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RESUMO

Os sistemas modernos de processamento de consultas foram projetados com base em

modelos de arquitetura centrados na computação. No entanto, o rápido crescimento de “big data”

intensificou o problema de movimentação de dados ao realizar o processamento analítco de

consultas: grandes quantidades de dados precisam passar pela memória até a CPU antes que

qualquer computação ocorra. Portanto, esses sistemas são afetados pela movimentação de dados

que degrada severamente o desempenho e exige muita energia durante a transferência de dados.

Estudos recentes sobre a carga de trabalho do Google mostraram que cerca de 63% de energia é

gasta em média na movimentação de dados. Para resolver esse problema oneroso, propomos

explorar as arquiteturas Processamento-em-Memória (PIM) que invertem o processamento de

dados tradicional, enviando a computação para a memória repercutindo no desempenho e na

eficiência energética.

Nesta tese, demonstramos empiricamente que a movimentação de dados exerce grande

influência nos sistemas de banco de dados atuais e identificamos os principais operadores de

consulta que são afetados. Apresentamos um estudo experimental sobre o processamento de

operadores de consulta SIMD (Single Instruction Multiple Data) em hardware PIM em compa-

ração com processadores x86 modernos (ou seja, usando as instruções AVX512). Discutimos

o tempo de execução e a diferença de eficiência energética entre essas arquiteturas. Este é o

primeiro estudo experimental, na comunidade de bancos de dados, a discutir as compensações

entre tempo de execução e consumo de energia entre PIM e x86 nos sistemas atuais de execução

de consultas: materializado, vetorizado e pipelined. Como resultado, nós introduzimos um

novo sistema híbrido de processamento de consultas PIM-x86 SIMD que incita novos desafios e

oportunidades. Além disso, também discutimos os resultados de um escalonador de consultas

híbridas ao intercalar a execução dos operadores de consultas SIMD entre o hardware de pro-

cessamento PIM e x86. Em nossos resultados, o plano de consulta híbrido reduziu o tempo de

execução em 45%. Também reduziu drasticamente o consumo de energia em mais de 2 vezes

em comparação com os planos de consulta específicos para cada hardware.

Palavras-chave: Execução de Consulta 1. Processamento em Memória 2. Escalonador de

Consulta Híbrido 3. Eficiência Energética 4.



ABSTRACT

Modern query execution systems have been designing upon compute-centric architecture

models. However, the rapid growth of “big-data” intensified the problems of data movement,

especially for processing analytic applications: Large amounts of data need to move through

the memory up to the CPU before any computation takes place. Therefore, analytic database

systems still pay for the data movement drawbacks that severely degrades performance and

requires much energy during data transferring. Recent studies on Google’s workload have shown

that almost 63% of energy, on average, is spent in data movement. To tackle this costly problem,

we propose to exploit the up-to-date Processing-in-Memory (PIM) architectures that invert the

traditional data processing by pushing computation to memory with an impact on performance

and energy efficiency.

In this thesis, we empirically demonstrate that data movement has an impact on today’s

database systems yet, and we identify the foremost query operators that undergo it. Therefore,

we present an experimental study on processing query Single Instruction Multiple Data (SIMD)

operators in PIM compared to the modern x86 processor (i.e., using AVX512 instructions). We

discuss the execution time and energy efficiency gap between those architectures. However,

this is the first experimental study, in the database community, to discuss the trade-offs of

execution time and energy consumption between PIM and x86 in the current query execution

models: materialized, vectorized, and pipelined. As a result, a new hybrid PIM-x86 SIMD query

execution system is introduced, bringing new challenges and opportunities. Besides, we also

discuss the results of a hybrid query scheduler when interleaving the execution of the SIMD

query operators between PIM and x86 processing hardware. In our results, the hybrid query plan

reduced the execution time by 45%. It also drastically reduced energy consumption by more

than 2× compared to hardware-specific query plans.

Keywords: Query Execution 1. Processing-in-Memory 2. Hybrid Query Scheduler 3. Energy

Efficiency 4.
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1 INTRODUCTION

Applications based on data analysis need to move large amounts of data between

memory and processing units to look for patterns. Computers have relied on this traditional

computing-centric processing since the introduction of the Von Neumann model, which detaches

the processor core from the main memory. In this model, data movement severely affects

performance and energy consumption. Recent studies show that data movement accounts for

around 63%, on average, of the total energy consumption and imposes high latencies [1, 2].

The relational Database Management System (DBMS) is the essential component in

modern computing environment to support the applications of data analysis. As defined by

Silberschatz et al. [3]: The DBMS is a collection of interrelated data and a set of programs

to access those data. In a DBMS, the query execution subsystem is the fundamental set of

programs to support the applications of data analysis. This subsystem interacts with almost every

component of a DBMS, like command compiler, concurrency control and recovery manager,

but essentially it fetches data from the database and moves this data into memory buffers

for processing. Modern DBMSs implement one of the following query execution models:

materialized, vectorized and pipelined. However, these query execution models have been

implemented only on computing-centric models [4]. The materialization query execution model

generates lots of intermediate data that move along the memory hierarchy to process all the

operators implemented by users in a query program [5, 6]. The vectorized query execution

model tries to exploit the caching mechanism and the CPU processing with a high interpretation

overhead of the query program [7, 8]. The pipelined query execution model uses the Just-In-Time

(JIT) compilation to fuse query operators of the same pipeline into a monolithic code fragment.

Although the authors of [9] call JIT as a data-centric compilation, the query execution is still

computing-centric by moving data to the CPU with many adaptations to make better use of the

CPU pipeline. In this thesis, we investigate the data-centric model to tackle the data movement

problem in query execution systems with logical units integrated closer to the data (inside

memory devices), which is called Processing-in-Memory (PIM) [10].

Database engineers have been evaluating PIM approaches with processing components

installed in magnetic disks [11, 12, 13], RAM [14], and more recently in flash disks [15, 16, 17].

However, commercial products have not been adopting those approaches for three main reasons:

1) Limitations of the hardware technology; 2) The continuous growth in CPU performance

complied to the Moore’s Law and Dennard scaling1; 3) The lack of a general programming

interface that leads to low abstraction level when handling hardware errors.

1The Dennard scaling has a parallel to Moore’s law in terms of energy consumption. In 1974, Robert H. Dennard

et al. postulated that transistor areas get smaller as their power density stays constant.
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Recently, PIM architectures came back to the spotlight due to the introduction of

Through-Silicon Vias (TSVs). The TSV enables the integration of DRAM dies and logic cells in

the same chip area, forming a 3D-stacked memory. Current commercial GPUs already embed

the emerging 3D-stacked memories, such as the Hybrid Memory Cube (HMC) [18] and the

High Bandwidth Memory (HBM) [19]. However, there has not been any in-depth study of query

execution on PIM with SIMD support.

1.1 THE PROBLEM

Modern query execution systems have relied on computing-centric architecture to

process database operators. They were designed to extract the best features of modern CPUs

(e.g., CPU pipeline and out-of-order instruction execution) and of the caching mechanism. The

major downside of those designs is the data movement throughout the memory hierarchy. Data

still need to be transferred from memory to the processor within the CPU, which severely

degrades performance and requires much energy during data transferring. For instance, in

Online Analytical Processing (OLAP), the data movement to validate filters in long-running

queries accounts for 40−80% of the execution time in resource stalls, memory stalls, and branch

mispredictions [20]. A recent study of the Google’s workloads [1] demonstrated that 62.7% of

the total system energy spent is due to data movement. This study also presents the potential of

PIM reducing around 55% of energy and execution time, on average.

In this thesis, we investigate the impact of data movement of query execution in modern

relational DBMS. Figure 1.1 presents the execution time and memory usage when executing

the 100 GB TPC-H data analysis benchmark [21] in the MonetDB [22] DBMS2. This result

highlights the data movement problem that we face in today’s DBMS.

Figure 1.1: The impact of data movement on MonetDB.

2The TPC-H is the standard query execution benchmark for data analysis. Further details of the experiment

design are presented in Chapter 5.
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We highlight the projection operator and include the other operators into the category

“others”. Just the projection operator is responsible for almost 55% of execution time. The pro-

jection operator takes the burden of tuple reconstruction and the materialization of intermediate

results with direct impact in data movement with more than 46% of the memory usage compared

to all the other query operators. These results are mainly caused by moving data throughout the

memory hierarchy. Notice that the other operators also move data around the memory hierarchy

as a direct impact of the computing-centric architecture design of the materialization query

execution system of MonetDB (also implemented in VoltDB). As we will show in this thesis, this

impact is not restricted to the materialized query execution as we also observed in all the other

query execution models: vectorized (e.g., SQLServer, VectorWise, Hyrise, DB2) and pipelined

(e.g., PostgreSQL, DB2, Oracle, MySQL, SQLite).

1.2 MOTIVATION

The recent trend of PIM promises to tackle the memory and energy wall problems

lurking in the data movement around the memory hierarchy. Naturally, we investigate the

performance of query operators running on modern PIM as a kickoff to unravel potential

advantages and drawbacks. For instance, we evaluated the projection operator and a naive

implementation of the join operator (i.e., the Nested Loop Join (NLJ)) in Chapter 7. The

preliminary results show distinct performances for both operators. While the projection operator

reaches a significant improvement on PIM (almost 6× faster than the x86 processor), the NLJ

has an intricate result with better performances on x86 processing.

Those preliminary results point out that the decision to execute database operators on

PIM is not trivial. The traditional x86 computing-centric model still has beneficial properties,

and there are several opportunities for energy savings with PIM execution. Also, the query

execution systems have many operators with a myriad of algorithm implementations. Besides,

dataset characteristics (e.g., size and cardinality) shall interfere with the performance of the

database operators on each architecture. In this thesis, we investigate how modern DBMS can

embrace PIM in query execution.

1.3 HYPOTHESIS

To alleviate the data movement problem on modern database systems, we formulate the

following hypothesis:

New PIM devices shall mitigate the data movement in Query Execution System,
and thus reduce execution time and energy consumption.
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1.4 CONTRIBUTIONS

This thesis reveals the importance of rethinking the query execution systems for emer-

gent PIM architectures. We rely on our hypothesis to investigate the following research questions

with the specific contributions listed:

1. What is the potential reduction in data movement that PIM devices can provide on query

execution systems?

• We present an investigation of near-data processing approaches on memory devices

(e.g., hard disks, flash disks, and main memory). Our goal is to extract some

learning of how query execution systems were evaluated over the years (Chapter 3).

• We explore the selection operator (for its simplicity and relevance) using current

PIM capabilities (Chapter 4).

This work is completed and was published in ADMS@VLDB2018 [23].

2. Which is the most relevant group of query operators to evaluate on PIM?

• We present a study of the most time and memory consuming database operators on

MonetDB (Chapter 5).

• We detail the implementation of query operators on PIM hardware with SIMD

support (Chapter 6).

• We design a new SIMD sorting algorithm to take advantage of SIMD capabilities

on x86 (using AVX512 extensions) and PIM devices (Chapter 6).

This work is completed and was published in PVLDB2019 [24].

3. What are the relevant characteristics that impact the decision between PIM and x86

processing?

• We present a comprehensive performance analysis of the query operators on modern

PIM hardware and the traditional x86-style processing regarding the effect of data

movement around memory (Chapter 7).

• We distinguish the trade-offs to process each SIMD operator on top of the material-

ized, vectorized, and pipelined query execution models (Chapter 7).

This work is completed and was published in PVLDB2019 [24].

4. How can DBMSs coordinate intra-query execution between the CPU and PIM to exploit

the potential benefits of each architecture?

• We propose a classification method based on operator profiles to decide in which

architecture to process each operator (Chapter 8).
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• We design a PIM-aware query scheduler to exploit the potential of hybrid schedul-

ing of database operators, which interleaves the execution between PIM and x86

processing (Chapter 8).

• We provide heuristics to build a hybrid query plan and discuss the experimental

results. Our hybrid scheduler reduced execution time by 35% and 45% when

compared to PIM and x86 hardware-specific query plans, respectively. The hybrid

scheduler reduced energy consumption by more than 2× compared to the traditional

x86 processor (Chapter 8).

• We introduce a new hybrid PIM-x86 SIMD query execution system that brings new

challenges and opportunities (Chapter 8).

This work is completed and was published in PhD@VLDB2018 [25], SBBD2019 [26],

and DEXA2019 [27].

1.5 ORGANIZATION

The remainder of this thesis is organized as follows. Chapter 2 presents an overview of

the architecture of DBMSs and the main query execution models. Chapter 3 presents related

work on near-data processing in memory devices. Chapter 4 gives an overview of the new

PIM architectures. Chapter 5 delivers our experiment design and introduces the simulator used

to evaluate the baseline PIM architecture. Chapter 6 details the SIMD instructions used in

the implementation of the database operators. Chapter 7 presents results and analysis of the

execution of operators on PIM and x86 architectures. We also evaluate the performance and

energy consumption of the distinct query execution model. Chapter 8 introduces the hybrid

PIM-x86 SIMD query execution system with results for a hybrid PIM-x86 query scheduler.

Chapter 9 discusses the main conclusions of this thesis.
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2 DATABASE FOUNDATIONS

In this chapter, we present the foundations of relational databases and detail the modules

in which this thesis takes place. A relational database is a collection of related data stored in

tabular data structures corresponding to real-world entities (or rows) and their attributes (or

columns). There is a distinction between the logical and physical representation of database

tables, called “Data Independence”1. At a logical level, we are concerned with the conceptual

schema of an application and user views. At a physical level, database tables need to be

mapped onto one dimensional structures before being stored: rows-by-rows (or row-store) and/or

column-by-column (or column-store). Although this thesis focuses on the physical level, more

specifically on how to retrieve relational data from modern memory hardware, we need to discuss

the fundamental relational operations that come from the model designed at the logical level.

The DBMS is a collection of programs that enables the distinction between logical

and physical levels, and provides a way to store and retrieve database information [28]. We

begin with an overview of the “Three-schema arquiteture” of DBMS that separates the logical

and physical database levels, depicted by Figure 2.1. On the left, there is a schema in three

layers: the external, the conceptual, and the internal levels. On the right, the diagram shows the

main components of a DBMS. The external interface (e.g., Structured Query Language (SQL))

receives commands for data recovery and the SQL Interpreter transforms them to an internal

representation. The Query Evaluator generates candidate query plans and chooses one to be

executed. During query execution, the Data Access module manages the data access recovering

data from internal structures in the Database layer.

Figure 2.1: A general architecture of a DBMS [28, 29].

