These architectures usually have several levels of
memory hierarchy, such that the differences between the commu-
nication performance and the overhead due to communication are

* Corresponding author.
E-mail addresses: ehmcruz@inf.ufrgs.br, eduardohmdacruz@gmail.com
(E.H.M. Cruz), mdiener@inf.ufrgs.br (M. Diener), mazalves@inf.ufrgs.br
(M.A.Z. Alves), navaux@inf.ufrgs.br (P.0.A. Navaux).

0743-7315/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.11.006

high. With the upcoming increase of the number of cores, an even
higher communication overhead is expected, requiring novel solu-
tions to allow the performance to scale [10].

Thread mapping can help to improve performance by map-
ping the threads to cores according to a certain policy, such that
the usage of the resources is optimized. By mapping the threads
considering the amount of communication between them, threads
that communicate a lot are mapped to nearby cores on the mem-
ory hierarchy. Thereby, the communication performance between
these threads is increased. We refer to this type of thread map-
ping as communication-aware thread mapping. In multi-core archi-
tectures, some cache lines are replicated in more than one cache,
requiring protocols to maintain coherence among all the caches
that have replicated cache lines [9]. These coherence protocols in-
validate replicated cache lines on every write transaction, which
causes a large overhead for communication intensive applications.
By mapping the threads considering their communication, there
are fewer cache line replications and invalidations, optimizing the
usage of cache memories and interconnections.

http://dx.doi.org/10.1016/j.jpdc.2013.11.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.11.006&domain=pdf
mailto:ehmcruz@inf.ufrgs.br
mailto:eduardohmdacruz@gmail.com
mailto:mdiener@inf.ufrgs.br
mailto:mazalves@inf.ufrgs.br
mailto:navaux@inf.ufrgs.br
http://dx.doi.org/10.1016/j.jpdc.2013.11.006

2216 E.H.M. Cruz et al. /J. Parallel Distrib. Comput. 74 (2014) 2215-2228

The difficulty to obtain the communication pattern between the
threads depends on the parallel programming paradigm. In ap-
plications that use the messaging passing paradigm to communi-
cate, detecting the communication pattern can be accomplished by
monitoring the origin and destination fields of the messages [23,8,
24]. In the shared memory programming model, where our mech-
anism works, the detection of the communication presents differ-
ent challenges. The reason is that the communication between the
threads is performed implicitly, whenever a thread reads or writes
data that is shared between several threads.

Another factor that influences the difficulty of communication-
aware thread mapping is whether the mapping is performed
statically or dynamically. In static thread mapping, the information
on the communication pattern is gathered by profiling the
application in a previous execution, using controlled environments
such as simulators [3,4]. Static mapping is not suitable if the
application has a dynamic behavior, such as programs that use
work-stealing algorithms or applications whose behavior depends
on input parameters. In order to support applications with static
and dynamic communication behaviors, dynamic thread mapping
needs to be used, where the detection of the communication
pattern and the mapping is performed during the execution of the
application.

In this paper, we propose a new lightweight, dynamic mecha-
nism to detect the communication pattern of parallel applications
based on shared memory. Our proposed mechanism makes use of
cache coherence protocols. It is based on the fundamental idea that
a cache line shared by more than one cache indicates that more
than one core is accessing the same memory location. These ac-
cesses to the same cache line represent communication between
the involved threads. Our detection mechanism makes use of in-
validation messages of cache coherence protocols to estimate the
amount of communication, without changing the protocols them-
selves.

We also propose a mechanism to dynamically map the threads
with a low overhead. The mechanism consists of several steps,
including algorithms to detect changes in the communication
pattern and to map threads to cores. These detection and mapping
mechanisms allow thread mapping to be performed dynamically
by the operating system, and do not require simulation or any
changes to the source code of the applications.

The remainder of this paper is organized as follows. In the
next section, we give an overview of the benefits of optimizing
communication in shared-memory architectures and evaluate the
theoretical improvements achievable with an oracle mechanism.
Section 3 introduces our mechanism to detect inter-thread com-
munication using the cache coherence protocol. Section 4 presents
the algorithms that use the detected communication behavior to
map threads to cores. In Section 5, we evaluate our proposed mech-
anism and its overhead. Related work is analyzed in Section 6. Fi-
nally, Section 7 summarizes our conclusions and presents ideas for
future work.

2. Background: communication-aware thread mapping in
shared-memory architectures

In most multi-core architectures, some levels of the memory hi-
erarchy are shared by more than one core, which causes a differ-
ence in the communication performance between the cores. Fig. 1
shows an example of such an architecture. In this architecture,
the L2 cache and the intrachip interconnection can be exploited
by thread mapping. Cores that share the L2 cache (€)) communi-
cate faster than cores that use the intrachip interconnection (@),
which in turn communicate faster than cores located on different
processors (@).

Processor 0
Core 0 Core 1 Core 2 Core 3
Fo (4 [}
L1 ~gd-" L1 L1 L1y
\
L2 L2 g
v
T
1
]
| Interconnection G: |
1
:
= 1
L2 & L2 g
4 = SN 1
L1 ” L1 S L1 ;
Core 4 Core 5 Core 6 Core 7
Processor 1

Fig. 1. Processor architecture with one shared (L2) and one private (L1) cache level.
There are three different memory access possibilities between two cores: cores that
share the L2 cache (Q), cores that use the same intrachip interconnection (@),

and cores located on different processors (@).

One of the benefits of communication-aware thread mapping is
the reduction of cache misses, which we classify into three types.
The first type of cache miss is the invalidation miss, which hap-
pens when a cache line used for communication is constantly in-
validated, generating a miss whenever it is accessed. The second
type is the capacity miss. In shared-memory programs, capacity
misses often happen when threads that share a cache evict cache
lines accessed by other threads [25]. By mapping threads that com-
municate a lot to shared caches, fewer cache line evictions are ex-
pected, since some cache lines would be accessed by more than one
thread. The third type of cache miss is the replication miss, which
happens due to cache line replication. Replication leads to a virtual
reduction of the effective size of the caches [9], as multiple caches
store the same cache line. By mapping threads that communicate
a lot to cores that share a cache, the space wasted with replicated
cache lines can be minimized, leading to a reduction of the cache
misses.

To illustrate how thread mapping affects the performance, con-
sider a producer-consumer situation in shared memory programs,
in which one thread writes to an area of memory and another
thread reads from the same area. If the cache coherence protocol
is based on invalidation, such as MESI or MOESI, and the consumer
and producer do not share a cache, an invalidation message is sent
to the cache of the consumer every time the producer writes the
data. As a result, after the invalidation, the consumer always re-
ceives a cache miss when reading, thereby requiring more traffic
on the interconnections, since the cache of the consumer has to
retrieve the data from the cache of the producer on every access.

By mapping the threads that communicate on cores that are
close to each other in the memory hierarchy, the communication
overhead is reduced. In the producer-consumer example, the
traffic on the interconnections is reduced if the producer and
consumer shared a cache, since both the producer and the
consumer access the data in the same cache, eliminating the need
for invalidation messages and data transfers. It is important to note
that write operations have a greater impact on the performance
than read operations, because all writes to shared cache lines
invalidate the corresponding lines on the other caches.

Regarding thread communication, we can divide the appli-
cations into two main groups: homogeneous and heterogeneous
communication patterns. Homogeneous communication means
that each thread presents approximately the same amount of

E.H.M. Cruz et al. /]. Parallel Distrib. Comput. 74 (2014) 2215-2228 2217

G D& B
--

a) Phase N.

J UL

(b) Phase N + 1.

Fig.2. Phases of the producer-consumer benchmark. Circled threads communicate
with each other. In even phases (a), neighboring threads communicate with each
other. In odd phases (b), more distant threads communicate.

communication to all other threads. On the other hand, in applica-
tions that present heterogeneous communication patterns, there
are threads that communicate more with a subgroup of threads.
By mapping threads according to the amount of communication,
we focus on applications with heterogeneous communication pat-
terns. The reason is that in homogeneous applications, the amount
of communication between all pairs of threads is about the same,
thus any thread mapping would result in the same performance.

Another important aspect of communication is the change of
the behavior during the execution, which we call the dynamic be-
havior of an application. Applications with a stable communica-
tion pattern do not change their behavior during the execution.
Applications with a dynamic behavior present more challenges for
thread mapping. The detection mechanism must be able to quickly
identify the communication behavior before it changes again. Fur-
thermore, if the behavior changes too frequently, thread mapping
cannot improve the performance as the overhead of the migrations
becomes higher than the benefits.

