UNIVERSIDADE FEDERAL DO PARANA

ALINE SANTANA CORDEIRO

PORTING MACHINE LEARNING ALGORITHMS TO
VECTOR-IN-MEMORY ARCHITECTURE

CURITIBA PR
2020

ALINE SANTANA CORDEIRO

PORTING MACHINE LEARNING ALGORITHMS TO
VECTOR-IN-MEMORY ARCHITECTURE

Dissertagdo apresentada como requisito parcial a obtencio
do grau de Mestre em Informética no Programa de Pés-
Graduagdo em Informaética, Setor de Ciéncias Exatas, da
Universidade Federal do Parana.

Area de concentragio: Ciéncia da Computagdo.

Orientador: Prof. Dr. Marco Antonio Zanata Alves.

CURITIBA PR
2020

Catalogacdo na Fonte: Sistema de Bibliotecas, UFPR
Biblioteca de Ciéncia e Tecnologia

C794p

Cordeiro, Aline Santana
Porting machine learning algorithms to vector-in-memory architecture [recurso
eletrénico] / Aline Santana Cordeiro. — Curitiba, 2020.

Dissertacdo - Universidade Federal do Parana, Setor de Ciéncias Exatas, Programa de Pos-
Graduagdo em Informética, 2020.

Orientador: Marco Antonio Zanata Alves.

1. Aprendizado do computador. 2. Algoritmos. 3. Sistemas de meméria de computadores.
I. Universidade Federal do Parand. Il. Alves, Marco Antonio Zanata. II1. Titulo.

CDD: 006.32

Bibliotecaria: Vanusa Maciel CRB-9/1928

MINISTERIO DA EDUCAGAO

SETOR DE CIENCIAS EXATAS

UNIVERSIDADE FEDERAL DO PARANA

l ' F P R PRO-REITORIA DE PESQUISA E POS-GRADUAGAO

ONIVERSIGADE FEDERAL DS FARAIA PROGRAMA DE POS-GRADUAGAO INFORMATICA -
40001016034P5

TERMO DE APROVACAO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de P6s-Graduagdo em INFORMATICA da
Universidade Federal do Parana foram convocados para realizar a arguicdo da dissertagdo de Mestrado de ALINE SANTANA
CORDEIRO intitulada: Porting Machine Learning Algorithms to Vector-in-Memory Architecture, sob orientagdo do Prof. Dr.
MARCO ANTONIO ZANATA ALVES, que apés terem inquirido a aluna e realizada a avaliacédo do trabalho, séo de parecer pela sua
APROVACAO no rito de defesa.

A outorga do titulo de mestre esta sujeita a homologacao pelo colegiado, ao atendimento de todas as indicagGes e corregdes

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de P6s-Graduagao.

CURITIBA, 25 de Novembro de 2020.

Assinatura Eletronica
25/11/2020 19:58:20.0
MARCO ANTONIO ZANATA ALVES
Presidente da Banca Examinadora (UNIVERSIDADE FEDERAL DO PARANA)

Assinatura Eletronica
30/11/2020 07:50:32.0
LUIS CARLOS ERPEN DE BONA
Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANA)

Assinatura Eletronica
27/11/2020 10:12:16.0
EDUARDO ROCHA RODRIGUES
Avaliador Externo (IBM RESEARCH)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Parana - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br
Documento assinado eletronicamente de acordo com o disposto na legislagéo federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificag&o Unica: 63694
Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 63694

ACKNOWLEDGEMENTS

After almost 3 years of work and facing a harsh year of pandemic, I would like to thank Capes
and Serrapilheira for funding and making possible my research with exclusive dedication during
this period.

Likewise, I would like to thank my supervisor, Ph.D. Marco Antonio Zanata Alves, for
all the support and guidance since my undergrad. I am very grateful that you have given me the
opportunity and encouragement to start and finish this research.

Besides, I would like to acknowledge Ph.D. Paulo Cesar Santos from UFRGS, for his
contributions to this dissertation proposal, the support, and discussions at the end of this work.

I also would like to thank all my colleagues from our laboratory, HiPES, who have
supported me during this period. Especially MSc. Sairo Raoni dos Santos, who has been working
with me on the same project and shared joys and sorrows.

In addition, I would like to thank my companion Rafael, my sister Deyse, my parents,
and my friends for all the support and advice. You all have given me the opportunity in many
ways of doing and finishing this work.

RESUMO

A Aprendizagem de Mdquina surgiu por volta de 1960, com o foco na capacidade de aprendizagem
do computador e, desde entdo, se tornou uma ferramenta util para analisar a vasta quantidade de
dados que € gerada em todos os campos da ciéncia nos dias de hoje. Ao longo dos anos, diversos
algoritmos foram criados para analisar, reconhecer padrdes e fazer previsdes a partir de amostras
de dados e, simultaneamente, a movimentacdo de dados dentro de sistemas computacionais
ganhou foco devido ao seu alto impacto no tempo de execugdo e no consumo de energia. Nesse
contexto, as arquiteturas de processamento proximo a memdaria surgiram como uma solucao
promissora para o processamento massivo de dados, reduzindo drasticamente a movimentagao
destes. Além das abordagens mais comuns para o problema, como Central Processing Units
(CPUs) e Graphic Processing Units (GPUs), também existem abordagens diferentes, como
Application Specific Integrated Circuits (ASICs) e Field-Programmable Gate Arrays (FPGAs).
Esses aceleradores sao opcoes interessantes para executar algoritmos de aprendizagem de
maquina, no entanto, eles ainda apresentam problemas relacionados ao Memory-Wall, pois
exigem movimentacao de dados fora do chip entre a memdria e os dispositivos de processamento
e, como as solugdes de processamento préximo a memoria conectam a unidade de processamento
ao dispositivo de armazenamento, elas reduzem os problemas originados pela movimentacao de
dados. Este trabalho avalia se € possivel obter alto desempenho computacional para algoritmos de
aprendizagem de mdquina usando uma arquitetura de processamento préximo a memdoria que seja
de propdsito geral e que executa instrugdes vetoriais. Assim, € apresentada uma abordagem para
executar alguns kernels de inferéncia como k-Nearest Neighbors (kNN), Multi Layer Perceptron
(MLP) e Convolutional Neural Network (CNN) usando a arquitetura de Vetor-em-Memoria
(VIMA), uma arquitetura de processamento préximo a memoria que permite reutilizacao de
dados e reduc¢do da laténcia de execucdo. A ideia € migrar esses algoritmos de aprendizagem de
méquina com a Intrinsics-VIMA, uma biblioteca que emula o cojunto de instrucdes da VIMA
e simula as aplicagdes usando um simulador orientado a tragos para avaliar seu desempenho
computacional e o consumo de energia. As contribuicdes deste trabalho sdao: (i) uma nova
biblioteca Intrinsics que emula o conjunto de instru¢des da VIMA de forma facil; (ii) ideias sobre
como migrar algoritmos de aprendizagem de mdquina usando Intrinsics-VIMA, e; (ii1) a avaliagdao
dos resultados dos algoritmos considerando o ambiente de simulacdo. Os resultados indicam
aceleragdes de até 10x para o kNN, 11x para o MLP e 3x para a convolucdo ao executd-los na
VIMA comparado com uma versdo de alto desempenho do x86.

Palavras-chave: memorias inteligentes, processamento proximo a memoria, aprendizagem de
madquina, arquitetura vetorizada

ABSTRACT

Machine Learning (ML) emerged around 1960, focusing on the computer learning capacity.
Since then, it became a handy tool to analyze the vast amount of data currently generated in every
field of science. For this purpose, several algorithms were created to analyze, recognize patterns,
and make predictions from data samples. Simultaneously, data movement inside computer
systems gains more focus due to its high impact on time and energy consumption. In this context,
the Near-Data Processing (NDP) architectures emerged as a prominent solution to massive data
processing by drastically reducing data movement. Besides the most common approaches to
the problem, such as Central Processing Units (CPUs) and Graphics Processing Units (GPUs),
there are also different approaches, such as Application Specific Integrated Circuits (ASICs)
and Field-Programmable Gate Arrays (FPGAs). These accelerators are all exciting options to
solve ML algorithms. Nevertheless, they still present problems related to the Memory Wall, as
they still requiring off-chip data movement between the memory and the processing devices. As
NDP solutions attach the processing unit to the storage device, they mitigate problems originated
by data movement. This work evaluates whether it is possible to achieve high computational
performance for ML algorithms using a general-purpose NDP architecture that operates on
vector instructions. Thus, it presents an approach to execute inference kernels from k-Nearest
Neighbors (kNN), Multi Layer Perceptron (MLP), and Convolutional Neural Network (CNN)
algorithms using Vector-in-Memory Architecture (VIMA), an NDP architecture that allows data
reuse and latency reduction. The idea is to port those ML algorithms with Intrinsics-VIMA. This
library emulates VIMA Instruction Set Architecture (ISA), and simulate the applications using a
trace-driven simulator to evaluate its computational performance and energy consumption. The
contribution of this work are: (i) a new Intrinsics library that emulates VIMA ISA in an easy
way; (i1) insights on how to migrate ML algorithms using Intrinsics-VIMA, and; (iii) results
evaluation of the algorithms considering the simulation environment indicate speedups up to
10x for KNN, 11x for MLP, and 3x for convolution when executing near-data compared to a
high-performance x86 baseline.

Keywords: smart-memories, near-data processing, machine learning, vector architecture

2.1
2.2
2.3
24
2.5
2.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12

LIST OF FIGURES

Block diagram of an 3D-stacked memory 20
Block diagram of NDP architectures interconnection 20
HMC block diagram with 32 vaults with 16 banks eachone. 21
Architectural difference between HIVE and VIMA 22
3D-stacked memory module with VIMA architecture 23
Example of x86 assembly replacement. 25
Sequence of steps to simulate an application. 35
Von Neumann neighboring convolution 37
Moore neighboring convolution 37
Instance classificationby votes 38
A neuron representation. Lo L e e e 39
A representation of aneural networko o Lo 39
Neural network output distribution at the beginning of the training 40
Moore neighboring convolution 42
The whole training dataset has to be available for each test instance. 42
Full utilization of a VIMA vector for training and test instances. 42

VIMA vectors with training instances with 32 features and the respective labels . 43

Operation to apply a mask over a VIMA vectorof 8KB. 43
Example of a multiplication between input layer and sets of weights 44
Example of a VIMA vector with four sets of weights 45
VIMA'’s speedup over x86 for kNN with 4096 instances. 51
VIMA'’s speedup over x86 for kNN with 8192 instances. 51
VIMA'’s speedup over x86 for kNN with 16384 instances 51
VIMA'’s speedup over x86 for kNN with 32768 instances 52
VIMA'’s speedup over x86 for kNN with 65536 instances 52
VIMA'’s speedup over x86 for MLP with 4096 instances. 53
VIMA'’s speedup over x86 for convolution 53
VIMA'’s energy consumption over x86 for kNN with 4096 instances 54
VIMA'’s energy consumption over x86 for kNN with 8192 instances 54
VIMA'’s energy consumption over x86 for kNN with 16384 instances. 55
VIMA'’s energy consumption over x86 for kNN with 32768 instances. 55

VIMA'’s energy consumption over x86 for kNN with 65536 instances. 55

5.13
5.14

VIMA'’s energy consumption over x86 for MLP with 4096 instances

VIMA'’s energy consumption over x86 for convolution

2.1

3.1
3.2
33

4.1

5.1
5.2
5.3
54

A.l
B.1

LIST OF TABLES

Bandwidths comparison L Lo

Stringsusedinsearchbase
Inclusion/Exclusion criteria. o . e e e e e

Summary of correlated papers characteristics
Intrinsics-VIMA datatypes

Baseline and VIMA system configuration
kNN Memory Footprint approximation for VIMA 256B, 8KB and AVX512 . . .
MLP Memory Footprint approximation for VIMA 256B, 8KB and AVXS512 . . .
Convolution Memory Footprint approx. for VIMA 256B, 8KB and AVX512. . .

Table of Intrinsics-VIMA instructions v v v v v v v v v v

Table of selected papers.

LIST OF ACRONYMS

Al — Aurtificial Intelligence

ALU — Arithmetic Logic Unit

API — Application Programming Interface
APU — Accelerated Processing Unit

ASIC — Application Specific Integrated Circuit
AVX — Advanced Vector Extensions

CNN — Convolutional Neural Network
CPU — Central Processing Unit

DDR — Double Data Rate

DIMM — Dual Inline Memory Module

DMA — Direct Memory Access

DNN — Deep Neural Network

DRAM — Dynamic Random Access Memory
FP — Floating-Point

FPGA — Field-Programmable Gate Array
FU — Functional Unit

GPU — Graphics Processing Unit

HBM — High Bandwidth Memory

HIVE — HMC Instruction Vector Extensions
HMC — Hybrid Memory Cube

HPC — High Processing Computing

ISA — Instruction Set Architecture

kNN — k-Nearest Neighbors

LLC

LUT

MAPLE

MIMD

MIPS

ML

MLP

MMX

MRAM

NDP

NIM

NN

NoC

000

OrCS

PE

PIM

RelLU

RISC

RRAM

RVU

SIMD

SiINUCA

SRAM

SSE

TLB

Last-Level Cache

Look-Up-Table

MAssively Parallel Learning/Classification Engine
Multiple Instruction, Multiple Data
Microprocessor without Interlocked Pipeline Stages
Machine Learning

Multi Layer Perceptron

Multi-Media eXtensions

Magnetoresistive Random-Access Memory
Near-Data Processing

Neuron In-Memory

Neural Network

Network-on-Chip

Out-of-Order

Ordinary Computer Simulator

Processing Element

Processing-In-Memory

Rectified Linear Units

Reduced Instruction Set Computer

Resistive Random-Access Memory
Reconfigurable Vector Unit

Single Instruction Multiple Data

Simulator of Non-Uniform Cache Architectures
Static Random Access Memory

Streaming SIMD Extensions

Translation Look-aside Buffer

TSV — Through-Silicon Via

VIMA — Vector-in-Memory Architecture

2.1
2.2
2.3
2.4
2.5
2.6

3.1

3.2

3.2.1
322
323
324
3.2.5

4.1
4.2
4.2.1
422
423
4.3
4.3.1
4.3.2
433

5.1
5.2
5.2.1
522
5.2.3
5.3
54

CONTENTS

INTRODUCTION. . . . ot ittt et i e e et i e et e ane e 14
BACKGROUND i e e i it it e e e e 17
MACHINE LEARNING o e 17
COMPUTING PERFORMANCE 18
NEAR-DATA PROCESSING. e 19
VECTOR-IN-MEMORY ARCHITECTURE. 21
INTRINSICS LIBRARIES 24
ORDINARY COMPUTING SIMULATOR 24
RELATED WORK USING SYSTEMATIC MAPPING 26
SYSTEMATIC MAPPING METHODOLOGY 26
STATE-OF-THE-ART e 30
NDP Approaches with Full Cores 31
NDP Approaches with General-Purpose Cores. 32
NDP Approaches with Embedding Specific-Purpose Cores 32
DRAM and PIM Approaches. 33
Conclusions on Related Work. oL 34
MACHINE LEARNING CODE PORTABILITY. oo v vt 35
INTRINSICS-VIMA e 35
OVERVIEW: MACHINE LEARNING KERNELS 37
Convolution Basics L 37
k-Nearest Neighbors (KNN) Basics. 38
Multi-Layer Perceptron (MLP) Basics 38
CODE PORTABILITY: VIMA s 41
Convolution Migration 41
k-Nearest Neighbors (KNN) Migration. 42
Multilayer Perceptron (MLP) Migration 44
EXPERIMENTAL EVALUATIONOFVIMA 47
METHODOLOGY AND SIMULATION SETUP 47
BEST CONDITIONS TO ACHIEVE HIGH PERFORMANCE. 48
k-Nearest Neighbors. 48
Multilayer Perceptron. L 49
Convolution L 49
EXECUTION TIME RESULTS 50

ENERGY RESULTS e 54

FINAL CONSIDERATIONS i ittt ittt e et e
CONCLUSION . . . ittt ittt ittt ittt ettt i e eeeen
REFERENCES i ittt it ittt iiiee e
APPENDIX A - TABLE OF INTRINSICS-VIMA INSTRUCTIONS. . . .
APPENDIX B - TABLE OF MAPPING STUDY
APPENDIX C - KNN ALGORITHM WITHAVXS12.
APPENDIX D - MLP HIDDEN LAYER ALGORITHM WITH AVXS512 .
APPENDIX E - MLP OUTPUT LAYER ALGORITHM WITH AVXS512 .
APPENDIX F - CONVOLUTION ALGORITHM WITH AVXS12.
APPENDIX G - KNN ALGORITHM WITH 8KB VIMA VECTOR. . ..
APPENDIX H - KNN ALGORITHM WITH VIMA 8KB VECTOR. . . .

APPENDIX I - MLP HIDDEN LAYER ALGORITHM WITH VIMA
SKBVECTOR. i ittt it i ittt ettt iee e

APPENDIX J - MLP HIDDEN LAYER ALGORITHM WITH VIMA
SKBVECTOR. i i ittt it ettt i et e

APPENDIX K - CONVOLUTION ALGORITHM WITH VIMA 8KB

VECTOR

14

1 INTRODUCTION

Over the last two decades, digital data has increased significantly due to the increase of digital
systems usage, which executes different kinds of transactions such as registration, creation,
sharing, and downloading of information. For example, in 2011, the amount of created and
replicated data surpassed 1.8 zettabytes, and predictions expect that this amount will grow 9x
every five years. In this scenario, we can expect digital data volume to double every two years,
reaching 40 trillion gigabytes at this year of 2020 (Gantz and Reinsel, 2011, 2012).

Those massive digital transactions carry lots of information about people’s behavior in
different aspects. All these data can be interesting for scientists and corporations to analyze to
understand people’s needs and develop personal products and services. Humans cannot analyze
and understand this massive amount of data, firstly because of the volume and time required,
secondly, due to its complexity. Thus, due to the increased processing capacity available in
current computers, Machine Learning (ML) has gained popularity and became a useful tool to
automate the analysis of massive amounts of data (Krizhevsky et al., 2012; Rakotomamonjy,
2003; Gardner and Dorling, 1998; Peterson, 2009; Dietterich, 2000).

ML was formalized in 1959 (Samuel, 1959) and focuses on systems that can learn and
adapt to environmental changes without being explicitly programmed to it. Such algorithms rely
on observations and sometimes learning from external examples to become capable of making
their own decisions, identifying patterns, and making future decisions (Alpaydin, 2009).

Despite existing complex ML applications that are efficient in common architectures
(Chen and Guestrin, 2016), some are memory and computationally intensive. Thus, experiments
made in the last decades were mostly with small data sets, which changed with the current computer
systems. Nevertheless, general-purpose computers and their ever-increasing performance still
present severe bottlenecks in terms of the execution time of ML algorithms when dealing with real-
world size problems (Boroumand et al., 2018). In this way, the most common implementations
rely on accelerators and specific-hardware, such as Application Specific Integrated Circuit (ASIC),
full Central Processing Units (CPUs), Field-Programmable Gate Arrays (FPGAs) (Nurvitadhi
et al., 2016; Kara et al., 2017) and Graphics Processing Units (GPUs) (Gao et al., 2017; Ahn
et al., 2016; Nair et al., 2015), which provide reasonable solutions due to their high computational
capacity, allowing data parallelism and higher performance. Prominent designs based on simple
vector units (e.g.,Functional Units (FUs)) (Alves et al., 2016; Santos et al., 2017; Oliveira et al.,
2017a; Santos et al., 2018), also enable the highest energy efficiency while meeting the required
constraints regarding the area and power (Lima et al., 2018).

Although all these alternatives can explore massive parallelism to execute ML algorithms,
except for solutions implemented near memory, data movement between memory and the processor
unit is still a bottleneck for data-intensive computations. Such a bottleneck is well known as
memory-wall (Wulf and McKee, 1995). These previously mentioned devices rely on off-chip
data transfer through interconnections (Ren, 2011; Sukhwani et al., 2012; Thoma et al., 2013).
The memory-wall limitation is inherent to contemporary computer system designs, where the
memory hierarchy can mitigate some of the performance drawbacks. However, in terms of energy
and latency, it is not sufficient (Hashemi et al., 2016; Qureshi et al., 2007b,a).

Observing that data movement consumes as high as 60% of the total system en-
ergy (Boroumand et al., 2018), Near-Data Processing (NDP) and Processing-In-Memory (PIM)
have emerged as promising solutions for the memory-wall problem, with the idea of integrating
processor and memory in the same chip (Nowatzyk et al., 1996; Patterson et al., 1997b,a; Elliott

15

et al., 1999b). These ideas emerged as a product in the last few years, such as Hybrid Memory
Cube (HMC) and High Bandwidth Memory (HBM) (Hybrid Memory Cube Consortium, 2014;
Kim and Kim, 2014). Such products take advantage of 3D integration technology to integrate
processing logic and memory in the same chip, mitigating data movement and, consequently,
reducing data latency and increasing processing and memory performance, achieving high data
parallelism (Pugsley et al., 2014; Oliveira et al., 2017b).

Therefore, this dissertation proposes an alternative to achieve high-performance com-
puting for ML applications, but still using a general-purpose architecture. The main idea is
to present the benefits of migrating the kernel of three well-known ML algorithms (k-Nearest
Neighbors (kNN), Multi Layer Perceptron (MLP), and Convolutional Neural Network (CNN))
to an NDP design capable of large-vector operations named Vector-in-Memory Architecture
(VIMA). VIMA is inspired by HMC Instruction Vector Extensions (HIVE) (Alves et al., 2016)
to provide a complete environment for NDP. It is a module attached to a 3D-stacked memory,
composed of an instruction sequencer, vector FUs, and the most crucial component, a small
cache memory. In this way, VIMA can reduce data movement between host processors and
main memory, increasing overall efficiency and performance by executing vector operations and
reusing data near memory.

These algorithms were chosen due to their usability to solve different types of ML
problems and because of the code structure used to implement them, which is vastly used in
computing and allows data reuse during execution. Besides, these algorithms were evaluated with
different sizes of datasets to observe their behavioral changes in VIMA. These characteristics are
relevant here since we expect a higher performance from VIMA considering bigger datasets.

To allow this migration, we developed Intrinsics-VIMA, a vector-designed C/C++ library
extension (Cordeiro et al., 2017). Intrinsics-VIMA facilitates the writing of codes for VIMA
and similar NDP architectures, enabling the simulation and evaluation of new algorithms with
reduced programming effort. As it is an x86-based library, the developer can use it like any other
C/C++ library, enabling compilation, execution, and debugging.

The Intrinsics-VIMA library allows the generation of simulation traces to be consumed
and evaluated by Ordinary Computer Simulator (OrCS), an in-house trace-driven simulator
adopted to generate architectural results related to each application. The simulation traces are
generated by an instrumentation tool, which analyzes the x86 binary code of the applications and
introduces assembly VIMA instructions to the trace, when necessary. The simulator correctly
interprets these assembly VIMA instructions.

Overall, in this dissertation, we present the evaluation of VIMA, a new NDP architecture,
which mainly allows vector execution and data reuse, with vastly used algorithms of ML field.
However, we do not intend to propose or evaluate ML algorithms, but on the architecture
performance. Moreover, we also provide insights on how to migrate these algorithms to VIMA,
considering the usage of large vector units and adjusting the algorithm to make better use of these
units.

Our experimental results comparing the x86-only approach to the NDP migration show
substantial improvements on execution time up to 10x for kNN, 11x for MLP, and 3x for
convolution. Additionally, VIMA reduces energy consumption by up to 7x for kNN, 8% for
MLP, and 3x for convolution.

In this dissertation, we present the following main contributions:

* We provide insights on how to migrate ML algorithms to a NDP architecture based on
large vector units, showing benefits from NDP in this context.

16

* We extend and use an NDP intrinsics library that supports validation of NDP architectures
based on large vectors.

The remaining of this document is organized as follows: Chapter 2, explains basic
concepts for a better understanding of the proposal, discussing ML, NDP, OrCS, and Intrinsics
libraries; Chapter 3 explains the research methodology and presents related work; Chapter 4
presents the main proposal of this work and expectations about it; Chapter 5 exhibits the obtained
results related to speedup and energy efficiency and, finally; Chapter 7 brings final thoughts and
future work.

17

2 BACKGROUND

Among the related issues, in this chapter we detail ML, computational limitations, NDP, VIMA,
OrCS, Intrinsics libraries, and a trace generator using Pin.

2.1 MACHINE LEARNING

ML emerged in 1959 as a subfield of Artificial Intelligence (Al) and is concerned with studying
the learning capacity of the firsts digital computers, developed around 1945. Those machines
were capable of solving simple operations, such as addition, subtraction, and multiplication.
However, researchers wanted to find a way to make those machines also "intelligent", a system
that could learn by itself, without any programmer intervention. In this way, they strove to
combine different abilities in digital computers, such as psychology, mathematics, philosophy,
linguistics, and statistics, to enable it to analyze data and make its conclusions.

The main idea of ML is to enable a computer with no specific algorithm for a specific
task to make correct decisions about it. In this way, the programmer must only input data and
its correspondent labels when requested to a computer to its learning. The computer shall
trace patterns used to classify newer samples or make a regression by predicting specific values.
These kinds of tasks represent supervised learning techniques. Other techniques classified as
unsupervised learning (Géron, 2019) relies on techniques such as: data clustering, dimensionality
reduction, anomaly detection, or association rule learning. Another appealing paradigm is
reinforcement learning, which allows progressive learning and can be applied in different fields
of study, such as game theory, multi-agent systems, and statistics.

The specialist must add labels on the training dataset for supervised learning. The idea
is to have an input instance and the desired output value to train the algorithm accurately. One of
the most known techniques is classification, where an algorithm must be trained with a dataset to
create a mathematical model representing that learning. Thus, during the training, the algorithm
must frequently update a set of learning parameters considering each input’s relevant features
and its given label. After finishing the training phase, there will hardly be ideal values for these
parameters to make the model accurate, so we must consider that there will be optimal values
that will allow this. Besides, we consider a model accurate if it classifies the vast majority of the
instances in a training dataset correctly. For some algorithms, such as Neural Networks (NNs)
and Deep Neural Networks (DNNs), a bias is used along with the learning parameters to adjust
the output better, and usually, the training phase is executed more than once. Each iteration in
this process in the training dataset is called an epoch. Overall, the main objective of the training
step is to reduce classification errors in the training dataset.

There is no label in the training dataset for unsupervised learning since these algorithms
can group data in clusters considering specific attributes with undetected patterns that can make
them similar between themselves. Thus, dimensionality reduction can simplify data without
losing relevant information by extracting each data point’s most relevant features. Anomaly
detection algorithms can identify frauds and anomalies in datasets by detecting statistical outliers
in the dataset. Association rule learning can analyze data to associate patterns that occur together
and can be indirectly related. Finally, the trained model can be predictive or descriptive (Alpaydin,
2009; Géron, 2019).

Unlike supervised learning, reinforcement learning is a technique of progressive learning
that does not require input labels or even rely on mathematical models with approximation

18

functions. Instead, it focuses on finding optimal solutions considering a specific algorithm and
an environment. In other words, an agent in an environment has a goal to reach and, to do, so it
has to take action. Each action has a reward linked to it and leads the agent to a different state in
this environment. Thus the objective is to maximize the cumulative sum of the rewards received
during the taken actions to reach this goal. These actions are repeated successively since it has to
be taken for each state until the agent reaches its goal (Mitchell, 1997).