1“Data Independence” is also defined by [28] as the capacity to change the schema at one level of a database
system without having to change the schema at the next higher level.
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Now, we briefly describe the execution of SQL queries in the DBMS. Further details in

the execution of queries are left to the sections of query execution models. Query processing

starts with the submission of an SQL query to the DBMS. The SQL Interpreter validates the

query in lexical, syntactic, and semantic aspects. After the query validation, the Query Evaluator

generates logical query plans based on the relational algebra. The Plan Optimizer chooses the

best-estimated plan to be executed and transforms the logical plan into a physical execution plan.

The physical plan consists of primitives (functions and algorithms) and dataset information (e.g.,

indexes, files, and columns) needed to run the plan. Figure 2.2 presents an SQL query and its

corresponding query plan from the relational algebra.

Figure 2.2: An SQL query and its corresponding query plan.

The Plan Executor processes the query from the physical plan. The query scheduler

(within the Plan Executor) orchestrates the execution of primitives, ordering them, selecting

the input dataset, storing intermediate data, and synchronizing the execution among primitives.

During the physical plan execution, the scheduler communicates with the Data Access layer,

consulting the Buffer Manager and File Manager components. The Buffer Manager contains

information about the pages in memory and their addresses. When needed to access data in

secondary memory, the File Manager is responsible for that extraction.

As our thesis investigate the execution of queries to retrieve relational data stored in

modern PIM hardware, in the next sections, we next expose the relational model, the operators

of the relational algebra, and the distinct storage layouts. We finish with the query execution

models.

2.1 RELATIONAL MODEL

The relational model proposed by Edgar F. Codd [30] represents databases as a set

of relations, which is the conceptual schema of Figure 2.1 and the internal level are the data

structures to store the relations. A relation is abstracted to a table and the columns to attributes

of the relation. Thereby, a row in the table is a colection of values that can represent an instance

of a relation or a relationship.
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Formally in the relational model, a row is called a tuple (t), a column is an attribute

(A), and a table is defined as a relation (R). Each attribute belongs to an specific domain (D),

commonly assigned to a data type.

A schema of the relation R is denoted by R(A1,A2, ...,An), such that R is the name of

the relation followed by a list of attributes A1,A2, ...,An. Each attribute Ai has a defined domain

as dom(Ai).

An instance r from the schema R(A1,A2, ...,An) is denoted by r(R), which is a state of

the schema. r(R) is comprised by a set of tuples r = {t1, t2, ..., tm} and the quantity of tuples is

defined as |R|. A tuple consists of a sequential list of n values t = {< v1,v2, ...,vn >}, each value

vi belongs to dom(Ai). The i-th value (Ai) of a tuple is denoted as t.Ai or t[i].

For example, let us consider the entity Person with four attributes: ID, Name, Phone,

and City. The relational schema for that entity is Person(ID,Name,Phone,City), which contains

the name of the relation (Person) and the four attributes. An instance of this schema with four

tuples is represented bellow:

r ={< 0, Pedro, 88888888, Curitiba >, (2.1)

< 1, Tiago, 77777777, Brasilia >, (2.2)

< 3, Joo, 66666666, Curitiba >, (2.3)

< 4, Mateus, 55555555, Curitiba >} (2.4)

Figure 2.3 illustrates that relation schema. Considering the tuple t1 =< 0, Pedro, 8888-

8888, Curitiba >, to access the fourth value (A4): t1.A4 ≡ t1[4] =Curitiba.

Figure 2.3: The entity Person and an instance of its respective relational schema.

2.2 RELATIONAL ALGEBRA

The relational algebra is a formal language for retrieving data from the relational

model, which consists of a basic set of operations that allows the user to specify queries using

expressions. An operation produces a new relation as an entry to another one. A chain of

operations in relational algebra forms an expression in which the output is also a new relation.

Although the expression is unique, other ones can generate the same resulting relation, i.e., there
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are many options to reach the same result. Based on this principle, DBMSs create different query

plans to optimize data recovery.

The relational algebra is based on the set theory, since each relation is defined as a

set of tuples (r = {t1, t2, ..., tm}). Consequently, it has the following operations inherited from

set theory: union, intersection, difference set, and cartesian product. Other operations were

also added to relational databases, such as selection, projection, and join. These operations are

associated with operators in SQL queries.

2.2.1 Selection Operation

In relational algebra, the selection operation (σ<p> (R)) selects a subset of the original

relation (R) according to a condition. The resulting subset is a new relationship with the number

of tuples |σ<p> (R)| ≤ |R|. The selection condition is also known as a predicate (<p>) that is a

boolean expression [28] composed by clauses of the form:

• <attribute name> <operator of comparison> <constant value>, or

• <attribute name> <operator of comparison> <attribute name>

Such that <attribute name> is an attribute of R, <operator of comparison> is one of

the operators:{=,<,≤,>,≥, �=} and <constant value> is a constant belonging to the domain of

the attribute. Boolean operators (e.g., AND, OR, and NOT) connect multiple predicates to form

a generic selection condition.

The following is an example of applying the selection operation on the relational

schema of Figure 2.3 and the selection condition filters the PERSON whose name is Tiago.

Code 2.1 presents that selection operation, which corresponds to the WHERE clause of the SQL

in Code 2.2.

1

2 σName=Tiago (Person)

Listing 2.1: Example of Selection.

1 SELECT *

2 FROM Person

3 WHERE Name = "Tiago"

Listing 2.2: Selection in a SQL query.

It is important to note that selection is a commutative operation, i.e.:

σ<p1> (σ<p2> (R)) = σ<p2> (σ<p1> (R))

Therefore, multiple selections on the same relation shall be grouped into a single

operation and the predicates combined through the conjunction operator (AND), such that:

σ<p1> (σ<p2> (... (σ<pn> (R)...) = σ<p1>AND<p2>AND...<pn> (R)
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2.2.2 Projection Operation

The projection operation of the relational algebra picks a subset of attributes from a

relation (R), forming a new relation with only those attributes and their values. This operation

corresponds to the following general form:

Π<attribute list> (R)

Π is the symbol to denote the projection operator, <attribute list> is a subset of attributes

contained in R. Code 2.3 presents an example of the projection operation, which corresponds to

the SELECT command in SQL, as exemplified by Code 2.4. This is an example of applying

the projection operation to the relational schema of Figure 2.3, where the names and cities are

projected from the relation Person.

1

2 ΠName,City (Person)

Listing 2.3: Example of Projectin.

1 SELECT Name, City
2 FROM Person

Listing 2.4: Projection in a SQL query.

Multiple projection operations on the same relation can be abbreviated, once the attribute

list of one projection is contained in another one, i.e.:

Π<list1> (Π<list2> (R)) = Π<list1> (R), if and only if, <list2> ⊆ <list1>

Usually, the selection and projection operations occur together in expressions of the

relational algebra and SQL queries, as exemplified in Codes 2.5 and 2.6. In addition, it is

possible to perform some aggregations together with projections, such as MIN, MAX, SUM,

AVG, COUNT, arithmetic operations (+,−,∗,/) etc.

1

2 ΠName,City (σName=Tiago (Person))

Listing 2.5: Example of Projection and Seletion

together.

1 SELECT Name, City
2 FROM Person

3 WHERE name = "Tiago"

Listing 2.6: Projection and Selection in a SQL query.

2.2.3 Join Operation

Join is a binary operation that combines tuples of two relations into a single one. It

establishes the relationship between relations by comparing the join attributes and generating a

set of tuples that match these attributes.

The general formula to join two relations R(A1,A2, ...,An) and S(B1,B2, ...,Bm) is:

R ��< join condition> S
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The result of the join operation is a new relation Q with the tuples that satisfy the

join condition. The tuples of this relation are formed by the concatenation of tuples in R and

S, Q(A1,A2, ...,An,B1,B2, ...,Bm), in this order, such that Q contains n + m attributes. When

performing the join operation, as the join condition is satisfied, the tuple of R is matched with

the corresponding tuple in S. Multiple join conditions are connected through conjunctions:

<condition1> AND <condition2> AND ... AND <conditionN>, a condition is a predicate of

the form Ai θ B j, such that Ai is an attribute of R and B j is an attribute of S, and θ is an of the

comparison operators: {<, ≤, >, ≥, =, �=}.

To exemplify this operation, let us consider the relation Employee (Person_ID, Salary)

that contains employee information for a company, which relates to the Person relation. Code 2.7

and Code 2.8 present the join expression and the SQL query, respectively. Table 2.1 exemplifies

the result of the operation.

1

2 Person ��ID = ID_Person Employee

Listing 2.7: Example of Join.

1 SELECT *

2 FROM Person JOIN Employee
3 ON ID=ID_Person

Listing 2.8: Join in a SQL query.

ID Name Phone City ID_Person Salary

0 Pedro 8888-8888 Curitiba 0 $2.000,00

1 Tiago 7777-7777 Brasília 1 $15.000,00

2 João 6666-6666 Curitiba 2 $5.000,00

3 Mateus 5555-5555 Curitiba 3 $3.500,00

Table 2.1: The join of the relations Person and Employee.

2.3 STORAGE LAYOUT

The storage layout is a fundamental component of a DBMS (within the DataBase layer,

see Figure 2.1). Studies [31] have pointed out that the way data are arranged directly influences

the query processing. In a nutshell, a table can be stored by its rows or columns. The row-store

layout (also called linear or row-by-row layout) stores rows contiguously in the data files. This

means that a row is entirely stored in a file and read from a file. The column-store layout (also

called columnar or column-by-column layout) stores columns contiguously in the data files. This

means that a row is partitioned by its columns that are entirely stored in a file and read from a

file.

Figure 2.4 depicts the row-store and column-store layouts. To access two columns, e.g.,

columns Col1 and Col3, a column-store system straight load the required columns from memory

(the dashed lines in Figure 2.4(b) may represent a file or a data structure with each column

stored separately). At the same time, a row-oriented system has to load the full row with many

useless columns (the dashed lines in Figure 2.4(a)), wasting memory throughput. As observed in
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Figure 2.4 and demonstrated by Abadi D. et al. [32] the row-store layout is suitable for Online

Analytical Processing (OLTP) workloads, because transactions are written to disk without any

row partitioning with low input/output operation overhead. In contrast, the column-store needs

to partition each column from a row to different data structures with high input/output operation

overhead. However, the columnar layout is suitable for OLAP, because complex queries fetch

from disk only the required columns without wasting memory throughput. Although we briefly

describe both storage layouts in the following sections, this thesis focuses on the column-store

that is the layout of choice of large-scale OLAP applications of contemporary BigData systems.

(a) Row layout.

(b) Column layout.

Figure 2.4: Row vs. Columnar layout. The arrows show the data access orientation, and the dashed blue lines depict

the access to two columns on both layouts.

2.3.1 Row-Store Layout

The row-store layout in the relational model is defined as follow:

Linear → r = (t1, t2, ..., tm), r is an instance of a relation and ti is a tuple with n values:

ti =< v1 ⇒ v2 ⇒ ... ⇒ vn >, such that v j ⇒ v j+1 means that the values of a tuple are stored

continuously (adjacent), ∀ j | 1 < j < n. Therefore, the j-th value of a tuple is accessed by r.ti[ j]

and, consequently, the next value r.ti[ j+1] will be adjacent in memory.

The DBMS applies the N-ary Storage Model (NSM) [33] for physical storage, which

divides the relation (table) into blocks, storing row-by-row. Thus each row contains all its

columns (values) contiguously arranged in memory.
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This arrangement requires a few memory operations to read an entire tuple from memory,

case |ti| is less than or equal to one cache line, all values of a tuple will be on the same cache

line. As the values of a tuple (see Section 2.1) represent an instance of an entity, the row-store

layout has proven conducive to workloads that require information at the entity granularity.

Therefore, row-oriented systems can fetch all information of an entity, update and even remove

it efficiently using a few read and/or write memory operations. This behavior is characteristic

of OLTP workloads.

Let us consider the SQL Code 2.9 that selects the information of the Person which

ID is 1. In the row-store layout, just a single memory read operation is enough to obtain all

information to that person, as Figure 2.5 depicts on the dashed line.

1

2 SELECT * FROM Person WHERE ID = 1

Listing 2.9: A OLTP query.
Figure 2.5: OLTP query on the row-store layout.

On the other hand, the row-store layout is not suitable for OLAP workloads. Analytics

queries require to access a few columns. Using that layout, however, many memory operations are

wasted when accessing useless columns for the query, augmenting data movement. Considering

the OLAP query in the left side of Figure 2.6, it selects the tuples in which the City column is

equal to “Curitiba” and computes the total. This query reads all the columns of the table (see

Figure 2.6, dashed lines), loading into the memory hierarchy the unneeded columns: ID, Name,

and Phone, but the query just requires the City column.

2.3.2 Colum-Store Layout

The column-store layout in the relational model is defined as follow:

Columnar → r = (t1, t2, ..., tm), r is an instance of a relation and ti is a tuple with n

values: ti =< v1 ⇐⇒ v2 ⇐⇒ ... ⇐⇒ vn >, such that v j ⇐⇒ v j+1 means that the values of a

tuple are not stored continuously (adjacent) in memory, ∀ j | 1 < j < n. In contrast, values from

the same column are stored contiguously, i.e., ti[ j]⇒ ti+1[ j], ∀ ti | 1 < i < m.

Therefore, we define a relation instance in the columnar layout as follow:

Columnar → r = (C1,C2, ...,Cn), n is the degree of the relation, a Ci is a column that

contains all values for the attribute Ai. The columns are stored separately, values within the same

column are adjacent and arrange according with the order of its tuples. The i-th value of a tuple

t j is accessed by Ci[ j], such that Ci[ j]⇒Ci[ j+1] are coalescing values, ∀ j | 1 < j < m. Thus,

the j-th tuple is defined as t j = (C1[ j],C2[ j], ...,Cn[ j]).

The columnar layout is inspired on the Decomposition Storage Model (DSM) [34],

which vertically partitions the tables, then each column is stored separately, as depicted in
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SELECT count(*)
FROM Person
WHERE
  City='Curitiba'

Count: 3

Figure 2.6: OLAP query on the row-store layout.

Figure 2.4(b). Thefore, OLAP queries take advantages of this layout by loading from memory

only the required columns. Figure 2.7 illustrates the behavior of OLAP queries on the columnar

layout, then just the column City is load from memory, saving memory throughput and energy.
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Figure 2.7: OLAP query on the columnar layout.
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2.4 QUERY EXECUTION MODELS

This section introduces the current query execution models implemented as the query

execution subsystem in modern DBMSs. In [35], Daniel J. Abadi describes four main properties

of OLAP workloads that can be used to guide the implementation of a query execution system.

They are: (1) unpredictable, OLAP queries tend to be more exploratory in nature rather than

defined to specific business tasks, as transactions; (2) longer lasting, OLAP queries may execute

in hours moving large volumes of data in contrast to transactions that are expected to execute in

milliseconds with small amount of data; (3) read-mostly, OLAP queries are more Read-Oriented

than Write-Oriented. Typically, only batch writes are executed in OLAP databases; and (4)

attribute focused, OLAP queries are meant to process summaries of lots of entities (or rows).