There are several ways to dynamically map threads according
to the communication. However, some properties are desirable
for most applications. A thread mapping mechanism should ac-
curately recognize communication patterns with a low impact on
performance. It should be independent from the implementation
of the application, such that it does not depend on specific libraries
or require modifications to the source code. The mechanism should
also consider the false communication problem, which can be spa-
tial or temporal. Spatial false communication is the classical false
sharing problem, in which a cache line is present in more than one
cache, but the cores are accessing different addresses inside the
cache line. Temporal false communication can happen when two
threads access the same address, but with large time difference be-
tween the accesses, which should not be considered as communi-
cation.

2.1. Evaluating thread mapping with a producer-consumer bench-
mark

To verify the potential of thread mapping, we used a producer-
consumer benchmark. It consists of pairs of threads that com-
municate through a shared vector. The benchmark performs two
different phases such that the pairs of producer-consumer threads
change in each step. Fig. 2 depicts the two different phases. Appli-
cations with this behavior require a dynamic mapping. Static map-
ping techniques [13,3,4] cannot maximize the performance, since
they do not migrate the threads after the application starts run-
ning.

We performed experiments with this producer-consumer
benchmark on a machine consisting of two quad-core Intel Xeon

160 %
140 %
120 %
100 %
80 %
60 %
40 %
20 %
0%

Execution L2 cache Invalidations
time misses

Il Operating System [l Static Random [_]Oracle

Fig. 3. Performance of the producer-consumer benchmark using three different
mappings. All values are normalized to the results of the default OS mapping.

E5405 processors with private L1 caches and L2 caches that are
shared between two cores. The memory hierarchy of this machine
is depicted in Fig. 1. We executed the benchmark with three dif-
ferent mappings, the original Linux operating system scheduler, a
staticrandom mapping and an oracle mapping. The oracle mapping
dynamically migrates the threads at the beginning of each phase,
such that threads that communicate are mapped to cores that share
the same L2 cache. As the system contains 8 cores, we executed
the benchmark with 4 pairs of producer-consumer threads. Each
experiment was executed 50 times. We show the average values,
normalized to the operating system, and the confidence interval
for a confidence level of 95% in the Student’s t-distribution.

Fig. 3 shows the results for execution time, L2 cache misses and
number of cache line invalidations. The number of cache misses
and cache line invalidations was measured using the Papi frame-
work [17]. We can observe that the operating system scheduler and
the random mapping perform much worse than the oracle map-
ping, which reduced the execution time by 90.8%. Furthermore,
the number of L2 misses and invalidation messages was reduced to
less than 1%, since the data is produced and consumed in the same
shared cache. This experiment demonstrates the potential gains of
communication-aware thread mapping for parallel applications.

3. Exploiting cache coherence protocols to detect the commu-
nication between threads

Cache coherence protocols are responsible for keeping data
integrity in shared-memory architectures where more than one
cache memory is present, as is common in multi-core and multi-
processor environments. Our mechanism is based on the idea
of using the information from these protocols to detect the
communication between threads in hardware. In this section, we
explain the general concept of using cache coherence protocols to
detect the communication, and how to implement it in current
architectures.

3.1. Concept of the mechanism

Most coherence protocols keep information about whether a
cache line is private or shared between two or more caches. An
access to a shared cache line indicates communication between
threads. When a read transaction is performed on a shared cache
line, it is not always possible to determine which caches share
the corresponding line. The reason is that, in most protocol
implementations, caches in a high level on the memory hierarchy,
such as the L1 cache, keep limited sharing information. These
caches usually have states that indicate that the cache line
is shared, but there is no information regarding which other

2218 E.H.M. Cruz et al. /J. Parallel Distrib. Comput. 74 (2014) 2215-2228

Core 0 Core 1

Core 7

LPCL LPCL

LPCL

ID of the core that
sent the invalidation

ID of the core that
sent the invalidation

ID of the core that Hardware

sent the invalidation Detect communi-

cation using cache

Y

Communication vectorl lCommunication vectorl lCommunication vectorl coherence prOtOCOl
i | |
vy Y Software
7 Operating systen
g maps the threads
fl Communi.cation _>| Mapping mechanism
3 matrix
2
1
0

01234567

Fig. 4. Proposed mechanism to dynamically map the threads. The proposed hardware modification on the lowest private cache level (LPCL) detects the communication,
while the software (operating system) uses the detected communication to map the threads.

caches are sharing the same line. Furthermore, in directory based
coherence protocols, a read transaction on a shared cache line does
not generate an access to the directory.

On the other hand, a write transaction on a shared line requires
that the copies of the same cache line on other caches are invali-
dated. In this case, cache coherence protocols have to send an inval-
idation message to all the caches that have the corresponding line.
For this reason, we make use of the invalidation messages to de-
tect the communication. Each invalidation message is considered
a communication event between the core that requested the write
transaction and the other cores that have the same cache line in
their caches.

As an example, the MOESI protocol provides two states to
indicate if a cache line is shared: shared and owner. Therefore, in
MOESI, any write transaction to cache lines that are in the shared
or owner state generate invalidation messages, which we consider
a communication event. This can be adapted to other protocols that
have similar states, such as MESI and MESIF.

3.2. General hardware implementation

An example implementation of the mechanism for an architec-
ture with 8 cores is presented in Fig. 4. We detect the communica-
tion at the lowest private cache level (LPCL) of each core, to be able
to identify which core accessed the data being invalidated. To store
the amount of communication, our mechanism requires a vector
at each cache of the LPCL. The number of elements of this vector is
equal to the total number of cores in the system. We call this vec-
tor the communication vector. It stores the amount of communica-
tion of its local core to the other cores in the system. The operating
system can see all communication vectors as merged, forming a
square matrix, which we call the communication matrix.

Our mechanism works as follows. In the original coherence
protocol, when a core requests a write transaction on a shared
cache line, an invalidation message is sent to the caches that share
the same line. In our mechanism, when receiving the invalidation
message, the cache in the LPCL increments the communication
vector at the position indexed by the ID of the core performing
the write transaction. For instance, consider an 8-core architecture
in which the LPCL is the L1 cache, and that a given cache line is
shared between the L1 caches of cores 2, 5 and 6. If core 5 requests
a write transaction on that line, the L1 caches of cores 2 and 6

would receive an invalidation message, and our mechanism would
increment the communication vectors of these caches at position 5.

The implementation of our mechanism is attached to the cache
memory subsystem. Incrementing the communication vectors can
be performed in parallel to the cache access, and does not affect the
cache behavior or performance. We need to add a communication
vector and an adder unit to each LPCL, as well as instructions that
allow the operating system to read and clear the communication
vectors. Each communication vector requires C counters to store
the amount of communication, where C is the total number
of cores of the machine. In our experiments, we observed that
saturated counters using 32 bits are enough to correctly detect the
communication.

With this mechanism, it is possible to identify which cores
are communicating. However, to perform the mapping, we need
to know which threads are communicating. This issue is easy to
solve, since the operating system knows which thread is executing
on each core and can keep a copy of the communication vector
of each thread in main memory. Whenever a context switch
happens, before loading the new task, the operating system first
saves the communication vector into the memory and then sets
the elements of the communication vector to zero. All future
communication detection is then relative to the new task. In this
way, our mechanism is able to detect the communication between
the threads of the application.

If there is no private cache level in the memory hierarchy, we
can implement our detection mechanism in a shared cache level,
following the description in Section 3.3.2.

3.3. Hardware implementation in specific architectures

Our mechanism can be easily adapted to any cache coherent
architecture that has a shared state. In this section, we explain how
it could be implemented in some specific architectures.

3.3.1. Architectures with multi-threaded cores

If the cores of the architecture are multi-threaded, the data in
the LPCL can be accessed by any of its virtual cores. To adapt our
mechanism to multi-threaded cores, we need to provide a way to
identify which virtual core accessed each cache line. For that, the
only required modification is the addition of bits to the LPCL to
identify which virtual core accessed each cache line. The hardware

E.H.M. Cruz et al. /]. Parallel Distrib. Comput. 74 (2014) 2215-2228 2219

overhead for this is one access bit per virtual core on every cache
line of the LPCL. Also, instead of only one communication vector,
it would be necessary to add one communication vector for each
virtual core in the LPCL. With these modifications, our mechanism
is able to handle architectures with multi-threaded cores.

3.3.2. Implementing the detection mechanism in other cache levels

The simplest way to implement our mechanism is in the LPCL,
since it is easier to identify which core accessed each cache
line. However, by adding more hardware, we can implement the
detection mechanism in any cache level. The additional hardware
consists of one access bit per virtual core on every cache line of
the cache in which we want to implement our mechanism. Also, it
would be necessary to have one communication vector per virtual
core. For instance, if we add one access bit per virtual core in
all cache lines of the last level cache (LLC), we could implement
our mechanism in the LLC instead of the LPCL. Whenever a write
or invalidation transaction arrives at the LLC, we can increment
the communication vectors corresponding to the access bits in
position i, where i is the ID of the virtual core that generated the
write transaction.