After the training phase, the validation occurs. If the model is not accurate enough, the
developer must train the model again, considering different characteristics, parameters, and a
more representative training dataset (Russell and Norvig, 2016; Alpaydin, 2009). Depending
on these algorithms’ final purpose, the programmer shall provide other information or rules
available to achieve accurate results. However, the programmer should not interfere with the
algorithm’s learning process when calculating the model parameters, as it is expected that the
ML algorithm learn by itself.

Once the model is validated, the inference phase can start. Here, the ML algorithm
will make decisions for each sample from a set of test samples, considering the mathematical
parameters defined during the training phase. Both training and inference are computation-
intensive tasks. The training relies on latency since it depends on massive operations over a
massive set of training instances during multiple epochs to define the model parameters. On the
other hand, inference relies on high throughput to classify a stream of instances, representing
real-time applications, making this phase more critical than training.

Thus, the training phase depends on robust architectures to achieve high-performance
computing. While the inference can be executed even in embedded systems with limited hardware
resources, such as FPGA and autonomous vehicles (McDanel et al., 2017; Qiu et al., 2016; Tian
et al., 2018), which means that the model must be trained once to be used multiple times by
multiple devices.

Nowadays, it is easier to employ ML in different tasks due to different frameworks
available in high-level languages (Raschka, 2015) and a vast amount of accessible datasets used
to train and test the models. Thus, in the last few years, we could see a flourishing of applications
for different fields such as object identification tools, voice recognition, text context analysis.
Researchers are using such algorithms in diverse areas as genetics (Libbrecht and Noble, 2015),
cancer prognosis (Kourou et al., 2015), autonomous vehicles (Kuderer et al., 2015), and facial
expressions (Bartlett et al., 2004). These are examples of tasks that have the potential to bring a
great advance in science for society.

For the remain of this dissertation, we consider to work with three ML kernels: kNN,
MLP, and CNN. We implemented naive versions of each algorithm, and we intend to show just
the most significant computation part of each algorithm since the idea is to evaluate them in
VIMA. For example, the kernel of CNN is the convolution part only, while the ML is a plain
NN where we implemented the inference part only. Together, they are a simplified version of
CNN, which results give us an estimate of the whole algorithm. Further explanations of these
algorithms will be present in Chapter 4.

2.2 COMPUTING PERFORMANCE

Although ML offers a series of exciting solutions, it is not always possible to make proper use of
this tool in a general-purpose processor. When working with a massive amount of data, complex
ML algorithms can be computationally consuming, resulting in low performance. This low
performance is due to the Von Neumann bottleneck, in which CPU and Dynamic Random Access

19

Memory (DRAM) communication restricts the computation capacity, i.e., the speed to acquire
data from DRAM is significantly slower than the data processing speed (Shen and Lipasti, 2013).

Over the years, architects proposed different approaches to mitigate this bottleneck. The
firsts attempts to improve performance emerged around 1980 with the cache memory, which
inserts one level of a smaller and faster memory between CPU and memory. In this way, the
cache will store recently used data and fetch it to the CPU faster than the DRAM (Smith, 1982;
Shen and Lipasti, 2013).

Around 1990, superscalar in-order and Out-of-Order (OoO) processors emerged with
a deeper pipeline, enabling fetching and executing more than one instruction per cycle. In
the execution step, instructions with no dependencies can be executed before its predecessors,
improving performance aggressively. By the same time, Single Instruction Multiple Data (SIMD)
instructions became famous in the *90s with the Multi-Media eXtensions (MMX) Intel instruction
set, followed by Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX) (20
years later), enabling the execution of vector instructions. In other words, they were implementing
a specific operation over a set of operands in a few cycles (Shen and Lipasti, 2013).

According to Moore’s Law, every 18 months (and currently every 24 months), the
number of transistors shall double, resulting in increased processing capacity (Moore, 1998;
Moore et al., 1975). Initially, architects made these technological integration improvements to
convert in performance gains directly. However, this is no longer true nowadays due to problems
such as memory-wall (Wulf and McKee, 1995) and dark silicon (Esmaeilzadeh et al., 2011). In
summary, the CPU has dramatically improved over the years, but memory improvements are
happening at a much slower pace (Efnusheva et al., 2017).

Besides, despite the improvements in general computing performance, energy consump-
tion is still a problem, as 60% of the energy spent during execution refers to the data movement
between processor and memory (Boroumand et al., 2018). Thus, the energy problem will remain
even when executing ML algorithms in accelerators and specific-purpose hardware to achieve
higher performance, as these devices, such as FPGA and GPU, will still communicate with CPU
and memory through the bus (Sukhwani et al., 2012; Thoma et al., 2013).

2.3 NEAR-DATA PROCESSING

NDP dates back to the 1990s (Patterson et al., 1997b; Elliott et al., 1999a), when the industry
was unable to integrate DRAM and logic cells on the same die. However, with the advent
of 3D integration, NDP has reemerged as a viable solution. Architects came up with this
new architecture concept to mitigate data movement between memory and processor. Thereby,
processing occurs in the same chip as the memory, as illustrated in Figure 2.1. This type of
architecture improves performance and energy consumption while presenting high parallelism,
thus ensuring low average latency during high pressure in memory. Such architectures are
ideal for streaming and parallel applications, graphics, High Processing Computing (HPC), and
networking. Generally, any application with coalescent memory accesses can benefit from it.
The most well-known 3D-stacked memory commercial examples are HMC (Hybrid
Memory Cube Consortium, 2014) and HBM (Jun et al., 2017). Both architectures focus on the
NDP concept, but some details differ between these. On the one hand, Micron released HMC in
2011 (Pawlowski, 2011b) with a completely new hardware and protocol specification. HMC
used a 3D architecture to embed memory controller and processing logic near-data. It uses
high-frequency serial links formed by full-duplex lanes, enabling data transmissions with low
interference, to connect HMC to the processor (Thanh-Hoang et al., 2014). HMC is illustrated
in Figure 2.2(a). Nevertheless, HMC requires a new protocol for memory control, which also

20

DRAM layers

LOGIC layer

Figure 2.1: Block diagram of an 3D-stacked memory.

required changes on the processor side. On the other hand, HBM is JEDEC compliant since 2013
and has a well-known specification. Different from HMC, HBM is called a 2.5D architecture
due to its integration system, which uses a silicon layer, called interposer, to attach both HBM
memory and host CPU or GPU in the same die, as illustrated in Figure 2.2(b).

HMC Module

Serial Serial Serial Serial
Links Links Links Links
HBM Module
HOST HOST (Processor)
(Processor) Interposer
(a) HMC and host interconnection. (b) HBM and host interconnection.

Figure 2.2: Block diagram of NDP architectures interconnection.

Overall, both architectures share several design characteristics. Both are compound
by up to 8 stacked layers of DRAMs having a base that is a logic layer. Such a logic layer can
integrate a processor to operate elements inside the memory. The 3D-stacked memory module is
logically partitioned in up to 32 vaults, similar to the memory channel concept. Each vault is
composed of up to 16 independent DRAM banks, distributed among DRAM layers, connected
through Through-Silicon Vias (TSVs) (Olmen et al., 2008), as illustrated in Figure 2.3. NDP
architectures can hide their data access internal latency due to their high bandwidth provided
by internal parallelism (Hybrid Memory Cube Consortium, 2013; Jeddeloh and Keeth, 2012;
Pawlowski, 2011a) achieved by 3D integration technology together with the 32 vaults.

Compared to Double Data Rate (DDR) memory technology, NDP devices require, on
average, the same voltage level. However, 3D memories can achieve higher memory bandwidth,
reaching up to 410 GB/s in the latest version (JESD235C) (Transcend, 2014; AMD, 2015), as
defined in Table 2.1. It is also possible to observe that 3D-stacked memories have higher energy
efficiency than DDR (Hrusca, 2015) due to its smaller row buffers and modified open row policy.

Finally, NDP can mitigate the memory-wall problem in contrast to CPU, GPU, and
FPGA, which all require time and energy inefficient off-die (or off-chip) data transfers, by
eliminating data movements from the memory hierarchy.

21

Memory
partitions 1
(DRAM layers)

- !
} :| Vault controller |:

i !

Logic i Vault O Vault 1 .o Vault 31 : Write Read
Layer Logic Logic Logic i| buffer || buffer

e 1 R N I

. _ .| DRAM sequencer |.
Cross-bar switch

-eeee

Figure 2.3: HMC block diagram with 32 vaults with 16 banks each one. Adopted from (Hybrid Memory Cube
Consortium, 2013).

Table 2.1: Bandwidths comparison.

Memory Bandwidth | Voltage | Speed (data Energy Jedec
rate/pin) efficiency standard

DDR 3.2 GB/s 26V 0.4 GT/s 257.13 pJ/b yes
DDR2 6.4 GB/s 1.8V 0.8 GT/s 121.44 pJ/b yes
DDR3 14.9 GB/s 15V 1.8 GT/s 64.70 pJ/b yes
DDR4 25.6 GB/s 1.2V 3.2 GT/s 38.67 pJ/b yes
DDRS 41.6 GB/s 1.1V 5.2 GT/s N.A. yes
HMC 320 GB/s 1.2V 2.5 GT/s 10.82 pJ/b no
HBM1 128 GB/s 1.3V 1.2 GT/s N.A. yes
HBM2 256 GB/s 1.3V 2.0 GT/s N.A. yes
HBM2 2018 310 GB/s 1.2V 2.4 GT/s N.A. yes
HBM2e 410 GB/s 1.2V 3.2 GT/s N.A. yes

2.4 VECTOR-IN-MEMORY ARCHITECTURE

The main idea of this work is to evaluate ML algorithms in an NDP general-purpose processing
that enables vector operation and does not require a full processor integration near data. In this
context, HIVE enables the execution of large vector instructions that obtain data in parallel from
the independent memory vaults inside a 3D-memory. It also includes vector extensions to the
processor’s Instruction Set Architecture (ISA) to control the near-data vector units. This design
does not require any complex instruction fetch or decode unit implementation inside the memory.
HIVE (Alves et al., 2016) was adopted as a model to define VIMA, that we will use in this
dissertation.

VIMA is similar to other NDP approaches, which obtain data from several independent
memory vaults in parallel (Alves et al., 2016; Santos et al., 2017; Tomé et al., 2018). The main
difference is that VIMA replaces HIVE’s register bank with a data cache memory of a similar size
(i.e., 64 KB), which maintains high performance while providing transparency and high flexibility
for programmers, as depicted in Figure 2.4. VIMA explores the data access parallelism inherent

22

to NDP architecture, and its cache enables fast reuse of vectorized data within the memory. Both
HIVE and VIMA proposals support ARM NEON Integer and Floating-Point (FP) instructions,
operating over vectors of 8 KB of data, which fetch data over the 32 channels (vaults) in parallel.

Vaults ! Vault controller |}

Write Read

buffer buffer

E DRAM sequencer :

DRAM
HVE
data | Register
Logic Vault 0 Vault 1 .oe Vault 31 Bank !
Layer Logic Logic Logic ' L. I I
Functional
X ' Units
Cross-bar switch :
i Stat l T Instr
i__HIVE Instr.
HIVE
| stavRest | Sequencer
(a) HIVE architecture scheme.
Vaults !| Vault controller |}
[write Read || !
!| buffer || buffer ||
DRAM !| DRAM sequencer |
VIMA
data
Logic Vault 0 Vault 1 ven Vault 31 ; ' Cache '
Layer Logic Logic Logic ' Lo I I
Functional
Units

Cross-bar switch
Stat l Tlnstr

E VIMA Instr.
i VIMA
! StatRgst Sequencer

(b) VIMA architecture scheme.

Figure 2.4: Architectural difference between HIVE and VIMA.

The main physical addition of VIMA compared to related work Alves et al. (2016);
Santos et al. (2017) is a small cache memory that enables data-reuse of data vectors. One
could perceive this as a minor change, but VIMA enables significant improvements due to its
new operation rationale, such as improved data re-usage, easy-to-program interface, precise
exceptions, extensible design, multi-threading,all discussed in the next sub-sections. At the same
time, it maintains most of the performance improvements compared to any NDP strategy.

Similar to SSE, AVX, and NEON instruction sets, VIMA also needs an ISA extension,
which must be used in the code by the programmer and is explained further, in section 2.5. VIMA
instructions must be inserted in the application during compilation and pass through the processor

23

as a conventional memory instruction. However, they bypass the cache memory hierarchy, being
sent directly to the 3D-stacked memory chip.

VIMA instructions operate over data vectors of 256 B and 8 KB. For instance, for a
VIMA cache memory of 64 KB, it may store 32 vectors of 256 B, or 8 vectors of 8 KB. Beyond
the cache memory, a set of vector FUs, and an instruction sequencer are added to VIMA, as
depicted in Figure 2.5. Thus, as soon an instruction is sent to VIMA, it must wait in the sequencer
until its required data is fetched from the 3D-stacked memory and become available in VIMA’s
cache memory. Then, the instruction executes in the vector FUs, and, as soon as it finishes,
a signal is sent to the CPU, informing its execution status. If the execution is successful, the
processor can commit the instruction. Otherwise, the pipeline must be flushed, and an exception
is raised. VIMA executes instructions in-order to accomplish precise exceptions.

Processor 3D Stacked Memory
Core Reorder Buffer
| | DRAM
Rename Write Layers
fetch foode -Lispatch Back
L
Memory Ord('i’r Buffer
; J L
VIMA _~*> /V/MA inst. Addr 1
instruction status i & Data 1
MMU] +zero |
Cache / 1 .
VIMA Cache ' Logic
. TLB I 1 |09
Hierarchy : Memory : Layer
T 1 A 1
L1 Cache L : : Ld/st {t Cmd. 8KB !
T 4 I
} || Instruction sequencer Op. :
Last Level - =
Cache T |,,' ;Crossbar switch
' d

‘\ 1\ 5 ll
Viva N VIMAinst | t i] 3 1
i ; o ~[(status). J

instruction oo SRRLn=R

-

Figure 2.5: 3D-stacked memory module with VIMA architecture.

As the CPU dispatches the next VIMA instruction after committing the previous one,
it has to deal with precise exceptions. Thus, it is possible to observe some negative impacts
on VIMA. Firstly, an 8 KB vector enables the full parallelism of a 3D-stacked memory chip
with 32 vaults and at least 8 banks per vault. However, 256 B vectors perform 74% worse than
8 KB in terms of execution time, on average. This performance decay happens because smaller
vector sizes in VIMA, are unable to fully use the memory’s internal parallelism. Secondly,
precise-exceptions impose an in-order execution for VIMA instructions. Accordingly to our
evaluations, these pipeline bubbles degrade between 2% and 4% the execution time.

VIMA maintains most of the high-performance of any NDP strategy while enabling
significant improvements, such as improved data re-usage, easy-to-program interface, precise-
exceptions, multi-threading, and extensible design. VIMA is flexible enough to allow changes in
data vectors size, which may reduce or increase the parallelism inside the memory.

24

2.5 INTRINSICS LIBRARIES

We developed Intrinsics-VIMA library to enable quick and easy development of programs using
the NDP instructions. It is inspired by Intel Intrinsics (Lomont, 2011), a library available in C
language with a set of routines. When a program calls a routine from this library, it embeds its
internal assembly x86 code directly in the compiler to optimize the execution. The assembly
code generated during the compilation of a C code with the same functionalities, but without
calling Intel intrinsic functions, might not be the same (Coorporation, 2009). Thus, these routines
allow low-level code optimization, including code vectorization, known as SIMD instructions.
Nevertheless, the vendors create and distribute intrinsic libraries accordingly to the ISA extension
available inside each processor. Intel intrinsics are typically used by expert programmers that
want to obtain most of the processor’s ISA performance.

VIMA is an ISA extension that is not present in real-world processors yet. Thus, our
Intrinsics-VIMA is a library composed of routines that reproduce the behavior of VIMA, using
x86 instructions. Intrinsics-VIMA was developed in C/C++, allowing programmers to write,
compile, execute, and debug code even for a non-existing architecture, since it is possible to
simulate it in the x86 environment, ensuring the code correctness. Whenever the code is reliable,
we can use it to generate simulation traces. At this step, the trace generator converts the routines
into VIMA instructions that our simulation environment can interpret and simulate. We provide
more details regarding the trace generator in Section 2.6.

We already developed other Intrinsics libraries for different target architectures, such as
Intrinsics-HMC (Cordeiro et al., 2017) and Intrinsics-MIPS. These Intrinsics libraries are easy
to develop, test, and extend to different architectures. Besides, all the Intrinsics libraries are
available in GitHub !. Intrinsics-VIMA was developed for this work and will be fully detailed in
Chapter 4.

2.6 ORDINARY COMPUTING SIMULATOR

During the evaluation of new processor architectures, simulation represents a viable and affordable
solution for designers. It happens because the system to be evaluated is too complex to be
handled by analytic models, and highly expensive to be prototyped (Jain, 1990). Thus, most
computer architects use simulation tools. In contrast to full-system simulation, trace-driven
simulators do not require real execution of the application instructions. Such simulators only
consider the behavioral details (algorithmic) and microarchitectural latencies for the given traced
instructions. These simulators use execution traces of real applications formed by one or multiple
files containing the flow of instructions observed during the program execution. These traces can
be generated manually by researchers or automatically by binary instrumentation tools.

In this work, we used OrCS, a cycle-accurate, trace-driven simulator, based on the x86
architecture, able to execute the ISAs x86_32, x86_64, and now, VIMA. OrCS is a simplified
version of Simulator of Non-Uniform Cache Architectures (SINUCA) (Alves et al., 2015;
Alves, 2014). OrCS has a Trace Generator that automatically generates simulation traces from
instrumented binaries.

To generate traces properly, we built the Trace Generator using Pin from Intel, a binary
instrumentation and analysis tool. Pin allows the development of Pintools, which are programs
developed, making use of Pin routines to define which code sections will be analyzed and which
kind of analysis or operation must be executed in these sections. These Pintools are then executed
with the binary file and perform the analysis during the execution using a just-in-time compiler.

Thttps://github.com/AlineS/intrinsics

https://github.com/AlineS/intrinsics

25

Inside the Trace Generator, our Pin-tool identifies every Intrinsics-VIMA function call
in the binary file. It replaces all x86 assembly code generated during compilation by assembly
code correspondent to VIMA. These replacements are written in the output simulation traces, as
illustrated in Figure 2.6. Despite the changes inserted in the simulation traces, the behavior and
main features defined during the x86 compilation, such as jump addresses and register usage,
remain the same.

1 Tw

2 add

3. or

4. sw

5. CALL 1intrinsics_function ...

6. add

7. and
8. sw intrinsics_atomic_instruction
9. 1w
10. RET H1intrinsics_function ...

11. nop

12. beq

Tw
add
or
sw
. 1intrinsics_atomic_instruction
nop
beq

~N~NoubhwN =

Figure 2.6: Example of x86 assembly replacement. This simplified example shows that the number of instructions is
reduced in simulation traces, since blocks of x86 assembly code are replaced for single synthetic VIMA instructions.

Equal to SINUCA traces, our simulation traces are divided into three types: static,
dynamic, and memory. For further details on such traces, please refer to the SINUCA paper (Alves
et al., 2015; Alves, 2014).

When developing non-existing ISA, researchers usually write their simulation traces
by hand. However, this is a painstaking and error-prone task, given the complexity from
assembly development to correctly placing registers’ dependency. Fortunately, OrCS enables
users to automatically generate these traces for both existing and non-existing ISAs, thanks to our
NDP-intrinsics library.

26

3 RELATED WORK USING SYSTEMATIC MAPPING

As soon as we defined the topic to be explored and developed in this dissertation, it was necessary
to understand the current advances related to architecture and ML areas of research. Being
aware of the most remarkable works and studies related to these ideas is also necessary to better
understand the field and avoid mistakes such as improper tools, methods, or misconceptions
cleared by past studies. Petersen et al. (2015) proposed a technique to create a reliable base for
any research work called Systematic Mapping. This technique proposes a way to overview a
research area by searching what topics are covered and where this literature has been published.
These criteria can bring updates about recent and compelling research topics in areas of interest.

In this chapter, we used the Systematic Mapping methodology to find and understand
the state-of-the-art about NDP architectures for ML applications.

3.1 SYSTEMATIC MAPPING METHODOLOGY

Following the Systematic Mapping approach (Petersen et al., 2015), we defined some research
questions based on the requirements in porting ML applications to NDP architectures:

* RQI1: What were the main objectives in evaluate ML applications in NDP or PIM
architectures?

¢ RQ2: What kind of hardware was used?

* RQ3: Which components were used to build it?

* RQ4: What were the methods, tools, and mechanisms used to prototype and evaluate?
* RQ5: Which ML applications were chosen?

* RQ6: Which programming languages were used?

* RQ7: Do the researchers presented performance results?

* RQ8: In what institutions were the works developed?

It is possible to delimit this work with those questions. Firstly, by distinguishing
processing elements, FUs, and its building blocks. Secondly, by distinguishing the tools used in
porting and simulating these work, the programming languages used, and the results obtained.
We also found it essential to know where these research works were developed to identify the
leading research groups working in this area.

Thereby, we searched papers focusing on ML applications in NDP and PIM architectures
in the IEEE Xplore, ACM Digital Library, and Springer Link bases, which provide advanced
tools for a more accurate filter of papers. So, a boolean search was used on these bases, filtering
by the computer science field.

Thus, we combined the strings "Processing-in-memory", "Processing-in-memory
architecture”, "In-memory processing", "In-memory architecture", "Near-data processing",
"Processing-near-memory", "Data-centric computing", "Near-data computation”, "In-memory
computing”, "Machine learning", "Deep Learning", and "Neural Network" to perform the searches
and are presented in Table 3.1.

27

Table 3.1: Strings used in search base.

Search Date Search string
base
IEEE (("Processing-in-Memory" OR "In-Memory
Xplore | 18/07/2019 Processing" OR "Processing-in-Memory
architecture" OR "In-Memory architecture"
OR "Near-data Processing" OR "data- centric
computing”™ OR "processing—-near-memory" OR
"in-memory computing") AND ("Machine
Learning" OR "Artificial Intelligence”" OR
"Deep Learning" OR "Neural Network"))
ACM (("Processing—-in-Memory" OR "In-Memory
Digital | 18/07/2019 Processing" OR "Processing-in-Memory
Library architecture" OR "In-Memory architecture"
OR "Near-data Processing” OR "data-centric
computing" OR "processing-near-memory" OR
"Near-Data Computation”™ OR "in-memory
computing”) AND ("Machine Learning" OR
"Artificial Intelligence" OR "Deep
Learning” OR "Neural Network"))
Springer (("Processing-in-Memory" OR "In-Memory
Link 18/07/2019 Processing" OR "Processing—-in-Memory

architecture”™ OR "In-Memory architecture"
OR "Near-data Processing”™ OR "data- centric
computing") AND ("Machine Learning" OR
"Artificial Intelligence" OR "Deep
Learning” OR "Neural Network"))

28

Table 3.2: Inclusion/Exclusion criteria.

Inclusion criteria:

* Researches focusing on executing ML applications in PIM and NDP architectures or
accelerators.

* Researches present performance results.

* Researches using only digital circuits.

Exclusion criteria:

* Researches about ML applications without focusing on architectural aspects.

* Researches about PIM and NDP without focusing on ML applications.

* Researches using analog circuits, such as memristor, Resistive Random-Access Memory
(RRAM), Magnetoresistive Random Access Memory (MRAM), Static Random-Access
Memory (SRAM), and neuromorphic architectures.

* Surveys only analyzing the evolution of ML or memory and processor.

* Papers are not written in the English language.

* Incremental researches: publications that keep most content of each other just changing
or adding some details.

These searches returned 437 papers considering the three search bases above where:
148 were from the IEEE Xplore base, 64 from ACM Digital Library, and 225 from Springer Link,
in articles and conference papers. Authors of 57% of these papers were established in the USA or
China, and 81% of the papers are 5-year or less. However, we also considered older papers to find
relevant information about PIM and NDP concepts and optimized algorithm implementations.

In the first search, we found a large number of papers, so it was necessary to refine it.
Thus, we created some inclusion/exclusion criteria, which are presented in Table 3.2. After this
step, we selected 27 papers plus one new find from the Google Scholar indexing site. The selected
papers are presented in Appendix B.1. Moreover, 25 papers have similar proposes compared
to this work, but were excluded according to Table 3.2 by its non-volatile memory and analog
circuits employee, such as RRAM, MRAM, and neuromorphic architectures (Chi et al., 2016;
Long et al., 2018; Angizi et al., 2018; Cheng et al., 2017; Pan et al., 2018b; Bojnordi and Ipek,
2016; Li et al., 2018; Shafiee et al., 2016; Ji et al., 2016; Agrawal et al., 2018; Lue et al., 2018;
Fan and Angizi, 2017; Srivastava et al., 2018; Gupta et al., 2018; Yu et al., 2015; Chen et al.,
2018; Kaplan et al., 2018; Cheng et al., 2018; Pan et al., 2018a; Gupta et al., 2019; Salamat et al.,
2018; Imani et al., 2019b,a; Jiang et al., 2019; Imani et al., 2018) since these works use different
processing approaches and technologies, such as current and voltage variations to process analog
signals to calculate a NN.

Between those 27 papers, we selected only one from the 19% that referred to the
older papers. Generally, these papers’ main goal is to achieve better performance and less
energy consumption by executing ML applications. From these works, 59% of the papers
explicitly consider NDP or PIM concept; 82% presents parallelism and code optimization; 56%
developed frameworks to implement ML codes; 6% consider different architectures such as Very
Long Instruction Word and Automata Processor. Initially, we did not consider specific-purpose
hardware research since this work employs a general-purpose processor. However, the amount of
work using specific-purpose processors was considerable, and some of these papers are relevant
to this work. Therefore, after following the guidelines of systematic mapping, we considered 18
papers as related work: Cadambi et al. (2010), Thottethodi et al. (2018), Li et al. (2017), Ahn
et al. (2016), Xu et al. (2015), Gao et al. (2015), Oliveira et al. (2017a), Azarkhish et al. (2018),
Gao et al. (2017), Gao et al. (2018), Schuiki et al. (2018), Liu et al. (2018), Min et al. (2019),

29

Table 3.3: Summary of correlated papers characteristics.

Paper General / Vector / | Near-memory | # Full

Specific Purpose | Scalar / In-memory cores
Cadambi et al. (2010) General Vector Near-memory N
Thottethodi et al. (2018) General Vector Near-memory N
Lietal. (2017) General Vector In-memory 1
Ahn et al. (2016) General Scalar Near-memory N
Xu et al. (2015) General Scalar Near-memory N
Gao et al. (2015) General Scalar Near-memory N
Oliveira et al. (2017a) General Vector In-memory 1
de Lima et al. (2019) General Vector Near-memory N
Azarkhish et al. (2018) Specific Vector | Near-memory N
Gao et al. (2017) Specific Vector Near-memory N
Gao et al. (2018) Specific Scalar In-memory 1
Schuiki et al. (2018) Specific Scalar Near-memory N
Liu et al. (2018) Specific Scalar Near-memory N
Min et al. (2019) Specific Scalar Near-memory 1
Deng et al. (2018) Specific Scalar In-memory 1
Ganguly et al. (2018) Specific Scalar Near-Memory 1
Sim et al. (2018) Specific Scalar In-memory 1
Deng et al. (2019) Specific Vector In-memory 1
VIMA General Vector In-memory 1

Deng et al. (2018), Ganguly et al. (2018), Sim et al. (2018), de Lima et al. (2019), and Deng et al.
(2019) and they were summarized in Table 3.3, which highlights four characteristics considered
important by us considering migration of ML applications to a NDP architecture and will be
explained below.