In this case, summaries aggregate records of a few number of columns.

Next, we describe the Volcano query execution model, followed by the materialization,

vectorized, and pipelined model.

2.4.1 The Volcano Query Execution Model

Most of the query execution systems have relied on the iterator model implemented

in the Volcano system [36], like in PostgreSQL, MySQL and SQLite DBMSs. In this model,

operators in a query plan exchange tuples through a standard iterator interface with the open,

next, and close procedures in a producer and consumer design way, also called tuple-at-a-time

processing. This interface isolates the operators, and thus each one manages all issues of control,

internally.

Figure 2.8 shows the iteration model in the execution of a query (see Listing 2.10).

Each operator in a query tree emits tuples to the next operator, which consumes a tuple through

the invocation of the next procedure. Coalescing operators in a query tree exchange data (tuples)

through a shared buffer (queue), the producer operator pushes data into the buffer for a pull

consumer. The DBMS uses a semaphore to synchronize such exchanging. In OLAP, the Volcano-

like tuple-at-a-time execution incurs in a high runtime interpretation overhead and waste of

memory throughput by loading the entire tuple, even useless columns [37, 32].

Listing 2.10: Simple SQL query statement with two projections and one selection operations.

1 SELECT

2 R.ID, R.name

3 FROM

4 R

5 WHERE

6 R.city = ’Curitiba’;
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Figure 2.8: Volcano iterator model to the left and the query execution tree to the right (i.e. query plan).

2.4.2 The Materialization Query Execution Model

The volcano-style systems have many downsides for query processing when modern

DBMS implement the column-store layout for OLAP (see [32] for a detailed discussion). An

alternative is the materialization query execution model implemented by the MonetDB [38] and

C-Store [39, 40] DBMSs. The materialization query execution is designed to benefit from the

column-store layout and consequently favor OLAP workloads. This model performs column-

at-a-time processing as it only moves the required columns around memory to execute a query

saving a great deal of memory throughput.

Although modern column-oriented DBMS improve the execution of analytic queries,

they undergo the tuple reconstruction problem [41]. Every time a given column is fetched, these

systems must perform a tuple reconstruction action based on a temporary data structure (which is

the result of a previous operator in a query plan). The pro jection and pro jectionpath physical

operators take the burden of the tuple reconstruction or the materialization of intermediate results.

They are invoked multiple times within a query plan, e.g., case a query requires N columns, at

least N−1 projections have to be performed. Therefore, they implement the following temporary

data structures to hold intermediate results: selection vector, position vector, and bitmap.

The execution model processes each query operator to completion over its entire

input data in a column-at-a-time manner. One operator finishes before any invocation of a

subsequent data-dependent operator. Also, it demands the late materialization strategy to delay

the reconstruction of tuples until it is necessary to continue executing the query [6].

To demonstrate how the materialization query execution model operates, we run a

small piece of the TPC-H Query 03 in MonetDB, see Listing 2.11. This piece implements five

filter predicates (WHERE clause) from three different tables (customer, orders, and lineitem)

to project the l_discount column.
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Listing 2.11: Small piece of the TPC-H Query 03.

1 SELECT

2 l_discount

3 FROM

4 customer,

5 orders,

6 lineitem

7 WHERE

8 c_mktsegment = ’BUILDING’

9 and c_custkey = o_custkey

10 and l_orderkey = o_orderkey

11 and o_orderdate < date ’1995-03-15’

12 and l_shipdate > date ’1995-03-15’

We enabled the SQL trace statement of MonetDB on the query to record every prim-

itive of MonetDB Assembly Language (MAL). Figure 2.9 presents a top-down diagram of

the execution plan from that query and highlights the projection operators (pro jection and

pro jectionpath). The query plan optimizer pushes down the selections to filter tree columns:

c_mktsegment, o_orderdate, and l_shipdate. Each selection operator emits as output a Binary

Association Table (BAT) [42] of OIDs2, i.e., a selection vector with the positions that matched

the filter predicates as exemplified by Listing 2.12, which applies the branch boolean calculation

technique to avoid branch misprediction [43].

Listing 2.12: Selection code example.

1 void select(int n, int *col, int filter, int *res) {

2 for (size_t i,j=0; i < n; ++i) {

3 /* boolean calculation, branchless code */

4 bool b = test_filter(col[i], filter);

5 j += b;

6 res[j] = i; }

7 }

Projections use those intermediate selection vectors to materialize the join columns:

c_custkey, o_custkey, and l_orderkey, i.e., they filter an input column based on the selection

vector, for instance, the Listing 2.13.

Listing 2.13: Projection code example.

1 void projection(int n, int *sel_vec, int *col, int *res) {

2 for (int i=0; i < n; ++i) {

3 int pos = sel_vec[i];

4 res[i] = col[pos]; }

5 }

2OID is the object ID, i.e., it is an ID number assigned to a certain position in the table.
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The query plan, in some points, requires to materialize columns that depend on two

or more position vectors. In these points, the pro jectionpath primitive is invoked to glue

distinct position vectors and then to project a target column. For instance, in Figure 2.9, two

pro jectionpath primitives join position vectors generated by selection and join operators. The

first one glues two position vectors: the one generated by the selection on column o_orderdate

and another from the join of the custkeys (c_custkey and o_custkey). It traverses the vectors

to project the mapped values from the column o_orderkey. Listing 2.14 exemplifies as the

pro jectionpath behaves. Firstly, it traverses the small position vector, e.g., pos_vec1, and uses it

to filter the second one (pos_vec2), then only the filtered values are materialized from the target

column.

Listing 2.14: Projectionpath code example.

1 void projectionpath(int n, int *col, int *pos_vec1,

2 int *pos_vec2, int *res) {

3 for (size_t i=0; i < n; ++i) {

4 int pos1 = pos_vec1[i];

5 int filter_pos = pos_vec2[pos1];

6 res[i] = col[filter_pos]; }

7 }

The diagram in Figure 2.9 illustrates the interaction of database operators in a query plan.

Furthermore, it discloses details of how tuple reconstruction materializes within a materialization

query execution model, and thus the relevance of the projection operations on it. Although

these systems mitigate data movement by processing column-at-a-time and avoiding memory

throughput waste such as in row-oriented systems, they have to maintain several intermediate

data structures (e.g., selection vector or bitmap) in memory. Moreover, they materialize many

intermediate columns during query execution.

2.4.3 The Vectorized Query Execution Model

The vectorized query execution model tries to avoid some pitfalls of the Volcano-

like iterator model. The tuple-at-a-time execution of Volcano-style causes high interpretation

overhead and inhibits compilers to exploit CPU parallelism, leading DBMSs to low Instructions

per Cycle (IPC), e.g., IPC of 0.7 [8].

The Volcano iterator model allows high cohesion and low coupling by encapsulating

database operators. However, it performs pipelined processing among database operations

using the tuple-at-a-time execution: Every database primitive3 is called multiple times during a

query execution at a tuple granularity. It means that one singular operation (e.g., an arithmetic

operation) is invoked for every singular value that it should process.

3A database primitive is one physical compiled function/routine that the DBMS calls during the query execution.
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Figure 2.9: Top-down diagram of a partial execution of the TPC-H Query 03 on MonetDB.

Considering, for instance, the sum expression: +(double src1, double src1) : double,

which sum two double values, in which src1 could be a value from one column and src2 either a

value from another column or one constant value. The assembly-like code would look like:
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Listing 2.15: Sum of two double values in an assembly-like code.

LOAD src1, reg1

LOAD src2, reg2

ADD reg1, reg2, reg3

STORE dst, reg3

The pitfalls of this code are the inherent data hazards (data dependence): one between

the LOADs and the ADD instruction and another between the ADD and STORE. In the first one,

the ADD instruction must wait for the completion of the LOADs to continue the CPU pipeline.

The STORE instruction depends on the result of the addition to save it into the memory. Without

those dependencies, a MIPS [44] processor with only one pipeline should have an IPC of 1 (one

instruction per cycle). However, the CPU must add at least two “STALL”4 instructions into the

pipeline to delay the execution of the ADD and another before the STORE instruction, leading

to an IPC of 0.66 (0.66 = 4/6: 4 useful instructions (LOADs, ADD, and STORE) divided by

the total of instructions (useful instructions plus STALLs)). This is a clear decline in CPU

performance that applications must be aware.

At the same time, compilers easily solve data dependencies by putting more instruc-

tions into the pipeline, i.e., they apply the loop pipelining/loop unrolling technique. However,

primitives in legacy DBMS compute only one operation per call, which prevents compilers to

perform the loop pipelining.

The consequences of tuple-at-a-time processing are twofold: 1) Database primitives

perform one operation per call, precluding compilers to make a pipelined loop; 2) The high cost

of primitive call for every single operation.

Those drawbacks lead to the vector processing of database primitives introduced in

MonetDB/X100 [7], which later let to the Vectorwise spin-off [45, 46] and many other DBMSs,

including SQLServer [47] and DB2 BLU [48]. These DBMSs conceive the vectorized processing

query system. They yet employ the Volcano-like pipelined processing, but instead of tuple-at-a-

time execution, they operate at the granularity of vectors. These vectors have a small size (e.g.,

1024 values) to fit into the caches, and thus database primitives should be cache-conscious by

processing large datasets in cache-chunk fragments. Vectorized primitives allow compilers to

generate efficient loop-pipelined code.

Let us consider the simplified version of TPC-H Query 01, in Listing 2.16. This query

filters the column l_shipdate and generates a selection vector, then it applies a subtraction on

column l_discount, and right after a multiplication with column l_extended price, the result

(sum_disc_price) is aggregated based on the l_return f lag column.

4STALL is an useless instruction to delay the execution of the pipeline until a certain value is ready, it is also

called a bubble or NOP (“no operation”) instruction.
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Listing 2.16: Simplified version of TPC-H Query 01.

1 SELECT

2 l_returnflag,

3 sum(l_extendedprice * (1 - l_discount)) as sum_disc_price

4 FROM

5 lineitem

6 WHERE

7 l_shipdate < date(’1998-09-03’)

8 GROUP BY

9 l_returnflag

The diagram in Figure 2.10 presents the plan execution of Query 01. Every database

primitives process a vector-at-a-time. The scan operator, at the bottom of Figure 2.10, emits

vector chunks to be processed by the selection operator, which generates a selection vector. Then,

there are two projections with arithmetic expressions that apply the selection vector to filter

the target columns and perform the subtraction or multiplication operations. The aggregation

operator reads the group column (l_return f lag), filtering it with the selection vector, calculates

the hash address to load the Hash Table (HT) entries, and updates the aggregation values with

the results of the projection expressions. Note that only the target columns are scanned when

strictly needed, during query execution intermediate data (e.g., selection vector and the result of

projections) are kept as long as possible in caches.

Listing 2.17 brings the projection expression to multiple float vectors from two columns

(e.g., col1 and col2) in a loop-fashion. It filters the columns using a selection vector and stores

the result into a separate vector, which shall be processed for the next operators in a query plan.

Listing 2.17: A map database primitive that projects two columns based on a selection vector and multiples those

columns, it also stores the result in another vector [8].

1 void map_mult_float_col_float_col(

2 int n,

3 float*__restrict__ res,

4 float*__restrict__ col1,

5 float*__restrict__ col2,

6 int*__restrict__ sel_vec

7 )

8 {

9 for(int j=0; j<n; ++j) {

10 int i = sel_vec[j];

11 res[i] = col1[i] * col2[i];

12 }

13 }

Vectorized primitives, like the one presented in Listing 2.17, enable the compiler to

unroll the loop and thus find instructions to go into different pipelines, and also allow the out-

of-order execution technique. With loop pipelining is also possible to solve data dependencies

among instructions like the ones exposed in Listing 2.15.
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Figure 2.10: Top-down diagram of a simplified version of TPC-H Query 01 on MonetDB/X100 [8].

To demonstrate how the loop pipelining would be applied, we present Listing 2.18.

This listing depicts the sum expression of Listing 2.15 unrolled 4× by the compiler using loop

pipelining. Note that we considered the input sources as vectors of doubles. The compiler

successively unrolls the LOAD instructions that are followed by four ADD instructions. The

first ADD (line 11) occurs six instructions after starting the LOADs (lines 2 and 3) of its two

operands, and the corresponding STORE (line 16) starts three instructions later. The intervals of

instructions among the dependent ones circumvent data hazards and boost CPU performance.

Listing 2.18: Loop pipelining with loop unroll depth of 4x applied to the sum expression: +(double src1, double
src1) : double.

1 // unrolling the LOAD instructions

2 LOAD src1 +0, reg1

3 LOAD src2 +0, reg2

4 LOAD src1 +4, reg4

5 LOAD src2 +4, reg5

6 LOAD src1 +8, reg7
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7 LOAD src2 +8, reg8

8 LOAD src1 +12, reg10

9 LOAD src2 +12, reg11

10 // unrolling the ADD instructions

11 ADD reg1, reg2, reg3

12 ADD reg4, reg5, reg6

13 ADD reg7, reg8, reg9

14 ADD reg10, reg11, reg12

15 // unrolling the STORE instructions

16 STORE dst +0, reg3

17 STORE dst +4, reg6

18 STORE dst +8, reg9

19 STORE dst +12, reg12

The main proposal of vectorized query execution model is to exploit CPU parallelism

by allowing compilers to apply critical optimization techniques. The vector-at-a-time execution

provides many instructions for loop pipelining that can solve data hazards, take advantage of

multiple pipelines, and the out-of-order execution technique that modern processors support.

Moreover, another indirect beneficial effect is a better usage of the caching mechanism, as the

vectors are cache chunks that inhibit the wasting of memory throughput. Although all these

effects mitigate the memory movement problem, it arises again when vectors start to exceed

CPU caches, causing extra memory traffic.

2.4.4 The Pipelined Query Execution Model

While processing a query, the DBMS translates it into an expression of the relational

algebra, and then evaluates every piece (i.e., the operators) of such expression to produce the

query answer, such as in the Volcano-like iterator model. The major benefit of that is pipeline

data, i.e., an operator can emit data to the next one without copying or materialize the data. The

vectorized execution, albeit mitigates the high cost of function calls and favors CPU parallelism

by enabling loop pipelining, disables the pipeline data of the iterator model: It breaks the

operations into pre-compiled primitives that have to materialize the output at a vector-at-a-time

fashion.