To illustrate the behavior, consider an architecture with 4 cores
sharing each LLC, and that there are 8 cores in total, without multi-
threading. Cores 0-3 share the first LLC (LLC-0) and cores 4-7 share
the second LLC (LLC-1). Both LLCs would have 4 communication
vectors, each with 8 positions. Suppose that cores 0, 1, 3 and 5 ac-
cess a given cache line. The access bits in LLC-0 corresponding to
cores 0, 1and 3 would be set, as well as the access bit in LLC-1 corre-
sponding to core 5. If core 6 requests a write transaction, when the
request arrives at LLC-1, it would increment the communication
vector corresponding to core 5 in position 6. The cache coherence
protocol would then send an invalidation message to LLC-0. Upon
receiving the message, LLC-0 would increment the communication
vectors of cores 0, 1 and 3 in position 6.

It is important to note that, in some directory based protocols,
the directory is attached to the LLC and already contains the access
bits to track which higher level caches have the corresponding
line [20]. In these protocols, if there are no multi-threaded cores,
we could implement our mechanism in the LLC by adding only the
communication vectors.

3.3.3. Including the core ID in the coherence message

Our mechanism needs to know the ID of the core that requested
the write transaction. Usually, when a cache sends an invalidation
message, all caches that already have the corresponding cache
line respond with an acknowledgment message [20]. Therefore,
the invalidation message contains information about which
cache generated the invalidation, such that the acknowledgment
messages can be sent to the correct cache. If the cores are not multi-
threaded, the ID of the cache in the LPCL directly identifies the core
that requested the write transaction, and no further modification
of the coherence protocol is necessary. If the cores are multi-
threaded, the ID of the cache in the LPCL could point to any of
its virtual cores. One simple way to overcome this issue is to
send the ID of the virtual core instead of the ID of the cache in
the invalidation message. When a cache receives an invalidation
message, it knows which cache corresponds to the virtual core
received in the invalidation, since it has knowledge about the
memory hierarchy.

If the invalidation message does not contain a core ID, we need
to add this information to the invalidation messages. The size of
this field is logarithmic to the number of virtual cores in the system.
For example, a core ID of 1 Byte can cover systems of up to 256
virtual cores.

3.3.4. Implementation examples in modern processor architectures

The Intel Harpertown Architecture [14] contains 2 cache levels.
The L1 cache is private to each core, while the L2 cache is shared
by 2 cores. Also, there are 4 cores per processor and hence 2 L2
caches. In this architecture, the simplest way to implement our
mechanism is in the L1 cache, following the implementation
described in Section 3.2. We could also implement the mechanism
in the L2 cache by adding 2 access bits per cache line of the L2 cache,
as described in Section 3.3.2, since the L2 cache is shared by 2 cores.
Likewise, there would be 2 communication vectors per L2 cache.

A different memory hierarchy is present in the Intel Sandy
Bridge [15] architecture, which contains 3 cache levels. The L1 and
L2 caches are private to each core, and the L3 cache is shared among
all cores. Also, each core has 2-way simultaneous multi-threading
(SMT). To implement our mechanism in the LPCL, in this case the
L2 cache, we need to add 2 access bits to each cache line of the LPCL
to identify which of the 2 virtual cores accessed each cache line, as
explained in Section 3.3.1. There would be also 2 communication
vectors for each L2 cache.

To implement the detection mechanism in the LLC in Sandy
Bridge, we could make use of the directory that is already attached
to the cache, following the description in Section 3.3.2. The
directory contains bits that identify which private caches contain
each cache line, and thereby which core accessed each cache line.
If we used one bit per virtual core instead of using one bit per core
in the directory, we could identify in the LLC which virtual cores
accessed each cache line. Also, there would be one communication
vector per virtual core in the LLC.

3.4. Design considerations

As our mechanism is performed entirely by the hardware and
the operating system, it does not depend on the parallelization
API and does not require any modification to the application or
its runtime environment. Moreover, the communication pattern
is detected only during the execution of the application. Our
mechanism provides a good solution for detecting changes in
the behavior of the applications because the number of possible
entries in the cache memory is quite low. Data that is not
accessed anymore will have its corresponding entry overwritten
and will therefore not be counted anymore in the calculation of
the communication pattern. This also reduces the impact of the
temporal false communication.

Regarding the spatial false communication, our mechanism
detects the communication on the cache line granularity. Hence,
accesses to different offsets inside the same cache line would
still be counted as communication. Cache coherence protocols
also have the same problem, considering a cache line as shared
when different offsets are accessed in different caches. Therefore,
our mechanism improves the performance when the application
presents spatial false communication by mapping the involved
threads to cores that share a cache memory.

4. Using the detected communication to map threads

To dynamically map the threads, we need to provide a way to
allow the detection of changes in the communication pattern, as
well as to calculate the new mapping. The mapping is performed in
software, and can be done on the operating system or library level.
We propose a mapping mechanism consisting of several phases, as
illustrated in Fig. 5. Our mapping mechanism fetches the values of
the communication matrix from the hardware to the memory, and
provides the matrix to the algorithms. These algorithms are: the
aging algorithm, the communication filter, the mapping algorithm
and the symmetric mapping filter.

2220 E.H.M. Cruz et al. /J. Parallel Distrib. Comput. 74 (2014) 2215-2228

Fetch commu-
nication matrix
from hardware

Aging
algorithm

!

Mapping
Do not migrate Check algorithm
migrate l

Clear communi-) .
; . Migrate Symmetric
cation matrix and ~——— thr - mapping filter
return to application < Migrate I

Do not migrate

Fig. 5. Software mapping mechanism.

To detect changes in the communication pattern, we apply
an aging algorithm on the communication matrix. To reduce the
overhead of the mapping algorithm, we also developed a com-
munication filter that determines if the communication behavior
has changed sufficiently to warrant a recalculation of the map-
ping. Since the mapping problem is NP-Hard [5], we developed a
heuristic thread mapping algorithm based on the Edmonds graph
matching problem [22], which has a polynomial time complexity.
Furthermore, different thread mappings may actually be consid-
ered equivalent due to symmetries of the memory hierarchy. To
avoid unnecessary migrations, we developed a symmetric map-
ping filter.

After applying the algorithms, our mechanism migrates the
threads if necessary. Finally, the elements of the hardware commu-
nication matrix are set to zero. By fetching the hardware communi-
cation matrix in the beginning and clearing it only after performing
the algorithms, the noise introduced by the mapping mechanism
into the communication detection mechanism is minimized. In the
rest of this section, we will present and discuss these algorithms.

4.1. Aging algorithm

To detect changes in the communication pattern, we adopted
an aging strategy. Every time the communication matrix is fetched
from the hardware, we apply Eq. (1) to each element of the com-
munication matrix. In this equation, CM ., is the communication
matrix after the aging, CM previous 1S the communication matrix from
the previous time the aging algorithm was executed, CM pgraware iS
the communication matrix fetched from the hardware, and AF is
the aging factor used to give a higher or lower priority to the val-
ues of the previous communication matrix.

CMnew[x] D’] = (] + AF) . CMprevious [X] D’] + CMhardware [X] D/] (1)

We vary the value of AF from —0.1 to +0.1. Every time we
migrate the threads, we set AF to +0.1, such that the previous
values will have a higher influence. We do this to avoid migrations
in consecutive calls to the mapping mechanism, which could harm
the performance. On the other hand, every time we do not migrate,
we decrease AF by 0.02, which raises the priority of the new values.
In this way, the probability of a migration increases over time. We
set the minimum value of AF to —0.1 to avoid too many migrations.
The time complexity of this algorithm is O(N?), where N is the
number of threads.

4.2. Communication filter

The goal of this filter is to decide if the communication
matrix has changed sufficiently to warrant a migration, while pre-
senting a low overhead. First, the filter determines if the commu-
nication pattern is homogeneous or heterogeneous. Afterwards, if

® @v
Y00 @"‘@

(b) Output. (c) Generate new
communication matrix
with Eq. (6).

(a) Input.

Fig. 6. The graph matching problem applied to thread mapping. Each vertex
corresponds to a thread or a group of threads. Edges represent the amount of
communication between them. Consider that edges A-B, C-D, E-F and G-H of the
input graph have the highest weights.

the pattern is heterogeneous, we detect if the pattern has changed
compared to the previous pattern. To decide if a pattern is homoge-
neous or heterogeneous, we calculate the variance and the average
of the values of the communication matrix and divide these two
values. It is expected that heterogeneous communication patterns
present higher values than homogeneous communication patterns
for this metric. If the value is greater than a threshold, called
H-threshold, the pattern is considered heterogeneous. Otherwise,
the pattern is considered homogeneous, not requiring a migration
of the threads.