To understand how these previous work are related and to point the similarities and
differences between this work and the previous ones, we selected some relevant characteristics
relying on architecture to achieve high performance for ML algorithms, such as:

(1) A general or specific-purpose architecture: Focus on a general-purpose architecture
that can achieve high performance in ML applications without disregarding another
kind of application.

(i) Vectorial or scalar operations: To consider vectorization of all Reduced Instruction
Set Computer (RISC) operations used by ML applications, such as multiplication,
addition, and boolean instructions.

(iii) Using near-memory or in-memory approach: Focus on near-memory approach, in
other words, making an effort to integrate a 3D-memory instead of trying to change
memory cells to perform calculations.

(iv) Integrating full cores or develop a simple circuit to perform operations: Full cores
normally are more expensive computationally and in energy costs than simplified circuits
or FUs to be attached to the 3D-memory. These characteristics can discriminate VIMA
from others.

30

3.2 STATE-OF-THE-ART

After reading the related work, we summarized information about the architecture configurations
in Table 3.3. Liu et al. (2018), Cadambi et al. (2010), Thottethodi et al. (2018), Li et al. (2017),
Sim et al. (2018), Deng et al. (2018), Azarkhish et al. (2018), Schuiki et al. (2018), Min et al.
(2019), Ganguly et al. (2018), Xu et al. (2015), Gao et al. (2015), Deng et al. (2019), Sim
et al. (2018), de Lima et al. (2019), and Sudarshan et al. (2019) rely on simulators to evaluate
computational performance. Some of them also developed an Application Programming Interface
(API) to provide a way for programmers to implement codes for their PIM and NDP architectures.

Liu et al. (2018), Cadambi et al. (2010), Ahn et al. (2016), Gao et al. (2018), and
Sim et al. (2018) developed APIs to enable programmers to use their architectures in an easy
way, with high-level code. For example, the API developed by Sim et al. (2018) allows the
programmer to configure the system parameters and to allocate DRAM regions to execute specific
functions. While Gao et al. (2015) and Gao et al. (2018) developed low-level APIs, in which the
programmer’s code remains the same, but the API initializes the NDP architecture, set the system
environment configurations, executes synchronization, communication and memory mapping.
Besides, the API developed by Ahn et al. (2016) implements different function calls to allow
parallel programming considering their specific cores. Cadambi et al. (2010) also implemented a
set of functions to be used in high-level code that can map Processing Elements (PEs) in memory
and distribute data and functions between them. Liu et al. (2018) proposed an OpenCL extension
to profile applications and dynamically map and schedule them into the architecture cores.

In contrast, VIMA is very simple as the programmer needs only to write a C/C++ code
using Intrinsics-VIMA without worrying about the execution or memory allocation inside the
architecture. Furthermore, our model is based on an x86 general-purpose architecture. The
processor will fetch every instruction and send it to VIMA only when treating NDP instructions.
The rest of the instructions are executed by the x86 processor using its FUs.

Gao et al. (2015) approach is similar to VIMA considering the API usage and simulation.
Besides, it uses an API for the programmer to write the application without worrying about
the execution inside the PIM architecture. Gao et al. (2018), Li et al. (2017), and Schuiki et al.
(2018) use a library to compile the application and their scheduling code is done in low-level.
Meanwhile, Gao et al. (2018), and de Lima et al. (2019) use a linked library to generate PIM
application in x86 environment to be simulated in Gem5 simulator. Finally, Liu et al. (2018), and
Ahn et al. (2016) also use Intel Pin to generate traces to simulate them. Most of these consider
architectures with many cores inside the memory, so their API also enables the programmer to
allocate the cores and distribute the functions to them, configure the accelerator, update page
tables, and call their library functions. Besides, some consider full cores or simple cores for each
vault, also allowing communication between the cores. VIMA’s API and architecture are simpler
than related work. Intrinsics-VIMA library shall be included and called in a conventional C/C++
implementation. While the VIMA architecture mainly requires a sequencer, a module of FUs,
and cache memory to compute data.

We can divide related work into two groups, those based on 3D-stacked memories and
those relying on Dual Inline Memory Module (DIMM) to accelerate ML applications. Thus,
focusing on criteria described in Table 3.3, 12 related work used the 3D-stacked memories: Liu
etal. (2018), Ahn et al. (2016), Thottethodi et al. (2018), Gao et al. (2015), Oliveira et al. (2017a),
Hong et al. (2018), Azarkhish et al. (2018), Schuiki et al. (2018), Min et al. (2019), Gao et al.
(2017), Xu et al. (2015), de Lima et al. (2019) while 6 modified conventional DRAM memories
with integrated circuits: Deng et al. (2018), Gao et al. (2018), Li et al. (2017), Deng et al. (2019),
Sudarshan et al. (2019), Sim et al. (2018). Among the related work using 3D-stacked memories

31

Azarkhish et al. (2018), Schuiki et al. (2018), Liu et al. (2018), Ahn et al. (2016), Gao et al.
(2015), and Xu et al. (2015) employ full processing cores such as RISC-V, ARM, and Accelerated
Processing Unit (APU), and Gao et al. (2017), Min et al. (2019), Thottethodi et al. (2018), and
Cadambi et al. (2010) developed specific-purpose embed cores.

3.2.1 NDP Approaches with Full Cores

Considering the related work that used 3D-stacked memories, we could observe that some
integrated full processing cores or simple circuits in it. NeuroStream (Azarkhish et al., 2018) is a
scalable PIM platform capable of running DNNs with large input sizes and arbitrary filter sizes,
and based on NeuroStream, Schuiki et al. (2018) implements a near-memory acceleration engine
that can be used to train state-of-the-art Deep Convolutional Neural Networks.

Both proposals implement a module composed of RISC-V cores with local cache, Direct
Memory Access (DMA), and specific cores. The first work is called NeuroStream and the second
one, Network Training Accelerator. These modules are connected to every 3D-stacked memory
using the crossbar switch, and both proposals enable vectorizing a few instructions. Except for
the use of several cores in these previous proposals, this dissertation is similar if considering that
it attaches the VIMA vector module to the crossbar switch. However, considering that this VIMA
module needs only a few components (a cache, FUs, and a sequencer), it is clear the simplicity of
our proposal.

A different proposal by Liu et al. (2018) developed a heterogeneous PIM architecture
to accelerate ML training models developed in conventional frameworks. This proposal
implements in the HMC logic layer, a series of fixed-function logic and programmable cores. The
fixed-function cores are composed of adders and multipliers, and the programmable functions
are ARM-based cores, which can be loaded and offloaded with kernel functions through a
communication scheme with the CPU host.

The Tesseract approach (Ahn et al., 2016) focuses on accelerating large-scale graph
processing using an HMC module and integrating what is called a Tesseract core, a single-issue
in-order ARM core. These cores can communicate with each other by a message-passing protocol
because each core holds a local memory. Additionally, it uses two prefetch schemes to exploit
the memories better. Although this work focuses only on graphs, it can be considered a related
work, as graphs can represent NNs.

The NDP architecture proposal by Gao et al. (2015) develops the hardware and software
of an NDP architecture for in-memory analytics frameworks, including MapReduce, graph
processing, and DNNs. The authors employed a set of NDP ARM cores, Translation Lookaside
Buffers (TLBs) and, virtual memory schemes. These cores can communicate through a vault
router and share the physical address with the CPU host.

The fact of using a set of ARM and RISC-V cores or APUs in a 3D-staked memory logic
layer makes those solutions too expensive computationally compared to VIMA. As mentioned
above, our proposal relies on a PIM-enabled memory with a vector module attached to the
crossbar switch composed of a cache, vector FUs, and a sequencer. Besides, VIMA does not rely
on communication between vaults, sharing of physical address space, or complex virtual memory
schemes to achieve high performance or parallelism. Instead, the host CPU communicates with
the PIM-enabled memory during execution, identifying VIMA instructions, and sending it to the
NDP device.

32

3.2.2 NDP Approaches with General-Purpose Cores

Still considering the related work relying on 3D-stacked layers, some are general-purpose
architectures that implement simple circuits, such as Neuron In-Memory (NIM) (Oliveira et al.,
2017a), a PIM reconfigurable accelerator that can simulate biologically meaningful NNs of
considerable size. NIM is a module composed of a register bank, complex processing units, and
a sequencer. It is attached to the crossbar switch, with one NIM module for each vault. Although
NIM enables executing vector instructions, its architecture has a design more complicated and
expensive than VIMA due to requiring a module for each vault. In contrast, VIMA has only one
module attached to the crossbar switch, enabling communication to all vaults.

Xu et al. (2015) focuses on the parallelization of CNN on a system with multiple PIM
devices. The authors consider two APUs, which consists of CPU and GPU cores. One APU as a
host connected to a 3D-memory and the other APU is integrated into the memory’s logic layer.
In this way, their module has additional overhead due to the bus communication or syscalls to
use these devices, being less energy efficient than VIMA.

Finally, de Lima et al. (2019) considers a reconfigurable mechanism inside the PIM
module to dynamically reduce or increase the number of active FUs as the application demands.
To do so, they considered a Reconfigurable Vector Unit (RVU) module to each vault, which
comprises a set of 32 X 8-byte multi-precision FUs, a Finite State Machine (FSM) to control
the flow of RVU instructions and an 8 x 256-byte register file. The RVU modules can operate
independently and execute vector instructions. Similar to our proposal, they use a specific
compiler to generate simulation traces to the Gem5 simulator. However, their architecture has a
design more complex than ours since it dynamically adjusts itself during execution. Besides,
they still need a RVU for each vault to vectorize the execution.

3.2.3 NDP Approaches with Embedding Specific-Purpose Cores

Among the related work relying on 3D-stacked layers, some implement simple and specific
circuits, such as TETRIS (Gao et al., 2017) that is a proposal of a PIM NN accelerator, a software
scheduling, and partitioning techniques. For each vault in a 3D-stacked memory, the authors
propose hundreds of PEs connected through a dedicated network. Each PE is composed of an
Arithmetic Logic Unit (ALU), an SRAM, and a register file. All PEs share a global buffer for
communication.

NeuralHMC (Min et al., 2019) is a proposal of an HMC-based accelerator tailored for
efficient DNN execution. NeuralHMC is based on communication between HMCs vaults to
achieve higher parallelism, so they implement HMCs communication with Network-on-Chip
(NoC), such as TETRIS. Just considering the communication between vaults to allow greater
parallelism makes both proposals more expensive than VIMA as VIMA keeps the HMC packet
communication (Hybrid Memory Cube Consortium, 2014), which is a simpler solution.

The MAssively Parallel Learning/Classification Engine (MAPLE) proposal Cadambi
et al. (2010) uses a parallel accelerator for learning and classification applications and a tool
to map application kernels to the accelerator hardware automatically. The authors of MAPLE
implemented an architecture with a set of cores to solve MapReduce operations. These cores are
composed of processing elements that cover registers, selectors, a vector FU, and a local store.
This set of PEs handles intermediate data, which is solved by a Smart Memory Block, capable of
atomic store operations. They implement parallel concepts in hardware, such as intermediate
operators. Compared to VIMA they need a significant amount of processing cores to achieve
parallelism and two different modules to solve the entire operation, while VIMA needs a single
and simple module that enables vector operations by default.

33

The Millipede proposal (Thottethodi et al., 2018) uses a processing near-memory
architecture for Big data Machine Learning Analytics. Millipede processors are attached to a
3D-stacked memory’s logic layer and are composed of corelets, local memory, a register file, a
pipeline, and prefetch buffers. Each corelet has its instruction cache. Millipede employs Multiple
Instruction, Multiple Data (MIMD) operations and uses prefetch to share data between corelets.
Even enabling MIMD execution, the high number of cores used in their work and the massive
prefetch communication are too expensive and with a more complex design compared to VIMA.

Ganguly et al. (2018) analyzes the aspects of a CNN algorithm to develop a NDP
architecture capable of achieving high computational performance for this specific algorithm.
In their work, the authors used cores in the HMC logic layer, so the data controller from each
vault passes data through the multiplication and then through the sum units. This hardware
is formed by multiple layers of neurons to parallelize CNN operation. Besides, the vaults can
communicate by using the data controller. Although VIMA’s FU may be more expensive than
these addition and multiplication hardware, since it allows the execution of integer and FP
instructions, it is general-purpose hardware. It allows the execution of any application written
with Intrinsics-VIMA, not just CNNss.

3.2.4 DRAM and PIM Approaches

Among the related work that relies on flat DRAM memories, Gao et al. (2018) implements
an accelerator system in hardware with a software interface for support. This accelerator
is composed of near-DRAM control logic and a few computational kernels implemented by
pre-stored Look-Up-Tables (LUTs) implemented into the DRAM. Each LUT represents a basic
unit for different critical operations and packets make the communication between host and
accelerator.

DrAcc (Deng et al., 2018) and DRISA (Li et al., 2017) are two similar approaches,
as both proposals implement an accelerator built with DRAM technology. DrAcc focuses
on Ternary Weight Neural Networks and implements a carry look-ahead adder inside DRAM
memory. DRISA is a reconfigurable architecture to achieve high parallelism by operating data
inside DRAM cells. Both proposals implement boolean circuits inside DRAM memory.

LAcc (Deng et al., 2019) is a proposal of a DRAM-based PIM accelerator that supports
LUT based fast and accurate vector multiplication for CNNs. LAcc uses a multiplication
decomposition to achieve acceleration. This decomposition allows splitting an operand to
multiply 2-bits at a time and then group it in LUTs inside the DRAM. For each DRAM bank, an
LUT is implemented to operate vectors of weights.

NID (Sim et al., 2018) is a proposal to perform a binary convolution efficiently by
exploiting in-DRAM bulk bitwise operations. The authors of the proposal implement logic in
DRAM memory and allocate inputs and kernels to DRAM banks to optimize performance. The
kernels are split into multiple parts to execute partial computations. Max Pooling, normalization,
and activation layers are processed out of memory since their computational complexity is
extremely low, so additional digital blocks are implemented in the peripheral area of a DRAM.

NNDRAM (Sudarshan et al., 2019) is a proposal of a DRAM-based in-memory Binary
Weight Neural Network architecture to minimize the energy and exploit maximum data parallelism.
This previous proposal aims to integrate a neural network basic computation unit next to the
sense amplifiers.

All these mentioned work above rely on adding a boolean circuit to DRAM cells, which
is not an expensive task. However, compared to VIMA these previous work require a more
complicated algorithm implementation.

34

3.2.5 Conclusions on Related Work

In short, compared to VIMA, the related work present similar ideas but execute it using different
methods, as listed below:

* Specific-purpose hardware is an effective approach since it achieves better computational
performance to execute the application. However, it is not flexible enough to solve
general-purpose applications neither to keep a high computational performance during
its execution.

* Solutions implemented inside the DRAM can consume low energy and have low
computational complexity. However, they require much effort from the designers, as
enabling DRAM cells to calculate a restricted set of instructions is non-trivial from an
electrical engineering and manufacturing perspective.

* Using a large number of cores to achieve higher parallelism can introduce much more
computational complexity to the hardware and, consequently, higher energy cost.

Considering that VIMA relies on the opposite of these characteristics, we expect it
to achieve promising results using the full parallelism present on 3D-stacked memories, also
allowing near-data reuse, thanks for its cache. Besides, the Intrinsics-VIMA library will enable
multiple instructions that are not restricted just to ML applications.

35

4 MACHINE LEARNING CODE PORTABILITY

In this chapter, we detail the Intrinsics-VIMA library, which we developed to evaluate ML
applications performance in VIMA, a vector NDP architecture. Intrinsics-VIMA is a library
created intending to facilitate the development of programs for NDP architectures using the
C/C++ language. We used it to port three kernels of applications widely adopted in ML to this
new architecture, KNN, MLP, and CNN. These applications are also described in this chapter,
detailing the method to vectorize each of them.

We used the ported ML applications binary files to generate simulation traces with
the Trace Generator. Finally, the trace was simulated by OrCS in order to obtain memory and
processor behavior. The main idea for this dissertation was to evaluate the performance of these
applications using Intrinsics-VIMA compared to their implementation with AVX instructions, and
the results are shown in Chapter 5. Figure 4.1 illustrates the workflow from the steps described

above.
Simulation II
t

races

Code
portability

Orcs:
simulation

Trace

Intrinsics-VIMA
Generator

Figure 4.1: Sequence of steps to simulate an application.

4.1 INTRINSICS-VIMA

This library is based on vector instructions from ARM NEON Intrinsics and RISC instructions
from Microprocessor without Interlocked Pipeline Stages (MIPS) ISAs. It implements simple
arithmetic, logic, and comparison instructions, listed in Appendix A.l. It also supports trace
generation for simulation and enables vector operations with vectors of 256 B and 8 KB formed
by multiple integers, single-precision or double-precision FP elements. Thus, depending on
variable representation and vector size, a function can operate over 2048 X 32-bits elements,
1024 x 64-bits elements, 64 X 32-bits elements, or 32 X 64-bits elements.

The main idea for Intrinsics-VIMA is to provide vector extensions in the x86 ISA. By
implementing C/C++ code using Intrinsics-VIMA, it can be debugged and executed on any
architecture. However, to evaluate new NDP architectures, our trace generator is necessary to
transform each intrinsic call into a specific NDP instruction supported by the simulator.

Algorithm 4.1 presents the implementation of a vector sum example using Intrinsics-
VIMA. Algorithm 4.2 shows the implementation of one of our Intrinsics-VIMA routine.

Algorithm 4.1: Intrinsics-VIMA routine call for vector sum.

uint32_t vima_size = 2048;

// Allocate the vectors A, B (sources) and C (result)

_ v32f xA = (__v32f+x)malloc(sizeof(__v32f) * vima_size * Xx);
_ v32f «B = (__v32f+x)malloc(sizeof (__v32f) % vima_size * Xx);
__v32f xC = (__v32f+x)malloc (sizeof(__v32f) * vima_size * Xx);

// Initialize the memory location
<.olu>

— OO0 XN B WN =

[S—

// Perform the vector sum: C[i] = A[i] + B[i]

36

12 for (int i = 0; i < vima_size * x; i += vima_size) {
13 _vim2K_fadds (&A[i], &B[i], &CI[i]);
14)

Algorithm 4.2: Intrinsics-VIMA routine example.

// This routine can be fully executed in any architecture

// Our simulator replaces this routine with a VIMA instr.
void x_vim2K_fadds (__v32f *a, _ v32f xb, _ v32f *c) {
for (int i = 0; 1 < vima_size; ++1i) {
c[i] = al[i] + b[i];

}
return EXIT_SUCCESS;

e e R R S

}

The nomenclature of VIMA instructions follows the rules described below:

. The first character (a single underline) indicates a function;
. The next three characters indicate the current architecture, in this case, VIMA;

. The next two characters indicate the number of elements in a vector that can be executed

by the function;

. The next two characters (initiated by an underline) indicate the x86 operator data type

(integer or floating-point);

. The next three characters indicate which operation to be executed; and

. The last character indicates signed or unsigned operands.

For each combination of variable representation and vector size, there is an option for

signed or unsigned variables, so the data types help in organizing all the parameters, as illustrated
in Table 4.1.

Ll

Table 4.1: Intrinsics-VIMA data types.

Data type Description

__VM64TI | 4-bytes value in a vector of 64 positions
___VM2KTI | 4-bytes value in a vector of 2048 positions
__VM32L | 8-bytes value in a vector of 32 positions
___VMI1KL | 8-bytes value in a vector of 1024 positions

The nomenclature for the data types follows the rules below:

The first two characters initiate with double underline and indicates a data type;
The next two characters indicate the current architecture, in this case, VIMA;
The next two characters indicate the number of positions in a vector;

The last character indicates the operator x86 size (integer or 32 b and long or 64 b).

The main idea for this ISA is to develop the simplest vector operations which can be

combined to solve more complex operations. Additionally, simple instructions are implemented
in different ISAs with known execution costs, so it is easy for us to estimate VIMA functions’ costs
in the simulator. As mentioned in Chapter 2, all Intrinsics libraries and some usage examples are
available in our GitHub 1.

Thttps://github.com/AlineS/intrinsics

https://github.com/AlineS/intrinsics

37

4.2 OVERVIEW: MACHINE LEARNING KERNELS

This section explains the three algorithms used in this dissertation, providing necessary details
and an overview before their migration to our NDP architecture.

4.2.1 Convolution Basics

Convolution operations are based on repeatedly updated values in a matrix by combining the
neighbors of a point, typically using the sum of products. It has applications that include statistics,
probability, computer vision, natural language, image processing, computational electromagnetic,
and differential equations (Krishnamoorthy et al., 2007; Lacassagne et al., 2014; Holewinski
etal., 2012)

A convolution computes values based on a fixed pattern involving each element of an
array and several neighbors on a two- or three-dimensional arrangement (Afonso et al., 2017).
Considering 2D operations, two of the most common convolution patterns are the Von Neumann
and Moore neighboring. The first pattern includes the four neighbors in the cardinal directions
of an element (Toffoli and Margolus, 1987) and is illustrated in Figure 4.2. The second pattern
includes all the eight neighbors around a cell (Zaitsev, 2017), as depicted in Figure 4.3.

Figure 4.2: Von Neumann neighboring convolution.

Figure 4.3: Moore neighboring convolution.

The computation of each element is independent, making convolution codes good
candidates for parallel processing. However, they often become memory bottlenecks due to the
data access patterns they present potentially having poor locality (Afonso et al., 2017).

For ML, convolution works as a feature extractor for images, where it preserves the
spatial relationship between pixels and the main characteristics of the image (Lawrence et al.,
1997). Different filters are applied to extract these features in each input image by calculating the
convolution. Each filter is a tiny square matrix and represents a specific feature. For this work,
we implemented a Moore neighboring convolution.

38

4.2.2 k-Nearest Neighbors (KNN) Basics

kNN is one of the simplest instance-based classifiers. It searches for the k£ minimal distances
between training and test points in an n-dimensional space. kNN uses the Euclidean distance
method to calculate those distances. Each instance is represented by a feature vector, which is an
n-dimensional array of features. In other words, each array position corresponds to a different
feature, tied to a weight (Mitchell, 1997).

For example, given an instance x, it is represented by the feature vector (below), where
a,(x) denotes the value of the rth attribute of instance x.

{a1(x),az(x), ..., an(x)}

So, the distance between two instances x; and x; is defined by d(x;, x;), as in the equation
below:

d(xi,xj) = Z(ar(xi) —a,(xj))?
r=1

In this manner, the kNN algorithm stores the whole training database during execution
then calculates Euclidean distance between each test to each training instance in the database.
The k smallest distances are selected to classify the test instance by vote. In other words, these k
training instances are the closest points to test instance point in Euclidean space, so the most
representative label value between these k instances indicate the test instance class as illustrated
in Figure 4.4.

YA YA YA
- - - - : - _ - /3 - - -
N
= =ty AR - oty
(x | x ¥ lx
N o \ . \ /
-+ + S + + N ~ /t +
% & 4 i + +
+ 3
+ . + . + ~ + T
X X X
(a) 1-nearest neighbor. (b) 2-nearest neighbors. (c) 3-nearest neighbors.

Figure 4.4: Instance classification by votes. The figures show how the voting scheme works in order to classify the
test instance x in positive or negative classes. In Figure 4.4(a), k = I, so only the closest training point can classify x.
In this case, x is labeled as belonging to the negative class. Figure 4.4(b) is an example explaining why k can not be
an even number due to tied votes. In Figure 4.4(c), x is classified as positive due to the higher amount of positive
neighbors, showing that k can affect classification and the researcher must understand the database in which he or
she is working, in order to choose good parameters.

4.2.3 Multi-Layer Perceptron (MLP) Basics

The MLP algorithm is a computational model that is inspired by biological neurons and the
human brain. It is advantageous to solve stochastic problems since it computes approximation
functions. Thus, one of the uses of the MLP application is to create mathematical models with
data samples to identify relationship patterns between features and targets (instance label) and
finally classify other samples.

39

(Input 1) X, w‘ ’

W,
(Input2) X

2 Y (Output)

(Inputn) X_

Figure 4.5: A neuron representation.

A neuron, also called perceptron, is the basic unit in a NN and is illustrated in Figure 4.5.
Each neuron calculates an output value Y with an activation function f using the input values it
receives as parameters, as the following equation:

Y=f(wixi+wrxo+...+w,x,+b)

In the equation, Y is the neuron that represents an activation value. The other inputs
refer to neurons’ activation value from the previous layer (x,) and the weights of connections
between neurons (w,). These values are multiplied, accumulated, and added to the bias value
(b), which is a correction value for the activation function, helps to achieve higher accuracy. The
activation function applies non-linearity into the neuron output during NN training and testing.

This organization leads to the concept of fully connected layers, as illustrated in
Figure 4.6. In this example, multiple layers of neurons are connected, where each neuron has
an activation value, a bias value, and weighted connections. The NN is composed of at least 3
different layers:

Input Hidden Output
Layer Layer

bias

(Y]
<
(]
=
2
=
N

Figure 4.6: A representation of a neural network.

 Input Layer: represents the neurons with outside information. It is represented by an
array, so each position is a neuron with an activation value.

40

* Hidden Layer: an intermediary layer that transfers and adjust input information to NN
output with the activation function. There may be one or multiple hidden layers in a NN.
Output Layer: depends on the number of classes the problem present. Like the hidden
layer, depending on the nature of the data, it uses an appropriate activation function
to transform the output activation values (Bishop, 2006). The final activation values
indicate which is the most relevant classification or feature for a specific instance.

As illustrated in Figure 4.6, the computation starts at the input layer in order to calculate
the activation values from the hidden layer. Considering that the input layer has n neurons and the
hidden layer has m neurons, then each input neuron must have m weighted connections. When the
activation values corresponding to the hidden layer were all calculated, the same operations are
repeated to calculate the output layer’s activation values. This process, from input to the output
layer, is called Forward Propagation. Depending on the algorithm and the dataset, a specific
objective function is applied in this step to highlight the most representative features and results
present in the analyzed dataset.

However, at the beginning of the training, the NN will not correctly classify instances
because its values and parameters may not be adjusted to be accurate enough, resulting in low and
similar distributions among the output neurons, as illustrated in Figure 4.7. Then it is necessary
to minimize the objective function considering the obtained results and the desired one, to
understand how far the NN classification is compared to the expected value. In other words, we
have to minimize this classification error. This process is the beginning of the Back Propagation
step, which uses this error value to adjust the NN weights. In the next Forward Propagation step,
considering the updated parameters, the objective function can obtain distributions that can more
closely resemble the expected value.

To minimize a objective function, is normally used algorithms such as Gradient Descent,
that find coefficients to minimize a function. These coefficients are applied to adjust the weights
to achieve a more accurate classification result in the next Foward Propagation step. During
the NN training, the algorithm evaluates a set of training instances in Forwarding and Back
Propagation steps, updating the weight’s values to improve the classification of a test dataset.