On the other hand, the pipelined query execution model proposes a new paradigm for

data-centric processing [49] (the other approaches are operator-centric). The main goal is to keep

data into CPU registers as long as possible, handling operator boundaries. A pipelined system

operates on a push-based processing model, which means that data is pushed towards operators

instead of pulling into them, resulting in a better data locality. To that end, JIT compilation is

applied to generate optimized code at runtime, thanks to the Low Level Virtual Machine (LLVM)

compiler framework [50]. Then, a single tuple can go through the entire query pipeline without

materializing the intermediate results.
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Thomas Neumann [49] introduced the definition of pipeline-breaker: In the query

execution plan, a pipeline breaker is a whenever point where an algebraic operator has to evict

an incoming tuple out the CPU registers. The pipeline-breaker concept is quite close to the

definition of blocking input/output edge [51], and later detailed by Luc Bouganim et al. [52].

Therefore, an execution plan might have many pipeline breakers each pipeline fuses operators

into a loop and processes tuple-at-a-time.

Listing 2.19: Query example for the pipelined query execution model [49].

1 SELECT

2 *

3 FROM

4 R1,R3,

5 (SELECT

6 R2.z,

7 count(*)

8 FROM

9 R2

10 WHERE

11 R2.y = 3

12 GROUP BY R2.z) AS R2

13 WHERE

14 R1.x = 7

15 and R1.a = R3.b

16 and R2.z = R3.c

Listing 2.19 presents a query that we use as an example to detail the pipelined query

execution model (based on the related work [49]). The corresponding execution plan is shown in

Figure 2.11, in the left, and the compiled query with fragmented code, in the right. The query

originates four pipelines (four tight loops) with operators fused into them. The left-most pipeline

selects tuples from R1 (σx=7) and materializes them into the hash table ��a=b, i.e., builds the

hash table from column R1.a. In the branch on the left, one pipeline selects some tuples from

table R2 (σy=3), groups them by R2.z building a hash table (Γz) with many distinct occurrences

of R2.z, and aggregates them (count(∗)). The third pipeline joins the hash table of Γz with R3.c

(��z=c). Then, the last pipeline joins the tuples from the right branch within hash table ��z=c with

the tuples from the left branch within the hash table ��a=b.

The interesting remark on the fragmented code in Figure 2.11 is the fusion of operators

into tight loops, generating a data-centric query execution, i.e., each code fragment executes

every possible instruction in a CPU pipeline execution, before evicting (materializing) any result

out of CPU registers to the next pipeline breaker, augmenting data locality in the register bank of

the processor.

[9] investigates the trade-offs between vectorized and pipelined processing systems.

The former favors parallel data access with some advantage in memory-bound queries, e.g., the

ones with aggregation and join on large hash tables. The latter supports well compute-intensive
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Figure 2.11: Example execution plan with pipeline breakers [49] and the respective compiled code.

queries by keeping data into CPU registers as long as possible. Another related work [53]

proposed to exploit the advantages of both systems through a relaxed operator fusion to glue

compilation, vectorization, and prefetching. The pipelined query execution model is implemented

by Hyper [54], and the latest version of PostgreSQL V.12 [55].

2.5 SUMMARY

In this chapter, we presented the database operations and how the current query execu-

tion models run them into modern DBMSs. In the last decades, database engineers have been

conceiving new query execution model to manage the issues of the Volcano-like processing,

since its introduction.

The materialization query execution model implemented in MonetDB [5] shifted the

paradigm of tuple-at-a-time to column-at-a-time execution. It benefits from the columnar storage

layout to avoid wasting memory throughput. However, it requires the full materialization of

intermediate results allover the query execution.

The vectorized query execution model of MonetDB/X100 [7] proposes the vector-

at-a-time execution. The main goal is to exploit modern CPU capabilities, such as pipeline

and out-of-order instruction execution. The vector-at-a-time allows the compiler to apply the

loop pipelining technique to leverage computing parallelism that modern superscalar processors

provide. On the other hand, it also needs to materialize intermediate results in a vector granularity.

The pipelined query execution model, also known as a data-centric compilation, aims

at keeping tuples as much as possible into the CPU registers without materializing or copying.

It introduces the pipeline-breaker [49] to define the boundaries of a pipelined query execu-

tion. Modern DBMS have applied this technique for compute-intensive applications, such as

Hyper [54], and the latest version of PostgreSQL [55] enables JIT by default.
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However, those query execution models were thought for a computing-centric hardware

architecture. Although they alleviate some performance pitfalls related to the Volcano-style

iterator model, all of them are still based on the von Neumann architecture design that still

requires to transfer data from the memory to the CPU registers, paying all cost related to the data

movement problem. At the same time, one big research concern of today’s computer architects is

to shift the design of computer architectures to data-centric architectures: Process data where it

resides (where it makes sense) [56]. In the database field, we should share the same thought for

query execution systems. The next chapter brings related work on processing database operations

in memory hardware processors.
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3 RELATED WORK

In this Chapter, we analyze related work for Near-Data Processing (NDP) that follows

the memory technology over the years. In Figure 3.1, we present a top-down overview of a

modern memory hierarchy. At the top of the hierarchy is the CPU with a register bank and

logical units. Close to the CPU, there is a detached cache hierarchy that caches data from DRAM,

such organization is from the legacy von Neumann model. Recent research work [57, 58] have

suggested to include non-volatile memories between the DRAM layer and memory disks that are

placed at the bottom of the memory hierarchy. In all memory levels, we include the approximated

latency (Cycles Per Instruction (CPI)) and size in bytes, and some related work.

Along with this chapter, we present related work for NDP through a bottom-up perspec-

tive based on Figure 3.1, i.e., we start with related work on memory disks and visit all levels of

the memory hierarchy, sequentially. In some sections, we start with generic approaches for NDP,

then it follows with specific related work for database operations. Typically, database operations

(e.g., selection, join, aggregations, etc) are translated into near-data operations and offload to

functional units within memory hardware, and the data from the relational model are processed

in chunks, for example, modern PIM hardware process data using chunks of 256B.

The rest of this chapter is organized as follows: We begin with related work for NDP on

magnetic disks. In Section 3.2, we introduce some peculiarities of flash disks and point related

work. As there are many efforts directed to Non-Volatile Memory, we briefly introduce current

open issues and directions for that in Section 3.3. In section 3.4, we bring NDP work on DRAM

and the PIM for database operators and data analytics. We summarize related work in Section 3.5

with a table containing only the related work for NDP on database operators.

3.1 NEAR-DATA PROCESSING IN MAGNETIC DISKS (HDD)

Naturally, many efforts have been spending to design NDP architectures for secondary

memory once it is at the base of the hierarchy with the biggest storage capacity (more than

240 bytes), but it has the highest latency for memory operations between 105 and 106 cycles of

CPU. Many works tried to design smart storage devices with the addition of logical components

inside magnetic disks. However, they were proposed in an epoch when Moore’s law scaled, and

processing capabilities were limited.

In magnetic disks, NPD approaches explored the sequential access to maximize disk

bandwidth and to optimize the use of disk arms [59]. At the same time, random memory access

causes arm movement that increases seek time, leading applications to have a high CPI due to

the waiting of I/O operations. Thus, in DBMSs, random disk accesses are reduced by caching

hot pages in the main memory [59].
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Figure 3.1: Memory hierarchy with the latency and size of all levels, and some corresponding related work.

Pioneer works in database machines, the ’70s and ’80s, added specialized processing

components to perform particular database algorithms in hard disks. In [11], David DeWitt and

Paula Hawthorn classified those architectures according where the data is placed on disk to attach

the new processing components: processor-per-track, processor-per-head, and processor-per-disk.

Inspired on the database machines, Figure 3.2 presents NPD architectures designed for magnetic

disks.
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Figure 3.2: Commom processor-per-head in database machines to processor-per-disk in Active Disks with disks in

parallel [60].

3.1.1 Database Operators Processing in Magnetic Disks

Intelligent Disks (IDISKs) [12] was proposed in 1998 to support the increased demand of

I/O and associated processing requirements for data warehousing and decision support systems. It

emerged as a replacement alternative of the shared-nothing cluster-based database, in which each

IDISK consists of a hard disk with an embedded processor, an internal memory limited to 64MB,

and a gigabit network serial link. The links connect IDISKs via non-blocking crossbar switches

to communicate with each other. From the perspective of the DBMS architecture four proposals

were presented for IDISKs: 1) Incorporate a shared-nothing database server and operation

system on each IDISK; 2) Adjust applications to interact with IDISK through a library of

functions provided by the disk manufacturer; 3) Add the database storage manager and a reduced

operating system on each IDISK; 4) Run basic database operators and a reduced operating

system on IDISKs. The IDISKs study just presented a guideline for future implementations

without supplying empirical results.

In the literature, we found two works called Active Disks (AD), both based on an

architecture with a server-host responsible for coordinating and scheduling a cluster of many

ADs in parallel with NDP support. Acharya, A. et al. [13] proposed AD as a stream-based

programming model to process disk-resident code, called disklets. Conventional I/O requests are

sent to disk, but instead of returning data to the host, they are put in internal buffers of the AD

and processed by a disklet. This requires an operation-system layer divided in DiskOS and the

Host-level OS support. DiskOS is responsible for memory management, stream communication,

and disklet scheduling. It allocates the disklet streams in internal disk buffers and schedules

the disklets as the buffers are ready. The Host-level is responsible for the management of

the host-resident stream and the initialization of disklets. The performance and scalability of

that architecture were evaluated through simulation using the following database applications:

selection operator with predicates, SQL group-by with aggregation functions (MIN, MAX, SUM,

AVG, and COUNT), sort operator and datacube [61]. Those AD applications outperformed

conventional-disk applications by between 1.0 and 3.2 times of execution time in 4-disk and
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32-disk configurations, but a drawback is that they must be adapted to Active Disks architecture

due the parallelism and coded as disklet app.

Erik Riedel et al. [62, 60, 63] designed another approach also called Active Disk

grounded on three principles: 1) Leveraging parallelism in data-centric environments; 2) Process-

ing data as a stream with a small amount of state; 3) Execute a few instructions per byte. Similar

to the work of Acharya, A. et al., the host processor is responsible for parameter initialization,

coordination, and merging results, but Erik Riedel et al. conducted a testbed with ten real

prototypes of AD, i.e., a non-simulated environment. ADs improved throughput and execution

time for the operators: selection, join, and aggregation, extracted from queries 1, 5, 6, and 9

of TPC-D. The results of selection and aggregation are more salient, reaching up to 100% of

improvement in both metrics. But the improvement of the join operator is marginal between 11%

and 17%, using the Bloom Join algorithm.

Gokhan M. et al. [64] evaluated Smart Disk (a general term for disks with computational

power, which comprises Active Disks and IDISKs) through representative queries from Decision

Support System (DSS). Frequently occurring database operators were extracted from those

queries and bundled in the same operation to be executed together in a single invocation. The

following three architectures were designed and tested using the bundles of operators: a single

host-based, cluster-based, and smart disk-based. The smart disk architecture outperformed the

host and cluster-based ones with similar configurations.

Steve C. et al. [65, 66] extended the smart disk system to a distributed architecture by

devising Smart Disk Group (SDG). Within an SDG exchanging, combination and redistribution

of data can occur directly between smart disks, no need of communication with the host. The

authors evaluated that new distributed architecture with queries 1, 6, and 12 of TPC-H, data

clustering, and fast Fourier transform. To run those TPC-H queries the following database

primitives were implemented and offloaded to the Smart Disks (SDs): scan, join, sort, group-by,

and aggregate. The scan works as a filter in local SD, the sort is performed in parallel using

buckets and global communication, also group-by and aggregate use the sort operator. The join

primitive hashes data of SDs, then re-distributes them among SDs to perform local joins.

Piernas, J. and Nieplocha, J. [67, 68] designed an active storage architecture on the

LUSTRE parallel file system [69]. Different from previous works, the active storage nodes are

uncoupled of computing (host) nodes, which means that both are clients of the distributed file

system and can get access to all files stored in it, regardless they are local or not. One of the

clients runs as master of the Active Storage program which has all the information to do the job,

i.e., the program run path, parameters, and the input file paths to process. That work focuses on

scientific, parallel and supercomputing workloads.

Many other approaches have exploited active storage in magnetic disks. We highlighted

the work of V. Stoumpos and A. Delis [70] due to the implementation of the Grace Join algorithm

on active storage for the join database operator. S. W. Son et al. [71] proposed an energy-saving

system that dynamically identifies, at compile-time, data filtering portion of an application
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and delegates to smart disk. IBM also proposed an NDP architecture on disks, the idea was

to provide code extensions to applications to run on disks, such as searching, sorting, and

indexing [72]. In Storage Fusion [73] the storage system was adapted to dynamically prefetch

I/O requests from database query plans through two prefetching levels, additionally, the authors

proposed an autonomic database reorganization into the storage to tackle the problem of structural

deterioration.

3.2 FLASH DISKS (SSD)

As Jim Gray foresaw: “Tape is dead, disk is tape, flash is disk, ram locality is king.” [74].

Flash disks have emerged as natural substitutes for magnetic disks, because flash devices have

no mechanical components and data are electronically stored. This eliminates the movement of

the disk arm to position the head into the correct track (seek time) and, after, wait the rotation of

disk platter to get the target block (rotation time). Consequently, this shift in disk technology

decreases latency time (105 CPU cycles) and saves energy.

A flash-based SSD has several arrays of flash chips. Each one is wired to its Flash

Controller via one flash channel (bus), as depicted in Figure 3.3. Additionally, flash chips are

composed of logical units (LUN). I/O operations can occur in parallel between distinct LUNs

and flash channels, but, in the same LUN, operations are executed serially [75]. Such parallelism

leads the flash random access to be faster than sequential ones. However, legacy DBMSs based

on the fast sequential access of hard disks, which plays a big role in how NDP approaches for

databases should work on flash disks.

Figure 3.3: SSD general architecture [76].

However, flash memories have some constraints to deal with [77, 78]: 1) In cell flash,

write operations must be performed at a page-granularity. 2) Before the writing of a page, the
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flash disk must perform an erase operation at the flash block-granularity (typically 64 flash

pages). 3) Sequential writes within a block. 4) The limited number of erase operations in a block

(lifetime: 106 up to 5×104 erases per block). Thus, according to P. Bonnet and L. Bouganim [77],

a bimodal flash can expose internal SSD features to DBMS to share the responsibility to attend

those constraints and improve the I/O performance.

3.2.1 Near-Data Processing In Flash Disks

Goetz Graefe et al. [79, 80] proposed two processing operators adjusted to SSDs:

FlashScan and FlashJoin. They used the PAX storage model [81], considering that SSDs work

with data transfer units (512 KB up to 2 KB) lesser than database pages (8KB up to 128KB), then

the FlashScan reads only the PAX-minipages inside one page, and fetches the needed attributes to

run the query. FlashScan explores the quick random access of SSDs by interleaving the reading

of minipages in the same PAX page. Likewise, the FlashScan reads only the join attributes and

transfer them to the JoinKernel, then the FetchKernel transfers the attributes of interest to the

next operators.