To detect if the heterogeneous pattern changed compared
to the previous one, we use a filter that is based on the idea
that each thread communicates more with a certain subgroup of
threads. We call the threads that belong to the same subgroup
partner threads. Based on this, for the current communication
matrix, the algorithm keeps a vector indexed by thread IDs, where
each element contains the ID of its partner thread. We call this
vector the partner vector. Every time a new communication matrix
is evaluated, the algorithm generates the partner vector for it.
Afterwards, the algorithm compares the previous and new partner
vectors and counts how many threads changed their partner. If
the amount of different partners exceed a threshold, called ID-
threshold, the mapping algorithm is called. Otherwise, the filter
algorithm considers that the communication matrix did not change
enough to represent a new communication pattern.

Egs. (2)-(5) formalize the communication filter.

PartnerVector previous iS the partner vector of the last call to the
mapping mechanism. PartnerVector e, is the partner vector of the
current communication matrix, after applying the aging algorithm.
Ndiff is a variable that stores how many threads changed their
partner. H-factor estimates the degree of heterogeneity of the
communication matrix. The thread mapping algorithm is called if
CheckMigrate is true.

wn=lo 2 @
N

Ndiff = Zu(PartnerVectorprev,-ous[i],PartnerVectorneW[i]) (3)
i=1
variance(CommMatrix)

H-factor = - (4)
average(CommMatrix)

CheckMigrate

__Jtrue if (Ndiff > ID-threshold) and (H-factor > H-threshold)
")false otherwise.

(5)

The ID-threshold directly influences the accuracy and overhead.
Alow ID-threshold increases the probability of calling the mapping

E.H.M. Cruz et al. /]. Parallel Distrib. Comput. 74 (2014) 2215-2228 2221

algorithm, thereby increasing both accuracy and overhead. It in-
creases the overhead because the mapping algorithm is more ex-
pensive than the communication filter. The accuracy is increased
because the communication filter is only a prediction if the map-
ping algorithm would return a different mapping. On the other
hand, a high ID-threshold decreases both accuracy and overhead.
Since each application has its own characteristics, the ideal ID-
threshold varies among different applications. If we use a static
ID-threshold, we would need to use a more generic value, which
would not harm the accuracy for most applications. Therefore, a
static ID-threshold would have a low value. This would unneces-
sarily increase the overhead for applications that have a higher
ideal ID-threshold due to too many calls to the thread mapping al-
gorithm. By using an adaptive ID-threshold, we can dynamically
adjust the value to find a threshold that has a better trade-off be-
tween accuracy and overhead for the running application.

In order to automatically find the ID-threshold for the running
application and hence the best trade off between accuracy and
overhead, the algorithm dynamically adapts the ID-threshold. The
ID-threshold varies between 10% and 50% of threads that change
their partners. The initial value is 10%, allowing more migrations in
the beginning. When the mapping algorithm is called, and it leads
to a migration, we consider that the communication filter correctly
predicted that the communication pattern changed. Hence, we
decrease the ID-threshold, to make it easier to migrate the threads.
However, if calling the mapping algorithm does not lead to a
migration, we consider that the communication filter incorrectly
predicted the result of the mapping algorithm. Therefore, we
increase the ID-threshold, making it more difficult to migrate the
threads. In this way, the ID-threshold is automatically adapted to
the characteristics of the running application.

For the H-threshold, we empirically determined an ideal value
of 250. As this value is normalized to the average of the amount
of communication, we expect that this value remains the same for
different applications and hardware architectures. Further details
about this threshold are given in Section 5.1.

The time complexity of the communication filter is O(N?),
where N is the number of threads, since we need to access all
elements of the communication matrix to fill the partner vector.

4.3. Mapping algorithm

Our algorithm to map the threads on the cores is based on max-
imum weight perfect matching problem for complete weighted
graphs. This problem is defined as follows. Given a complete
weighted graph G = (V, E), we have to find a subset M of E in
which every vertex of V is incident with exactly one edge of M, and
the sum of the weights of the edges of M is maximized. This prob-
lem can be solved by Edmonds’ matching algorithm in polynomial
time [22], O(N?), and a parallel algorithm can solve the problem

with a time complexity of O(+ N2 .1gN), where N is the num-
ber of vertices and P is the number of processing elements.

To model thread mapping as a matching problem, the vertices
represent the threads and the edges the amount of communication
between them. A complete graph is obtained directly from the
communication matrix, as in Fig. 6(a). The graph is processed by the
matching algorithm, which outputs the pairs of threads such that
the amount of communication is maximized, illustrated in Fig. 6(b).

If there are only 2 cores sharing a cache, mapping threads to
them with the matching algorithm is straightforward. However,
there are many architectures in which more than 2 cores share the
same cache, or there are more levels of memory hierarchy to be
exploited. In these cases, another communication matrix needs to
be generated, in which each vertex represents previously grouped
threads, and the edges represent the communication between

O @
O G0

a) Group only the threads that
max1m1ze communication.

b) Generate a
blpartlte graph.

Fig. 7. Mapping algorithm when the number of cores sharing a cache is 3. Letters

A-F represent a thread. Each vertex represents a thread or a group of threads. Edges
represent the amount of communication between them.

Interchip
interconnection

Intrachip
interconnection

Intrachip
interconnection

|L2 cachel |L2 cachel |L2 cachel |L2 cachel

[Core 0][Core 1] [Core 2|[Core 3] [Core 4][Core 5] [Core 6][Core 7]

Fig. 8. Representation of the memory hierarchy as a tree.

the corresponding groups, depicted in Fig. 6(c). This matrix is
generated by Eq. (6).

CMaexe [(x, [z, K)] = CM[x][z] + CMIx][K] + CM[yl[z] + CMIylk] ~ (6)

CM ey Tepresents the communication matrix that will be used
in the next iteration of the mapping algorithm, (x,y) and (z, k)
are the matches found in the previous step, and CM[i][j] is the
amount of communication between threads i and j. The matching
algorithm is re-executed using this new communication matrix
as input. This algorithm does not guarantee that the result will
contain the pairs of pairs with the most amount of communication,
as the communication matrix does not provide communication
information about groups with more than 2 threads. However,
it is a reasonable approximation and keeps the time and space
complexity polynomial.

This procedure is repeated log, K times in each level of the
memory hierarchy, where K is the amount of sharers of the cor-
responding level. Therefore, the complexity of our mapping algo-
rithm is O(N? - log, K) for each level, where N is the number of
threads. For instance, if there are 4 cores sharing the L1 cache,
this procedure is repeated 2 times to calculate which threads will
share the L1 cache. The same procedure is applied for each level on
the memory hierarchy. For instance, consider the architecture de-
picted in Fig. 1. In this architecture, we need to apply the matching
2 times. The first matching generates the pairs of threads that will
share the L2 cache. The second matching generates the pairs of pair
of threads that will communicate through the intrachip intercon-
nection.

The number of cores sharing a cache may not be a power of
two. In this scenario, we also apply the matching more than once
per cache level. Considering an architecture with 6 cores and 2
caches, where each cache is shared by 3 cores, the matching algo-
rithm would produce 3 disconnected graphs that represent 3 pairs
of threads. We generate a new communication graph that groups
only the 2 pairs that maximize the communication, as in Fig. 7(a).
Afterwards, we insert edges connecting the vertices in such a way
to form a bipartite graph that put the grouped threads in the same
set, as in Fig. 7(b). Finally, we apply the matching to the bipar-
tite graph. This procedure can be adapted to map any number of
threads.

2222 E.H.M. Cruz et al. /J. Parallel Distrib. Comput. 74 (2014) 2215-2228

4.4, Symmetric mapping filter

To avoid unnecessary migrations, we developed an algorithm
that detects symmetric mappings. To detect symmetries, our
algorithm requires a tree representation of the memory hierarchy.
The architecture shown in Fig. 1 can be represented by the tree
depicted in Fig. 8. In this hierarchy, an example of symmetric
thread mappings consists of two threads mapped to cores 0 and 1,
or mapped to cores 2 and 3. Although the cores are different, the
resources in these 2 different mappings are shared in the same
way. The symmetric mapping filter uses this tree to calculate the
distance between all the cores using the Floyd-Warshall algorithm.
This procedure is performed only at the first time the symmetric
mapping filter is called, because the memory hierarchy does not
change during execution.