Input Hidden Output
Layer Layer Layer

Figure 4.7: Neural network output distribution at the beginning of the training.

As the weight of a neuron connection increases during training, the more relevant it
becomes. The NN can evaluate the whole training database multiple times to achieve better

41

accuracy. Each evaluation of a database is called an epoch. Typically, after each epoch, the
weights become more accurate. This process is executed to the whole training database for
a specific number of epochs and/or a convergence threshold value (CTV) can be defined by
checking the error rate between the current and the previous epochs. Whenever this error is
acceptable, it finished training. During this process, the NN shall learn the patterns and achieve
good accuracy in the test database.

In this work, we implemented a simple NN for our evaluations. We skipped the training
step, so just the inference was represented, with all the training parameters set in constant
values. We chose to simplify it because the main achievement here is to show the computational
performance of a NN during classification. After all, end-users will almost always only see the
inference execution time.

4.3 CODE PORTABILITY: VIMA

Here, we focus on the feasibility of adopting the Intrinsics-VIMA library to develop the three
kernels. We implemented all the algorithms with VIMA vectors of 256 B and 8 KB, thus
operating over 64 and 2048 single-precision FP values with a single instruction.

The version of the algorithms shown in this work was not the most aggressive, considering
the entire vectors’ usage. We tried other alternatives before, but this version was chosen due to
the clarity in its explanation since it follows a clear pattern. Besides, this version can make better
use of VIMA caches, mainly for vectors with 8 KB in size, which makes the cache capable of
handling only a few lines, thus needing a careful cache line reuse.

Like HIVE (Alves et al., 2016), although VIMA instructions operates over 256 B and
8 KB vectors, the physical implementation of these architectures can use fewer vector units in a
pipeline manner to still provide high performance while low area usage.

4.3.1 Convolution Migration

To implement a naive convolution code using VIMA, we adopted the Moore pattern with a reach
equal to 1, as shown in dark gray in Figure 4.3. The algorithm sums all nine elements in the
convolution, then multiplies the result by a constant and stores the result in a different matrix.
Algorithm 4.3 shows an example in C, considering a matrix in a continuous array arrangement.
The algorithm stores the result in the corresponding element of a new matrix.

Algorithm 4.3: Moore convolution code in C.

1 for (int i = col_size; 1 < max_elem; i++) {

2 input2[i] = inputl[i]; // Fifth elem.
3 input2([i] += inputl[i-col_size-1]; // First elem.
4 input2[i] += inputl[i-col_size]; // Second elem.
5 input2[i] += inputl[i-col_size+l]; // Third elem.
6 input2[i] += inputl[i-17]; // Fourth elem.
7 input2([i] += inputl[i+1]; // Sixth elem.
8 input2[i] += inputl[i+col_size-1]; // Seventh elem.
9 input2[i] += inputl[i+col_sizel; // Eighth elem.
10 input2([i] += inputl[i+col_size+l]; // Ninth elem.
11 input2([i] *= weight;

12}

Figure 4.8 illustrates the vector convolution. For every loop, unaligned elements from
three consecutive lines of the matrix, as pictured in dark gray, are loaded into VIMA vectors
and operated over. Algorithm 4.4 shows the implementation using Intrinsics-VIMA. This
implementation considers a convolution that eliminates the matrix borders during execution.

Algorithm 4.4: Moore convolution using Intrinsics-VIMA.

42

Figure 4.8: Moore neighboring convolution.

1 for (int i = col_size; 1 < max_elem; i += vec_size) {

2 _vim2K_fmovs (&inputl[i], &input2[i]); // Fifth elem
3 _vim2K_fadds (&input2[i], &inputl[i-col_size-1], &input2[i]); // First elem
4 _vim2K fadds (&input2[i], &inputl[i-col_size], &input2[i]); // Second elem
5 _vim2K_fadds (sinput2[i], &inputl[i-col_size+1], &input2[i]); // Third elem
6 _vim2K_fadds (&input2[i], &inputl[i+l], &input2[i]); // Fourth elem
7 _vim2K_fadds (&input2[i], &inputl[i-1], &input2[i]); // Sixth elem
8 _vim2K_fadds (&input2[i], &inputl[i+col_size-1], &input2[i]); // Seventh elem
9 _vim2K_fadds (&input2[i], &inputl[i+col_size], &input2([i]); // Eight elem
10 _vim2K_fadds (&input2[i], &inputl[i+col_size+1l], &input2[i]); // Ninth elem
11 _vim2K_ fmuls (&input2[i], &weights[i], &input2[il]);

12}

4.3.2 k-Nearest Neighbors (KNN) Migration

For the kNN algorithm, the training data must be stored in memory so that each test instance
can use it for classification, as depicted in Figure 4.9. Depending on the number of features an
instance presents, it can be smaller than a VIMA vector, so different instances can be stored
consecutively in one VIMA vector as depicted in Figure 4.10. Meanwhile, if the instance’s size
is equal to or greater than a VIMA vector, it will occupy at least one VIMA vector.

training instance 0

training instance 1

training instance 2 test instance

training instance n

Figure 4.9: The whole training dataset has to be available for each test instance.

0 2047

instance 0 instance 1 instance 2 instance 63

Figure 4.10: Full utilization of a VIMA vector for training and test instances. In this case, it is possible to allocate
64 instances with 32 features inside the vector of 8 KB.

Our training dataset has two classes: 0 (negative) and 1 (positive). The labels are loaded
into separated vectors as soon as the training dataset is stored in memory. To do so, a vector with
a size multiple of the VIMA vector size must allocate the training labels. Thus, to store a set of
8192 training instances, it will be necessary to use 4 VIMA vectors of 8 KB to store the 8192
labels, as depicted in Figure 4.11.

43

0 262143

inst 0 inst 1 inst 2 inst 3 inst 8191

0 8191

Label vector 0 1 1 0 1

Figure 4.11: VIMA vectors with training instances with 32 features and the respective labels.

0 31 2047

instance 0 instance 1 instance 2 instance 63

4
1111111..1 | 0000000...0 | 0000000...0 | 0000000...0 | 0000000...0

Figure 4.12: Operation to apply a mask over a VIMA vector of 8§ KB with instances representing 32 features.

Fortunately, to calculate the Euclidean distance method, which we explained in Sec-
tion 4.2, most of the operation can be vectorized with Intrinsics-VIMA, such as the following
routines:

* _vim2K_fsubs() to subtract the values of the training and test instances;
» _vim2K_fmuls() to multiply and raise the resulting value to the power of two;

» _vim2K_fcums() to sum all partial results to find out the distance between the instances
and finally calculates the square root of this value.

Although a VIMA vector can receive more than one instance, depending on the number
of features it represents, just a single instance will be computed at a time in this algorithm. For
this, a mask is applied in training and test vectors to select just a single instance. For example,
considering a VIMA vector of 8 KB and test and training instances with 32 features, the mask
will set the first 32 positions of a VIMA vector to 1, while the rest of the vector is full of zeros, as
depicted in Figure 4.12. If the instances’ size is equal to or greater than the VIMA vector, this
transformation will not be necessary. The algorithm isolates each instance inside a VIMA vector
by iterating through features that one instance presents, as illustrated in Algorithm 4.5.

To facilitate the instances’ vector multiply by the mask operation, we added padding to
isolate the lasts instances, as shown in line 3 of the Algorithm 4.5, thus avoiding compilation
errors and out-of-bounds accesses. Isolating one instance per VIMA vector enables executing all
the operations mentioned above (subtraction, multiplication, and accumulated sum) more simply
with better data reuse inside VIMA cache.

Algorithm 4.5: Iteration on a VIMA vector isolating the instances with a mask.

1 #define VSIZE 2048

2

3 _ v32f xinstances = (__v32f+x)malloc((base_size+VSIZE) xsizeof (__ v32f));
4 _ wv32f xmask = (__v32fx)malloc (VSIZE*sizeof (__ v32f));

5 _ v32f xresult = (_ v32fx)malloc (VSIZExsizeof (_ v32f));
6

7 for (int i = 0; 1 < n_features; ++1i) {

8 mask[i] = 1.0;

9

10

11 for (int i = 0; i < base_size; 1 += n_features) {

—_
[\

_vim2K fmuls (&instances[i], mask, result);

(98]

}

44

All the accumulated sums between each test instance and the set of training instances
(calculated with VIMA routines) are stored in a different vector in memory. Afterward, the x86
square root instruction must be applied to this vector, resulting in the Euclidean Distances. This
vector will store all the distances calculated between all the tests and training instances. Thus,
this vector will store several Euclidean Distances equal to the number of training instances for
each test instance.

Finally, in the classification step, all the distances for each test instance are paired with
the label vector to find the k lowest distances. In this phase, the main interest is in the labels of
the k lowest values. The label with the majority among these k lowest values is the label assigned
to the test instance. This final step does not use Intrinsics-VIMA functions.

4.3.3 Multilayer Perceptron (MLP) Migration

First of all, as mentioned before, we implemented a naive NN. Our hidden layer is half of the
input layer size due to its responsibility in defining relations between relevant features. It must
have a balanced amount of neurons compared to the number of analyzed features in an instance.
Suppose the hidden layer presents too few or too many neurons. In that case, it may not correctly
identify the relevant features or consider every feature as relevant, resulting in accuracy loss
during classification. The output layer has only two neurons to classify instances as either positive
or negative, as depicted in Figure 4.6. As mentioned before, here we consider only the inference
part of this algorithm, with pre-trained weights.

As in kNN, just a single instance is operated simultaneously, despite of more than one
instance can be stored in a VIMA vector. Thus, they must be isolated with a mask to be computed.
If the instances’ size is equal to or greater than the VIMA vector, this transformation will not be
necessary.

Each instance feature is a neuron of the input layer, which must be multiplied by the
weights connections between input and hidden layers to obtain the hidden layer’s activation
values. As each input neuron has different connections with the neurons in the hidden layer, as
depicted in Figure 4.6, this operation can be seen as a vector-matrix multiplication, where the
input layer is a vector, and the weights configure a matrix as depicted in Figure 4.13. Each line
of the matrix is a set of weights that must be multiplied by the input vector. As the number of
neurons in the hidden layer is half of the input layer, this number represents the multiple sets of
weights.

Input Layer | i i i i i i i i

06 07

(n+1)/2< Wig | Wig | Wag | Wag | Wiy | Wes | Wog | Wy

weight sets

W20 W21 W22 W23 W24 W25 W26 W27

_ W30 W31 W32 W33 W34 W35 W36 W37

Figure 4.13: Example of a multiplication between input layer and sets of weights. In this case, the instances present
8 features.

Fortunately, we can vectorize most of these operations with Intrinsics-VIMA. Thus, the
algorithm sequentially loads sets of weights into VIMA vectors. We isolate each set with a mask

45
before being operated with the instances. After isolating both instances and set of weights, the
following routines are executed:

» _vim2K_fmuls() to multiply the input features and weight values (w,);
* _vim2K_fcums() to sum all results to find out the activation value of a neuron.

This algorithm repeats until it calculates the activation value of each neuron in the
hidden layer and is illustrated in Figure 4.14. The same logic of Algorithm 4.5 is applied to
isolate each instance and each set of weights in VIMA vectors.

0 7 15 23 31 2047
weight set 0 | weight set 1 | weight set 2 | weight set 3 | XXXXX...X
®
11111111 | 00000000 | 00000000 | 00000000 | 00000000
|
|
weight set0 | 00000000 | 00000000 00000000
®
instance 0 | 00000000 | 00000000 00000000

Figure 4.14: Example of a VIMA vector with four sets of weights for instances representing 8 features.

These results are all stored sequentially, for each instance, in a vector corresponding to
the hidden layer activation values. After these operations finish for every instance, the hidden
layer vector is added to a bias vector to adjust the activation values and reduce classification
errors. Then the activation function is applied to it. In this case, the Rectified Linear Units
(ReLU) function was used to apply non-linearity into the activation values. Thus zeros replace
negative values.

As illustrated in Algorithm 4.6, both described operations can be implemented with the
Intrinsics-VIMA library, with the following routines:

* _vim2K_fmovs() to initialize the bias and ReLLU vectors, the first one initialized with
ones and the second with zeros;

» _vim2K_fadds() to add the values of hidden layer and bias vectors; and

» _vim2K_fmaxs() to apply ReLLU activation function to the values of hidden layer vector.

Algorithm 4.6: Adding a bias vector to the hidden layer activation values.

1 #define VSIZE 2048

2

3 _ v32f xbias = (__v32fx)malloc (VSIZE *» sizeof (__ v32f));
4 _ v32f xrelu = (__v32fx)malloc (VSIZE * sizeof (_ v32f));
5

6 _vim2K_ fmovs (1.0, bias);

7 _wvim2K_fmovs (0.0, relu);

8

9 for (int i = 0; i < hlayer_size; 1 += VSIZE) {

10 _vim2K_fadds (¢hidden_layer[i], bias, &hidden_layer([i]);
11}

12

—_
w

for (int i = 0; i < hlayer_size; i += VSIZE) {
_vim2K_fmaxs (&¢hidden_layer([i], relu, &hidden_layer[i]);

[S—
[N

}

46

Afterward, the activation values’ calculation in the output layer is similar to the hidden
layer values computation. The difference is related to the number of neurons and weights. In
this case, the hidden layer size is half of the input layer, and the output layer is composed of 2
neurons only (we have only two labels). Thus only two sets of weights (w}) are defined, both
sets with the same size as the hidden layer instance.

In this manner, the algorithm requires a mask with half of the size to isolate hidden layer
instances and the sets of weights to execute the operations mentioned before to calculate the output
layer’s two activation values. Finally, a Softmax activation function (Bishop, 2006) must be
applied to them to transform these values into probabilities. The higher probability corresponds
to the label most likely to classify the instance. This final step does not use Intrinsics-VIMA
functions.

All the algorithms mentioned in this chapter are present in the appendix at the end of
this document. Both versions, VIMA and AVX 512, are shown in Appendixes G, H, C, 1, J, D, E,
K, and F.

47

S EXPERIMENTAL EVALUATION OF VIMA

In this chapter, we present the methodology and the simulation results for the ML kernel
implementations.

5.1 METHODOLOGY AND SIMULATION SETUP

To simulate and evaluate this proposal, we adopted OrCS. Inside OrCS we modeled VIMA, a
custom smart-memory architecture with FUs, a cache memory, and configurable operation size
as mentioned in Chapter 2. This modeling can help researchers understand architectural behavior
when executing the selected benchmarks using multiple generated statistics. Table 5.1 shows the
main parameters used for this model.

Table 5.1: Baseline and VIMA system configuration.

000 Execution Cores 32 cores @ 2.0 GHz, 32 nm; Power: 6W/core; 6-wide issue;
Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB; MOB entries: 64-read, 36-write;
2-load, 1-store units (1-1 cycle); 3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);

I-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);

1 branch per fetch; Branch predictor: Two-level GAs. 4096 entry BTB;

L1 Data + Inst. Cache 64 KB, 8-way, 2-cycle; 64 B line; LRU policy;

Dynamic energy: 194plJ per line access; Static power: 30mW;

L2 Cache 256 KB, 8-way, 10-cycle; 64 B line; LRU policy;

Dynamic energy: 340pJ per line access; Static power: 130mW;

LLC Cache 16 MB, 16-way, 22-cycle; 64 B line; LRU policy;

Dynamic energy: 3.01nJ per line access; Static power: 7W;

3D Stacked Mem. 32 vaults, 8 DRAM banks/vault, 256 B row buffer; Closed-row policy;
4 GB; DRAM@ 1666 MHz; 4-links@8 GHz; 8 B burst width at 2.5:1 core-to-bus freq. ratio;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);

Avg. energy per access: x86:10.8pJ/bit; VIMA:4.8pl/bit; Static power 4W;

VIMA Processing Logic Operation frequency: 1 GHz; Power: 3.2W; 32 nm;

256 int. units: alu, mul. and div. (8-12-28 cycles);

256 fp. units: alu, mul. and div. (13-13-28 cycles);

VIMA cache: 64 KB, 2-cycle (1-tag, 1-per data); Static power: 134mW;

For 256 B vectors: 32 lines, 4-way; For 8 KB vectors: 8 lines, fully assoc;

Dynamic energy: 1.67nJ per 256 B vector access; 53.7n]J per 8 KB vector access;

x86 baseline: The baseline architecture was inspired by the Intel Sandy Bridge processor
micro-architecture and referred to as "x86". The ISA was modeled with AVX-512 instruction set
capabilities besides all x86 ISA instructions. Furthermore, a 3D-stacked memory was used as
the main memory.

VIMA architectures: To provide two scenarios for comparison, the proposal uses near-data
operations over vectors of 256 B and 8 KB. In this approach, we implemented the NEON ISA
near-data. The x86 processor triggers these VIMA instructions.

Benchmark: In our experiments, we evaluate KNN, MLP, and convolution kernels. In general,
the test varies in parameters as detailed below:

48

* Convolution: We tested the algorithm with VIMA vectors of 256 B and 8 KB, a square
matrix with different sizes: 1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, 128 MB,
156 MB, and 512 MB. The equivalent dimensions are 512 x 512, 724 x 724, 1024 x 1024,
1448 x 1448, 2048 x 2048, 2896 x 2896, 4096 x 4096, 5792 x 5792, 8192 x 8192, and
11648 x 11648.

* kNN: We tested the algorithm with VIMA vectors of 256 B and 8 KB, with 4096, 8192,
16384, 32768, and 65536 training instances; 256 test instances, with 8, 16, 32, 64, 128,
256, 512, 1024, 2048 and 4096 features; and 9 neighbors.

« MLP: We tested the algorithm with VIMA vectors of 256 B and 8 KB, with 4096
instances and with 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096 features.

The evaluation focuses on architecture efficiency, not on the accuracy of each classifica-
tion algorithm. Thus, the results are showed in terms of speedup and energy savings.

5.2 BEST CONDITIONS TO ACHIEVE HIGH PERFORMANCE

Before showing the speedup and energy results, it is essential to understand the best conditions in
which each algorithm is expected to achieve a better performance than the baseline. This clarity
helps to interpret the results. NDP architectures are best suited for specific application domains
that present data streaming behavior (avoiding massive data movement) and a low data reuse
ratio (the opposite takes advantage of big processor caches). Therefore, VIMA improvements are
enhanced when the amount of data in memory exceeds the cache memory size. As the system
configuration shown in Table 5.1, the Last-Level Cache (LLC) data cache is 16 MB in size.
Full x86 applications start to suffer when their data does not fit in the cache hierarchy, causing
more cache lines replacements and, consequently, a longer execution time and higher energy
consumption.

Thus, in this section, we present some algorithm characteristics to explain the final
results. Three different scenarios are presented, where kNN is the best case for VIMA, and the
convolution is the worst.

5.2.1 k-Nearest Neighbors

As shown in Table 5.2, the kNN memory footprint with different parameters of features and
instances and, in light gray, it shows in which cases we expect VIMA to present better performance
(where data exceeds cache memory size). As the number of instances and features increase, the
sooner it extrapolates cache memory size. As the algorithm remains the same for VIMA 256 B,
8 KB, and AVX512 implementations, the memory footprint is similar in the three cases, and the
speedup and energy savings also follows this pattern, as presented below.

kNN is an algorithm with a quadratic complexity since each test instance must be
calculated against the whole training dataset. This operation pattern can easily replace all the
x86 cache memory during the execution, depending on the number of features and instances.
Besides, massive training datasets can be larger than cache memory size. For example, the case
with 4096 instances with 4096 features each one already has 16 MB in size considering just the
storage of the training dataset, and it causes low reuse of data, making the baseline worse than
VIMA in these cases.

49

Table 5.2: kNN Memory Footprint approximation for VIMA 256B, 8KB and AVX512.

kNN - Memory Footprint (MB)
#feat / #inst | 4096 | 8192 | 16384 | 32768 | 65536
8| 0.1 0.3 0.6 1.1 2.3
16 | 0.3 0.5 1.1 2.1 4.3
321 05 1.0 2.1 4.1 8.3
64| 1.0 2.0 4.1 8.1 16.3
128 | 2.0 4.0 8.1 16.1 323
256 | 4.0 8.0 16.1 32.1 64.3
512 | 8.0 16.0 32.1 64.1 128.3
1024 | 16.0 | 32.0 | 64.1 | 128.1 | 256.3
2048 | 32.0 | 64.0 | 128.1 | 256.1 | 5123
4096 | 64.0 | 128.0 | 256.1 | 512.1 | 1024.3

5.2.2 Multilayer Perceptron

MLP memory footprint presented in Table 5.3 shows a pattern similar to kNN, indicating in light
gray the cases where data exceeds cache memory size. As the algorithm remains the same for
VIMA 256 B, 8 KB, and AVX512 implementations, the memory footprint is also similar in the
three cases. However, this pattern does not occur for speedup and energy savings.

MLP, as we implemented, has a linear complexity considering the use of the instances,
since the vector with instances is multiplied by a defined number of weights. The amount of
memory needed to allocate the sets of weights increases as the number of features increases and
is not affected by the number of instances. For example, regardless of the number of instances,
considering the case with 4096 features, just the sets of weights will occupy 8 MB in size. Thus,
low data reuse will only happen when increasing the number of features while considering
auxiliary arrays and structures allocated during execution.

Table 5.3: MLP Memory Footprint approximation for VIMA 256B, 8KB and AVX512.

MLP - Memory Footprint (MB)
#feat / #inst | 4096 | 8192 | 16384 | 32768 | 65536
8| 0.1 0.1 0.3 0.5 1.0
16 | 0.1 0.3 0.5 1.0 2.0
32| 03 | 05 1.0 2.0 4.0
64 | 0.5 1.0 2.0 4.0 8.0
128 | 1.0 | 2.0 4.0 8.0 16.0
256 | 2.1 4.1 8.1 16.1 32.1
512 | 45 8.5 16.5 32.5 64.5
1024 | 10.0 | 18.0 | 34.0 | 66.0 | 130.0
2048 | 24.0 | 40.0 | 72.0 | 136.0 | 264.0
4096 | 64.0 | 96.0 | 160.0 | 288.0 | 544.0

5.2.3 Convolution

Unlike the previous cases, convolution is present in terms of size (in MB) to compute. For
example, 1 MB is equivalent to a square matrix with 512 lines and 512 columns considering

50

4 bytes of data representation. However, even though we describe the square matrix as being
1 MB in size, the algorithm consumes double the size during execution since two matrices
are allocated (the actual and the new matrix) to execute the operation. Table 5.4 present the
convolution’s memory footprint, where the cells in light gray indicate the matrices sizes that
exceed the cache memory size.

By itself, we expect that matrices with sizes greater than 16 MB still present medium
data reuse in the cache memory, as at most three matrix lines present data reuse at a time.

Table 5.4: Convolution Memory Footprint approximation for VIMA 256B, 8KB and AVX512.

Matrix Size (MB) | Convolution Memory Footprint (MB) | Matrix line size (KB)

1 2.0 2.0

2 4.0 2.8

4 8.0 4.0

8 16.0 5.6
16 32.0 8.0
32 64.0 11.3
64 128.0 16.0
128 256.0 22.6
256 512.0 32.0
512 1024.0 44.2

Considering the pattern in Figure 4.8 in Chapter 4, it is possible to see that 3 different
lines are required to compute the convolution of those cells. Considering these 9 accesses,
initially at most 3 cache misses will occur, but 6 cache hits will follow these. Among the 3 lines,
2 will be reused to compute the cells below, resulting in 2 more hits and only one miss. Thus, a
poor data reuse is expected only when a matrix line is at least 16 MB, so it would not be possible
to reuse data from other lines to calculate the convolution. In this case, the greater matrix size
tested was 512 MB with a dimension of 11648 x 11648, leading to lines of 44.2 KB in size.
Therefore, it is challenging to achieve speedups and energy gain in convolution using VIMA, as
the x86 cache memory will fast delivery data during reuse.

5.3 EXECUTION TIME RESULTS

In this section, we will start to show the results for execution time. Figures 5.1~5.5 present
speedup results for the kNN algorithm varying the number of instances. When there is a
VIMA slowdown compared to x86, the values are negative. When there is a VIMA speedup
compared to x86, the values are positive. Thus, the first thing to observe is the slowdown of every
configuration for the implementation with 256 B VIMA vectors, presented in white bars. In this
configuration, VIMA’s slows down execution by up to 9x compared to x86. As the memory
footprint increases, the slowdowns oscillate, and when it exceeds cache memory size, it stabilizes,
reaching a maximum of 3x slower than x86. This low performance occurs due to the 3D-stacked
memory bandwidth, as explained in Chapter 2, since the instructions over 256 B vectors will not
use the whole bandwidth.

kNN starts to present better results for VIMA with 8 KB vectors when increasing
memory usage, as shown in Figure 5.2. Note that both variables, number of features, and
instances affect the final memory footprint. Thus, it is possible to observe that the results improve
as the number of instances increases. In this configuration, VIMA’s speeds up execution by up to
11X compared to x86.

51

kNN - 4096 instances
OVIMA 256B = VIMA 8KB

x
15 X L‘Lﬂ)
3]
10 =2
© & &
Q 5) :’
g m [|
E_ 0 T I T UI T l T . T : T T T |_| T |_|
x
‘g -5 x (>\l< B :. é E
8 3 58 xo o - o o~
210 xx 98 Q¢ 8 x' x » x ' :
@ e g9 ¢ o R & 2 8
.15 %5 : @ @ %9
-20
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.1: VIMA'’s speedup over x86. Comparing implementations using both sizes of VIMA vectors when
executing with 4096 instances and varying the number of features.

kNN - 8192 instances
OVIMA 256B = VIMA 8KB

X
15 X 8
5 8 9
-
10 ~
@ %
o |
> 0 T T T T T | T T T
-
2 S s Ua [8 ||} g & 7
9 s 58 ¥% x5 O ' S RN
a0 g8 85 ®Y 87 g <) §
~ N @ v © ~ < P
-15 !) @ <
-20
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.2: VIMA’s speedup over x86. Comparing implementations using both sizes of VIMA vectors when
executing with 8192 instances and varying the number of features.

kNN - 16384 instances
OVIMA 256B mVIMA 8KB

x
15 x B
5 3 =]
10 & R >
<
© <
o 5
. | I I
)
> 0 T T T T T T T T T
$ "HLNL N
S .5 x 5 8 x P x x
S x) o) = 0) 4
3 ~x X8 X9 xq 8 X7 § & o o
Q.10 n O 32 © < h x ! h h h h
-15 : :
-20
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.3: VIMA'’s speedup over x86. Comparing implementations using both sizes of VIMA vectors when
executing with 16384 instances and varying the number of features.

52

kNN - 32768 instances
OVIMA 256B = VIMA 8KB

x
>< b
15 3 =2
x ™ =
o o
10 < =
< © ~
[{o] <r..
8 5 N =
X N I
-
o
> 0 T T T T . .| T T T
° I |_|I | | U U U U
x
g 5 Us UE 5 & & 3 &
~ ~ ~
%) % &S x 0 < S < ~ ~
L ol kS 8T & © o o o o o
w-lO ~ < 5 m—ﬁr o N
o Q@ " © ©
-15
-20

8 16 32 64 128 256 512 1024 2048 4096
Number of Features

Figure 5.4: VIMA’s speedup over x86. Comparing implementations using both sizes of VIMA vectors when
executing with 32768 instances and varying the number of features.

kNN - 65536 instances
OVIMA 256B = VIMA 8KB

3
15 > <
3% A
x ™ S
& 2 =
10 x = o
< 3 ~
<
x o
5 Q < <
” o~
- I
m B . .