The scan operator was also boosted by Kim, S. et al. [76] in terms of performance and

energy consumption. They argued that SSDs are bounded by the embedded CPU and DRAM

that cannot explore the maximum bandwidth of the storage media. Hence, they suggested

incorporating a dedicated scan-processor into the Flash Controller (see Figure 3.3), which fetches

data from flash memory bus to the scan-processor that works as a proxy by transferring only the

filtered data to the SSD internal DRAM. Each Flash Controller has a dedicated scan-processor

that scale-out according with the flash arrays.

For High-Performance Computing (HPC) workloads Active Flash [82, 15] enabled in

situ processing, in which the compute node (host CPU) runs scientific applications to simulate

natural phenomenons that generate a large volume of data for post-processing data analysis.

Active Flash runs out-of-core data analysis inside the SDDs, avoiding multiple rounds of data

movement in the memory hierarchy that HPC workloads perform. They added into the SSD

controller four common kernel functions of scientific workloads: max, mean, standard deviation,

and linear regression. A command protocol manages the invocation of those kernel functions at

an SSD idle time when an I/O request arrives, the kernel function is interrupted, reassuming after

the I/O finish.

In the database context, Smart SSD [16] was proposed for data processing using an

embedded ARM processor into the SSD through a firmware composed of a communication

protocol and an API for command management, threads, memory, and data storage. Smart SSD

was evaluated with the selection operation, selection with aggregation functions, and the join

operator [83]. The experiments were conducted in four synthetic data sets (tables) with 4, 16, and

64 integers stored in a single tuple and the LineItem TPC-H table [21]. The authors verified that

tables with fewer tuples per block (e.g., 64 integers per tuple) reach better performance because

they require less processing power of the embedded ARM processor, i.e., they are I/O-bound.
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On the other hand, tables with short tuples imply in more tuples per block while processing they

saturate the ARM processor because those data sets are CPU-bound, and should be processed in

the x86 processor.

The authors of Intelligent SSDs (iSSD) [17] added a reconfigurable stream processor

inside the SSD that acts as dedicated hardware to reach high processing performance with energy

savings. The bandwidth of the internal shared DRAM limits such a processor. However, iSSD

was tested through a mixed workload composed of programs with high instructions per byte

(IPB), i.e., compute-intensive programs, and others with low IPB (I/O-intensive). For example,

programs like query 6 of TPC-H with low IPB reached 2.6 times of improvement than the x86

processing. Intelligent SSDs was also applied in data mining applications for Big Data [84], the

K-means and PageRank algorithms were evaluated.

The Ibex project [85] deployed an engine of processing in an FPGA connected to the

SSD via the SATA bus. That engine was integrated into the MySQL to offload selection with

predicates and aggregation functions (COUNT, SUM, MIN, MAX, AVG).

Swanson, S et al. [86] focused on the processing of lists intersection, a common

operation in DBMSs to merge intermediate results. They implemented the list intersection inside

a real prototype of SSD (Samsung Smart SSD). Such a device has a smart SSD firmware that

iterates with the application via the SSDlet component. A SSDlet is an execution program inside

the SSD that is event-driven by the component Smart SSD runtime system. The application

communicates with the SSD firmware via an API with the commands: OPEN, CLOSE, GET

and PUT. The execution result of a SSDlet is added into an output buffer, then the application

gets back them through the GET command, according to the polling (heart-beat) strategy.

3.3 NON-VOLATILE MEMORY

Non-Volatile Memory (NVM) emerged as a promise to fill the gap between main

memory and secondary storage by being byte-addressable and due to its memory access latency

lower than the latter. But NVM has shortcomings, such as lower memory bandwidth than

DRAM, high write latency/power, and low endurance. Therefore, the integration of DRAM and

NVMes [58] arises as a potential solution towards the limitations of NVM and, also, to reduce

the memory power consumption of the memory subsystem. DRAM serves as a buffer cache to

the NVM to mask its write latency and lower bandwidth [57].

Consequently, NDP approaches in NVMes consider that integration. For example, in a

cooperative heterogeneous memory system, Liu Z. et al. [87] studied when to run applications

either on DRAM or NVM in a NDP fashion. Their insights suggest that applications in which

datasets can fit into DRAM and have lower reuse distance of blocks [88] than DRAM capacity

are amenable to process near DRAM. On the contrast, applications with streaming behavior,

reuse distance larger than the DRAM capacity, large datasets, and high read-to-write ratios are

propitious to process near to NVM.
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Many research and industrial projects are investigating emerging NVM technology

such as Resistive RAM (RRAM), Spin-Transfer Torque Magnetoresistance RAM (STT-MRAM),

Phase Change Memory (PCM), 3D Xpoint, Memristors and more. Also, on those technologies,

computer architects share the same desire to make in-memory processing feasible [89].

3.4 MAIN MEMORY (DRAM)

The introduction of 3D-stacking memory technologies using a TSV [90] boosted the

conception of new memory architectures, such as HMC [18], HBM [19], and DRAMA [91].

Those emerging memories devices have 4, 8, or 16 stacked-DRAM dies grounded on a logical

layer and connected via TSV. That memory organization aims to tackle the scaling limit of

DRAM (high capacity), improving the DRAM bandwidth (high bandwidth up to 320 GB/s) and

reducing energy consumption. They are named Processing-in-Memory (PIM), and thus NDP

approaches have benefited from their logical layer by processing applications on-chip memory

to reduce data movement throughout the cache memory hierarchy and, consequently, saving

energy.

Although, many works designed custom-hardware near to DRAM to accelerate spe-

cialized NDP applications, such as sparse matrix-matrix multiplication [92] and Fast Fourier

Transform [93]. However, those approaches depend on custom-circuitry and support just specific

applications.

Vermij E. et al. [94, 95] designed a NDP architecture on FPGA. On that board, they

implemented a specialized component, called NDP-Manager, which manages the virtual memory

for NDP, global address translation, data access, and ensure the cache coherence. Again, such an

approach is custom-circuitry dependent and optimized for a specific workload. The authors used

the MergeSort algorithm as a use case to evaluate empirically the NDP-Manager.

PIM-enabled-instructions, designed by Onur Mutlu et al. [96], is a new PIM architecture

that monitors the locality of data accessed by applications through dedicated hardware and

decides at runtime where to run instructions, i.e., in the host processor or the HMC.

NDCores [97] arranged a chain of four HMC devices and embedded 512 processing

cores in each device. That architecture aims to explore the HMC parallelism and to saturate

the high bandwidth (up to 320 GB/s) provided by the vaults in order to execute MapReduce

applications.

For the processing of graphs in Big Data, Teseract [98] was proposed to maximize the

usage of HMC bandwidth. Two specialized prefetchers hardware were incorporated to detect

memory access patterns when processing graph applications.

3.4.1 Processing-In-Memory For Database Operators

Select Scan. In DBMS, vector processing is recognized as an outstanding technique to

turn database operations highly efficient by availing of the cache data locality [8]. HIVE [99]
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emerged as an architecture to perform vector operations inside the HMC, which adds new

vectorized instructions to the HMC-ISA that operate over continuous data at the granularity of

8KB (large registers). Santos P. et al. [100] proposed a Reconfigurable Vector Unit (RVU) over

the HIVE that allows vector processing in units of variables sizes between 8KB and 256 bytes.

JAFAR [101] adds an off-chip memory dedicated hardware as a proxy between the

CPU and DRAM, which is connected to the memory I/O buffer. When the DBMS pushes down

the Select Scan operator to JAFAR, it directly requests data to DRAM, after JAFAR filters the

DRAM output data by applying the predicates: =,<,>,≤,≥, then it just returns to CPU the

filtered data. Avoiding data movement, JAFAR can provide up to 9× improvements for the

Select Scan. However, the DRAM bandwidth is a bottleneck, Jafar cannot benefit from inter-chip

nor intra-chip memory parallelism, therefore.

Join Operator. Mirzadeh et al. [102] studied the impact of the hash and sort join

algorithms (the state-of-the-art join algorithms: radix-hash join [103] and parallel sort-merge

join [104]) and how to adapt them into the HMC. The authors proposed a join logic unit inside

the HMC. They modeled the latency and energy consumption of the HMC, the CPU, and the

new join logic unit. From results obtained through a first-order analytical model, they inferred

that the random memory accesses of the hash join is the main cause of its poor performance and

energy-efficiency in the HMC. In contrast, the sort join algorithm presented more suitable to run

in the HMC because it leverages DRAM row locality.

Onur Kocberber et al. [105] built Widx, an on-chip accelerator for database hash index

look-ups, which plays a big role in hash-join operations. A Widx unit decoupled the hash key

generation in a dedicated component (the dispatcher) that serves the key hashing for the walkers.

A walker is specialized hardware for pointer chasing in a hash bucket placed into the TLB or

L1 D-cache. Widx is bound by four walkers running in parallel due to the off-chip bandwidth

limitations. In the best scenery, i.e., four walkers and large hash buckets, Widx achieves a

speedup of 4× to process a hash-join kernel and an average speedup of 3.1× in the TPC-H and

TPC-DS benchmarks compared to an Out-of-Order (OoO) processor, reducing in 83% the energy

consumption. However, Widex degrades case the hash table index entries fit in L1, and another

trouble is that the dispatcher can be a bottleneck as it serves concurrently up to 4 walkers. For

small hash buckets, the walkers can complete early and must wait while the keys are hashing.

However, all of those previous works provide a one-dimensional picture of the query

processing systems. They are a one-sided approach that neglects the potential of CPU-PIM

co-processing with caching and energy-saving benefits.

3.4.2 Processing-In-Memory For Data Analytics

Pioneer works have proposed PIM-based architecture for data analytics based on simu-

lation. MapReduce (MR) applications with high spatial locality were adapted to PIM [97, 106],

leading memory cores to reduce the latency up to 93.2%. This work is orthogonal to our results

because MR jobs have a resembling access pattern of the selection and projection, while our
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study tested pipelined operators. Another work [107] relies on an analytic model to estimate the

latency of 3D-stacked memories through scan-aggregate queries. They presented improvements

in latency and energy consumption against traditional CPU processing and big-memory servers.

However, they only consider the dataset size variation in their analysis. In our work,

we evaluate and argue more intricate factors, such as memory access patterns in caches. Mon-

drian [108, 109] implements an algorithm-hardware co-design for near-memory processing of

data analytics operators. It is built upon a partitioning phase to turn random accesses to sequen-

tial ones, enabling a memory streaming hardware to exploit PIM capabilities. The presented

results are complementary to ours. They ratify that sequential access favors PIM and show that

random access is an obstacle to use the whole bandwidth. Mondrian considers algorithms with a

PIM-tuned partitioning and probe phase. Instead, we evaluate pure database operators leading to

the conclusion that they shall be optimized to benefit from PIM.

3.5 SUMMARY

We presented many related work for Near-Data Processing in memory devices since

secondary memory until the primary memory (DRAM). We summarize the main related work

in Table 3.1. While building this table, we only included related work for NDP on database

operators, and thus excluded others that focused on specialized applications.

We also grouped the related work according to the memory devices: magnetic disks,

flash disks, and DRAM. We emphasize the database operators that each work evaluated in

someway. The interest group of database operators is disclosed in Section 5.1 (select, project,

join, aggregation, and sort operators).

According to our study, at the end of the 1990s and during the decade of 2000, the

industry and research community directed the attention to magnetic disks. They focused on

design devices for memory processing using as use case many applications, including database

operations. The advent of the flash memory technology changed the focus to flash disks (SDDs),

and many NDP approaches arose from that.

Now, the NDP wave is rolling to the shore of in-memory processing devices. Nowadays,

it is known as Processing-In-Memory. There are several proposal architectures for on-chip

processing to address a myriad of applications, including scientific and mathematic workloads,

machine learning algorithms, image processing, etc.

In Table 3.1 we summarize related work for database operators on PIM.Note that no

approach encompasses all the database operators that we are investigating. In the next chapter, we

detail the emerging PIM architectures, also we expose their internals, highlighting the prominent

on-chip capabilities. The next chapter presents the details of the current PIM hardware and its

potential to leverage database operations through a preliminary experiment.
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Table 3.1: Related work summary of near-data processing for database operators.

Memory Related Work Database Operators
Device Select Project Join Aggr Sort

Magnetic

Active Disks (AD) [13], 1998 X X X

Disks

Riedel E. et al. [62, 63], 1998 to 2001 X X X

Smart Disk [64], 2000 X X X X

Steve C. el al. [65, 66], 2003; 2006 X X X X

Stoumpos V. el at. [70], 2006 X

Son S. W. et al. [71], 2006 X

David D. Chambliss et al. [72], 2008 X X

Flash

FlashScan; FlashJoin [79, 80], 2010 X X

Disks

Kim, S. et al. [76], 2011 X

Smart SSDs [16], 2013 X X

Intelligent SSDs (iSSD) [17], 2013 X

Ibex (MySQL) [85], 2014 X X

SSD in-storage computing [86], 2016 X

DRAM

Widx [105], 2013 X X X X

(PIM)

NDCores [97, 106], 2014 X X X

Mirzadeh N. et al. [102], 2015 X X

JAFAR [101], 2015 X

NDP-Manager [94, 95], 2016; 2017 X

HIPE [110], 2017 X

RVU [100], 2017 X

Mondrian [108, 109], 2017; 2018 X X X X

Tomé D. G. et al. [23], 2018 X X X
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4 PROCESSING-IN-MEMORY ARCHITECTURE

Supporting computational capabilities in-memory has been proposing since the end of

the ’60s [111, 112, 113], i.e., in the beginnings of the main memory conceiving. At that time, the

central idea was to add small logical circuitry into cells of cellular arrays to perform a desired

logical behavior.

Over the years, according to the progress of memory technology, many approaches have

been designed to incorporate computation into memory devices. For example, Active Disks [13],

Active Storage [62], and Intelligent Disks [12] emerged at the end of the ’90s, they tried to add

logical functions into the Hard Disk Driver (HDD). At the same time, Intelligent RAM [14, 114]

revisited the first idea presented in cellular arrays by adding “intelligence” inside the DRAM

device to support specific computations. Also, the Smart SSDs [16], Active Flash [15], and

Intelligent SSDs [17] tried to embed logic units inside flash disks.

Nevertheless, those approaches were not adopted in commercial products in that time,

because of the continuous growth in CPU performance complied the Moore’s Law and Dennard

scaling. However, as the CPU performance has increased the main-memory access became the

bottleneck for many applications, a problem known as the “memory wall” [115]. Today, the

assumptions of Moore and Dennard come to an end, but the memory wall is still an issue in

data-centric systems as well another recent problem: the “energy wall” [116, 117]. In data-centric

systems, both walls are critical as large amounts of data move around the memory hierarchy

from disks, main memory, and caches to the CPU. Moreover, the amount of data to store and to

process is growing up tremendous and have accentuated both walls: a major challenge in the

agenda of database researchers [118].