With the distance matrix calculated, the algorithm analyzes the
distance between the cores in the new and previous mappings.
By accumulating the differences of the distances, we estimate
how much the new mapping diverges from the previous mapping.
If the sum of the differences is 0, the mappings are symmetric,
therefore there is no need to migrate of the threads. The behavior
is formalized in Egs. (7) and (8).

N-1 N
Diff = Z Z |Dist (Corenewlil, Corenewljl) — Dist(Coreprevious[il, Corepreviouslil)|

i=1 j=i+1
(7)

. true if (Diff > 0)
Migrate = { false otherwise (8)
Corepew[k] and Corepevious[K] represent the core that thread k is
mapped to, for the new and previous mappings, respectively. Dist is
the distance between the cores that was previously calculated with
the Floyd-Warshall algorithm. The threads are migrated if Migrate
is true. The time complexity of this algorithm is O(N?), where N is

the number of threads.
5. Experimental evaluation

We executed the applications in a machine consisting of 2 quad-
core Intel Xeon E5405 processors that are based on the Harpertown
microarchitecture [14], running the Linux kernel version 3.2. The
memory hierarchy is illustrated in Fig. 1. Since current machines do
not implement our proposed detection mechanism, we generate
the information regarding the communication by implementing
our detection mechanism in the Simics simulator [19] extended
with the GEMS-Ruby memory model [21]. Our implementation
follows the description in Section 3.2. The parameters of the
simulated machine follow the real machine as close as possible.

To evaluate our proposal, we used the OpenMP implementation
of the NAS parallel benchmarks (NPB) [16], version 3.3.1, as well as
the producer-consumer (PC) benchmark described in Section 2.1.
The NPB applications were executed using the W input size due
to simulation time constraints. We ran all the benchmarks except
DC, which takes too much time to simulate. All benchmarks were
executed with 8 threads, which is the number of threads the
architecture can execute in parallel.

The communication matrices are detected inside the simulator
and are then fed into the mapping mechanism on the real machine
during the execution of the applications to perform the thread
mapping. To keep the execution inside the simulator synchronized
with the execution in the real machine, we keep track of the bar-
riers of the applications in the simulator. This is possible because
the applications from our workload execute the same amount of
barriers and in the same order along different executions. There-
fore, when the execution in the simulator and real machine reach
the same barrier, their executions are in the same state.

We check for thread migrations in the synchronization points
of the applications, such as in barriers. By performing the mapping
in the synchronization points, we can make use of mandatory stall
times that would put the running thread to sleep. In this way, the
overhead imposed by the mapping is reduced. Since it needs to
wait for a barrier, the mapping is performed a bit later than the
optimal time, which slightly reduces the gains from an optimized
mapping. This approach is suitable if the application contains a
reasonable amount of synchronization points, as is common in
parallel applications.

For applications that have large parallel phases without
synchronization, it would be necessary to create a separate thread
that awakes periodically to perform the mapping. Although this
approach is more generic, it can have a higher interfere on the
performance, since the mapping thread may awake in situations
where all the threads of the application are running, making one
thread of the application sleep. Since most applications from our
workload have a high number of barriers, we make use of the
stall time of the threads to execute the mapping. If the detection
mechanism was available in the hardware, it would be possible to
implement the mapping mechanism in the kernel scheduler, either
performing the mapping when a thread sleeps or by creating a
separate thread for the mapping mechanism.

In the rest of this section, we first analyze the communication
behavior of the applications. Afterwards, we show the performance
results. Finally, we discuss the overheads associated with our
proposal.

5.1. Communication behavior

For a better understanding of the applications, we first analyze
the degree of heterogeneity of the benchmarks. Fig. 9 shows
how heterogeneous each benchmark is, considering the H-factor
function described in Section 4.2, as well as the aging algorithm
from Section 4.1. We empirically determined the value of the H-
threshold for the communication filter algorithm, setting it to 250.
Therefore, our algorithms consider that the applications that
present heterogeneous patterns are BT, IS, LU, MG, SP, UA and PC,
while the applications CG, EP and FT are considered homogeneous.
In the following paragraphs, we investigate if this classification is
correct by directly analyzing the communication matrices.

Fig. 9 shows if the communication pattern is heterogeneous,
but it does not show if the communication pattern changes during
the execution. To analyze the dynamic behavior, we included
Fig. 10, where we check how much consecutive communication
matrices differ. To calculate these values, we normalize every
cell (i, j) from the previous and current communication matrices
to the highest values of their matrices. After normalization, we
calculate the dynamicity factor with Eq. (9), where CM yrren: iS
the communication matrix after applying the aging algorithm, and
CM previous 1 the communication matrix evaluated in the last time
the mapping mechanism was called. We use the power of 4 to
increase the influence of the higher differences.

N N

Dynamicity =y > ~(CMeurrent 1111 — M previous {11i1)"* 9)

i=1 j=1

In the PC application, two different communication phases
are repeated twice. If a static mapping mechanism was used,
it would consider the communication as depicted in Fig. 11(j),
which makes static mapping unable to map the application. On the
other hand, our mechanism clearly detects the two phases, whose
communication matrices are illustrated in Fig. 12(b). In the first
and third phases, the neighbor threads communicate (Fig. 12(b1)).
In the second and fourth phases, threads with the same congruence
modulo 4 communicate (Fig. 12(b3)). Due to these patterns, there is

E.H.M. Cruz et al. /]. Parallel Distrib. Comput. 74 (2014) 2215-2228 2223

\

10

i =ap L

103
250
10%

Heterogeneity (H-factor)

10!

\

\ \ I
o | ,\4 i ! Ty
)
]

| i
vyl (Y
R Y} “‘A«‘W“« Wy

100

\ \ W

R I " Y i ¥ IRy Y N 1

L ! r vl I\ i Il (Y 1\ [V V0
it WA ey "\"‘lw’\’yf Ay W gt RN VAN e Y Yo gt Beivhende \h‘wf'v"wf Vi

\ Iy \ \
| [| |

/ |
\

| |
0% 10% 20% 30% 40 %

| |
50 % 60 % 70% 80 % 90 %

100 %

Execution time

+~—4BT --CG --EP »~xFT o—-oIS e—-eLU

MG w—aSP —UA --PC

Fig. 9. Degree of heterogeneity (H-factor) of the applications. Applications with a heterogeneity level higher than 250 (H-threshold, solid gray line) are considered as

heterogeneous.

-109

o
e

Dynamicity
o
o

N
=~

o
o

0% 10% 20 %

Execution time

4+4BT -- CG -—EP »~xFT oIS e—-eLU

MG w»—aSP —UA --PC

Fig. 10. Dynamic behavior of the applications. High values indicate a change in the communication pattern.

a high level of heterogeneity in Fig. 9 for PC. On every phase change,
as shown in Fig. 12(b2), there is a peak in Fig. 10. The 4 phases can
be observed in Fig. 9, since the degree of heterogeneity varies at
the times corresponding to each phase change. Due to this highly
dynamic behavior, we classify PC as having a heterogeneous and
non-stable communication.

BT, SP and UA are applications that present most of their
communication between neighboring threads. This behavior is
common when the application is based on domain decomposition,
where most of the communication happens between neighbors
and most of the shared data is located on the borders of each
sub-domain. LU presents communication between neighbors, but
it also performs communication between distant threads. With
this behavior, the degree of heterogeneity of these applications
is high, as shown in Fig. 9. In Fig. 10, we can also observe
that the communication pattern stabilizes after a short period of
initialization. This means that the domain decomposition pattern is
present during almost the entire execution. Therefore, we classify
these four applications as having a heterogeneous and stable
communication pattern.

The communication patterns of IS and MG are considered
heterogeneous for about half of the execution time. For IS, the first
half of the execution time refers to its initialization. As observed in
Fig. 9, IS starts to change from homogeneous to heterogeneous at
around 40% of its execution time, which is the same point where
there is a peak in Fig. 10. After the stabilization, there is a lot of
communication between neighbors, which is evident in Fig. 11(e).
In MG, the overall communication looks similar, but the degree of
heterogeneity decreases over time. The reason is that the amount
of communication between neighbors compared to non-neighbor
threads is higher at the beginning of the execution than at the end.
Therefore, although communication between neighbors is present
during the entire execution, the heterogeneity is much lower at
the end of the execution. Due to these reasons, we also classify IS
and MG as having heterogeneous and stable patterns, although the
degree of heterogeneity is low.

The communication pattern of CG changes several times dur-
ing the execution, as illustrated in Fig. 10. However, contrary to PC,
where both patterns were heterogeneous, one pattern of CG is ho-
mogeneous and the other is heterogeneous. This can be observed in

2224

E.H.M. Cruz et al. /]. Parallel Distrib. Comput. 74 (2014) 2215-2228

O = N W kR N
S = N W ks
S = N Wk N

7
6
5
4
3
2
1
0

S = N Wk N

4 5 6 7 0 1
(b) CG.