-4,15x N

4,07x
1,94x A
2,83x [|
-2,79x []
2,77x []
2,76x []
2,75x []
2,73x []

-10

Speedup over x86
)
6,20x

-6,75x
6,41x

-5,44x N
-5,85x

-15

-20
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.5: VIMA'’s speedup over x86. Comparing implementations using both sizes of VIMA vectors when
executing with 65536 instances and varying the number of features.

MLP speedup is shown in Figure 5.6. As explained before, only the number of features
influence the results for MLP. The number of instances does not influence because each instance
is independent and used a single time only. Thus, we present results just for MLP with 4096
instances.

As kNN, the implementation with VIMA vectors with 256 B in size is inefficient,
reaching up to 15x of slowdown compared to baseline. The implementation with 8§ KB VIMA
vector starts to show a slight speedup for instances with 512 features and has a significant increase
with 4096 features, reaching up to 11x of speedup compared to baseline.

We can observe that until 128 features, the slowdown for both implementations (256 B
and 8 KB) is similar. In these cases, just one VIMA vector is used to store the instances. With
128 features, we require two 256 B VIMA vectors to store an instance, which explains the slight
decrease in performance. Similarly, the slowdown for 256 B VIMA vectors worsens from 256 to
2048 features since many more 256 B VIMA vectors are needed to store the instances and to
operate with a vast amount of weights.

The baseline still makes fair use of x86 cache memory, and that is the reason for the
moderated speedups with VIMA vectors of 8 KB. With 4096 features, the baseline starts to

53

present worse performance due to low data reuse in the cache memory, making the speedup for
8 KB VIMA vectors significantly better, also reducing the slowdown for VIMA vectors of 256 B

in size.

MLP - 4096 instances
OVIMA 256B m VIMA 8KB

S
o
15 o
10 >
x = S
5 = S =
2 - m N
; 0 I_‘:r. T u. T u. T u. T u. T | B - T T T U
>
210 9 a9 ge o I < L - - &
8 ! 2} i [}
o -15 e o T
& 3 % P &
-20 S
i
-25
-30
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.6: VIMA'’s speedup over x86. Comparing implementations using both sizes of VIMA vectors when
executing with 4096 instances and varying the number of features.

Figure 5.7 presents speedup results for the convolution algorithm described on Algo-
rithm 4.4 with matrices from size 512 X 512 to 11648 x 11648. As we explained the algorithms
above, the convolution implementation using VIMA 256 B only presents slowdowns, reaching a
maximum of 23X slowdown over baseline. As the slowdowns, the speedups for VIMA 8 KB
implementation are not linear since it depends on the usage of vector and the execution time
of the x86 baseline. We expected better results considering a larger matrix of 2048x2048 that
occupies a total of 16 MB of memory, but the application still makes fair usage of the cache
hierarchy of x86. Nevertheless, the maximum performance achieved was a speedup of up to 3%

for a matrix with 32 MB in size.

Convolution
OVIMA 256B mVIMA 8KB
10 x x
x x 1% x (<} X x X ~
5 ¢ & % s 3 & § ¥ g
L o — — — il —
0 - mwm m_ B = = = W
5 s ~ X ';r_ X o
o 0 ~ 19}
< I3 P 3]
— n ' wn
- -

-17,93x

KN
(6]

Speedup over x86
W NN i
o o1 O o
-22,49x

1 2 4 8 16 32 64 128 256 512
Size (MB)

Figure 5.7: VIMA’s speedup over x86. Comparing implementations using both sizes of VIMA vectors when varying

matrix size.

54

5.4 ENERGY RESULTS

Figures 5.8~5.12 present the energy efficiency for kNN, which is proportional to the speedup.
Again, we can observe that the implementation with 256 B VIMA vectors is more expensive than
x86 implementation, spending up to 12x more than x86. As the speedup graphics, the energy
gains oscillates with smaller memory footprint sizes and stabilizes when it exceeds the cache
memory size, spending around 3 more than x86.

However, it is possible to reduce energy consumption by up to 8x using 8 KB VIMA
vectors compared to the baseline. For tiny amounts of data, this vector size spends more than
256 B VIMA vectors, reaching a cost of up to 13x higher than baseline. Thus, there are no
energy savings for KNN with a small number of features and instances.

kNN - 4096 instances
OVIMA 256B mVIMA 8KB

15
X
X
10 5 8
© © ™~
Q &
g |—|
] ||
0 T T T T T T - T T
: ML M-l A
S 5 x & 3 x x
2 x o @« - &N ©
S X ? o || ' o N
I} x o - © ~ 152} 7] < x
15 8% 9 ¢ g £ & 8
Sd - 3 a o
-20 - .
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.8: VIMA'’s energy consumption over x86. Comparing implementations using both sizes of VIMA vectors
when executing with 4096 instances and varying the number of features.

kNN - 8192 instances
OVIMA 256B = VIMA 8KB

15
x
X 9]
< S ™
o 10 001 g_ N
x <
S 5 8
- 1
0 T T T T T - T T
@ ||
: DL - AN
o 5 < & & e 3 3
> < < = - T} te} <
o o ~ 3] !)) %)
o -10 X x L © X < ! v
< é > yg N [eR?) LT‘) ! x 3 x
L ~ S ~ O 0 o 8 o D
15 o Q-0 ' g S ~ i
'S = S S
-20
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.9: VIMA'’s energy consumption over x86. Comparing implementations using both sizes of VIMA vectors
when executing with 8192 instances and varying the number of features.

Figure 5.6 shows the energy consumption of the MLP application executed with 4096
instances. Although energy consumption follows the speedup pattern, it is possible to notice that
the energy spent in slowdown cases is slightly higher than the values achieved in Figure 5.6. In

55

kNN - 16384 instances
OVIMA 256B = VIMA 8KB

15
x
x 0
10 y 3 hooo
© & o ©
R S <
-z 5) I
()
>
3 i I Iﬁ
0 ; ; ; ; ; ; . . .
I ||
- UI Ul HI 0 0 0 [
o 5 x X x X x
> < Ua [J2)+ 8 3 3 g
g-10 Moxx 88 x¢ S A]
(= S x [=1 0 < = & D
u N5 N N % = <
-15 olag, v i OP' o
-
20
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.10: VIMA’s energy consumption over x86. Comparing implementations using both sizes of VIMA vectors
when executing with 16384 instances and varying the number of features.

kNN - 32768 instances
OVIMA 256B = VIMA 8KB

15
x
% ™
10 - & B o
[{e] [ee] ©
[¢0) x o)
< o S <
-z 5 f.,) I
(]
>
5 o ; ; ; . — i : I : : L
[%2]
2 I "0 0 0 0 U
o -5 < & x < X < %
~ x g G o o B o <
g-10 T ¥& g% sy g 0o ¢ % %09
i 28 Fs N o® 0@
-15 0 =5 o : : '
-20
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.11: VIMA’s energy consumption over x86. Comparing implementations using both sizes of VIMA vectors
when executing with 32768 instances and varying the number of features.

kNN - 65536 instances
OVIMA 256B mVIMA 8KB

15
x
o3 <))
© 10 x g g E‘
[e¢] x e} A
X & 3 <
Z 5 ‘“_.9_ N I
9]
>
o || . I
0 : : : —— : : : : l

®
: 0000070
o -5 @ x — x > x > x
> xo S5 § b 3 8 B
<) x5 8N 5 o o o o o
o -10 x S X a5 ‘ ¢ : : g ’
S 83 <on 2o '

15 wg RO

-20

8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.12: VIMA'’s energy consumption over x86. Comparing implementations using both sizes of VIMA vectors
when executing with 65536 instances and varying the number of features.

56

contrast, the energy spent in good speedup cases is slightly lower. Moreover, this difference is
more significant in the last case, for instances with 4096 features.

MLP - 4096 instances
OVIMA 256B m VIMA 8KB

15 x
(=}
=3
10 x5 x o9
g s S
aj 0 I—D'. T T T T T . T T - T m T
3 H AN AL U. x & B
> X > > >
2 =3 83 53 ia xd & = a
& 10 D o oo :i‘ :j‘ < ™ :’1. o o ' o
& -15 ' 3 S 5
o o S 2,
& 20 TR R
-25 =
-30 :
8 16 32 64 128 256 512 1024 2048 4096

Number of Features

Figure 5.13: VIMA'’s energy consumption over x86. Comparing implementations using both sizes of VIMA vectors
when executing with 4096 instances and varying the number of features.

Figure 5.14 shows the energy consumption for the convolution algorithm, which follows
the speedup pattern considering that energy is always slightly lower than the speedup. For the
implementation with VIMA 256 B, the energy consumption is always higher than the baseline,
and these values reduce in the first test with a memory footprint larger than cache memory size.
The energy consumption for VIMA 8 KB implementation presents an oscillation, mainly in lower
speedup cases, and the gains are higher when the matrix size exceeds the cache memory size,
spending just half of the energy compared to the baseline.

Convolution
OVIMA 256B mVIMA 8KB
10
& 3 3 & 3 % <
5 N < e ™ <~ ™ :»
© — — - — —
Q 9 - - - | - I
) x x & >
g 5 - 8 g al . 3
* B x — — x < [=
[N © o > &)} < —
£ -10 ™) ~ & < S !
[© | = b N
)] B & =} © o0
> -15 S ' — —
= o ' !
g 20 3 o
w ~|
-25 o
-30
1 2 4 8 16 32 64 128 256 512
Size (MB)

Figure 5.14: VIMA'’s energy consumption over x86. Comparing implementations using both sizes of VIMA vectors

varying the matrix size.

The energy savings achieved by VIMA depend directly on memory usage following the
speedup trend. Whenever the memory footprint fits inside the x86 cache memory, the processor
presents higher efficiency. Otherwise, VIMA consumes less due to faster execution and less
data movement. This result reinforces the concept that NDP must be seen as an accelerator for

applications with data-stream behavior and low data reuse.

57

6 FINAL CONSIDERATIONS

After analyzing our proposal results, we would like to point out some concluding remarks about
our findings and also related to possible improvements as future work.

First of all, we decided to evaluate ML applications since its high demand nowadays
and because of the enormous amount of data processed by these algorithms. However, our
methodology implied the need to write the code in C/C++ language, which is not a common task
for data scientists, which usually relies on already established libraries and routines in Python
language. Thus, we understand that this work focus is not on ML or Data Science, which already
has a series of concerns in handling data and algorithms, so they do not have to worry about
implementing mathematical methods and NNs from scratch. Instead, our work focuses more on
the architectural interface for high-performance computing and ML in this context.

Besides, during the development of our work, it became clear the fact that it is not
only ML algorithms that can benefit from VIMA. Nevertheless, VIMA may improve a series of
algorithms that rely on similar characteristics, such as algorithms that deal with massive datasets
exceeding conventional cache memory hierarchy size and perform none or short-term data reuse.
In the beginning, we wanted to implement a complete version of the algorithms to deal with
different dataset sizes. Also, implementing a CNN with training and inference stages. However,
we realize that this may not be possible due to time and resource restraints. We rely on generating
simulation traces, and this step can be time-consuming depending on the algorithm’s complexity.
As VIMA was being thought together with this dissertation, we decided to keep the algorithms
as simple as possible. In this manner, they may not entirely resemble a ML algorithm, so we
emphasize that any algorithm with similar complexity and structure can benefit from VIMA.

Regarding the architectural details, our methodology is straightforward. It can be easily
applied to evaluate any algorithm in VIMA or any architecture supported by OrCS and any ISA
supported by the trace generator used here. Besides, it is possible to extend both tools with
different and even non-existent architectures and ISAs. As a curiosity, our team remodeled
Intrinsics-VIMA a few times. At first, we have implemented the functions to operate over 32- and
64-bits integer representation only. Then, as we defined this dissertation’s scope, we implemented
the same function, but to operate over 64-bits floating-point representation. After understanding
better ML algorithms, we decided to implement the same functions to operate over 32-bits
floating-point representation. Finally, when most of VIMA was implemented, we decide to check
out which instructions were being represented in these Intrinsics functions in order to follow
ARM NEON ISA. As future work, we consider extending Intrinsics-VIMA to operate over 16-bits
floating-point and 8-bits integer representation since newer NN are using these representations to
reduce code complexity and also it can achieve better performance in VIMA.

When implementing codes with Intrinsics libraries, it is required low effort from the
developer, who can still compile, execute, and debug the code as usual. To implement codes with
Intrinsics-VIMA is necessary to adapt the code to fully use the VIMA vectors to achieve better
performance in VIMA. In our case, when we are working with shorter instances, we read in a
vector as many instances as possible and isolate them with a mask to implement most of the code
with Intrinsics-VIMA. However, another alternative is to repeat an instance until it fills the vector
to operate with the remaining data. It was an initial approach found in the firsts commits of the
codes in GitHub!. Nevertheless, it proved that it is necessary to consider the aspects of VIMA

thttps://github.com/ascordeiro/intrinsics

58

itself since its cache memory size is small, so we have to implement the code focusing on VIMA
vectors reuse to achieve better performance.

For the results, as we mentioned, we expected to achieve better performance with VIMA
when x86 performs poorly due to high cache miss ratios (due to big datasets). During the
evaluations, we understand that the pattern of memory access of the algorithm also can influence
VIMA'’s performance in comparison with x86. For instance, the convolution algorithm makes
fair data reuse in x86 cache memory. In contrast, the kNN algorithm data reuse in x86 cache
worsens as soon as the number of instances and features increases. Also, in the beginning, the
idea was to compare VIMA with GPU since it is vastly used for ML algorithms. However, to do
so, it was necessary to make a fair comparison. In this case, the idea was to implement a GPU in
OrCS and compare the architectural results, as we did for x86 with the AVX-512 instructions.
Due to time constraints, it was not possible, so we decided to make an indirect comparison with
GPU. In this case, we searched for related work that compared the same algorithms used in this
dissertation, in an x86 architecture and a GPU. We selected more recent work that relies on x86
architectures, which are more similar to Sandy Bridge. Thus, we selected the following works:

 Skryjomski et al. (2019) made a comparison of the kNN algorithm between a CPU Intel
Xeon E5-2690v4 with 2.60GHz, and a GPU NVIDIA GeForce 1080Ti with @1885MHz.
The authors also varied the number of features and instances. Their results report
speedup up to 200x with the GPU over the CPU;

* A Dawwd and M AL Layla (2015) made a comparison of the MLP algorithm between a
CPU Intel Core 17-2670QMCPU with 2.20GHz, and a GPU GeForce 610M. They also
varied the dataset’s size and obtained a speedup of up to 300x with the GPU over the
CPU.

* Siklosi et al. (2018) made a comparison of the stencil algorithm between a CPU Intel
Xeon E5-2660v4 with 2.00GHz and GPUs NVIDIA P100 and NVIDIA V100, and they
obtained a speedup of up to 20x with the GPU over the CPU.

Considering these related work, we can observe that VIMA is 30x slower than a GPU.
Nevertheless, it consumes 60X less energy. We can understand how VIMA compares against a
GPU using this indirect and shallow comparison. Besides, it is good to reinforce that we are not
trying to compete with other architectures. We are just establishing parameters to understand
better VIMA'’s performance. A CPU has a competitive performance when it can make fair reuse
of data inside the cache hierarchy. At the same time, a GPU can achieve high performance for a
series of algorithms, and it is evident that it also consumes a significant amount of energy to
achieve this high performance. Nevertheless, we consider VIMA very competitive in terms of
energy consumption.

Finally, it is necessary to highlight that we are giving an estimate only in this dissertation
due to the naive implementation of the algorithms and the simulation of a non-existent architecture
in the real world, which is in its firsts versions. Thus, this research is essential to understand
the VIMA'’s viability to define the next steps better. As a parameter, in the real world, the kKNN
algorithm can be used in satellite imagery and online games to calculate the distance between
players. In these cases, it is common to use fewer features and a significant amount of data. The
MLP or CNN algorithms can be applied in face recognition and recommendation systems, which
are vastly applied in social network and applications such as YouTube, Netflix, and Spotify. They
work with a considerable amount of data, and each person is an instance.

59

7 CONCLUSION

Considering the memory-wall and dark silicon problems, several approaches to NDP are emerging
in the last years. Concurrently, ML algorithms are getting more relevant when analyzing ever-
increasing volumes of data. In this dissertation, we linked both problems to propose the migration
of ML kernels to a vector execution near-data system to achieve a high execution speedup with
low energy consumption.

The ML kernels were simulated in OrCS, using the Instrinsics-VIMA library as a tool
to easy the code portability. We achieved a speedup of up to 10x for kNN, 11x for MLP, and 3%
for convolution. Meanwhile, we obtained energy savings of 7x for kNN, 8x for MLP, and 3x for
convolution compared to a baseline x86 system.

The results rely on the algorithm behavior, memory footprint, and computational
performance of VIMA and x86 architectures. For example, memory footprint sizes greater than
LLC memory can drop the baseline performance as it executes more cache line replacements
(due to higher cache misses), spending more energy and execution time in comparison to VIMA.
However, different implementation of the algorithm or its memory access pattern can change this
scenario by better using cache memory, resulting in a competitive computational performance
for the baseline.

As future work, we consider extending the migration to other ML algorithms, including
its training phase. We also consider evaluating multi-threaded applications using VIMA
operations.

All the source code for our VIMA architecture simulation, the ML algorithms, and the
Intrinsics-VIMA library are freely available in our on-line repositories!2.

thttps://github.com/mazalves/
2https://github.com/ascordeiro/

60

REFERENCES

A Dawwd, S. and M AL Layla, N. (2015). Training acceleration of multi-layer perceptron using
multicore cpu and gpu under matlab environment. AL-Rafdain Engineering Journal (AREJ),
23(3):136-148.

Afonso, S., Acosta, A., and Almeida, F. (2017). Automatic acceleration of stencil codes in
android devices. In Int. Conf. on Algorithms and Architectures for Parallel Processing.

Agrawal, A., Ankit, A., and Roy, K. (2018). Spare: Spiking neural network acceleration using
rom-embedded rams as in-memory-computation primitives. IEEE Transactions on Computers.

Ahn, J., Hong, S., Yoo, S., Mutlu, O., and Choi, K. (2016). A scalable processing-in-memory
accelerator for parallel graph processing. ACM SIGARCH Computer Architecture News,
43(3):105-117.

Alpaydin, E. (2009). Introduction to machine learning. MIT press.

Alves, M. A. Z. (2014). Increasing Energy Efficiency of Processor Caches via Line Usage
Predictors. PhD thesis, Universidade Federal do Rio Grande do Sul.

Alves, M. A. Z., Diener, M., Santos, P. C., and Carro, L. (2016). Large vector extensions inside
the hmc. In 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1249-1254. IEEE.

Alves, M. A. Z., Villavieja, C., Diener, M., Moreira, F. B., and Navaux, P. O. A. (2015). Sinuca:
A validated micro-architecture simulator. In HPCC/CSS/ICESS, pages 605-610.

AMD (2015). DDRS5 and HBM comparison. https://www.amd.com/system/files/
documents/high-bandwidth-memory-hbm.pdf. [Online; accessed 01-July-2019].

Angizi, S., He, Z., Rakin, A. S., and Fan, D. (2018). Cmp-pim: an energy-efficient comparator-
based processing-in-memory neural network accelerator. In Proceedings of the 55th Annual
Design Automation Conference, page 105. ACM.

Azarkhish, E., Rossi, D., Loi, L., and Benini, L. (2018). Neurostream: Scalable and energy
efficient deep learning with smart memory cubes. IEEE Transactions on Parallel & Distributed
Systems, pages 1-1.

Bartlett, M. S., Littlewort, G., Lainscsek, C., Fasel, 1., and Movellan, J. (2004). Machine learning
methods for fully automatic recognition of facial expressions and facial actions. In 2004 IEEE
International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583),
volume 1, pages 592-597. IEEE.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bojnordi, M. N. and Ipek, E. (2016). Memristive boltzmann machine: A hardware accelerator
for combinatorial optimization and deep learning. In 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pages 1-13. IEEE.

https://www.amd.com/system/files/documents/high-bandwidth-memory-hbm.pdf
https://www.amd.com/system/files/documents/high-bandwidth-memory-hbm.pdf

61

Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu, E., Thakur, R., Kim, D.,
Kuusela, A., Knies, A., Ranganathan, P., et al. (2018). Google workloads for consumer devices:
Mitigating data movement bottlenecks. In Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

Cadambi, S., Majumdar, A., Becchi, M., Chakradhar, S., and Graf, H. P. (2010). A programmable
parallel accelerator for learning and classification. In Proceedings of the 19th international
conference on Parallel architectures and compilation techniques, pages 273-284. ACM.

Chen, F., Song, L., and Chen, Y. (2018). Regan: A pipelined reram-based accelerator for
generative adversarial networks. In 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 178—183. IEEE.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785-794.

Cheng, M., Xia, L., Zhu, Z., Cai, Y., Xie, Y., Wang, Y., and Yang, H. (2017). Time: A
training-in-memory architecture for memristor-based deep neural networks. In Proceedings of
the 54th Annual Design Automation Conference 2017, page 26. ACM.

Cheng, M., Xia, L., Zhu, Z., Cai, Y., Xie, Y., Wang, Y., and Yang, H. (2018). Time: A
training-in-memory architecture for rram-based deep neural networks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(5):834-847.

Chi, P, Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., and Xie, Y. (2016). Prime: A
novel processing-in-memory architecture for neural network computation in reram-based main
memory. In ACM SIGARCH Computer Architecture News, pages 27-39. IEEE Press.

Coorporation, I. (2009). Intel 64 and ia-32 architectures optimization reference manual.

Cordeiro, A. S., Kepe, T. R., Tomé, D. G., de Almeida, E. C., and Alves, M. A.Z. (2017). Intrinsics-
hmc: An automatic trace generator for simulations of processing-in-memory instructions.
Simposio em Sistemas Computacionais de Alto Desempenho (WSCAD).

de Lima, J. P. C., Santos, P. C., de Moura, R. F., Alves, M. A., Beck, A. C., and Carro, L. (2019).
Exploiting reconfigurable vector processing for energy-efficient computation in 3d-stacked
memories. In International Symposium on Applied Reconfigurable Computing, pages 262-276.
Springer.

Deng, Q., Jiang, L., Zhang, Y., Zhang, M., and Yang, J. (2018). Dracc: a dram based accelerator
for accurate cnn inference. In Proceedings of the 55th Annual Design Automation Conference,
page 168. ACM.

Deng, Q., Zhang, Y., Zhang, M., and Yang, J. (2019). Lacc: Exploiting lookup table-based fast
and accurate vector multiplication in dram-based cnn accelerator. In Proceedings of the 56th
Annual Design Automation Conference 2019, page 128. ACM.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Int. workshop on multiple
classifier systems.

62

Efnusheva, D., Cholakoska, A., and Tentov, A. (2017). A survey of different approaches for
overcoming the processor-memory bottleneck. International Journal of Computer Science
and Information Technology, 9(2):151-163.

Elliott, D. G., Stumm, M., Snelgrove, W. M., Cojocaru, C., and McKenzie, R. (1999a).
Computational ram: Implementing processors in memory. [EEE Design & Test of Computers,
16(1):32-41.

Elliott, D. G., Stumm, M., Snelgrove, W. M., et al. (1999b). Computational RAM: Implementing
Processors in Memory. Design and Test of Computers, 16(1):32—41.

Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., and Burger, D. (2011). Dark
silicon and the end of multicore scaling. In 2011 38th Annual international symposium on
computer architecture (ISCA), pages 365-376. IEEE.

Fan, D. and Angizi, S. (2017). Energy efficient in-memory binary deep neural network accelerator
with dual-mode sot-mram. In 2017 IEEE International Conference on Computer Design
(ICCD), pages 609—612. IEEE.

Ganguly, A., Singh, V., Muralidhar, R., and Fujita, M. (2018). Memory-system requirements for
convolutional neural networks. In Proceedings of the International Symposium on Memory
Systems, pages 291-197. ACM.

Gantz, J. and Reinsel, D. (2011). Extracting value from chaos. IDC iview, 1142(2011):1-12.

Gantz, J. and Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital shadows,
and biggest growth in the far east. IDC iView: IDC Analyze the future, 2007(2012):1-16.

Gao, D., Shen, T., and Zhuo, C. (2018). A design framework for processing-in-memory accelerator.
In 2018 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP),
pages 1-6. IEEE.

Gao, M., Ayers, G., and Kozyrakis, C. (2015). Practical near-data processing for in-memory
analytics frameworks. In Parallel Architecture and Compilation (PACT), 2015 International
Conference on, pages 113-124. IEEE.

Gao, M., Pu, J., Yang, X., Horowitz, M., and Kozyrakis, C. (2017). Tetris: Scalable and efficient
neural network acceleration with 3d memory. ACM SIGOPS Operating Systems Review,
51(2):751-764.

Gardner, M. W. and Dorling, S. (1998). Artificial neural networks (the multilayer perceptron)—a
review of applications in the atmospheric sciences. Afmospheric environment, 32(14-15).

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media.

Gupta, S., Imani, M., Kaur, H., and Rosing, T. S. (2019). Nnpim: A processing in-memory
architecture for neural network acceleration. /[EEE Transactions on Computers.

Gupta, S., Imani, M., and Rosing, T. (2018). Felix: Fast and energy-efficient logic in memory. In
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1-7.
IEEE.

63

Hashemi, M., Ebrahimi, E., Mutlu, O., Patt, Y. N., et al. (2016). Accelerating dependent cache
misses with an enhanced memory controller. In Int. Symp. on Computer Architecture (ISCA).

Holewinski, J., Pouchet, L.-N., and Sadayappan, P. (2012). High-performance code generation
for stencil computations on gpu architectures. In Proceedings of the 26th ACM international
conference on Supercomputing, pages 311-320.

Hong, B., Ro, Y., and Kim, J. (2018). Multi-dimensional parallel training of winograd layer on
memory-centric architecture. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 682—695. IEEE.

Hrusca, J. (2015). PIM comparison. https://www.extremetech.com/computing/
197720-beyond-ddrd4-understand-the-differences—-between-wide-
io-hbm-and-hybrid-memory-cube. [Online; accessed 01-July-2019].

Hybrid Memory Cube Consortium (2013). Hybrid memory cube specification rev. 2.0.
http://www.hybridmemorycube.org/.

Hybrid Memory Cube Consortium (2014). Hybrid memory cube specification 2.1.
http://www.hybridmemorycube.org/.

Imani, M., Gupta, S., Kim, Y., and Rosing, T. (2019a). Floatpim: In-memory acceleration of
deep neural network training with high precision. In Proceedings of the 46th International
Symposium on Computer Architecture, pages 802-815. ACM.

Imani, M., Gupta, S., Kim, Y., Zhou, M., and Rosing, T. (2019b). Digitalpim: Digital-based
processing in-memory for big data acceleration. In Proceedings of the 2019 on Great Lakes
Symposium on VLSI, pages 429-434. ACM.

Imani, M., Gupta, S., and Rosing, T. (2018). Genpim: Generalized processing in-memory
to accelerate data intensive applications. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1155-1158. IEEE.