Nowadays, PIM architectures have emerged as a solution to tackle the performance

aftereffects of data movement, which head applications to waste 62.7% of the total system energy,

on average [1], and impose high latencies.

The rest of this chapter is organized as follows: We begin with an introduction of the

internals of emerging 3D-Stacked Memory in Section 4.1. The state-of-the-art extensions for 3D-

Stacked memory are introduced in Section 4.2. Further details of our PIM architecture baseline

are presented in Section 4.3. Section 4.4 and 4.5 brings the potential of PIM on the selection

query operator exposing the benefits of data access parallelism, high memory bandwidth, and

on-chip processing capabilities. We summarize the PIM architectures in Section 4.6.

4.1 3D-STACKED MEMORY

The 3D-stacked memories are emerging PIM devices proposed to leverage the DDR

technology as CPU’s main memory, they are also available on commercial graphic cards as GPU’s

main memory [119, 120]. A typical 3D-stacked memory consists of up to 8 layers of DRAM
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dies interconnected by the TSV to the logic die at the base. The 3D memory devices logically

split the DRAM dies into 32 independent vaults. Each vault contains up to 8 independent DRAM

banks, where each DRAM bank provides as much as 256-bytes of data per row access. This 3D

design achieves 512 parallel requests and can deliver a maximum bandwidth of 320 GB/s, which

is about 4x higher than a traditional DDR-3 design. The logic layer of 3D-stacked memories

supports the implementation of traditional logic, similar to those present inside processors. In

the case of the HMC proposal, it implements update operations performing arithmetic, logical,

and bit-wise atomic instructions over scalars of up to 16 bytes size.

Figure 4.1 presents such an architecture with the memory and logic layers, and the

external links to receive memory requests and on-chip instructions. The memory layer comprises

of 4 DRAM dies in a stacked design. The DRAM dies are split into 32 vertical memory partitions

(vaults), each one with 8 memory banks (B0 to B7). The memory banks B0 and B1 belong to

the die at the bottom of the stack, banks B2 and B3 belong to the die above and so on. A single

bank has several memory rows of 256-bytes, as depicted on top of Figure 4.1 for B7. The TSV

technology connects banks from the memory layer to the corresponding vault logic unit within

the logic layer. The Vault Controller (VC), inside the logic unit, manages data accesses to the

memory layer using read and write buffers. A data request encapsulates a physical memory

address then the VC uses it to fetch a memory row of 256-bytes. The VCs are independent by

accessing distinct memory banks. Thus, applications can emit 32 parallel memory requests of

256-bytes reaching the high bandwidth up to 320 GB/s. Also, in the logic layer, the on-chip

logic instructions are executed on operands up to 16 bytes.

Figure 4.1: A 3D-stacked memory architecture comprised of memory and logic layers, and external links to receive

memory requests and PIM instructions [18].
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4.2 3D-STACKED MEMORY EXTENSIONS

The 16-bytes granularity of the on-chip instructions on current 3D-stacked memo-

ries [18, 19] inhibits the benefits of PIM. Therefore, research work extended the logic layer of

3D-stacked memories. In this section, we briefly expose the main extensions from the state-

of-the-art. Figure 4.2 depicts the three architecture extensions: HIVE [99], RVU [100], and

HIPE [110].

Figure 4.2: State-of-the-art PIM architectures [99, 100, 23, 110].

HIVE. [99] incorporated into the logic layer a vector processing hardware to provide vectorized

instructions that operate over coalescing memory data at granularity from 256-bytes up to 8 KB

(very large registers). Therefore, HIVE allies the maximum data access parallelism of 3D

memories with on-chip processing. In next Section 4.3, we present more details of the HIVE’s

architecture.

RVU. [100] proposed a Reconfigurable Vector Unit (RVU) over the HIVE that allows vector

processing in small units of variables sizes. RVU is compelling to run database operators that

access intermediate data of different granularities during query execution. In column-oriented

DBMSs, the select scan with a chain of predicates on different columns can take advantage of

the RVU, because each predicate may produce intermediate results with different sizes according

to the query selectivity.

HIPE. [110] designed HIPE as an HMC extension for instruction predication. HIPE incorporates

functional units to support predicated execution inside the memory, thus transforming control-
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flow dependencies into data-flow ones. Applications with many branch instructions (i f -then-else

instructions) might take advantage of HIPE.

4.3 HIVE: INSTRUCTION VECTOR EXTENSIONS

Our implementations of database operators and experiments are based on HIVE. We

chose HIVE because it has a more simplistic logic layer that can support SIMD instructions

already implemented in the Intel AVX512 technology. Such SIMD intructions were evaluated

on in-memory database systems [121]. Thus, in this section, we further detail the HIVE’s

architecture with its on-chip SIMD processing capabilities.

HIVE is a different logic layer design to propose larger registers with SIMD parallelism

inside the 3D-staked memory [99]. Although HIVE foresees the feasibility of SIMD instructions

operating over SIMD registers from 256 B up to 8 KB, we will use a modest size of 256 B per

operation. Thus, our PIM-256B architecture works with registers of 256 bytes wide that shall

store multiple operands. For simplicity, we call each operand position inside a SIMD register as a

lane (e.g., when using 32-bit operands, a single 256 B register may contain up to 64 valid lanes).

Similar to the HMC proposal, HIVE also relies on the CPU to trigger instructions to be executed

inside the memory. We use HIVE in our experiments due to its simplicity and low energy

consumption (not requiring a full processor inside the memory), its high performance (with

previous work showing more than 10× gains), and its acceptance as it was used to implement

derived architectures [100, 110].

Figure 4.3 describes the PIM architecture with SIMD support from HIVE (to the right

side) and the traditional x86 architecture inspired by the von Neumann model (to the left): formed

by the processor core and a detached cache hierarchy. At the top of Figure 4.3, the processor

dispatches PIM instructions (dashed line) directly to the PIM device bypassing the caches while

maintaining the coherence with the Last-Level Cache (LLC) directory. The instructions to access

memory (load/store) might require accessing up to 256 bytes each. The 32 independent vaults

allow 32 PIM SIMD-like load instructions of 256-bytes at a time. However, this high level of

parallelism depends on the memory access pattern from the application. During a memory load

from PIM logic, the data request goes to a specific DRAM bank inside a designated vault (using

the load address to indicate the correct device). Once data is available, the Vault Controller

transfers it to the PIM SIMD register bank in which every register implements a ready bit

(interlock mechanism), and thus the operations only continue whenever case that bit is set. At the

end of the execution of each instruction, the PIM device only returns the instruction status to the

CPU. This data-centric design is the main advantage compared to current database systems that

filter data in hardware before passing to the CPU, like Netezza and Exasol. They have to deal

with packing qualifying tuples into condensed pages to avoid unnecessary bufferpool pollution,

which is expensive and error-prone. Therefore, the significant benefits to be explored in the
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Figure 4.3: A query datapath movement in a traditional von Neumann architecture plus a modern 3D-stacked

memory with PIM and SIMD support [99].

Database-PIM co-design are the drastic reduction in energy consumption and the internal high

memory bandwidth due to the high levels of data access parallelism and on-chip processing.

Other capabilities of PIM include memory protocols to support all the idiosyncrasies

of PIM instructions, such as cache coherence, Memory Management Unit (MMU), Error-

Correcting Code Memory (ECC) and Direct Memory Access (DMA). The execution flow works

at instruction-granularity as the traditional CPU processing (e.g., AVX/SSE x86-extensions),

i.e., programmers insert intrinsics PIM instructions into the code, like Intel Intrinsics, and the

compiler flags them as special memory PIM instructions.

4.4 UNDERSTANDING THE PIM SELECTION

To understand the impact of PIM with SIMD on query processing and to simplify our

analysis, we initially focus on the execution of the selection operator, instead of more complex

operations (like join). In the traditional selection operator, the memory requests start from the

CPU to the main memory reaching all levels of cache, moving data up and down through the

memory hierarchy.

As the traditional von Neumann architecture detaches the processor from the main

memory, the data movement is an inherited side effect that memory caches try to alleviate. The
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caching mechanism is particularly efficient for applications with data reuse. However, this is not

the case of the selection operator because it streams datasets polluting the hierarchy of memory

caches with dead-on-arrival cache lines. Even the selection with an index (select-index) has the

same streaming behavior. The selection stays restrict within the indexed-data portions while

streaming the data.

The selection operator appears as a good fit for PIM because the SIMD logical units

of on-chip processing better exploit the high internal bandwidth of 3D stacked memories.

Figure 4.4(a) depicts the execution of the selection using PIM with SIMD support. A dataset can

be either an entire table, a column, or even a chunk of an indexed-data portion. The selection

operator performs sequential memory access to process fragment-at-a-time of 256 B (S0 to Sn

in Figure 4.4(a)). Figure 4.4(b) presents the C language code of the selection operator and the

respective translation to the PIM Assembly-like code. As a simplistic use case, we generate

the output of the selection as a bitmap, although it is also possible to emit a selection vector as

output.

The PIM instructions used in that code snippet are (see Figure 4.4(b)):

1. PIM_LD: instruction to load data from a DRAM bank into a specific register (e.g., V0).

2. PIM+SIMD_CMP: instruction to compare two PIM-SIMD registers (e.g., V0 and VF).

3. PIM_ST: instruction to store data from one specific register (e.g., V0) into a DRAM

bank of a vault.

During the execution of the selection operator in HIVE, the CPU sends the PIM

instructions for on-chip processing. Inside the logic layer, HIVE interprets and executes each

instruction. During bursts of memory loads, up to 32 parallel reads can be performed by HIVE,

using all the throughput of the memory vaults (up to 320 GB/s) [18, 19]. Although it is possible

to issue multiple loads in parallel, the execution follows strict in-order fashion. We observe

that all the registers can receive data from any memory vault, during memory loads, since

HIVE is coupled with the interconnection of the vaults. For the first instruction, HIVE loads

256 bytes of data (data[i]) from one specific memory vault into the SIMD register bank. Then,

the PIM+SIMD_CMP instruction compares the PIM+SIMD loaded register and the SIMD

register of filter (VF): a pre-load PIM+SIMD register that has replicas of the filtering value. In

the end, the PIM_ST instruction writes the resulting bitmap into a given memory vault.

4.5 THE POTENTIAL PARALLELISM OF PIM-256B VS. X86 AVX512-64B

In this section, we briefly highlight the potential parallelism of PIM compared to the

x86 processor for processing selections (Chapter 5 presents the details of the experiments).

The x86 version of the selection operator uses AVX512 extensions with SIMD registers

of 64 bytes (AVX512-64B), and the PIM version uses SIMD registers of 256 bytes (PIM-

256B). Notice that AVX512-64B uses the largest SIMD registers available for the traditional
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(a) Selecting data using PIM + SIMD support.

(b) The selection operator code in C and PIM Assembly-like.

Figure 4.4: The selection operator in PIM.

x86 processor. We also applied the loop unrolling technique to push the architectures to the

maximum degree of parallelism available, i.e., the AVX5121 processing up to unroll depth of 8×
and PIM up to 32× to take advantage of the 32 independent vaults.

This experiment measures the latency (execution time) of the operator varying the size

of the input dataset to fit into the L1 or L2 caches. Figure 4.5 shows an appealing case for the

x86 processing due to a small dataset processing with a low ratio of cache misses. Our goal is to

show the potential of PIM even in unfavorable cases. In datasets bigger than cache sizes, the

cache misses degrades the performance of the x86 processing.

1Generally, 8× is the deepest unroll implemented by compilers due to the reduced number of general purpose

registers.
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The three foremost benefits in here for PIM processing are: 1) Only a single load inside

PIM-256B shall retrieve up to 256 B whereas the AVX512-64 requires 8 operations to access the

same amount of data; 2) Considering 4 B operands (e.g., integer variable) the PIM-256B shall

operate over 64 elements (lanes), while AVX512-64 operates over only 16 by the same time; 3) It

is possible to considerably reduce the number of data transfers between CPU and main memory

operating directly inside the memory for streaming data patterns. Based on those benefits, the

PIM execution is 3× faster than AVX512 for both datasets when using all the memory vaults. In

Chapter 7, we provide an in-depth analysis of the results for many query operators.

Figure 4.5: The execution time of the selection operator for AVX512-64B and PIM-256B. The dashed line separates

the X-axis in two data sets: one fits in cache L1 and the other in cache L2. Also, we ranged the loop unroll depth

from 1× up to 32×, which implies in varying the degree of parallelism.

Although x86 ISAs provide load instructions that bypass the cache memories, it is

important to notice that off-chip communication is still present, consuming time and energy.

Processors usually can only perform 10 parallel requests per processing cores (due to MSHR -

miss status handler register - limitations), resulting in total parallelism of 10× 64 bytes (640B),

which is smaller than the parallelism of PIM, i.e., 32× 256-bytes (8KB).

4.6 SUMMARY

In this chapter, we presented the current PIM architectures, introducing the particular-

ities of emerging 3D-stacked memories and the state-of-the-art design extensions, i.e., HIVE,

RVU, and HIPE. Our experiments use the 3D-stacked memory, presented in Section 4.1, as the

main memory for both architectures x86 and PIM, making a strong case for our comparisons.

Also, we further detailed the on-chip SIMD processing capabilities of HIVE that we applied to

our experiments.

We disclosed the implementation of the selection operator on PIM and its potential

to exploit the data access parallelism and on-chip processing. In a preliminary performance

comparison, the selection operator was 3x faster on PIM over the AVX512 execution even against

unfavorable instances, i.e., for input datasets that fit into the L1 and L2 caches. Next chapter

brings our experiment design to evaluate the query exeuction systems on the ground of PIM

support.
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5 EXPERIMENT DESIGN

In this chapter, we detail the design of our experiments. In Section 5.1, we describe

how we choose the query operators for evaluation in this study. Then, in Section 5.2, we present

the workload data distribution. The simulation environment used allover this thesis are presented

in Section 5.3. Also, Section 5.3.1 brings an empirical demonstration of the simulation stability

of our simulator. We summarize the experiment design in Section 5.4.

Our evaluation metrics take into consideration the operator execution time and energy

consumption. In the micro-benchmark analysis, each operator is evaluated in isolation, with no

interactions among them, except in the pipelined execution that requires such interaction. For

the operator latency, we record the execution time. For energy consumption, we measure the

memory read, write, and data transfer operations. We compute the memory energy estimation of

the DRAM values considering the architecture of the current 3D-stacked memories [18, 19]. In

the macro-benchmark analysis, we evaluate the whole query execution.