2 3 4567 01 2

(a) BT.

/—\
a3
m
=]

4 5 6 7 01234567

(e)Is.

(d) FT.

O = N W kR
S = N Wk N

S = N W ks

=R SRS R N
S = N W kR

01234567 0 1 0 1
(f) LU. (g) MG. (h) SP.

2 3 45617 0 1

2 3 45 6 7 0 1
(j)PC.

234567
(i) UA.

Fig. 11. Overall communication matrices of the NAS and PC benchmarks. Axes represent thread IDs. Darker cells indicate higher amounts of communication between the

threads.

S =N WA LN
O = N W ks N

01234567
(1) First phase.
(a) Phases of the CG benchmark.

01234567
(2) Transition.

01234567
(3) Second phase.

O = N W kW

O = N Wk N
O =N WA N

01234567
(1) First phase.
(b) Phases of the PC benchmark.

01234567
(2) Transition.

01234567
(3) Second phase.

Fig. 12. Different communication phases of the CG and PC benchmarks.

Fig. 12(a). In phase 1, there is little difference in the amount of com-
munication between any pairs of threads. Phase 2 depicts the point
in the execution in which the communication pattern is changing.
Then, in phase 3, the neighbors communicate, indicating a domain
decomposition pattern. Furthermore, the detected pattern is also
similar to a reduction pattern, since thread 0 communicates with
all other threads. In Fig. 9, although we can observe that the de-
gree of heterogeneity of CG varies, our mechanism classifies CG as
always having homogeneous patterns. The reason is that the com-
munication matrices we show are normalized to their own maxi-
mum values, while the values of Fig. 9 are not normalized. Hence,
the absolute values of the communication matrices of CG are much
lower compared to the values of the heterogeneous applications,
thereby being classified as homogeneous.

EP is an application with a homogeneous communication pat-
tern and without any kind of dynamic behavior. We can observe
that the communication matrix of EP, shown in Fig. 11(c), shows
very little communication. Furthermore, most threads do not com-
municate at all. The FT application is also considered homogeneous
and without any dynamic behavior. Despite that, Fig. 10 shows a
peak at around 40% of the execution, it is actually due the initial-
ization, since it takes some time for the communication pattern to
stabilize. FT presents a short execution time, such that the time
spent in the initialization has a big influence on the communica-
tion pattern.

Summarizing the communication pattern results, we can ob-
serve that 6 NAS benchmarks (BT, SP, UA, LU, IS and MG) have a
heterogeneous and stable communication behavior. The PC bench-
mark has a dynamic communication behavior, with two differ-
ent heterogeneous phases. For these, we expect gains in the

performance when using our mapping mechanism. The CG bench-
mark periodically changes its communication behavior between
heterogeneous and homogeneous and we therefore expect smaller
improvements compared to the applications with an exclusively
heterogeneous pattern. For the other two NAS benchmarks (EP and
FT), we do not expect improvements, as their communication pat-
terns are homogeneous.

5.2. Performance results

To analyze the performance, we measure the execution time
and cache memory events obtained from hardware counters using
the Papi framework [17]. Fig. 13(a)-(c) present the execution
time, L2 cache misses and number of invalidation messages,
respectively. We focused only on the L2 cache misses because
the L1 caches are private and do not benefit from mapping. Each
benchmark was executed 50 times. We show the average values,
as well as the confidence interval for a confidence level of 95% in a
Student’s t-distribution. We compare the results of our proposal
to a static random mapping and to the oracle mapping. For the
oracle mapping, we generated traces of all memory accesses for
each application and perform an analysis of the communication
pattern, similarly to [13]. All values are normalized to the results
using the default operating system scheduler. We also present the
absolute values of the results from our mechanism in Table 1.

In the PC benchmark, we obtained the highest improvements.
Compared to the operating system, our mechanism reduced the
execution time by 89.1%, the L2 cache misses by 96.3% and the

E.H.M. Cruz et al. /]. Parallel Distrib. Comput. 74 (2014) 2215-2228 2225

100 %] = I]
Q
£ 80%
E
5 60%
g
3
c 40%
e8|
20 %
0%

BT CG EP FT IS LU MG SP UA PC
Il Operating System [l Static Random
[Oracle [Proposed Mechanism

(a) Execution time.

160 %
140 %
120 %
100 %
80 %
60 %
40%
20 %
0%

L2 Misses

Il Operating System [l Static Random

[Oracle

(b) L2 cache misses.

[] Proposed Mechanism

100 % ™ T
80 %

60 %

Invalidations

40 %

20%

0% BT CG EP FT IS LU MG SP UA PC

Il Operating System [l Static Random
[Oracle [] Proposed Mechanism
(c) Invalidations.

Fig. 13. Performance results, normalized to the OS scheduler.

number of invalidations by 97.9%. The improvements are very high
because PC presents a high level of heterogeneity. Additionally,
our mechanism was able to provide improvements very close
to the oracle mapping, because the communication phases of
PC are clearly defined. The operating system and static random
mappings show large confidence intervals, which is expected,
since different mappings are used on each execution. Also, even
the best random mappings present improvements worse than
our mechanism, because, even if the random mapping is suitable
for one of the communication phases, it will not be suitable for
the other phases. We can observe in Table 1 that our algorithms
migrated PC 11 times, despite having only 4 phases. This happens
because our algorithms are heuristics designed to work with any
type of application, therefore they are not completely precise.

BT, LU, SP and UA were classified as having heterogeneous and
stable communication patterns. We can observe that, in these ap-
plications, our proposal performs better than the operating system
and the static random mapping. However, the improvements are
lower than in PC. There are two main reasons for that. First, the
degree of heterogeneity is lower than in PC. Second, the mapping
does not change during execution. Hence, the random and operat-
ing system mappings do not perform as bad as in PC.

It is important to note that the number of invalidations
and cache misses in BT, LU, SP and UA were greatly reduced.
The execution time was also reduced, but by a smaller factor.
Invalidations are more sensitive to thread mapping than cache
misses and the execution time. The reason is that a good mapping
directly influences the number of invalidations, while cache misses
and execution time are also influenced by other factors, such as
cache lines prefetches and competition for cache lines by the
cores that share the cache, among others. Regarding the NAS
benchmarks, using our mechanism, SP presented the highest
reduction of execution time (13.9%) and L2 cache misses (30.5%),
and UA presented the highest reduction of cache line invalidations
(39.4%).

IS and MG are also classified as having heterogeneous and stable
communication patterns. Despite that, only small improvements
were achieved, since the overall level of heterogeneity is lower
than the other applications from the same category. In MG, the
oracle mapping reduced the execution time by 5.0%, while our
mechanism reduced it by 1.8%, which is 0.4% better than the
random mapping. We can also observe a small improvement in
the L2 cache misses and number of invalidations. Regarding IS,
the execution time is very low, and the communication pattern
is heterogeneous for only half of the execution, leading for a
negligible performance improvement even for the oracle mapping.

As stated in Section 2, if the communication pattern among the
threads is homogeneous, negligible performance improvements
are expected to be achieved by thread mapping, as in the case of
EP and FT. In CG, one of the two communication patterns is slightly
heterogeneous, and the oracle was able to reduce the number of
L2 cache misses and invalidations by a small amount. Although
our mechanism was also able to detect the two communication
patterns, the overhead that it introduced in CG was the greatest
compared to the other applications, because it has the highest
number of synchronization points per second.

EP, besides having a homogeneous communication pattern,
does not share data between the threads, which is the reason
that the absolute number of invalidations are low compared to
the other applications. These low values imply that small, unpre-
dictable events during the execution have a large impact on the
results, as reflected by the large confidence intervals in Fig. 13(b)
and (c).

All NAS benchmarks except CG have communication patterns
that stabilize after a period of initialization. In these applications,
communication-aware mapping can achieve higher improvements
because the threads do not need to be migrated anymore after the
initialization. CG is an application with a highly dynamic behavior
and changes its communication pattern during each time step. In
this type of application, the potential for improvements is much
lower, since migrations would have to be performed with very
short intervals, increasing the overhead as well as reducing the
time the new mapping can be effective. As our evaluation is limited
to the NAS benchmarks, other applications with a highly dynamic
behavior need to be analyzed carefully to determine if they can
benefit from communication-aware mapping.

Our proposal presented results similar to the oracle mapping,
demonstrating its effectiveness. In most cases, it performed
significantly better than the random mapping. This shows that
the gains compared to the operating system are not due to the
unnecessary migrations introduced by the operating system, but
due to a more efficient usage of the resources of the machine.