Jain, R. (1990). The art of computer systems performance analysis: techniques for experimental
design, measurement, simulation, and modeling. John Wiley & Sons.

Jeddeloh, J. and Keeth, B. (2012). Hybrid memory cube new DRAM architecture increases
density and performance. In Symp. on VLSI Technology.

Ji, Y., Zhang, Y., Li, S., Chi, P,, Jiang, C., Qu, P, Xie, Y., and Chen, W. (2016). Neutrams: Neural
network transformation and co-design under neuromorphic hardware constraints. In The 49th
Annual IEEE/ACM International Symposium on Microarchitecture, page 21. IEEE Press.

Jiang, S., Priya, S. R., Elango, N., Clay, J., and Sridhar, R. (2019). An energy eflicient in-memory
computing machine learning classifier scheme. In 2019 32nd International Conference on
VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID), pages
157-162. IEEE.

Jun, H., Nam, S., Jin, H., Lee, J.-C., Park, Y. J., and Lee, J. J. (2017). High-bandwidth memory
(hbm) test challenges and solutions. IEEE Design & Test, 34(1):16-25.

Kaplan, R., Yavits, L., and Ginosar, R. (2018). Prins: Processing-in-storage acceleration of
machine learning. IEEE Transactions on Nanotechnology.

https://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
https://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
https://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube

64

Kara, K., Alistarh, D., Alonso, G., Mutlu, O., and Zhang, C. (2017). Fpga-accelerated dense
linear machine learning: A precision-convergence trade-off. In 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM),
pages 160—167. IEEE.

Kim, J. and Kim, Y. (2014). Hbm: Memory solution for bandwidth-hungry processors. In 2014
IEEE Hot Chips 26 Symposium (HCS), pages 1-24. IEEE.

Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., and Fotiadis, D. 1. (2015).
Machine learning applications in cancer prognosis and prediction. Computational and
structural biotechnology journal, 13:8—17.

Krishnamoorthy, S., Baskaran, M., Bondhugula, U., Ramanujam, J., Rountev, A., and Sadayappan,
P. (2007). Effective automatic parallelization of stencil computations. ACM sigplan notices,
42(6):235-244.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems.

Kuderer, M., Gulati, S., and Burgard, W. (2015). Learning driving styles for autonomous vehicles
from demonstration. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 2641-2646. IEEE.

Lacassagne, L., Etiemble, D., Hassan Zahraee, A., Dominguez, A., and Vezolle, P. (2014). High
level transforms for simd and low-level computer vision algorithms. In Proceedings of the
2014 Workshop on Programming models for SIMD/Vector processing, pages 49-56.

Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face recognition: A convolutional
neural-network approach. IEEE transactions on neural networks, 8(1):98—113.

Li, B., Song, L., Chen, F., Qian, X., Chen, Y., and Li, H. H. (2018). Reram-based accelerator for
deep learning. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2018, pages 815-820. IEEE.

Li, S., Niu, D, Malladi, K. T., Zheng, H., Brennan, B., and Xie, Y. (2017). Drisa: A dram-based
reconfigurable in-situ accelerator. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 288-301. ACM.

Libbrecht, M. W. and Noble, W. S. (2015). Machine learning applications in genetics and
genomics. Nature Reviews Genetics, 16(6):321.

Lima, J. a. P,, Santos, P. C., Alves, M. A. Z., Beck, A. C. S., and Carro, L. (2018). Design space
exploration for pim architectures in 3d-stacked memories. In Proceedings of the Computing
Frontiers Conference. ACM.

Liu, J., Zhao, H., Ogleari, M. A., Li, D., and Zhao, J. (2018). Processing-in-memory for
energy-efficient neural network training: A heterogeneous approach. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 655-668. IEEE.

Lomont, C. (2011). Introduction to intel advanced vector extensions. Intel White Paper, pages
1-21.

65

Long, Y., Na, T., and Mukhopadhyay, S. (2018). Reram-based processing-in-memory architecture
for recurrent neural network acceleration. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pages 1-14.

Lue, H.-T., Wang, K.-C., and Lu, C.-Y. (2018). 3d and-type nvm for in-memory computing
of artificial intelligence. In 2018 14th IEEE International Conference on Solid-State and
Integrated Circuit Technology (ICSICT), pages 1-2. IEEE.

McDanel, B., Teerapittayanon, S., and Kung, H. (2017). Embedded binarized neural networks.
arXiv preprint arXiv:1709.02260.

Min, C., Mao, J., Li, H., and Chen, Y. (2019). Neuralhmc: an efficient hmc-based accelerator for
deep neural networks. In Proceedings of the 24th Asia and South Pacific Design Automation
Conference, pages 394-399. ACM.

Mitchell, T. M. (1997). Mcgraw-hill science. Engineering/Math, 1:27.

Moore, G. E. (1998). Cramming more components onto integrated circuits. Proceedings of the
IEEE, 86(1):82-85.

Moore, G. E. et al. (1975). Progress in digital integrated electronics. In Electron Devices Meeting,
volume 21, pages 11-13.

Nair, R., Antao, S. F., Bertolli, C., Bose, P., Brunheroto, J. R., Chen, T., Cher, C.-Y., Costa,
C. H., Doi, J., Evangelinos, C., et al. (2015). Active memory cube: A processing-in-memory
architecture for exascale systems. IBM Journal of Research and Development, 59.

Nowatzyk, A., Pong, F., and Saulsbury, A. (1996). Missing the memory wall: The case for
processor/memory integration. In Int. Symp. on Computer Architecture (ISCA).

Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krishnan, S., and Marr, D. (2016). Accelerating
recurrent neural networks in analytics servers: Comparison of fpga, cpu, gpu, and asic. In
2016 26th International Conference on Field Programmable Logic and Applications (FPL),
pages 1-4. IEEE.

Oliveira, G. F., Santos, P. C., Alves, M. A., and Carro, L. (2017a). Nim: An hmc-based machine
for neuron computation. In International Symposium on Applied Reconfigurable Computing,
pages 28-35. Springer.

Oliveira, G. F.,, Santos, P. C., Alves, M. A. Z., and Carro, L. (2017b). A generic processing
in memory cycle accurate simulator under hybrid memory cube architecture. In 2017
International Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), pages 54—61. IEEE.

Olmen, J. V., Mercha, A., Katti, G., et al. (2008). 3D stacked IC demonstration using a through
silicon via first approach. In Int. Electron Devices Meeting.

Pan, Y., Ouyang, P., Zhao, Y., Kang, W., Yin, S., Zhang, Y., Zhao, W., and Wei, S. (2018a). A
mlc stt-mram based computing in-memory architec-ture for binary neural network. In 2018
IEEE International Magnetics Conference (INTERMAG), pages 1-1. IEEE.

Pan, Y., Ouyang, P., Zhao, Y., Kang, W., Yin, S., Zhang, Y., Zhao, W., and Wei, S. (2018b). A
multilevel cell stt-mram-based computing in-memory accelerator for binary convolutional
neural network. IEEE Transactions on Magnetics, 54(11):1-5.

66

Patterson, D., Anderson, T., Cardwell, N., et al. (1997a). A case for intelligent RAM. [EEE
Micro, 17(2):34-44.

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R.,
and Yelick, K. (1997b). A case for intelligent ram. IEEE micro, 17(2):34—44.

Pawlowski, J. (2011a). Hybrid memory cube (hmc). Hot Chips, 23.

Pawlowski, J. T. (2011b). Hybrid memory cube (hmc). In 2011 IEEE Hot chips 23 symposium
(HCS), pages 1-24. IEEE.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software Technology,
64:1-18.

Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2).

Pugsley, S., Jestes, J., Balasubramonian, R., et al. (2014). Comparing Implementations of
Near-Data Computing with In-Memory MapReduce Workloads. IEEE Micro, 34(4):44-52.

Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T., Xu, N., Song, S., et al.
(2016). Going deeper with embedded fpga platform for convolutional neural network. In
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pages 26-35.

Qureshi, M. K., Jaleel, A., Patt, Y. N., Steely, S. C., and Emer, J. (2007a). Adaptive insertion
policies for high performance caching. ACM SIGARCH Computer Architecture News, 35(2).

Qureshi, M. K., Suleman, M. A., and Patt, Y. N. (2007b). Line distillation: Increasing cache
capacity by filtering unused words in cache lines. In Int. Symp. on High Performance Computer
Architecture (HPCA).

Rakotomamonjy, A. (2003). Variable selection using svm-based criteria. Journal of machine
learning research, 3(Mar).

Raschka, S. (2015). Python machine learning. Packt Publishing Ltd.

Ren, D. Q. (2011). Algorithm level power efficiency optimization for cpu—gpu processing element
in data intensive simd/spmd computing. Journal of Parallel and Distributed Computing,
71(2):245-253.

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited,.

Salamat, S., Imani, M., Gupta, S., and Rosing, T. (2018). Rnsnet: In-memory neural network
acceleration using residue number system. In 20/8 IEEE International Conference on
Rebooting Computing (ICRC), pages 1-12. IEEE.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of research and development, 3(3):210-229.

Santos, P. C., Oliveira, G. F., Lima, J. P., Alves, M. A., Carro, L., and Beck, A. C. (2018).
Processing in 3d memories to speed up operations on complex data structures. In Design,
Automation & Test in Europe Conf. & Exhibition (DATE). IEEE.

67

Santos, P. C., Oliveira, G. F., Tomé, D. G., Alves, M. A., Almeida, E. C., and Carro, L. (2017).
Operand size reconfiguration for big data processing in memory. In Design, Automation &
Test in Europe Conf. & Exhibition (DATE).

Schuiki, F., Schaffner, M., Giirkaynak, F. K., and Benini, L. (2018). A scalable near-memory
architecture for training deep neural networks on large in-memory datasets. arXiv preprint
arXiv:1803.04783.

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu, M., Williams,
R. S., and Srikumar, V. (2016). Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. ACM SIGARCH Computer Architecture News, 44(3):14-26.

Shen, J. P. and Lipasti, M. H. (2013). Modern processor design: fundamentals of superscalar
processors. Waveland Press.

Siklosi, B., Reguly, 1. Z., and Mudalige, G. R. (2018). Heterogeneous cpu-gpu execution of
stencil applications. In 2018 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), pages 71-80. IEEE.

Sim, J., Seol, H., and Kim, L.-S. (2018). Nid: processing binary convolutional neural network in
commodity dram. In 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1-8. IEEE.

Skryjomski, P., Krawczyk, B., and Cano, A. (2019). Speeding up k-nearest neighbors classifier
for large-scale multi-label learning on gpus. Neurocomputing, 354:10-19.

Smith, A. J. (1982). Cache memories. ACM Computing Surveys (CSUR), 14(3):473-530.

Srivastava, P., Kang, M., Gonugondla, S. K., Lim, S., Choi, J., Adve, V., Kim, N. S., and
Shanbhag, N. (2018). Promise: An end-to-end design of a programmable mixed-signal
accelerator for machine-learning algorithms. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, pages 43-56. IEEE Press.

Sudarshan, C., Lappas, J., Ghaffar, M. M., Rybalkin, V., Weis, C., Jung, M., and Wehn, N. (2019).
An in-dram neural network processing engine. In 2019 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1-5. IEEE.

Sukhwani, B., Min, H., Thoennes, M., Dube, P., Iyer, B., Brezzo, B., Dillenberger, D., and Asaad,
S. (2012). Database analytics acceleration using fpgas. In 2012 21st International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 411-420. IEEE.

Thanh-Hoang, T., Shambayati, A., Deutschbein, C., Hoffmann, H., and Chien, A. A. (2014).
Performance and energy limits of a processor-integrated fft accelerator. In 20/4 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1-6. IEEE.

Thoma, Y., Dassatti, A., and Molla, D. (2013). Fpga 2: An open source framework for fpga-gpu
pcie communication. In 2013 International Conference on Reconfigurable Computing and
FPGAs (ReConkFig), pages 1-6. IEEE.

Thottethodi, M., Vijaykumar, T., et al. (2018). Millipede: Die-stacked memory optimizations
for big data machine learning analytics. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 160—171. IEEE.

68

Tian, Y., Pei, K., Jana, S., and Ray, B. (2018). Deeptest: Automated testing of deep-neural-
network-driven autonomous cars. In Proceedings of the 40th international conference on
software engineering, pages 303-314.

Toffoli, T. and Margolus, N. (1987). Cellular automata machines: a new environment for
modeling. MIT press.

Tomé, D. G., Santos, P. C., Carro, L., Almeida, E. C., and Alves, M. A. Z. (2018). Hipe: Hmc
instruction predication extension applied on database processing. In Design, Automation &
Test in Europe Conf.

Transcend (2014). DDR comparison. https://www.transcend-info.com/Support/
FAQ—-296. [Online; accessed 01-July-2019].

Wulf, W. A. and McKee, S. A. (1995). Hitting the memory wall: implications of the obvious.
ACM SIGARCH computer architecture news, 23(1):20-24.

Xu, L., Zhang, D. P., and Jayasena, N. (2015). Scaling deep learning on multiple in-memory
processors. In Proceedings of the 3rd Workshop on Near-Data Processing.

Yu, C. D., Huang, J., Austin, W., Xiao, B., and Biros, G. (2015). Performance optimization
for the k-nearest neighbors kernel on x86 architectures. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, page 7.
ACM.

Zaitsev, D. A. (2017). A generalized neighborhood for cellular automata. Theoretical Computer
Science, 666:21-35.

https://www.transcend-info.com/Support/FAQ-296
https://www.transcend-info.com/Support/FAQ-296

APPENDIX A - TABLE OF INTRINSICS-VIMA INSTRUCTIONS

69

70

'[£9:0]19 10309A UONEBUNSIP AU} OIUI JI SAI0JS PUE [£9:()]Y SI0IDAA 90INOS JO JUAWI[A IIq-7¢ JO Ad0o pouTisun swiojrod | ngea™ (gx ‘ex)nAdoT” powTa
‘[Lvoziold
J10109A UOTJBUIISIP I OJUI 1 SAI0IS PUR [/ H(Z:0]V SI0I09A 0INOS JO JUAWR[R IQ-Z¢ JO Ad0d pouSIs suLIofg sgen (gx “‘ex)sAdoT MZwIA
[€9:0]19 10399A UOTIRUNISIP Y OJUI JI SAIOIS PUB [€9:()]V SI0JOAA 90INOS JO JUIWI[A J1q-7¢ JO Ad0oo pouTIs SWIOdd | SzeA™ (g ‘ex)sAdoT powta™
[L¥0T:0]D 10103A uonRUNSIP JY)
OJUI J1 SAI0IS PUk [/ +0Z:01d PU® [LH0T:0]V SI0IO9A 92IN0S JO JUIWD JIQ-7E YOB UM dN[BA [RWITUTIW AU} PUL] szgen (ox “‘gx ‘ex)SUTWT MZWTA™
[€9:0]D 10109A uOTIBUNSIP
9} 0Jul I $aI0IS pue [€9:0]d pue [£9:0]V SI0IOIA 90INOS JO JUSWAS JIQ-7E YOoBd UaoM]aq SN[BA [RUITUTW) PUL] sgen (ox “‘gx ‘ex)SUTWT pOWTA™
[LY0T:0]D 101094 uoneunsap Ayl
OJUI JT SAI0)S Pue [/ 07:0]d PUe [L$0T:0]V SI0IO9A 92IN0S JO JUSWID IIQ-7E YOB UddM]AQ dN[BA [RWIXBW AY) pUL] | SzZcA™ (0ox ‘Ox ‘ex)SXPWT MZWIA
[€9:0]D 10109A uoOTIRUNSIP
dU) 0JUT JI $AI0IS pue [£9:0]g Pue [£9:0]V SI0IO9A 92IN0S JO JUIWID JIQ-7E YOB UddM]AQ dN[BA [RWIXBW AY) PUL] sgen (ox “‘gx ‘ex)sSXewT powTA ™
‘[Lvoziold
J0JO9A UONRUNSIP SY) OIUT IT $AI0IS PUB [/ H(7:0]V 10109A 32INOS © UI JUSUWII[S JIQ-7E OB JO IN[eA J)IN[OSqe dY) SAYB, | SZEA™ (gx “‘ex)ssgeT MZwIa
‘[e9:0ld
J0JO9A UOT)RUIISIP YY) OIUT I SI0)S PUB [£9:()]V T0109A 32IN0S B UT JUSWIS JIQ-7E OB JO an[eA J)N[Osqe Y} Saye], sgen (g ‘ex)ssqeT powuTa™
[L¥0T:0]D 101094 UOTIBUNISIP Y} OJUT J[NSAI
) SA103S Pue [/H07:0]1d PUB [L$0T:0]V $SI0109A 90INOS SJUSW[A JIQ-7 € UAIMIQ UOTIOBNQNS PAUSISUN SULIOJIO] nzgea (ox “‘Ox ‘ex)NANST MZWIA
'[€9:0]D 10100A UOTIRUNISIP)
0JUI J[NSAI A} $AI0IS Pue [¢9:0]g pue [£9:0]V SI0I09A 9OINOS SJUSWI[A JIQ-7 ¢ UdIMIQQ UONOBNqNS paudIsun SWIOJIdd | ngea™ (ox “‘gx ‘ex)ngnsT powWTA™
[L107:0]D 101094 UONRUIISIP YY) OIUT
J[NSAI AY) SAI0IS PUB [/+0Z:0]d PUB [LH0T:0]V SI0I0A 92IN0S SJUIWR[D }Iq-7 € UdMmIq Uondenqns pousis SWIojIdd | szea™ (ox “‘gx ‘ex)sqnsT MgWTIA™
'[€9:0]D 103094 UOTIRUTISIP A}
OJUI J[NSAI AY) SAI0IS Pue [£9:(0)]g PUL [£9:0]V SI0I09A 0INOS SJUSWA[D JIQ-7 € UM UOIORIGNS PIUSIS SWLIOJ | SZEA™ (ox ‘gx ‘ex)sSqnsST poWTA
[L10T:0]D 103094 UONRUNSIP Y} OJUl
J[NSaI AY) SAI0IS pue [/ 07:01d PUR [L0Z:0]V SIOI09A 90INOS SJUSWII[A JIQ-7 € UAIMIAQ UOHIIPPR pauIsSun SWLIOjIod | nzgea™ (ox “‘gx ‘ex)nppeT MZwTa ™
'[€9:0]D 101094 UOTIRUNISIP)
0JUI J[NSAI AY) SAI0JS pue [£9:0]g PUB [€9:0]V SI0IOA 90INOS SIUAUWIID JIQ-7¢ USaM)q UOTIpPE pougIsun SULIOjIdd | nzea™ (ox “‘gx ‘ex)nppeTl poWTA™
[L¥0T:0]D 10109A uonRUnSAP Y}
0JUI J[NSAI AY) SAI0IS PUe [/H0Z:0]q PUB [LH(OZ:0]V SI0IOA 20INOS SJUIW[Q JIG-ZE UM UONIPP. PAUSIS SWIOJIdJ | SZEA™ (ox ‘gx ‘ex)SppeT MZWIA
[€9:0]D 10109A uonIBUNSIP
J) OIUT J[NSAI Y} $AI0IS PUB [€9:()]g PUL [€9:()]V SI0IOA 92INOS SJUSW[D JI-7¢ U2aM)aq UONIPP. PAUTIS SULIOJIdd | SZEA™ (ox “‘gx ‘ex)sppeTr powTA ™
I9391u] - suonoNISu] SNAWYILLY VINIA
uondrosaq adKy ere(q 7 uonoung

9[qeL jo urseg

"SUOTIONIISUT YINTA-SOISULIUT JO 9[qR], :1°V 9[qeL

71

'[€£201:01D 103994 UOTIRUTISAP YY) OIUT

J[NSAI A} SAI0IS pue [¢Z01:0]dg PUL [€Z0T:0]V SI0IOA 22IN0S SJUIWI[A JIQ-H9 UIIMIIQ UONoeNqNs pousIs SWIOJIRd | PFoA™ (ox “‘gx ‘ex)sqnsp MIWTA™
‘[1€:0]D 101094 UOKRUNSIP A}
OJUI J[NSAI AY) SAI0IS pue [[¢:0]dg PUe [1£:0]V SI0J09A 90INOS SJUSWA[D JIQ-$9 UM UOIORIIQNS PAUSIS SWION | ©FoA™ (ox ‘Ox ‘ex)SANSpP ggwWIA™
‘[€201:0]D 101004 UOIRUNSIP Y}
OJUI J]NSAI Y} $AI0IS pue [¢Z0T:01d PUB [€Z0T:0]V SI0109A 20IN0S SJUSWI[D JIq-19 USIMIAQ UONIPPE PIUTIS SWIOJI] | PHoA (ox ‘gx ‘ex)sSppep MIWIA
[1€:0]D 10109 UOTIBUNSIP
JY) OJUI J[NSAL A} $AI0IS PUR [[¢:0]g PUB [[€:0]V SI0IOA 92INOS SIUIW[Q IIq-$9 UdAM)2q UONIPPE PAUTIS SULIOJIdd | PFoA™ (ox ‘gx ‘ex)sppep gewTa™
uoIs1a1d 9[qno(J jurod-3uneor - suonoNISU SNOWYPLY VINIA
‘[Lvoziold
JI0JO9A UOTJRUIISOP 1} OIUI II SAIOIS PUB [/ H()Z:0]V SI0IOA 92INOS JO JUAW[A JIQ-Z € JO Ad0o pauSIs swIofIog Jzea (gqx ‘ex)sAdoz yzguta—
‘[£9:0]9 10399A uOTIBUIISAP Y} OJUI II SAI0IS PUE [¢9:()] Y SIOIO9A OINOS JO JUIWA[D }1q-7 ¢ Jo Ad0oo pauis swojIed | Fzea (gx ‘ex)sAdogz powTa
[LY0T:0]D 101094 uonRUnSAP Y}
0JUI I SAI0IS PUB [/+0Z:0]d PUR [L0TZ:0]V SI0II9A 92INOS JO JUIWI[D II-7E YOB UMD ANJBA [RWIUIW Y PUl{ | Fzea (0ox ‘Ox ‘ex)sSUTWI MZWIA
[€9:0]D 10109A uOTIBUNSIP
9y} 03Ul J1 SAI0)S PUe [€9:0]g PUB [€9:0]V SI0JO9A 22INOS JO JUIWI[D JIQ-ZE OB UM SN[BA [BUWITUIW) PUL] Jzea (ox “‘gx ‘ex)sSUTWI poWTA™
[L¥0T:0]D 10109A uonRUNSIP JY)
0JUI I SAI0IS Pue [/+0Z-0]d PUR [L0TZ:0]V SI0109A 92IN0S JO JUSWII[D JIQ-7E OB U9oM]d(Q dN[BA [RUWIIXRW Y puly | FzZea™ (ox ‘Ox ‘ex)sxewI MgWIA
'[€9:0]D 101094 woTIRUTISOP
Q) OJUI J1 $AI01S PUe [¢9:0]dg PUB [€9:0]V SI0IO9A 92INOS JO JUIWI[Q 1I(-ZE OB UM AN[BA [RUWIXBW) PUI Jzea (ox ‘gx ‘ex)sxewI powWTA
‘[Lvoziold
JOJOJA UOIIRUIISIP Y} OJUI I SAI0IS PUB [/ H()Z:(0]V J0I09A 90INOS B UI JUSWI[R JIG-7¢ OB JO IN[BA AN[OSqe o) SN[, | Fzea (qx ‘ex)ssqey dguta—
‘€9:0ld
J0JO9A UOTJRUNSIP A OJUI II SAI0IS Puk [£9:()]V J0I02A 92INOS B UT JUSW[D JIQ-7¢ OB JO AN[BA JIN[OSqe oY) SR, | FZEA (gx ‘ex)ssgey powTa
[L107:0]D 101094 UONRUIISIP JY) OIUT
J[NSAI AY) SAI0IS PUB [/+07:0]d PUB [LH0T:0]V SI0IOA 92IN0S SJUIWR[D }Iq-7 € UdMIq Uondenqns pousis SWIojrdd | Fzea™ (ox “‘gx ‘ex)sqnsy MgwTA™
'[€9:0]D 101094 UOTIRUTISIP A}
OJUI J[NSAI AY) SAI0IS Pue [£9:0]g PUL [£9:0]V SI0I09A 0INOS SJUSWA[D JIQ-7 € UM UOIORIGNS PAUSIS SWION | JZEa™ (ox ‘gx ‘ex)sqnsy powTA
‘[Ly0T:0]D 103094 uoIIRUNSIP Y}
0JUI J[NSAI Y} SAI0IS PUe [/H0Z:01d PUB [LH0Z:0]V SI0I09A 90INOS SJUAWA[D JIq-7E UM]Oq UONIPP. PAUSIS SWIOJId | FZEeA™ (ox ‘gx ‘ex)sppel MZWwTAa
[€9:0]D 10199A uOTIBUNSIP
U} 0JUI J[NSI AY) SAI0IS PUB [€9:0]g PUB [€9:0]V SI0IOA 0INOS SJUIWII[R JIQ-ZE UIIM)9q UONIPPE PAUSIS SULIOJR] | JZEA (ox ‘gx ‘ex)sppel powWTA™
uoIs19314 9[3uIs jutod-3uneoy] - suononnsu] dOUIPLY VIAIA
‘[Lvoziold
J0JO9A UOTJRUIISOP A} OIUI JI SAIOIS PUR [/ ()7 0]V SI0IOA 90INOS JO JUIWI[A JIq-Z € JO Adoo pauSIsun SwIofIog nzgea (gx “‘ex)nAdoT YzgwIa
uondrosag adAy ereq uonoung

'V 9[qe], Jo uonenunuo))

72

*() SQI01S ‘9SIMIAYI0 ‘wonIsod aures 9y Ul | $9103S [£9:(]D 90INOS UONEUNSIP UAY) ‘IOUTUT