5.1 CHOOSING THE GROUP OF OPERATORS

In this section, we investigate the most time and memory consuming database operators

to justify a relevant group of operators in our study. First, we investigate the response time

breakdown of the TPC-H queries with 100 GB using the column-wise database MonetDB

v11.33.11 (available at [22]). We carried out the experiments on a real machine using an Intel

quad-core i7-5500U processor running at 2.40 GHz with 16 GB of RAM (DDR-3L 1333/1600)

and 4 MB LLC running OpenSuse Leap 42.3 on Linux kernel 4.4.76-1-default. We added the

TRACE statement modifier of MonetDB on each query to collect statistics and performance

traces.

Figure 5.1: The 100 GB TPC-H benchmark breakdown in the top time consuming operators with MonetDB [38].
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Figure 5.2: The 100 GB TPC-H benchmark breakdown in the top memory consuming operators with MonetDB [38].

Figure 5.1 and 5.2 presents the query execution breakdown plotting the most time and

memory, respectively, consuming operators: projection, selection, join, aggregation, grouping,

and the remnant ones grouped into the category “others”. The last bar summarizes the entire

benchmark (“All TPCH”). From those results, we set as the relevant group of operators the

projection, selection, join, and aggregation, as they represent almost 90% of the 100 GB TPC-H

benchmark for execution time and memory usage.

5.2 WORKLOAD’S DATA DISTRIBUTION

Our goal in the design of the data distributions is to evaluate the impact of different

memory accesses. We study this impact in two cases: 1) The case when the input datasets

fit into the cache hierarchy; 2) When they do not. In theory, the first case is the best one for

the x86 processing because the operators can take advantage of the caching mechanism for

data reuse. We assume three particular queries: 1) The TPC-H Query 01 is a low-cardinality

group query without joins (fitting inside the cache memory). Most of its execution time is spent

projecting columns and computing the aggregation; 2) The TPC-H Query 03 is a high-cardinality

group query with joins (does not fit inside the cache memory). Most of its execution time is

spent filtering and projecting columns. We run the query operators varying the size of the input

columns to fit in the L1, L2, LLC caches, and in DRAM with at least 1 GB; 3) In the following

third query, we evaluated the aggregation operation with the Zipf distribution in the caches (L1,

L2, and LLC) and the DRAM of 1 GB, for convention we call this query as ZIPF Query.

ZIPF Query: SELECT sum(col_zipf) FROM table GROUP BY col_zipf

The Zipf distribution presents a bias based on the frequency of the values, which we use

to simulate random memory access to the groups in the hash table of the aggregation operator.

As a result, some groups are more accessed than others generating data reuse in the memory

caches.



66

Table 5.1 summarizes the workload and the datasets used in our study. The workload

is composed of the three queries (TPC-H Q03, TPC-H Q01, and ZIPF Query) split into the

operators: selection, projection, join, sort, and aggregation. The internal cells in the table

represent the size of the dataset applied. For example, the first cell of the selection operator

for the TPC-H Query 03 contains the value |L1-64KB|, which means that all columns and

intermediate data structures fit into the cache L1 (64-KBytes), the other cells have the same

meaning. We evaluate all the operators using the TPC-H Query 03. With the other two queries,

we further analyze the aggregation operator.

Table 5.1: Workload and Dataset Summary.

WORKLOADOPERATORS TPC-H Q03 TPC-H Q01 ZIPF Query
|L1-64KB|

|L2-256KB|

|LLC-8MB|
Selection

|DRAM-1GB|

- -

|L1-64KB|

|L2-256KB|

|LLC-8MB|
Projection

|DRAM-1GB|

- -

|L1-64KB|

|L2-256KB|

|LLC-8MB|

|DRAM-1GB|

|DRAM-2GB|

Join

|DRAM-4GB|

- -

|L1-64KB|

|L2-256KB|

|LLC-8MB|

|DRAM-1GB|

|DRAM-2GB|

Sort

|DRAM-4GB|

- -

Original

Size

TPC-H

1GB

Original

Size

TPC-H

1GB

|L1-64KB|

|L2-256KB|

|LLC-8MB|
Aggregation

|DRAM-1GB|

5.3 SINUCA: A VALIDATED MICROARCHITECTURE SIMULATOR

We implemented the PIM architecture on top of the SiNUCA (available at [122])

cycle-accurate simulator [123]. Notice that current PIM hardware do not yet implement all the

extensions depicted in Figure 4.3. Therefore, we rely on architectural simulators to implement

the required hardware extensions for our study, which is the standard approach adopted by

processor industries and hardware research [124]. Using SiNUCA, it is possible to execute the
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database operators in the simulated environment obtaining performance results for x86 and PIM

executions. SiNUCA was validated against two real machines [123] that implements a realistic

out-of-order processor, advanced multi-banked, and non-blocking caches together with the PIM

hardware. Furthermore, SiNUCA was adopted by studies that extend PIM hardware in computer

architecture [110, 100], and database [23, 25] contexts.

The baseline architecture was inspired by the Intel Sandy-Bridge microarchitecture that

we extended with the AVX-512 instruction set capabilities referred to as AVX512-64B. Although

this microarchitecture does not represent the state-of-the-art, the memory bottleneck is still an

unsolved problem for newer architectures that rely on the computing-centric design yet. In all the

cases, the traditional main memory is a high-bandwidth 3D-stacked memory [18, 19]. Moreover,

by adding 3D-stacked memory to this architecture, we are virtually providing up to 32 channels

to the x86 processor, which is more than 5× higher than the 2019’s Cascade-Lake processor will

offer. Table 5.2 presents the parameters of the target architectures with the same setup used by

related work [99, 110]. The PIM architecture has 32 vaults with 8 DRAM banks per vault, and

the total memory capacity is 8 GB. Also, this architecture has 36 SIMD registers of 256 bytes

that operate with operands from 4 to 256 bytes.

Table 5.2: Parameters of the target architectures taken into account to design the experiments [110].

OoO Execution Cores 16 cores @ 2.0 GHz, 32 nm; 6-wide issue;

16 B fetch; Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;

MOB entries: 64-read, 36-write; 1-load, 1-store units (1-1 cycle);

3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);

1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);

1 branch per fetch; Branch pred.: Two-level GAs. 4,096 entry BTB;

L1 Data + Inst. Cache 32 KB, 8-way, 2-cycle; Stride prefetch;

64 B line; MSHR size: 10-request, 10-write, 10-eviction; LRU policy;

L2 Cache Private 256 KB, 8-way, 4-cycle; Stream prefetch;

64 B line; MSHR size: 20-request, 20-write, 10-eviction; LRU policy;

L3 Cache Shared 40 MB (16-banks), 2.5 MB per bank; LRU policy;

16-way, 6-cycle; 64 B line; Bi-directional ring; Inclusive;

MOESI protocol; MSHR size: 64-request, 64-write, 64-eviction;

PIM device 32 vaults, 8 DRAM banks/vault; DRAM@166 MHz;

8 GB total size; 256 B Row buffer; Closed-page policy;

8 B burst width at 2:1 core-to-bus freq. ratio; 4-links@8 GHz;

DRAM: CAS, RP, RCD, RAS, CWD cycles@166 MHz (9-9-9-24-7);

SIMD units Unified func. units (integer + floating-point) @1 GHz;

Latency (cpu-cycles): 2-alu, 6-mul. and 40-div. int. units;

Latency (cpu-cycles): 10-alu, 10-mul. and 40-div. fp. units;

Op. sizes (bytes): 4, 8, 16, 32, 64, 128, 256;

Register bank: 36x 256 B (Originally 16x 8192 B in HIVE proposal);
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5.3.1 Validating the Simulation Stability of the Selection Operator

Now, we discuss the simulation stability when the dataset enlarges gradually. Our goal

is to show that the simulation of the operators still steady in the face of changes in the size of the

dataset. For simulation stability, we mean that the results of the simulations have a proportional

changing according to the size of the input dataset:

Definition 1. Simulation stability between consecutive dataset.

Let us consider two consecutive datasets with the number of records varying in one:

Rn: the simulation result for dataset Dn with n records.

Rn+1: the simulation result for dataset Dn+1 with n+1 records, i.e.:

Rn+1 = Rn +P+ ε , such that P is a proportional changing of the simulation result that

depends on the operator, and ε is the inherent error of simulations1.

Based on Definition 1 and as a proof of concept, we empirically evaluated the stability

of the selection operator. We vary, one by one, the size of the input dataset to be processed: the

number of records in the dataset range from 1 to around 509,000 (until the size of the LLC),

which fits into the cache hierarchy. For every dataset, we record the number of cycles and energy

consumption, and then we accumulate the aggregated average for both metrics so far.

Figure 5.3 presents the graphics with the aggregated average for both metrics. We cut

off and zoom up the inflection points of the aggregated curves. After these points, around 400

and 1,200 records, the number of cycles and energy consumption spend by AVX512-64B become

greater than the PIM-256B, this result continues ad aeternum due to the limit property of the

functions AVX() and PIM(), i.e.:

lim
n→∞

AV X(n)> lim
n→∞

PIM(n) | AV X(n), PIM(n) > 0 (5.1)

Therefore, Figure 5.3 shows that the behavior of the operator stays constant after a

certain input size. This means that the number of cycles or energy spent per record was kept

constant whenever the data did not fit into the LLC (i.e., the average time spent per entry stays

constant no matter if we were using 1 GB or 100 GB of data). The stability allows extending

the trend of both metrics to the size limit of the DRAM. Thus, we can justify, quantitatively and

qualitatively, the use of the SiNUCA simulator to proceed with our study.

5.4 SUMMARY

We detailed the experiment design used in this study. Firstly, we identified the most

relevant group of database operators on a modern DBMS. Note that the TPC-H workload, by on

average, spends around 90% of the execution time and memory footprint to process that group

of operators. Therefore, they are a good fit for PIM. Also, we present the set of queries used

1SiNUCA achieves an average performance error of less than 9% [123].



69

(a) Aggregated average of the number of cycles.

(b) Aggregated average of the energy consumption.

Figure 5.3: Selection Stability on SiNUCA.

as our workload split into the operators and the dataset applied in each one. Our evaluation

metrics consist of execution time and energy consumption. Finally, we present the details of the

SiNUCA cycle-accurate simulator and the architecture parameters modeled in the simulation,

and empirical evaluation of the simulation stability to corroborate the adoption of SiNUCA. The

next chapter details the SIMD instructions used to implement the database operators.
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6 IMPLEMENTATION DETAILS OF THE SIMD QUERY OPERATORS

In this chapter, we describe the implementation details of the query operators with

SIMD. We also describe the relevant SIMD vectorization features applied in the operators.

In a nutshell, the implementations of the database operators require selective load and

store SIMD memory instructions (Section 6.1). However, each operator demands a different strat-

egy to better use SIMD instructions. The hash join and aggregation require the gather and scatter

SIMD memory instructions to load and store multiple entries of hash tables (Section 6.2). Finally,

the sorting operation and sort-merge join require the min/max and shuffle SIMD instructions

(Section 6.3). Section 6.4 recaps this chapter.

6.1 SIMD SELECTION AND PROJECTION OPERATORS

Selection. The selection operator filters data and generates a bitmap with bits set to 1

for qualified data. We discuss our two SIMD selection implementations with an example of a

chain of selections. Figure 6.1(a) depicts the selective load SIMD instruction using a bitmap

as a bitmask to filter the next selection column from a contiguous memory location. In a chain

of selections, the output bitmap of an operator is the input to the next one. Another common

implementation of this operator generates a selection vector as output. The output is a SIMD

register with the values arranged according to the input selection vector (e.g., the index register

in Figure 6.2(a)). In a chain of selections, the gather instruction reads the next column from a

non-contiguous memory location based on the selection vector from the previous selection.

(a) Selective Load (Selection).

(b) Selective Store (Projection).

Figure 6.1: SIMD memory instructions based on bitmask.
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Projection. We present two implementations of the projection operator: 1) Projection

with an index register for high selectivity queries, like the selection vector of MonetDB [38], and

2) Projection without an index register for low selectivity queries reducing the memory footprint.

Our first implementation uses the selective store to project the target column without an index

register. Figure 6.1(b) shows an example of this execution. The projection writes data from a

subset of register lanes to a contiguous memory location. In the example, the output bitmap

generated by the selection is the input of the projection, where the bits set to ’1’ indicate the

values to project. In our second implementation using an index register as input, the projection

uses the scatter memory instruction to write the non-contiguous values of the target column (see

Figure 6.2(b)).

(a) Gather Instruction.

(b) Scatter Instruction.

Figure 6.2: SIMD memory instructions based on index register.

6.2 SIMD HASH JOIN AND AGGREGATION

Hash Table and Hash Join. Our implementation of the hash join is based on a vector-

ized SIMD-friendly linear building and probing algorithm [121]. We use the gather and scatter
memory instructions1 to implement hash tables for the join and aggregation operations. The

gather instruction loads multiple entries of the hash table (non-contiguous memory locations).

The scatter is the symmetric instruction that writes data to multiple memory locations based

on an index register. For the x86 implementation, those instructions iterate (loop iteration) over

the index register, identify the register lanes pointing to the same cache line, then read/write

one or two cache lines per iteration until there are no more indexes to process. For the PIM

1The opcodes for those instructions are vpgatherdd and vpscatterdd in the Intel AVX-512 ISA, respectively.
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implementation, the instructions iterate over an index register, group the register lanes pointing

to the same DRAM banks, and generate up to 32 load/store instructions of 256-bytes per iteration

until there are no more indexes to process.

Aggregation. The aggregation operator updates the aggregated values into the hash

table using gather and scatter memory instructions. It gathers multiple entries from a hash

table and applies the conflict-free [125] to update the aggregation values. Then it scatters them

back to the hash table.

6.3 SIMD SORT-MERGE ALGORITHM

Sorting. Now, we discuss the implementation of the Sort-Merge algorithm that outper-

forms other sorting algorithms when exploiting the SIMD instructions [126]. The implementation

of the Sort-Merge algorithm in SIMD is more intricate than the previous query operators. Both

sort and merge phases of the algorithm rely on SIMD min/max and shuffle2 instructions avail-

able on current SIMD processors [127].

The min/max instructions process two SIMD registers V0 and V1 of length k (where

k is the number of register lanes). These instructions compare the corresponding lanes of the

registers and emit as output a new SIMD register that contains the lowest/highest values between

V0 and V1, respectively. Figure 6.3(a) exemplifies those instructions that receive as input the

SIMD registers V0={12,21,4,13} and V1={9,8,6,7}. The min instruction emits as output the

SIMD register L={9,8,4,7} with the lowest values of each lane (dashed gray lines) between V0

and V1, and the max instruction emits as output the SIMD register H={12,21,6,13} with the

highest values.