2226

E.H.M. Cruz et al. /J. Parallel Distrib. Comput. 74 (2014) 2215-2228

Table 1

Absolute values of the results using our mechanism.
Parameter BT CG EP FT IS LU MG SP UA PC
Execution time (s) 0.63 0.13 0.43 0.09 0.08 2.12 0.22 2.14 2.00 0.40
Kilo L2 misses per second 1395 1722 36 4231 4864 2621 9497 2649 1351 1643
Kilo invalidations per second 7580 3778 126 17211 12662 13315 35971 13572 4747 6525
Synchronization points per second 1198 16277 9 446 318 716 508 753 760 10040
Number of migrations 2 1 0 0 1 2 1 1 1 11

4%

3%

2%

Overhead

1%

0%

BT CG EP FT IS LU MG SP UA PC

- Mapping Mechanism |:| Migration

Fig. 14. Overhead of the mapping mechanism (consisting of the aging algorithm,
the communication filter, the mapping algorithm and the symmetric mapping
filter) and the migration, in % of the total execution time.

5.3. Overhead of the proposed mechanism

The overhead of our proposed mechanism can be divided into
3 categories. The first category is the mechanism to detect the
communication patterns. The second type of overhead consists
of the algorithms used to calculate the mapping and migrate the
threads (the aging algorithm, communication filter, mapping algo-
rithm and symmetric mapping filter). This overhead depends on
the amount of synchronization points, as explained in the begin-
ning of Section 5. The third category consists of the side effects of
migrating the threads.

The mechanism to detect the communication patterns has
no time overhead, since it is implemented directly in the cache
memory hardware and does not influence the critical path. It
imposes a small hardware overhead, consisting of the registers to
store the communication vectors and the adder units to increment
them. For the architecture used in the experiments, it is necessary
to add eight 32-bit wide registers and 1 adder unit to each L1 cache
memory. This represents a negligible chip area.

Fig. 14 shows the performance overhead of the mapping mech-
anism and the migration overhead as a percentage of the total
execution time of each application. Regarding the mapping mecha-
nism, CG presented the highest overhead, because it has the high-
est rate of synchronization points. EP only has 4 synchronization
points during its entire execution, so the overhead from the mech-
anism is very low. For the other applications, the highest overhead
from the mapping mechanism is in IS, where it represents only
0.46% of the execution time.

The most relevant side effect of migrating the threads is the ad-
dition of cache misses. Since the cores and their associated caches
that are running the threads change, memory accesses from the
migrated thread will generate cache misses right after the migra-
tion. Furthermore, these additional cache misses increase the load
in the interconnections, because the data needs to be transferred
from one cache to another. Although only 1 migration is performed
in IS, it presented the highest overhead, since its execution time is

the shortest. PC presented the second highest overhead because it
migrated the most times. For the other applications, the migration
overhead is less than 1%. The average total overhead, consisting of
the mapping mechanism and the migrations, is 1.12%.

6. Related work

In this section, we contextualize the state of art in communi-
cation detection and thread mapping mechanisms and compare
them to our proposal. We also evaluate work regarding process
mapping, since it is related to thread mapping.

6.1. Static communication detection and thread mapping

Atechnique to collect the communication pattern of the threads
of parallel applications based on shared memory is evaluated in [3].
They instrumented the Simics simulator to trace all the memory
accesses, which were then analyzed to determine the communi-
cation pattern of the applications. In [4], the authors analyze the
communication pattern of applications using the Pin dynamic bi-
nary analysis tool [2]. In [13], the potential of mapping the threads
of applications taking into account the communication between
them was evaluated. The Simics simulator was instrumented to
monitor all memory accesses and detect the communication pat-
terns of the applications. With these patterns, they created a static
thread mapping and measured the performance improvement. De-
spite improving performance, these methods are infeasible for real
applications, as they require simulation or dynamic binary anal-
ysis, which demand a lot of processing time. Furthermore, these
methods detect only static communication patterns and cannot
optimize the communication when the application presents dif-
ferent communication patterns along the execution.

6.2. Dynamic communication detection and thread mapping

An approach to improve the performance of distributed shared
memory (DSM) systems is proposed in [18]. They divide the
memory address space into blocks and keep the memory access
pattern of each block in a pattern table. The pattern contains
information on which threads accessed the corresponding block,
as well as which type of access the threads performed, such as a
read or write access. By looking at the patterns, the DSM coherence
protocol can make speculative transactions in order to minimize
the impact of maintaining the coherence. The pattern table used
to predict future transactions could be also used to detect the
communication. However, the amount of additional hardware
required to store and update the pattern table is higher than the
amount of hardware necessary to implement our proposal.

In [1], the authors show that hardware performance counters
already present in current processors can be used to dynamically
map parallel applications. They schedule threads by taking into
account an indirect estimate of the communication pattern using
hardware counters of the Power5 processor. These hardware
counters monitor memory accesses that are resolved by cache
memories located in remote chips. To decrease the overhead of
the proposed mechanism, the mapping system is only triggered

E.H.M. Cruz et al. /]. Parallel Distrib. Comput. 74 (2014) 2215-2228 2227

after the number of core stall cycles and cache misses exceeds
a given threshold. Memory accesses resolved by local cache
memories or the main memory are not considered when detecting
the communication, generating an incomplete communication
pattern.

The ForestGOMP mapping library is introduced in [7]. This
library integrates into the OpenMP runtime environment and gath-
ers information about the different parallel sections of applica-
tions from hardware performance counters. The library generates
data and thread mappings for the regions of the application. The
data mapping is suitable for Non-Uniform Memory Access (NUMA)
machines, as in these machines the latency to the memory banks
may be different for each processor. ForestGOMP tries to keep the
threads that share data nearby according to the memory hierarchy,
as well as to place the memory pages in NUMA nodes close to the
core that is accessing the page. The hardware counters they used
to guide the thread and data mapping only indirectly estimate the
communication patterns. Also, their work is limited to parallel ap-
plications that are based on OpenMP.

In[11], the Translation Lookaside Buffer (TLB) is used to dynam-
ically detect the communication pattern. The TLB is responsible to
perform the translation of virtual addresses to physical addresses
and is present in most architectures that support virtual memory.
As there is one TLB for each core, the communication pattern was
detected by searching all TLBs for matching entries. The impact
of spatial false communication is higher than in our cache coher-
ence based mechanism, since the TLB based mechanism detects
communication at the page level granularity. In [12], the authors
propose a mechanism that uses the page table of the parallel ap-
plication to detect the communication pattern by introducing ad-
ditional page faults during the execution. In these mechanisms, the
operating systems is responsible for calculating the communica-
tion matrix, while in our coherence based mechanism the hard-
ware generates the communication matrix automatically, which
reduces the overhead.

6.3. Process mapping of message-passing based applications

In [23], virtual machines running on clusters are migrated
among the different nodes by considering the amount of communi-
cation between them. They detect the communication between the
virtual machines by monitoring the source and destination fields
of the packets sent on the network. Both the execution time and
the network traffic were reduced by dynamically migrating the vir-
tual machines to nearby nodes of the cluster. A similar method is
proposed in [8], but it focuses on static mapping of parallel ap-
plications that are based on the Message Passing Interface (MPI).
Compared to message passing environments, detecting commu-
nication in shared memory applications presents different chal-
lenges, since the communication is implicit and therefore requires
new mechanisms to perform the detection.

7. Conclusions and future work

The communication between the threads of parallel appli-
cations is an important issue of multi-core architectures. The
ongoing increase of the number of cores imposes a high communi-
cation overhead, and mechanisms to optimize the communication
are necessary to take advantage of the higher level of parallelism.
In this paper, we presented a new thread mapping mechanism
that optimizes the communication using information provided by
cache coherence protocols. Our mechanism is implemented di-
rectly in the cache memory subsystem and detects the commu-
nication during the execution of the applications. Furthermore, it
is independent from the implementation of the parallel applica-
tions and presents no time overhead. We also proposed algorithms

to dynamically migrate the threads. Our algorithms impose a low
overhead and are able to migrate the threads of applications with
very different characteristics.

We evaluated our proposal using the NAS parallel benchmarks
and with a producer-consumer benchmark. We were able to dy-
namically identify the communication patterns for all applications
and migrate them during the execution. Our detection mechanism
and algorithms were also able to recognize the different commu-
nication patterns along the execution of the applications. We com-
pared our mechanism to the operating system scheduler, a random
mapping and to an oracle mapping. Compared to the operating sys-
tem, we reduced the execution time, cache misses and number of
invalidations by up to 13.9%, 30.5% and 39.4%, respectively.