S1[€9:0]V JO 3uawa[oy JI pue [¢9:0]d Pue [€9:0]V S10399A 92INOS WOIJ SJUIW[I J1q-7¢ Pauis yoea aredwo) sgenT (ox “‘gx ‘ex)S3TST powta
I0391u] - suononysuy uostredwo) VIATA
‘[Lvoziold
JI0J09A UOTIRUNSIP A} OJUT J[NSAI Y} SAI0)S Puk [/+(7:0]V 101094 20INOS SIUAWI[S }1q-7¢ ul uonerado JON SULIOJRd | Szea™ (g+ ‘ex)sjout dguTta™
‘[e9:0ld
J0JO9A UOTJRUIISIP I OIUT J[NSAI AY) SAI0IS PUB [£9:()] Y J0IOA 92IN0S SJUAWIQ J1q-7¢ Ul uonerado JON SWIOJIo] szgen (gq+ ‘ex)s3ouTt powTA™
[L¥0T:0]D 1031094 uonRUNSIP AY)
0JUI J[NSAI AY) SAI0IS pue [/ +07:0]d PUB [L#0Z:0]V SI0J0A 92IN0S SIUAWI[A JIQ-7¢ Uaamlaq uonerado YOX SWIOjIdd | ngea™ (ox “gx ‘ex)nNIOXT MZWTA ™
[€9:0]D 10199A uOTIBUNSIP
JU} OJUI J[NSI Y} SAI0IS Pue [¢9:0]g Pue [£9:0]V SI0J0A 22IN0S SJUIWIR JIq-7¢ UdM]IIq uonerddo YOX SWIopRd | ngea™ (ox “‘gx ‘ex)nNIOXT pQWTA™
[L107:0]D 101094 UONERUIISIP YY) OIUT
J[NSAI AY) SAI0IS Pue [/ +(07:0]d PUB [LH0T:0]V SI0I09A 20IN0S JO SIUAW[D JIQ-7 ¢ UIMIq uonerado YO SWIold nzea (ox ‘gx ‘ex)UnIoT MZWIA
[€9:0]D 10109A uoONIRUNSIP
9 OJUT J[NSAI AY) SI0IS Pue [¢9:0]g PuB [£9:0]V SI0IOA 90INOS SIUSW[D JIQ-7 ¢ UIMIq uonerado JYO SWIONJ nzgea (ox ‘Ox ‘ex)UNIOT FOWTIA
[L¥0T:0]D 10109A uonRUNSIP JY)
0JUI J[NSAI AY) SAI0IS Pue [£0Z:0]1d PUB [LF0Z:0]V SI0I09A 90INOS SJUSWII[A JIQ-7 ¢ Uaam)aq uonerado NV SWIOjIdd | nzea™ (ox “‘gx ‘ex)npueT MZWwTA ™
[L¥0T7:0]D 10109A uonRUNSAP Y}
0JUI J[NSAI Y} $AI0IS Pue [/ +0Z:0]d PUB [LH0T:0]V SI0I09A 90INOS SIUAWA[Q JIq-7¢ Udam)aq uonerado NV SWIONR] | nzcwa™ | (2x “gx ‘ex)npueT MgeuwTa
I039u] - suononnsuy 9130 VINIA
‘[ezor:old
JI0JO9A UOTJRUIISIP A} OIUI II SAIOIS PUe [€7(0T:0]V SI0IOA 92INOS JO JUIWI[A IIq-19 JO Ad0O PauSIs SWIOLI] Proa (qx ‘ex)sAdop yTwTA™
‘[1€:0]9 10309A UOTIRUIISAP Y} OJUI II SAI0IS PUE [€:()]V SIOIO9A 0INOS JO JUIW[D 31q-19 Jo Ad0O pouTIs swIofIdd | Py9A™ (gx ‘ex)sAdop gzewIa
[€207:0]D 10109A uonRUNSAP A}
OJUI)1 SaI0)s pue [¢Z0T:0]d PUe [€Z0T:0]V SI0109A 92INO0S JO JUSWIA[D IIQ-Q YOBS U9aM]aQq dN[BA [RWIUIW 9Y) PUL] | PFoA™ (ox ‘Ox ‘ex)SUTWP MTWIA
[1€:0]D 10109A uOnIRUNSIP
AU} 0JUI JI SAI0IS pue [1¢:0]d pue [T€:0]V SI0109A 90IN0S JO JUIWAD JIQ-9 YOB UM dN[BA [RWITUTW) PUL] PO~ (ox ‘Ox ‘ex)SUTWP ZEWIA™
'[€2071:0]D 101094 uoOnRUNSIP YY)
0Jul 1 $210)s pue [¢Z01:0]1d PUB [€Z01:0]V SI0I09A 92IN0S JO JUIWID JI-19 OB UIM]Qq dN[BA [BWIXEW Y] pul | PF9A™ (ox “‘gx ‘ex)sxewp MIWIA
[1€:0]D 10109A uOTIBUNSIP
Q) OJUI J1 $a101S Pue [1¢:0]dg Pue [[€:0]V SI0109A 92INOS JO JUIWI[Q 1I(-19 OB UM AN[BA [RUWIIXBW) PUI ProAT (ox ‘gx ‘ex)SXPWP ZEWTIA
‘[ezor-old
JO)O9A UOTIRUNSIP Y} OIUT T $AI0IS Pue [£70T:0]V T0109A 92INOS © UT JUIWII[JIQ-1Q OB JO dN[BA IN[OSqR AY) SR, | ©PF9A™ (qx ‘ex)ssqgep MTWTA
‘Tre0ld
JOJO9A UOTJRUNSIP A OIUI II SAI0IS PUk [[¢:()]V I0I102A 92INOS B UT JUSW[D JIq-9 OB JO IN[BA JN[OSQR oY) SAB], | PF9A™ (gx ‘ex)ssgep gewIa
uondrosag adAy ereq uonoung

'V 9[qe], Jo uonenunuo))

73

“reusis 31ys jou soop uonerado SIy], ‘[£9:0]D 10109A UOHIBRUNSIP 9} OIUI J NSl

qY) SA10)S pue [¢9:()] g 1031994 92IN0S UI payroads jJunowre oY) [£9:()]V I0J09A 90INOS UI JUSWA[D JI-7¢ Yoed PYIYs 3JoT | ngea™ (ox “‘gx ‘ex)nITST powWTA™
I939u] - suononnsul PYIyS VINIA
‘() $210)$ ‘ASIMIAYIO0 ‘uonIsod awres Ay} Ul | $AI0IS [€Z0]:0]D 29INOS UOTJBUILISIP
uay) ‘Tenbe axe Aoy J1 pue [¢Z01:0]d PUB [€20T:0]V SI0109A 90INOS WOI SIUAWI[R JIq-F9 PAUTIS yoed aredwo)) pProa™ (ox ‘gx ‘ex)sbwop qrwIra™
*() $2103s ‘OsImIaIo ‘uonisod awes oy} Ul | $AI0)S [[€:()]D 99INOS UORUIISIP
uay) ‘Tenbo are Aoy J1 pue [1€:0]g pue [[£:0]V SI10109A 90IN0S WOIJ SIUAW[S 31q-19 Pau3Is yoea aredwo)) Pr9AT (ox ‘gx “‘ex)sbwop zewra—
‘() $210)s ‘OsImIaYo ‘uonIsod awres Ay} Ul | $AI0IS [€Z01:0]D 29INOS UONBUNISOP UAY) ‘IOUTW ST
[€20T:0]V JO Juowara oyl J1 pue [€Z01:01d PUe [€20T1:0]V SI0I09A 90INOS WIOIJ SJUSWI[D J1q-19 pauSIs yoea aredwo) | pPyoA~ (ox “‘gx ‘ex)sSATSP MIWTIA™
*() $2103S ‘SIMIAYIO ‘uonIsod duwres Ay} Ul | $AI0IS [[¢:()]D 29INOS UONBUNSIP UIY) JOUTW
SI[1€:0]V JO Juawa[a ay} J1 pue [[¢:0]g pPue [1€:0]V SI0I00A 92INOS WOIJ SJUSWI[I }1q-19 PauIs yoeo areduwio) proa™ (Oox “‘gx ‘ex)sS]TSp zgwra™
uoIs19914 9[qno(q urod-3uneor - suononnsuy uostredwo) VIAIA
*() $210)s ‘asIMIaYI0 ‘uonIsod awes Ay} Ul | SAI0IS [/£+(0Z:0]D 29INOS UOTJBUTISIP
uay ‘renba are Aoy J1 pue [£+07:0]19d PU®R [L0T:0]V SI0109A 20IN0S WOIJ SJUSW[S }I-7 ¢ PAuSIs yoea aredwo)) Jzen (ox ‘gx ‘ex)sbwoy MzwIa—
‘() $210)s ‘OsImMIaYIOo ‘uonIsod auwres Ay} Ul | $AI0)S [€9:()]D 99INOS UORUIISIP
uay) ‘renbo are Loy J1 pue [€9:0]g pue [£9:0]V SI0J09A 90INOS WOIJ SJUSW[A IQ-7 ¢ PAUSIS Yoro aredwo) Jzea (ox “‘gx ‘ex)sbwor powTaT
‘() $2I0)S ‘ASIMIAYIO ‘UonIsod duwres Ay} Ul | SAI0IS [/ H()7:0]D 29INOS UONBUNSIP UAY) ‘JOUTW ST
[L$02:0]V JO Juawa[a aud JI pue [/$07:0]d PUe [L0Z:0]V SI0309A 90INOS WOIJ SJUIWI[J1q-g¢ PAUSIs yoea aredwo) | Fzea™ (ox ‘gx ‘ex)sSATST MgWIA™
*() $910S ‘OSIMIAYI0 ‘uonIsod dwes Ay} Ul | $AI0JS [€9:()]D 29INOS UOTJBUNSIP UIY) ‘IOUTW
S1[€9:0]V JO 3uawa[oy JI pue [¢9:0]d pPue [€9:0]V S10399A 92INOS WOIJ SJUIWA[A }1q-7¢ PAuTIs yoes aredwo) Jzen (ox ‘g ‘ex)sS1TSI powTa
uoIs1a1d 9[3urs jurod-3uneorq - suononnsuy uostredwo)) VINIA
*() $2I0)$ ‘ASIMIAYIO ‘uonIsod awres Ay} Ul | SAI0IS [£H(07:0]D 29INOS UOHJBUILISIP
uay) ‘Tenbo are Aoy J1 pue [£07:0]1d PU® [L$0T:0]V SI030A 92IN0S WOIJ SJUAWI[S JI-Z¢ paudIsun yoed saredwo) | ngea™ (ox ‘gx ‘ex)nbwoTt MzwIAT
*() $910)$ ‘SIMIAYIO0 ‘uonIsod awes ay) Ul | $AI0JS [€9:()]D 99INOS UONRUIISIP
ua ‘Tenba are Aoy J1 pue [¢9:0]g PUR [€9:0]V S10109A 29IN0S WOIJ SIUAW[I }Iq-7 ¢ paugisun yoea aredwo)) nzgea (ox “‘gx ‘ex)nbwot powTa
*() $210)s ‘OsIMIaYI0 ‘uonisod awres Ay} Ul | SAI0IS [/£+(0Z:0]D 99INOS UONRUTISIP
uatp ‘renbo are Loy J1 pue [£$07:0]19d PUe [£L0Z:0]V $SI0109A 90IN0S WOIJ SIUSWA[D JIQ-7 ¢ PIUSIS yord aredwo)) szgen (ox ‘gx ‘ex)sbwort yzwIaT
*() S2103S ‘SIMIAYI0 ‘uonIsod swes Iy} Ul | SAI0IS [€9:0]D 20INOS UOHBULISIP
uay) ‘renbo are Loy J1 pue [€9:0]g pue [¢9:0]V SI0109A 90INOS WOIJ SJUAWA[A IIQ-7 € PAUSIS Yors aredwo) szgen (ox ‘gx ‘ex)sbwort powra
‘() $2I0)S ‘ASIMIAYIO ‘uonIsod awres Ay} Ul | SAI0IS [/H()7:0]D 29INOS UONBUNSIP UIY) IOUTW SI [/ H07:0]V
JO JUAWIRLR 9y JI pue [/+07:0]19d PU® [LH0T:0]V SI0109A 20IN0S WOIJ SJUIWID }IG-7 ¢ pausisun yoed aredwo)) ngea (0% “‘gx ‘ex)NATST JgwTa ™
‘() $103s ‘OsImMIaYIO ‘uonIsod auwres 9y} Ul | $aI0JS [€9:()]D 29INOS UOTJRUNISIP UAY) ‘IOUTW
SI [€9:0]V JO 3UaWd[2 9 JI pue [¢9:0]g PUR [€9:0]V SI0109A 92IN0S WOIJ SIUAWI[I }1Iq-7¢ paudisun yoeo aredwo) | nzea™ (ox “‘gx ‘ex)NATST powTAa
*() S2I03S ‘aSIMIAYI0 ‘UonIsod swres Y U | $91031S [£(07:(0]D 99INOS UOTIBUIISIP UY) ‘IOUTW ST
[L+0Z:0]V JO Juawara oyl J1 pue [/$0Z:01d PUC [LH07:0]V SI0I09A 90INOS WO} SJUSWI[Q JIq-7 ¢ paudIs yoea aredwo) | szea™ (ox “gx ‘ex)sSATST MgwTA™
uondriosaq adAy ereq uonoung

'V 9[qe], Jo uonenunuo))

74

‘[£201:01D 101094 UOTIBRUNISIP Y} OJUT J[NSAI Y}

$2101s pue [¢Z01:0]d Pue [£Z01:0]V SI0I09A 90INOS WOIJ SIUSWIA J1q-19 Udamlaq uonedsrdnnur pausisun SwIojrdd | nyoa™ (0% “‘gx ‘ex)nTnWT MTWIA
[1€:0]D 10109A UOTIRUNISIP AY) OJUT J[NSAI
A sa103s pue [1¢:0]dg pue [1€:0]V SI0309A 90INOS WOIJ SIUAWI[D JIq-19 U9aMIdq uonedrdnnur pausisun SSULIO}Rd | NyoA~ (0% “‘gx ‘ex)NTNWT gEWIA
‘[€£201:0]D 10399A UOTRUIISIP A} OIUT J[NSAI)
SQ103S pue [€Z01:0]d PUe [£Z01:0]V $I0109A 20IN0S WOIJ SIUSW[D 1IQ-$9 UdM)Iq uonedrdnnu pausis swiIojrdd | spoa™ (ox ‘gx ‘ex)sSTnWT MTWIA™
‘[1€:0]1D 101994 UOTIRUNSIP) OIUT J[NSAT
9y} sa103s pue [[¢:0]g Pue [1€:0]V SI0I09A 99IN0S WO} SJUIWI[D J1q-19 Usamlaq uonedrdnnur pousIs SWIOLDJ SpoAT (0% “‘gx “‘ex)STNWT ggWIA™
‘[L¥0Z:0]D 10399A UOT)RUIISIP A} OIUT J[NSAT)
SQ101S pue [/+0Z:0]1d Pue [L#0Z:0]V SI0I09A 90INOS WOIJ SJUSWI[A JIq-7 € Uoamlaq uonedrdnnur pausisun SWIojrod | ngea™ (0% “‘gx “‘ex)NTNWT MZWIA
‘[€9:0]1D 103094 UOTIRUNSIP AY) OIUT J[NSAT
A $2101S pue [€9:0]d pPue [£9:0]V SI0I0A 92IN0S WOIJ SIUSWI[R JI-7¢ UdamIaq uonedrdnnu paugisun SULIOJRJ | ngea™ (0% “‘gx ‘ex)nTNWT FOWIA
‘[L¥0Z:0]D 10399A UOTIRUIISIP A} OIUT J[NSAI I}
SQ103S Pue [/$07:0]d PUB [L$0Z:0]V $I0109A 20IN0S WOIJ SIUIWA[D JIQ-7 ¢ UmIaq uonedrdnnur pausis SwIojrdd | szea™ (Oox ‘qx “ex)STNUWT MZWIA™
‘[£9:0]1D 103094 UOTIRUNSIP YY) OUT J[NSAT
9y} Sa103S pue [€9:0]g Pue [£9:0]V SI0I0A 99INOS WOIJ SJUIWI[D JIq-7¢ Usamlaq uonedrdninur pousIs SWIOLD] szea™ (0% “‘gx ‘ex)STNUWT pOWTIA
‘[L10Z:0]1D 103094 UOIIRUNSIP Y} OJUI JNSAL
AU} $2103S Pue [/ +0Z:0]d PUB [L$0T:0]V SI0I09A 20INOS WOIJ SIUSWIQ JIQ-ZE UAMIIq UOISIAIP POUTISUN UB SULIOJIOJ | NZeA™ (0% ‘gx ‘ex)NATPT MQWIA™
[€9:0]1D 103094 uOIIRUNSAP AY) OIUT J[NSAT
9y} $2103S Pue [€9:0]g Pue [£9:0]V SI0IOA 90INOS WOLJ SJUIWIR JIG-7E USAM]A] UOISIAIP PAUSISUN UB SWLIOLID] ngea (0% ‘gx ‘ex)NATPT powWTIA
‘[L+0Z:0]1D 103094 UOTIRUNISIP Y} OJUT J[NSAI
) SA103S Pue [/H07:0]1d PUB [LH0Z:0]V $I0109A 90IN0S WOIJ SIUSWA[JIQ-7 € UIIMI] UOISIAIP PAUSIS B SWIOLI] szena (0% “‘gx “‘ex)SATPT MQWIA™
*[£9:0]1D 101994 uOTIRUNSIP AY) OJUI
J[NSAI AY) SAI0IS puek [€9:0]g PUe [£9:0]V SI0IDA 90INOS WOIJ SJUIWI[S JIq-Z¢ USdM)Aq UOISIAIP PauSIs € SUWLIOJIdd | Szea™ (0% ‘gx ‘ex)SATPT poWIA
13391u] - suonoNYsUY UOISIAL/uoneddnmiA VINIA
‘Teusts syyrys uonerado sy, *[£0Z:0]D 103094 UOHBUNSIP AY) OIUT J[NSAI A} SAI0)S
pue [£+0Z:0]g 103994 901n0S Ul pay1oads junowe oy} [£(0Z:0]V J0399A 90IN0S UI JUSWI[D JI-7¢ Yord PIYS IYSTY szena (0% “‘gx ‘ex)SEIST MZWIA
‘Teusts syyrys uonerado siy], ‘[£9:0]D 10109A UOTIBUNSIP Y} OIUI J[NSAI
Q) Sa10JS pue [¢9:0]g 101994 92In0S UI payroads junowre oy} [€9:()]V 101094 90INOS UT JUSWD[Q JIQ-7¢ Yoed JIYs WS | sSzea™ (0% ‘gx ‘ex)SeIST pOWIA
‘Teusrs 11ys jou soop uonerado sy, ‘[£0Z:0]D 101094 UOHBUNSIP Y} OJUT J[NSAI Y} SAI0IS
pue [£07:0]d 103994 201n0s Ul pay1dads junowe 3y} [/(07:0]V J0309A 0IN0S UL JUIWI[D IIq-Z¢ YoBd PIYS Y3y ngea (0% “‘gx ‘ex)NTIST MZWIA™
‘Teusrs J1ys jou seop uonerado Sy, "[€9:0]D 103094 UOHIBUNSIP AY) OJUT J[NSAI
I} $2103S pue [¢9:()] g 103094 20In0S Ul pagroads junouwre ay) [£9:(]V J0I09A 90INOS UI JUSWIA JIQ-7¢ Yovo PYIys Y3y | ngea™ (0% “‘gx ‘ex)NTIST poWTA
"TeusIs J1ys jou sop uonerado sy, [L$0Z:0]D 01094 UOBUNSIP Y OIUT I[NSAT I}
S9101S pue [£0Z:0]d 101994 90In0s Ul pagroads junowre ay} [/ $()Z:0]V I10199A 90IN0S UI JUIWI[A JI-Z¢ YorO YIYs IJo] | ngea™ (0% “‘gx ‘ex)NTTST MQWIA™
uondriosaq adAy ereq uonoung

'V 9[qe], Jo uonenunuo))

75

19391u] - suonONISUT AeIpaWW] YVIATA

'q 9[qeLIeA UOT)RULISIP)

OJUT J[NSAI AY) SAI0IS pue [¢ZOT:0]V J0I09A 30INOS WOIJ SJUSWA[A JIQ-$9 USAMIAQ WINS PAJR[NWINIIE PAUSIS SWIOJId | PF9A™ (qx ‘ex)swnop MTWIA™
"q 9[qeLIeA UONBUNSIP
3y} 0JUT J[NSAI AY) $AI0IS PUB [[£:0]V I0I09A 90IN0S WOIJ SIUSWI[S 1Iq-H9 US3MISq WINS PAIR[NUINOOE PAUSIS SWIOMS | ©F9A™ (Ox ‘ex)sSwnop ZgWTA
‘[€£20T1:01D 10309 UOTIRUNSIP S} OIUT J[NSAI A}
$01031S pue [¢701:01d Pue [€Z0T:0]V 103094 90INOS WOIJ SJUSUWII[S JIq-H9 Usamlaq uoneosrjdninuw pausis SWIojIdd | ©yoA™ (0ox ‘gx “‘ex)sTnup MIWTA™
‘[1€:0]1D 101094 UOTIRUTISOP A} OIUT I[NSAT
a3 s2103s pue [[¢:0lg pue [1£:0]V $I0109A 90IN0S WOIJ SUSWA[R J1q-$9 Udam)q uonedrdnnur pousis SWIofIoq ProAT (ox ‘qx ‘ex)sSTnUP gCWIA™
‘[£201:0]D T0109A UOTIRUNSIP Y} OIUT I NS
Ay $2103s pue [€Z01:0]1d PUe [£20T:0]V SI0I09A 90INOS WIOIJ STUSWI[S JIQ-19 USdM)q UOISIAIP PouTIs & SWIOJI | ©F9A™ (ox ‘gx ‘ex)SATPP MIWTA™
‘[1€:01D 103094 UOTIBUNSOP A} OIUT

J[NSa1 9y} $210)s pue [[¢:0]d Pue [1€:0]V SI0I09A 92IN0S WOIJ SIUSW[Q JIq-$,9 USOM)q UOISIAIP POUSIS & SWIOJS] | ©F9A™ (0x ‘gx ‘ex)SATPP gEWTA™

uoIs19a14 9[qno(q urod-3uneor - suononysuy uoisiAlquoneddnmn VINIA

'q 9[qeLIeA UOHBUIISOP I}

0JUI J[NSAI A} SAI0IS PUB [/+(7:0]V 101094 90INOS WOIJ SJUIWI[S JIQ-7 € Uam]aq WNS PAIJB[NWUNIO. PAUTIS SULIOJId | FZEA™ (gx “‘ex)swundoj MgwIa

'q 9[qeLIBA UOTRUTISIP
QU3 OJUI J[NSAI Y} SAI0)S PUE [¢9:()]V JOIOAA 92INOS WO} SIUAWA[D JIq-7¢ UIM)Oq WINS PAJB[NWNOIL PAUSIS SULIOJIdd | FZEA™ (gx “‘ex)swunoj” powTA

‘[L¥07:0]D 101094 UOTIBUNISOP YY) OJUT J[NSAI Y}
$9101S pue [/+0Z:01d PU® [L+0Z:0]V S10399A 92IN0S WOIJ SJUIWA[A }1q-7¢ Udamlaq uonedrdnnw pausis suLIojod Jzen (Ox “‘gx ‘ex)sTnwuy MgwTaA
[€£9:0]D 10109A UOTIRUTISIP AY) OIUT I[NSAT
9y} Sa103S pue [€9:0]g Pue [£9:0]V SI0I0A 99INOS WOIJ SJUIWI[D JIq-7¢ Usamlaq uonedrdninur pousIs SWIOLD] Jzea (ox “‘gx ‘ex)sTnuI powWTA™
[L¥0T:0]D 10109A UOIRUNISIP SY) OIUT NS
oY) SQI03S Pue [/+07:0]1d PUB [£L0Z:0]V SI0109A 90IN0S WOI SJUSW[JI-7 € UIIMIQ UOISIAIP PAUSIS B SWIOLIO] JzeaT (ox “‘gx ‘ex)SATPI MZWTIA™
[€9:0]D 1031994 uOTIBUNSIP AY) OJUT

J[nsa1 9y} sAI03S pue [€9:0]g pue [£9:0]V SI0I09A I0INOS WOIJ SJUIW[S JIq-ZE UAIMIIq UOISIAIP PouTIs B SWIOJId | FZEA™ (ox “gx ‘ex)SATPI powTA”

uoIs1a1d J[3urg jurod-3uneo - suononnsuy uoISIAIJ/uoneddnmN VINIA

'q 9[qeLIBA UOTIRUIISIP 1) OJUl
3[NSAI A SAIOIS PUB [/ H()Z:0]V I0I09A 90INOS WOIJ SJUSW[A JIQ-7 € USAMIAQ WNS PAIBR[NWNIIL PUSISUN SUWLIOFJ ngea™ (gx “ex)nundT YZWIA
'q 9[qeLIBA UOT)RUIISIP)
0JUI J[NSAI AY) SAI0IS PUB [£9:()] Y I0J09A 0INOS WOIJ STUIWI[Q JIQ-7¢ UAAM)9q WINS PAIB[NWNIOL PAUSISUN SSWLIOJId] | nZgeA (gx “‘ex)nundT” FowWIA
'q 9[qeLIBA UOT)RUTISIP)

0JUI J[NSAI A} SAI0IS PUB [/+()7:0]V 101994 90INOS WOIJ SJUIWI[S JIQ-7 ¢ UaM]aq WNS PAIB[NWNIO. PAUTIS SULIOJIdd | SZEA™ (gx “‘ex)swundT YgwIa

'q 9[qeLIBA UONRUNISIP
QU 0JUI J[NSAI Y} SAI0]S puB [€9:()]V J0JOAA 90INOS WOIJ SJUSWIQ JIG-7 € UdamM]aq WNS PIAJR[AWNIOR PAUTIS SWIOLIdJ | SZEA™ (gx “‘ex)sundoT powTAa

uondrosag adAy ereq uonoung

'V 9[qe], Jo uonenunuo))

76

9[qeL JOo puyq
"[€£201:0]V 10109A oY} OJUT q 9)LIPIWWI JIq-19 PAUSIS & 9)eor[doy Py~ (ax ‘ex)sAowp MIWTA
‘[1€:0]V 101994 2y 0JUI q AJRIPSWWI JIQ-$9 PauTIs & Aedrdoy Pr9AT (Ox ‘ex)SAOWD ZEWTA
UOISIORI 9[qno(T Jurod-Jurjeor,] - SUOnONISU] AJLIPIWW] VINIA
[L$0T7:0]V 101094 93 OJUT q 9)BIPIWWI JIq-Z¢ PAUSIS & 9)eordoy JzEen (Ox ‘ex)SAOWI MZWTA
[£9:0]V 101994) 0JUI q BIPSWWI JIQ-7¢ PauSIs e aedrdoy Jzen (ax ‘ex)sAowWI pFQUWTA
uo1s10914 9[3urg jurod-Suneo[- suononIsuy SjeIpawW] VINIA
‘[L¥0T:0]V I0109A U} 0JUL q IBIPIWWI }Iq-Z¢ PAUIIsun e jeorday] ngea (O ‘ex)NAOWT MZWTA
'[£9:0]V 103094 3y} 0IUI q SRIPIWWI JIQ-7¢ pauSisun e ayedrjdoy ngea (q¥ “‘ex)naouT pOWTIA
[L¥07:0]V 101094 93 OJUI q 9)BIPAWWI JIq-Z¢ PAUSIS & 9)eorjdoy szea (O ‘ex) SAOWT MZWTA
"[£9:0]V 101994 3y} OIUI q SRIPIWWI JIQ-7¢ PausIs e jeorday szena (q¥ “ex)sAouT pOWTIA
uondrosag adAy ereq uonoung

1V 9[qeL, JO uonenunuo))

APPENDIX B - TABLE OF MAPPING STUDY

Tl

78

sase)
aro1dx eduery sad[y s[qouain) IISISATUN ouLINOJ, Uen(‘ugey as() [eonoeld YN-we PIA suoneorddy
Al ‘equedsqg ‘eUnIo)) Bp 9PEPISIOATUN) 810C ounig ‘03sodxy Y 0110q0y ‘BT1oA 95I10f sonpayden prop-Teay jo uonezrundo 11
AIMINSU] YoIeasay uezZn(Q) peInoj
aro1dy vnda Sunndwo)) reyeQ) ‘Aysioarun ‘seqqy A BJRISOIN ‘IYN[[BIA TN yeqreing) uoneziundQ pue 3uIssad0ig
A4l ‘rereQ) IeyeQ) ‘Kyis1oAru() onping L10Z | ‘Jo1v "D pIemr ‘Sue], aifSury ‘nx SuedSuox uonendwo)) XIe paInqrisiq AIOWIN-U] | O
sonAreuy
aordy Sururea| suryory eleq Sig 1oy suoneziundQ
CEEI vnd Kyisteatun) anpmd ‘VIAIAN 8107 | rewnyAeliA "N ‘L ‘TPOYIRNOY, BUNYIIA ‘UNIN KI0WAAl paydeIg-aI(:dpadI[IA 6
stout(y
aropdy Jo Ajszoatun) ‘yoreasay qINV BUOSBAR[UBMNN ‘WY KIOWAIA Ul uIssad01d SuIs() SWYILIOI[Y
941 vnda ‘UOSTPRIA-UISUOISIAL JO ANsIoATU | 9107 | Sung weN ‘Sueyy Surd Suo(‘e1o[msy eined ydein 10J UOnRISIIA] SR, poureIn-oul] 8
DOV JelD I91ed
‘aro1dx SueH ‘reypenyey) JBWLIS ‘T3¢ B[YIIN UOIBOYISSE[O pue JuIuIed|
A4l vNnd BOLIOWY SoLI0JeIOqe T DAN 0102 ‘repwn(e]q UepURUIYQY ‘IqUIEpE)) LIBYLIS IoJ 10JeI9[900® [o[[eted ojqewrwersold v L
QIN)OANIYOIY
aropdy Sureouisuyg JLIUR)-KIOWIA UO JART PeISOUIp
a4l BI0Y] [eJ1199[H JO [00Y0S LSIV 810¢ wry] uyof ‘oy nfuoox ‘Suoy [nyosunig Jo Sururel], [o[[eled [BUOISUSWIP-NNA 9
aro1dx un[sQ YR 9z ST ‘IYSe[y UIIy ‘Opunjy
Al vNd u0)IuIySeA\ JO AJISIQATU) L10T [9P "D O[eD YI[BIO3 UNSN[‘997 "I, JUSDUIA SI0SSQ001 BIBWOINY UO [YOIedS AJLIR[IWIIS S
INDV
“Qrordy J10JRIO[Q00Y KIOWIQIA-U[-3UISSQ001]
Al BUIY) Kyszoatun) Suerloyy 810C onyy Suey) ‘Usys oeyuer], ‘oen) 1(J 10§ SIomawrer] usrso(V ¥
WOV
‘Qro1dy vNa K)JISIOATUN) UOT[IA Q13ouUIR)) ‘sqe| 101D SUNOATY ‘npnjA INUQ Surssaooid ydeis joqered 10
TIAIL ‘BaIOY] 9[orIQ ‘AIISIGAIUN) [BUONEBN [NO3S | S10T | ‘00X ool3ung ‘Suoy yoed3ung ‘uyy ueymun[| JOJLIS[EIOR AIoWAW-UI-ZuIssaoold a[qe[edsy | ¢
yoeoxddy
aro1dx oeyZ uaysi[‘r1 suog SNOQUAS0IOH V :SUIUIRI], YI0M)ON [BINON
A4l vNd BIUIOJITRD) JO AJISIOATU) 8107 | ‘He9[SO 'V snayleN ‘oeyz nASusH ‘nr] uomerf JuaIdIYH-A310U7 I0J AIOWIIA-UI-SUISSA0I] ré
WOV QINJOANIYIIY
‘ar01dy A3orouyoay, Jo 9ymnsuy KIOWQIN-U]-FUISSAD0I UI SUOT)OUUO))
A4l BUIYD uIqIeH ‘AJISIOAIUN) USYZUAYS L10T Suex Surf ‘Sueyyz nx3urpy ‘Suepp 1X [euonn[oAu0)) 10y WsT[a[[eled Sunrojdxg 1
auidug
[oIeas Anuno) uonmnsuy Ie9x sowreu Joyny onn 1odeq ail

d[qeL, Jo urdog

‘s1oded peyoares Jo o[qeL, :1°d 9IqeL

79

aro1dy SYIOMAWERL] SONA[RUY
A9l vNnd K)ISIoATU() PIOJUR)S GI0T | SD[eIAZOY] SOISLIYD) ‘SIOAY JUeID) ‘oD NASUI] | AJoWw-U] Joj SUIssad01d ele-TeaN [eondeld | ¢¢
0OTUIap
-BoR SI0S$2001d AIOWIA-U]
J13000) vNda yoreasay NV G10Z | eusseAer uemnpN ‘Sueyy Suld Suo(‘ny U] ordnnA uo Sururea] doa Sureos 1z
INDV
‘a101dy SOAOUSOJA] SEQIpUY ‘PnOWYEIA SYIOM]AU [BINAU [EUOTIN[OAUOD
A4l vNd 0Juo0I0], JO AJISIOAIUN) 810T BJRISOIN ‘}IBMIS QUOBIA UB[A(‘NIS UIASY 10} syuawaInbar waysAs-A10WwaN 02
Kys1oatun SyIom)au [eanau dosp I0j J0JBIS[3008
WDV vnd ang ‘ysmgsnid Jo AstoArun 610C | UdyD UBIIA ‘I'T IPH ‘OB USUORI[‘U UBynyD PIsEq-DIANH JUSIOLo Uk -HNH[EINON 61
ao1dy uozuel " [ned ‘'] SYIOMIAU [BINdU
A9l vNd K)ISISATU() 9)BIS BUI[OIRD) YIION | 9T0T | NJToph ‘Ao(T uowing ‘Iayeg 997 ‘[2qeyosS enysof [eroynae 1oy 110ddns A10WSW-UI-I0SSI00I 81
BINYIAYDIY 9 BrIouIa3uy
Ip B[oNndg eUSOjOg Ip IpMS
puep 1[39p BISIAATU() ‘YoLINZ HIH syoseje AIOWIN-U]
aro1dx -1ZNIMS | - 19)u9)) USIS9(] SOTUOIIOI[IOIOTIA Turuag eonT “Yeukeyino 931eT uo syr0mIaN TeInaN deo(q Sururely,
EEEI “Aeif ‘younz Hid - LHLI-d 810¢ JUBL] TOUPRYOS [SBYIIA ‘DIINYIS URIqR] 10§ AIMOAIYDTY KIOWN-TBIN J[qe[eIS V L1
pue| yormyz
aro1dy -19Z)1MS A3o[ouyoay, Jo aImnsu] [eIopoq g soqn)) AIowayA MewS Pim Jurured] doo
Al ‘Arei sSImS ‘eusofog Jo AJIsIoatun) L10T | ®onT ‘1077 105 ‘1SSOY OpIAR(‘USTIBZY UBJIg | IUSIOLYH ASIouf pue 9[qe[edS :WeansoInaN | 91
y3mqsnid
Jo Ayis1oatun) ‘uojSurwoo[q
K)1s10ATUN) BURIPU] ‘A30[0UYO_], Suex unf ‘Sueyy uenXuIjA] QouRIAUI NN 9IeInooe
DV vNd ASUIJA(T JO AJISIQATU[) [BUOTIEN 810C ‘Fueyyz oeinox ‘Suerf 1077 ‘Sua(q uend) 10 JOJRIS[O00R Paseq NV I ® :09VIJ ST
‘A3o1ouyo9], pue 9OUSS NV Apowrtuod ur Iomiou
INDV BAIOY] JO 2IMNSU] PIOUBAPY BAIOY] 8107 | wry dng-097 ‘[09S J09soH ‘WIS SuovAyaef [eanou [euonnjoauod Areurq Suisseoold :qQIN | +1
NN InuQ ‘ueyieue3uey
puej Ayereseyiied ‘soruy] UB[[Y ‘B[osnny]
-19ZIMS younz HId ‘Yoredsay Sunsures D[V ‘Wry] unkyoe(q ‘Iney], [nyey ‘nrys oLg
‘8210 913000 ‘AJISIGATU() [RUOTIEN] ‘uniruSunIeABsSNY BIRYORY ‘WIS JOSTUNox SYOQUANOY JUSWAOIN BIe(] SuneSnin
DV ‘vnd [N03S “AJISIOATU) UOT[ON d1SouIe) | 810T ‘@soyn) eyesSnes ‘puewinoIog eIy 1S9JTAQ(T JWINSUO)) I0] SPEOPIOA\ 9[S00D) €1
*OU] JOJONPUODIWAS arx uenx ‘ueuudrg qog ‘Suayy Suoyz3uoy JIOJBIQ[OO0Y MIS-U]
WDV vnd Sunswreg ‘erutofife) jo AISIAIUN | L[0T | ‘IPE[[BJA ' BUYSLIY ‘NIN UIUWI(] ‘I uayd3uenyg 9[qeIn3yuoddy paseqd-INV A & :VSIIA cl
auidug
[o1eas Anuno) uonmusu| Teox sowreu Joyny opn 1odeg ail

"9 9[qeL JO uonenunuo))

80

9Iqel Jo puq

SurroouI3ug a1em1jos
[euowIad Xy 10§ 9)mnsuy

UUOAA 110QION ‘Sunf SeIyNeIA ‘SIOp

aro1dx IoJoyuner ‘uId)ne[SIasIey] UBNSLIY)) ‘UD[eqAY JIWIPB[A ‘Tejjeyc) UISYOIA ourSug
Al Aueurron JBISIOATU() SUOSIUYII], 6107 | pewweynpy ‘sedde uer ‘ueysrepng SeIry) Sursse001g YI0MION TeINON INVI(-UT UV 1T
BUBIRq ol1e) 13 “Yo9g 'S *D omojuy SOLIOWII PYorIS-J €
Yury JO AJISIQATU() [eISPa ‘[NS Op ‘SOATV "Z 'V OOIBJA ‘BINOIA 2 " [vJed ur uoneindwo)) JustoLyg-AS1oug 10§
103unadg [izeig apueIn) ory JO ANSISATU([eI9pa] | 6107 ‘sojues D) o[ned ‘ewlr| op "D o[neq ogor Su1sse001g 10109/ 9[qeanSyuoday Sunioldxg | 9g
puBIRq
yury JO AISIOATU() [RIOP ‘[nS Op o1re)) 131N ‘SAATY “Z uonendwo)
108unadg [izeig apueIn) ory JO ANSISATU() [eISPa] | L10T | 'V OdIRA ‘sojues "D o[ned ‘BIIAAI[() “ OP[eIen) UOINJN] IOJ SUIYORIA Paseg-DINH UV ‘ININ ST
101eI9[999Y NND Paseq-INVId
Suex unf ur uonedrdnniA J0109A 2JeINddY pue
WOV vNa y3ingsnid Jo AJISIOATUN 6107 | ‘Sueyz uenxurpy ‘Sueyz oeinox ‘Sus uend iseq paseq-o[qe], dnjjooT Suniofdxyg 00y v
yopezioyseq
arordy SUIISAS IopeN ‘peysieqoq uresoy ‘rlIoSrrepAoy sonAreuy eie(q Sig 9[qeeos Ioj
A9l vNnd DN ‘BIUIOJTED) JO AJISIAATUN) 610C | TV ‘Ioezay YSBABIS ‘IYSBYIPLZqRIO], IPYR]A| | UONEBIIQIOY SUISSI001d 958I0IS-U] (BUIRIRD | €7
auidug
[o1eas Anuno) uonmusu| Teox sowreu Joyny opn 1odeg ail

"9 9[qeL JO uonenunuo))

27
28
29
30
31
32
33
34

81

APPENDIX C - KNN ALGORITHM WITH AVXS512

#define AVX_SIZE 16

void euclidean_distance (char const xargv[]) {
int i, j, k, ed_idx = 0;
_ m512 avx_tebase, avx_trbase, avx_psub, avx_pmul;

// tr_base: training instance array; base_size: training dataset size
read_instance (tr_base, base_size);

// reads each test instance and partially calculates the euclidean
distance

for (i = 0; 1 < test_instances; i++) {
ed_idx = 0;
read_instance (te_base, training features);

for (j = 0; Jj < base_size; j += training features) {

for (k = 0; k < training_features/AVX_SIZE; k++) {
avx_trbase = _mmbl2_load_ps(&tr_base[]j + k » AVX_SIZE]);
avx_tebase = _mmb12_load_ps (&te_basel[k * AVX_SIZE]);
avx_psub = _mm512_sub_ps (avx_trbase, avx_tebase);
avx_pmul = _mm512_mul_ps(avx_psub, avx_psub);
e_distance[i] [ed_idx] += _mm512_reduce_add_ps (avx_pmul) ;

}

ed_idx++;

// after calculated the partial euclidean distance of all instances,
calculates the square root of the distances and classify it

for (i = 0; i < test_instances; ++i) {
for (j = 0; j < training_instances; ++3) {
e_distance[i] [j] = sqrt(e_distance[i][]]);

}
get_ksmallest (e_distance[i], tr_label, knn, k_neighbors);

classification (knn, k_neighbors);

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

APPENDIX D - MLP HIDDEN LAYER ALGORITHM WITH AVXS512

82

#define AVX_SIZE 16

float rhidden_layer_oper() {
int i, j, k, h_idx = 0;
_ m512 avx_base, avx_weights, avx_bias, avx_phidden;

// h_weights: sets of weights array; w_size: sets of weights size
initialize_weights (h_weights, w_size);

// reads each instance to multiply with the sets of weights
for (i = 0; 1 < instances; i++) {
read_instance (instance, features);
for (j = 0; j < w_size; j += features) {
for (k = 0; k < features/AVX_SIZE; k++) {
avx_base = _mmb512_load_ps(&instancel[k * AVX_SIZE]);
avx_weights = _mm512_load_ps (&h_weights[j + k x AVX_SIZE]);
avx_weights = _mm512_mul_ps (avx_base, avx_weights);
hidden_layer[h_idx] += _mm512_reduce_add_ps (avx_weights);
}
h_idx++;

// after calculated the hidden_layer values, sum the bias and applies

ReLU

h_idx = 0;

avx_bias = _mm512_setl_ps((float)1.0);

for (i1 = 0; 1 < features/2 * instances; 1 += AVX_SIZE) {
avx_phidden = _mm512_load_ps (&hidden_layer([il]);

avx_phidden _mm512_add_ps (avx_phidden, avx_bias);
_mm512_store_ps(&hidden_layer[i], avx_phidden);
for (j = i; j < AVX_SIZE; j++) {
if (hidden_layer[]j] < 0.0) {
hidden_layer[j] = 0.0;
}

h_idx += AVX_SIZE;

return hidden_layer;

APPENDIX E - MLP OUTPUT LAYER ALGORITHM WITH AVXS512

83

#define AVX_SIZE 16

float *output_layer_ oper (float xhidden_layer) {
int i, j, k, o_idx = 0;
_ m512 avx_hidden, avx_oweights, avx_output, avx_bias, avx_mul;

// o _weights: sets of weights array; ow_size: sets of weights size
initialize_weights (o_weights, ow_size);

// multiply the hidden layer activation values with the weights
for (i = 0; 1 < hidden_size; 1 += features/2) {
for (j = i * output_size; j < (i » output_size) + features; j +=
features/2) {
for (k = 0; k < (features/2)/AVX_SIZE; k++) {

avx_hidden = _mmb12_load_ps(&hidden_layer[i + k * AVX_SIZE]);
avx_oweights = _mm512_load_ps (&o_weights[k %= AVX_SIZE]);
avx_oweights = _mm512_mul_ps (avx_hidden, avx_oweights);

output_layer[o_idx] += _mmb512_reduce_add_ps (avx_oweights);
}

o_idx++;

// after calculated the output_layer values, sum to the bias

avx_bias = _mm512_setl_ps((float)1.0);

for (i = 0; i < output_size x instances; 1 += AVX_SIZE) {
avx_output = _mm512_load_ps (&output_layer([il]);
avx_output = _mm512_add_ps (avx_output, avx_bias);

_mm512_store_ps (&output_layer([i], avx_output);

return output_layer;

APPENDIX F - CONVOLUTION ALGORITHM WITH AVXS512

84

#define AVX_SIZE 16

int main(int argc, char const xargv[]) {
_ m512 dim_al, dim_ a2, dim_a3, dim_a4, dim_ab5, dim_a6, dim_a7, dim_as,
dim_a9 dim_b;

// initialize vectors A and B

__m512 vec_a = _mm512_setl_ps((float) 1.0);

for (int i = 0; 1 < v_size; i += AVX_SIZE)
_mm512_store_ps (&data_ali], vec_a);

vec_a = _mm512_setl_ps((float) 0.0);
for (int i = 0; 1 < v_size; i1 += AVX_SIZE)

_mm512_store_ps(&data_bl[i], vec_a);

// convolution operation with 9 cells

_ m512 mul = _mm512_setl_ps((float)2.0);

for (int i = dim_size; i+dim_size+AVX_ SIZE < v_size; 1 += AVX_SIZE) {
dim_al = _mm512_loadu_ps(&data_al[i - dim_size - 11]);
dim_a2 = _mmb512_load_ps(&data_ali - dim_sizel]);
dim_a3 = _mmb512_loadu_ps (&data_al[i - dim_size + 1]);
dim_a4 = _mm512_loadu_ps(&data_al[i - 1]);
dim_a5 = _mm512_load_ps(&data_alil);
dim_a6 = _mm512_loadu_ps(&data_al[i + 1]);
dim_a7 = _mm512_ loadu(&data_al[i + dim_size - 1]);
dim_a8 = _mm512_load_ps(&data_al[i + dim_size]);
dim_a9 = _mmb512_loadu(&data_al[i + dim_size + 1]);

dim_b = _mm512_add_ps(dim_al, dim_aZ2);
dim_b _mm512_add_ps(dim_b, dim_a3)
dim_b _mm512_add_ps(dim_b, dim_a4)
dim_b = _mm512_add_ps (dim_b, dim_ab);
dim_Db _mm512_add_ps (dim_b, dim_ab6);
()
()
()

4

4

4

dim_b = _mm512_add_ps(dim_b, dim_a7
dim_b _mm512_add_ps(dim_b, dim_a8
dim_ b _mm512_add_ps(dim_b, dim_a9
dim_b = _mm512_mul_ps (dim_b, mul);

_mm512_stream_ps (&data_b[i], dim_b);

4

4

}

return 0O;

34
35
36
37

APPENDIX G - KNN ALGORITHM WITH 8KB VIMA VECTOR

This case refers to the case with instances smaller than the VIMA vector.

85

void euclidean_distance (char const xargv[]) {
int32_t i, 3, k, ed_idx = 0;

// mask is defined to isolate each training and test instance
for (i = 0; 1 < training_features; ++i) {
mask[i] = 1.0;

// read test instances
for (i = 0; 1 < test_instances; i += n_instances) {
_vim2K_fmovs (0.5, te_base);

// apply the mask over training instances
for (j = 0; j < training_instances; ++3) ({

_vim2K_fmuls (&tr_base[j* training_features], mask, temp_train);

// apply the mask over test instances
for (k = 0; k < n_instances; ++k) {

_vim2K_fmuls (&te_base[k * training_features], mask, temp_test);

(
_vim2K fsubs (temp_train, temp_test, temp_test);
_vim2K fmuls (temp_test, temp_test, temp_test);
_vim2K_fcums (temp_test, &e_distancel[ed_idx++]);

// square root operation with x86 over partial Euclidean Distance array

for (i = 0; 1 < test_instances » training_instances; ++1i) {
e_distance[i] = sqgrt(e_distancel[il]);

// classify an instance

for (i = 0; 1 < test_instances *» training_instances; i +=
training_instances) {
get_ksmallest (&e_distance[i], tr_label, knn, k_neighbors);
classification (knn, k_neighbors);

32
33
34
35

86

APPENDIX H - KNN ALGORITHM WITH VIMA 8KB VECTOR

This case refers to the case with instances greater or equal to the VIMA vector.

#define VSIZE 2048

void euclidean_distance (char const xargv([]) {
int32_t i, Jj, k, ed_idx = 0;

// for instances greater or equal to VIMA vector size a mask 1s not
needed
for (i = 0; 1 < test_instances; ++1i) {

// read test instance
for (j = 0; j < n_vectors; ++j) {
_vim2K_fmovs (0.5, &te_base[] % VSIZE]);

// partial Euclidean Distance between training and test instances
for (j = 0; j < training_instances; ++7j) {
for (k = 0; k < n_vectors; ++k) {
_vim2K fsubs (&tr_base[(j * VSIZE * n_vectors) + (k * VSIZE)], &
te_basel[k x SIZE], temp_test);
_vim2K fmuls (temp_test, temp_test, temp_test);
_vim2K fcums (temp_test, &partial_suml[k]);
}

_vim2K_fcums (partial_sum, &e_distance[ed_idx++]);

// square root operation with x86 over partial Euclidean Distance array
for (i = 0; 1 < test_instances » training_instances; ++1i) {
e_distance[i] = sqgrt(e_distancel[il]);

// classify an instance

for (i = 0; 1 < test_instances *» training_instances; i +=
training_instances) {
get_ksmallest (&e_distance[i], tr_label, knn, k_neighbors);
classification (knn, k_neighbors);

87

APPENDIX I - MLP HIDDEN LAYER ALGORITHM WITH VIMA 8KB VECTOR

This case refers to the case with instances smaller than the VIMA vector.

_ v32f xhidden_layer_oper () {

// defines the set of weights
for (i = 0; 1 < weight_size; i += VSIZE) {
_vim2K_fmovs (1.0, weights);

// defines mask to isolate each instance
for (i = 0; 1 < features; ++i) {
mask[i] = 1.0;

// reads the instances and apply the mask over the instances
for (i = 0; 1 < instances; 1 += instance_size) {
_vim2K_fmovs (1.0, instance_vector);
for (j = 0; j < VSIZE; j += features) {
_vim2K_fmuls (&instance_vector[j], mask, temp_instance);

// calculates partial hidden layer activation values

for (k = 0; k < features/2; ++k) {
_vim2K fmuls (¢weights[(k % features)], mask, temp_weights);
_vim2K_fmuls (temp_instance, temp_weights, temp_weights);
_vim2K_fcums (temp_weights, &hidden_layer[h_idx++]);

// adds the bias
_vim2K_fmovs (1.0, bias);
for (i = 0; 1 < hidden_size; i += VSIZE) {
_vim2K_fadds (¢hidden_layer[i], bias, &hidden_layer[i]);

// applies ReLU
_vim2K fmovs (0.0, relu);
for (i = 0; 1 < hidden_size; i += VSIZE) {
_vim2K_fmaxs (¢hidden_layer[i], relu, &hidden_layer[il]);

20
21

2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

88

APPENDIX J - MLP HIDDEN LAYER ALGORITHM WITH VIMA 8KB VECTOR

This case refers to the case with instances greater or equal to the VIMA vector.

#define VSIZE 2048
__v32f xhidden_layer_oper () {

// defines the set of weights
for (i = 0; i < weight_size; i += VSIZE) {
_vim2K_fmovs (1.0, weights);

// reads an instance
for (i = 0; 1 < instances; ++1i) {
for (j = 0; j < n_vectors; ++j) {
_vim2K_fmovs (1.0, &instance_vector[j x VSIZE]);

// calculates partial hidden layer activation values
for (j = 0; J < features/2; ++3j) {
for (k = 0; k < n_vectors; ++k) {
vim2K fmuls (&instance_vector[k * VSIZE], &weights] (]
features) + (k x VSIZE)], temp_weights);
_vim2K fcums (temp_weights, &p_suml[k]);
}

_vim2K_fcums (p_sum, &hidden_layer[h_idx++]);

// adds the bias
_vim2K_fmovs (1.0, bias);
for (i = 0; 1 < hidden_size; i += VSIZE) {
_vim2K_fadds (&¢hidden_layer[i], bias, &hidden_layer([il]);

// apply ReLU with x86 operations

for (i = 0; i < hidden_size; ++i) {
if (hidden_layer[i] < 0.0)
hidden_layer([i] = 0.0;

*

© o N R W N =

APPENDIX K - CONVOLUTION ALGORITHM WITH VIMA 8KB VECTOR

89

#define VSIZE 2048
int main() {

// Initializes vectors A and B

for (i = 0; i < v_size; i += VSIZE) {
_vim2K fmovs (1, &vector_ali]);
_vim2K fmovs (0, &vector_bl[i]);
_vim2K_fmovs (1, &mull[il]);

// convolution operation with 9 cells

for (int i = dim_size; i1 + dim_size + VSIZE < v_size; 1 += VSIZE) {
_vim2K_fadds (&vector_b[i], &vector_al[i-dim_size-1], &vector_bl[i]l);
_vim2K fadds (&vector_b i-dim_size], &vector_b[il]);
_vim2K fadds (&vector_b i-dim_size+1], &vector_b[i]);
_vim2K fadds (&vector_b i-1], &vector_bl[i]);
_vim2K fadds (&vector_b i], &vector_b[i]);

([1], &vector_a

([

([

([
_vim2K_fadds (&vector_b]| i+1], &vector_bl[i]);

([

([

([

([

]

1, &vector_a
1, &vector_a
1, &vector_a
1, &vector_a
_vim2K_fadds (&vector_b[i] i+dim_size-1], &vector_b[i]);
_vim2K fadds (&vector_b[i] i+dim_size], &vector_b[i]);
_vim2K fadds (&vector_b[i], &vector_a[i+dim_size+l], &vector_bl[i]);
_vim2K_fmuls (&vector_b([i], &mul[i], &vector_b[i]);

, &vector_a
, &vector_a

— = o/ e e o

i
i
i
i
i
i
i
i
i
i

	Introduction
	Background
	Machine Learning
	Computing Performance
	Near-Data Processing
	Vector-in-Memory Architecture
	Intrinsics Libraries
	Ordinary Computing Simulator

	Related work using systematic mapping
	Systematic Mapping Methodology
	State-of-the-art
	NDP Approaches with Full Cores
	NDP Approaches with General-Purpose Cores
	NDP Approaches with Embedding Specific-Purpose Cores
	DRAM and PIM Approaches
	Conclusions on Related Work

	Machine Learning Code Portability
	Intrinsics-VIMA
	Overview: Machine Learning Kernels
	Convolution Basics
	k-Nearest Neighbors (KNN) Basics
	Multi-Layer Perceptron (MLP) Basics

	Code Portability: VIMA
	Convolution Migration
	k-Nearest Neighbors (KNN) Migration
	Multilayer Perceptron (MLP) Migration

	Experimental Evaluation of VIMA
	Methodology and Simulation Setup
	Best Conditions to Achieve High Performance
	k-Nearest Neighbors
	Multilayer Perceptron
	Convolution

	Execution Time Results
	Energy Results

	Final Considerations
	Conclusion
	REFERENCES
	APPENDIX A – Table of Intrinsics-VIMA instructions
	APPENDIX B – Table of Mapping Study
	APPENDIX C – kNN algorithm with AVX512
	APPENDIX D – MLP Hidden Layer algorithm with AVX512
	APPENDIX E – MLP Output Layer algorithm with AVX512
	APPENDIX F – Convolution algorithm with AVX512
	APPENDIX G – kNN algorithm with 8KB VIMA vector
	APPENDIX H – kNN algorithm with VIMA 8KB vector
	APPENDIX I – MLP hidden layer algorithm with VIMA 8KB vector
	APPENDIX J – MLP hidden layer algorithm with VIMA 8KB vector
	APPENDIX K – Convolution algorithm with VIMA 8KB vector