Improvements were dependent on the communication char-
acteristics of the applications. As expected, applications that
communicated more and present heterogeneous communication
patterns showed the greatest improvements. Applications that
have homogeneous communication patterns did not present im-
provements. This is the expected result, as there is no difference
in the communication among the threads to be exploited. Also, we
observed the importance of dynamic mapping over static mapping,
since only dynamic mapping mechanisms are capable of handling
applications that present several communication patterns.

For the future, we intend to evaluate our mechanism using
other benchmarks, with different communication characteristics.
We also plan to evaluate how our proposal affects the energy
consumption, since it improves the cache and interconnection
usage.

Acknowledgments
This work was partially supported by CNPq and CAPES.

References

[1] R. Azimi, D.K. Tam, L. Soares, M. Stumm, Enhancing operating system support
for multicore processors by using hardware performance monitoring, ACM
SIGOPS Oper. Syst. Rev. 43 (2009) 56-65.

[2] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood, A.
Jaleel, C. Luk, G. Lyons, H. Patil, A. Tal, Analyzing parallel programs with pin,
IEEE Comput. 43 (2010) 34-41.

[3] N. Barrow-Williams, C. Fensch, S. Moore, A communication characterisation
of splash-2 and parsec, in: IEEE International Symposium on Workload
Characterization, IISWC, 2009, pp. 86-97.

[4] C. Bienia, S. Kumar, K. Li, PARSEC vs. SPLASH-2: a quantitative compari-
son of two multithreaded benchmark suites on chip-multiprocessors, in:
IEEE International Symposium on Workload Characterization, IISWC, 2008,
pp. 47-56.

[5] S. Bokhari, On the mapping problem, IEEE Trans. Comput. C-30 (1981)

207-214.
[6] S.Borkar, A.A. Chien, The future of microprocessors, Commun. ACM 54 (2011)

7] E?Bzgduedis, 0. Aumage, B. Goglin, S. Thibault, P.A. Wacrenier, R. Namyst,
Structuring the execution of OpenMP applications for multicore architectures,
in: IEEE International Parallel & Distributed Processing Symposium, IPDPS,
2010.

[8] H. Chen, W. Chen, . Huang, B. Robert, H. Kuhn, MPIPP: an automatic profile-
guided parallel process placement toolset for SMP clusters and multiclusters,
in: International Conference on Supercomputing, 2006, pp. 353-360.

[9] Z. Chishti, M.D. Powell, T.N. Vijaykumar, Optimizing replication, communica-
tion, and capacity allocation in CMPs, ACM SIGARCH Comput. Archit. News 33
(2005) 357-368.

[10] P.W. Coteus, J.U. Knickerbocker, C.H. Lam, Y.A. Vlasov, Technologies for
exascale systems, IBM J. Res. Dev. 55 (2011) 14:1-14:12.

[11] E.H.M. Cruz, M. Diener, P.0.A. Navaux, Using the translation lookaside buffer
to map threads in parallel applications based on shared memory, in: IEEE
International Parallel & Distributed Processing Symposium, IPDPS, 2012,
pp. 532-543.

[12] M. Diener, EH.M. Cruz, P.0.A. Navaux, Communication-based mapping
using shared pages, in: IEEE International Parallel & Distributed Processing
Symposium, IPDPS, 2013, pp. 700-711.

[13] M.Diener, F.L. Madruga, E.R. Rodrigues, M.A.Z. Alves, P.0.A. Navaux, Evaluating
thread placement based on memory access patterns for multi-core processors,
in: IEEE International Conference on High Performance Computing and
Communications, HPCC, 2010, pp. 491-496.

[14] Intel, Quad-Core Intel Xeon Processor 5400 Series Datasheet, Technical Report,

2008.
[15] Intel, 2nd generation Intel Core Processor Family, Technical Report, 2012.

http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref1
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref2
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref5
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref6
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref9
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref10
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref14
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref15

2228 E.H.M. Cruz et al. /]. Parallel Distrib. Comput. 74 (2014) 2215-2228

[16] H. Jin, M. Frumkin, J. Yan, The OpenMP Implementation of NAS Parallel
Benchmarks and its Performance, Technical Report, 1999.

[17] M. Johnson, H. McCraw, S. Moore, P. Mucci, J. Nelson, D. Terpstra, V.
Weaver, T. Mohan, PAPI-V: performance monitoring for virtual machines,
in: International Conference on Parallel Processing Workshops, ICPPW, 2012,
pp. 194-199.

[18] A.C.Lai, B. Falsafi, Memory sharing predictor: the key to a speculative coherent
DSM, in: International Symposium on Computer Architecture, ISCA, 1999.

[19] P.Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,]. Hogberg,
F. Larsson, A. Moestedt, B. Werner, Simics: a full system simulation platform,
IEEE Comput. 35 (2002) 50-58.

[20] M.M.K. Martin, M.D. Hill, DJ. Sorin, Why on-chip cache coherence is here to
stay, Commun. ACM 55 (2012) 78.

[21] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K. Moore, M.
Hill, D. Wood, Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset, ACM SIGARCH Comput. Archit. News 33 (2005) 92-99.

[22] C. Osiakwan, S. Akl, The maximum weight perfect matching problem for
complete weighted graphs is in PC, in: IEEE Symposium on Parallel and
Distributed Processing, SPDP, 1990, pp. 880-887.

[23] J. Sonnek, J. Greensky, R. Reutiman, A. Chandra, Starling: minimizing com-
munication overhead in virtualized computing platforms using decentralized
affinity-aware migration, in: International Conference on Parallel Processing,
ICPP, 2010, pp. 228-237.

[24] J. Zhai, T. Sheng, J. He, Efficiently acquiring communication traces for
large-scale parallel applications, IEEE Trans. Parallel Distrib. Syst. 22 (2011)

1862-1870.
[25] X. Zhou, W. Chen, W. Zheng, Cache sharing management for performance

fairness in chip multiprocessors, in: International Conference on Parallel
Architectures and Compilation Techniques, PACT, 2009, pp. 384-393.

Eduardo Henrique Molina da Cruz graduated in Com-
puter Science at the State University of Maringa (UEM),
Brazil, and received his masters degree at the Federal Uni-
versity of Rio Grande do Sul (UFRGS), Brazil, where he is
currently a Ph.D. student.

His research focuses on improving the communication
between threads on shared-memory architectures and to
improve the locality of the memory accesses in architec-
tures with non-uniform memory access (NUMA).

Matthias Diener graduated in Computer Engineering at
the Berlin Institute of Technology (TU Berlin), Germany,
and is currently a Ph.D. student at the Federal University
of Rio Grande do Sul (UFRGS), Brazil.

His research interests are in improving the per-
formance and energy efficiency of parallel applica-
tions that run on shared-memory architec-
tures, by taking into account the memory access behavior
of the application.

Marco Antonio Zanata Alves graduated in Computer Sci-
ence at the S3o Paulo State University (UNESP), Brazil, and
received his masters degree from the Federal University of
Rio Grande do Sul (UFRGS), Brazil, where he is currently a
Ph.D. student.

His research focuses on increasing the energy effi-
ciency of cache memories for high performance computer
architectures.

Philippe Olivier Alexandre Navaux is a Professor at the
Federal University of Rio Grande do Sul (UFRGS), Brazil,
since 1973.

He graduated in Electronic Engineering from UFRGS in
1970. He received his masters degree in Applied Physics
from UFRGS in 1973 and his Ph.D. in Computer Science
from INPG, France in 1979.

He is the head of the Parallel and Distributed Process-
ing Group (GPPD) at UFRGS and a consultant to various na-
tional and international funding agencies such as DoE (US),
ANR (FR), CNPq (BR), CAPES (BR) and others.

http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref16
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref19
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref20
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref21
http://refhub.elsevier.com/S0743-7315(13)00233-5/sbref24

	Dynamic thread mapping of shared memory applications by exploiting cache coherence protocols
	Introduction
	Background: communication-aware thread mapping in shared-memory architectures
	Evaluating thread mapping with a producer--consumer benchmark

	Exploiting cache coherence protocols to detect the communication between threads
	Concept of the mechanism
	General hardware implementation
	Hardware implementation in specific architectures
	Architectures with multi-threaded cores
	Implementing the detection mechanism in other cache levels
	Including the core ID in the coherence message
	Implementation examples in modern processor architectures

	Design considerations

	Using the detected communication to map threads
	Aging algorithm
	Communication filter
	Mapping algorithm
	Symmetric mapping filter

	Experimental evaluation
	Communication behavior
	Performance results
	Overhead of the proposed mechanism

	Related work
	Static communication detection and thread mapping
	Dynamic communication detection and thread mapping
	Process mapping of message-passing based applications

	Conclusions and future work
	Acknowledgments
	References