The bitonic merge is a networked merge algorithm that compares every element of two

SIMD registers. The execution requires one register sorted in ascending order and the other in

descending order. Figure 6.3(b) shows a bitonic merge network with two 4-wide SIMD registers

(k=4). The network has logk
2 levels applied in parallel. Therefore, the execution of the whole

sort-merge requires 2 log2k
2 min/max and 1+2 log2k

2 shuffle instructions.

Our SIMD sort instruction consists of two operations: the in-register SIMD Sort and

in-block-register Merge. The former sorts a SIMD register with k lanes using an odd-even sorting

network. First, it sorts the register lanes by applying successive min/max instructions. Then, each

lane is sorted (shown as the gray and white lanes in Figure 6.4(a)). Finally, it applies a series

of shuffle instructions to transpose the k sorted lanes (vertical order) to form k sorted registers

(horizontal order).

Figure 6.4(b) brings a general overview of our in-register SIMD Sort with eight registers.

The process has two steps: 1) It compares all registers to distinguish the overall lowest and

highest values of each lane, resulting in two registers (V0 and V7), which requires k logk
2 min/max

instructions; 2) The next step compares the remaining registers (i.e., k− 2 registers) as a full

2The Intel AVX512 opcodes: vpmaxsd (SIMD max), vpminsd (SIMD min), and vpshufd (SIMD shuffle).
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(a) SIMD Min/Max instructions. (b) Bitonic Merge.

Figure 6.3: Min/Max and bitonic merge examples.

binary tree data structure, where the result of each level is the lowest and highest registers. Then

the number of registers to compare is reduced by a factor of 2 at every level until remains two

registers to process at the last one. As a result, the number of instructions is ∑2
(logk

2
−1)−1

i=1 2i, where

i is the number of levels. This process can be generalized and extended to an arbitrary number

of k registers since k is a multiple of two. The general formula to calculate the total number of

min/max instructions to perform our in-register SIMD Sort is:

k logk
2 +

2
(logk

2
−1)−1

∑
i=1

2i | i ∈ Z (6.1)

On the other hand, the related work [128] requires:

2(k−1+(k(logk
2)(logk

2 −1))/4) (6.2)

Table 6.1 presents the number of min/max instructions for both approaches on the

target architectures. Notice that our SIMD sort algorithm requires less min/max instructions on

both.

Table 6.1: Number of min/max instructions of the in-register SIMD sort computed by Equations 1 and 2.

Number of min/max inst.

Architecture Register Length In-register Related

SIMD Sort Work [128]

AVX512-64B 16 lanes of 4B 120 126

PIM-256B 64 lanes of 4B 880 1918

After the in-register SIMD Sort, our in-block-register Merge combines sorted registers

to produce an overall sorted block of k registers. In Figure 6.4(c), the resulting sorted registers

(four registers, k = 4) of Figure 6.4(a) are the input to the in-block-register Merge. The execution

uses an odd-even network to shuffle the registers and applies the bitonic merge to compare two

individual sorted ones, producing, after all, a sorted block of k registers, i.e., V0 ≤V1 ≤ ..≤Vn−1
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(a) In-register SIMD Sort example.

(b) The number of instructions of the in-register SIMD Sort.

(c) In-block-register Merge for individual sorted registers.

Figure 6.4: SIMD Sort example and number of instructions, and the in-block-register Merge to combine sorted

registers.

≤ Vn. The execution of the merge phase uses the multiway merge from related work [128, 126]

to boost parallelism.

Sort-Merge Join. Now we are ready to discuss the implementation of the Sort-Merge

Join algorithm with the SIMD Sort-Merge Operation. The data structure of the join column

is of the form “key and object-id” in all of our join implementations. In the particular case of

the Sort-Merge-Join, we sort the column by the key using our SIMD sort algorithm, with the

addition of one SIMD permutation instruction after the comparison operation to reflect the sort

in the object-id, as implemented by related work [129]. With the two relations sorted, we apply

the multiway merge to conclude the operation [130, 126].

6.4 SUMMARY

As HIVE (presented in Chapter 4.3) is our baseline PIM architecture that provides

support for vectorized in-memory instructions (i.e., SIMD instructions), we have to adapt the

database operators to exploit the on-chip processing capabilities. Therefore, we presented the



75

main SIMD instructions applied in the implementation of the operators. The selection and

projection require selective load and store SIMD instructions to get and save filtered values

from/to the memory. The hash join and aggregation operators generate random memory requests

to the hash table that demands special gather and scatter SIMD instructions. The sort-merge join

algorithm to better explore the SIMD support requires the instructions: max, min, and shuffle.

We also delivered a new sort-merge algorithm that requires less 2× PIM instructions than the

state-of-the-art. The next chapter presents results and our analysis of the SIMD operators in PIM

and AVX512.
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7 RESULTS & ANALYSIS

We present the results of the SIMD query operators in PIM and AVX512. Our goal is to

understand the trade-offs between these two highly parallel architectures considering the effect

of data movement around memory. We evaluated response time and energy consumption metrics,

but we normalized these metrics to resume the data sets in one graphic for each operator. The

execution environment is the same described in Chapter 5. We implemented the operators in

C++ language and recorded their memory access pattern as input to the Assembly-like memory

traces of the simulator. Our query execution design assumes the column-wise storage. Initially,

we assume the materialization query execution model (e.g., MonetDB, VoltDB, and Hyrise), but

we also discuss the impact of PIM on the pipelined (e.g., PostgreSQL, Hyper, DB2, Oracle) and

vectorized (e.g., Vectorwise, Peloton, SQLServer, DB2 BLU) models.

We organized the results according to the taxonomy depicted in Figure 7.1, in which the

query operators are grouped based on the memory access pattern, either coalescing or random

memory access, and the data reuse, i.e., either high or low/moderate data reuse.

We remember that the footprint of the operators varies according to the workload’s

data distribution presented in Chapter 5, i.e., among 64 KB (|L1-64KB|) up to 4 GB (|DRAM-
4GB|). Those footprints mean that the input dataset and intermediate data structures fit into

the corresponding memory level: L1-64KB, L2-256KB, LLC-8MB, and DRAM-1GB up to

DRAM-4GB.

The rest of this chapter is organized as follows: We begin, in Section 7.1, with specific

related work that classified query operators from their memory access pattern. Section 7.2 shows

the results and our analysis of operators with coalescing memory access and low data reuse:

the selection and projection operators. In Section 7.3, we discuss the results of operators with

coalescing memory access and high data reuse, i.e., the nested loop join algorithm. We evaluate,

in Section 7.4, the hash join algorithm and the aggregations that have random memory access

with high data reuse. Section 7.5 brings the sort-merge join algorithm that performs random

memory access with a moderate data reuse. Those analysis rely on the taxonomy of operators

using the materialized execution model. In addition, we perform a comparison between the

pipelined and vectorized query execution models in Section 7.6. Section 7.7 presents the effect

of selectivity on the pipelined query execution model. We summarize the results in Section 7.8.

7.1 RELATED WORK

Manegold S. et al. [131] performed a pioneer study to analyze the behavior of database

operators on memory caches. They designed a cost model based on the settings of the memory

hierarchy that estimates the data access pattern of several database algorithms. That study boosted

the design of new cache-conscious database algorithms such as radix-decluster projections [132]
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Figure 7.1: Taxonomy of query operators.

and radix-join [103]. Zeuch et al. [133] studied the behavior of selections on modern CPUs,

considering some aspects such as parallel execution (levels of parallelism), branch prediction,

and cache misses.

Müller S. and Plattner H. [134] performed a deep study about the cost of aggregations

on OLAP and OLTP workloads. The main factors involved are data distribution, the size of the

input dataset, grouping and sorting attributes, aggregation functions, hash structures, and their

implementations. Narayanan R. et al. [135] classified the benchmarks: SPEC INT, SPEC FP,

MediaBench, TPC-H, and some data mining applications, according to basic characteristics of

memory access, ALU operations, CPI, branch prediction and others.

In the context of flash memory, the uFLIP [136] was designed to categorize I/O operation

patterns on distinguished SDD devices, which considers different I/O parameters such as IOSIze,

IOShift, TargetSize, parallel access, and others.

Those previous studies analyzed patterns of database operations on modern CPUs, the

memory cache hierarchy, and flash disks. They analyzed some characteristics of those hardware.

In contrast, our analysis aims to investigate the behavior of database operators on new PIM

devices against CPU processing. In our experiments, we studied the data access parallelism of

PIM devices, the on-chip processing capabilities, and its energy efficiency. In the CPU side, we

analyzed data reuse on the caches and the modern SIMD capabilities provided, i.e., AVX512.

We also focus on data movement issues.

7.2 COALESCING MEMORY ACCESS AND LOW DATA REUSE

We classified the selection and projection operators in the same taxonomy of Figure 7.1.

Both operators have a coalescing memory access pattern and no data reuse with a streaming data
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behavior, i.e., after accessing and processing a data portion at the first time, the operators do not

access such data portion anymore until the end of the execution.

7.2.1 Selection Operator

Now, we report the results of the selection operator when exploiting the data access

parallelism of the PIM-SIMD units. The selection operator applies the predicates of the TPC-H

Query 03. We adjusted the size of the columns in our memory traces to fit data into the caches

and the DRAM.

In the experiments, we observe that the selection with PIM outperforms the AVX512

execution with at least 4 active vaults. It reaches the best execution when all the 32 vaults are

activated in parallel (see Figure 7.2). Therefore, regardless of the size of datasets, the selection

operator processes at least 3× faster with PIM than AVX512. Also, with more on-chip processing,

PIM uses around 45% less energy than AVX512. This high reduction in energy consumption

varies little with a different number of vaults or the size of the datasets (see Figure 7.3).

Such good performance of the selection operator on PIM are due to four folds: 1) It has

a sequential memory access pattern that enables the potential of data access parallelism within

the PIM device; 2) The SIMD-PIM support allows to execute 64 (256B/4B) SIMD instructions

per vault with a total of 32 vaults it is possible to execute 2048 arithmetic, logical, or bitwise

instructions over 4-byte integers; 3) The operator streams the data that disable the benefits from

the CPU caches, i.e., the CPU does not reuse data while processing selections and thus the

memory accesses always pay the latency of DRAM; 4) The data movement problem degrades

performance because data move until the CPU for processing, which demands a high energy

consumption reduced by 50% in PIM.

Figure 7.2: Selection: Normalized execution time to the worst execution on the target architectures according to the

size of datasets (i.e., L1-64KB, L2-256KB, LLC-8MB, and DRAM-1GB). The x-axis varies the levels of parallel

processing: up to 8× for the AXV512 and up to 32× for PIM.
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Figure 7.3: Selection: Normalized energy consumption to the worst execution on the target architectures according

to the size of datasets (i.e., L1-64KB, L2-256KB, LLC-8MB, and DRAM-1GB). The x-axis varies the levels of

parallel processing: up to 8× for the AXV512 and up to 32× for PIM.

7.2.2 Projection Operator

Now, we discuss the results of the projection operator. As discussed in Section 5.1,

the projection operator is responsible for the materialization of intermediate data moving large

amounts of data around the memory hierarchy. We observe the same results in Figure 7.4.

The execution time of the projection on datasets of the same size as LLC-8MB or less is 7×
on average faster in PIM than AVX512. For datasets that do not fit in the caches, e.g., the

DRAM-1GB dataset, the execution time is one order (10×) of magnitude faster with PIM. Also,

in all datasets, PIM reduces energy consumption in 3x compared to the AVX512. For instance,

in the dataset DRAM-1GB, the execution of the AVX512 unrolled 8× spent 1,913 Joules of

energy (see Figure 7.5). On the other hand, the processing in PIM with all vaults, i.e., PIM-256B

32×, generated 0,645 Joule of energy (an energy reduction of 3x compared to AVX512).

We conclude that pushing the selection and projection operators to PIM has a significant

advantage over the x86 processor. Both operators exploit the data access parallelism provided

by the 3D-stacked memories. They also can perform 32 parallel SIMD instructions inside the

memory device that overcomes the processing power of the x86 due to the latency to move data

around the caches until the CPU.

7.3 COALESCING MEMORY ACCESS AND HIGH DATA REUSE

This section presents query operators with coalescing memory access and high data

reuse. In this category, we analyzed the Nested Loop Join that is one of the most aplied algorithm

for the join operator. The analysis and results on this algorithm shall extend to many other

applications that have to read and process datasets into nested loops.
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Figure 7.4: Projection: Normalized execution time to the worst execution on the target architectures according to the

size of datasets (i.e., L1-64KB, L2-256KB, LLC-8MB, and DRAM-1GB). The x-axis varies the levels of parallel

processing: up to 8× for the AXV512 and up to 32× for PIM.

Figure 7.5: Projection: Normalized energy consumption to the worst execution on the target architectures according

to the size of datasets (i.e., L1-64KB, L2-256KB, LLC-8MB, and DRAM-1GB). The x-axis varies the levels of

parallel processing: up to 8× for the AXV512 and up to 32× for PIM.

7.3.1 Nested Loop Join

The Nested Loop Join (NLJ) algorithm traverses the join columns with two loops: the

outer and the inner. In our implementations, the latter is unrolled up to 32× for PIM and 8×
for the AVX512 execution. The goal is to exploit the highest levels of parallel processing and

memory access to the devices. Figure 7.6 shows the results for datasets smaller or equal to the L2

cache (L2-256KB). The AVX512 execution unrolled 4× performs better than the PIM execution.

The AVX512-style processing re-accesses data in caches for every inner loop iteration, while the

inner column fits into the caches resulting in high data reuse (except by the first interaction that

causes compulsory memory misses). In contrast, the PIM execution causes compulsory load and

store for every inner loop iteration, because it must access the memory banks at all times.

The PIM execution becomes appealing for datasets bigger than the L2 cache (e.g., LLC-

8MB), which inhibit data reuse. The best AVX512 execution, i.e., AVX512 unrolled 8×, spends
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3.367 milliseconds to process the LLC-8MB dataset, whereas the PIM unrolled 32× requires

2.428 milliseconds, which represents a reduction of 30% of the execution time. Moreover, the

PIM processing saves around 50% of energy consumption in both datasets.

In practice, DBMSs choose the NLJ algorithm only to process small datasets, and

for this reason, we suppressed the results for datasets bigger than the LLC cache. Moreover,

we analyze the NLJ because it resembles the data access pattern of matrix multiplication that

encompasses other applications, such as linear transformation, image processing, and machine

learning algorithms. Our analysis on the NJL adds useful insights to that range of applications.

Figure 7.6: NLJ: Normalized execution time to the worst execution on the target architectures according to the size

of datasets (i.e., L1-64KB, L2-256KB, and LLC-8MB). The x-axis varies the levels of parallel processing: up to 8×
for the AXV512 and up to 32× for PIM.

Figure 7.7: NLJ: Normalized energy consumption to the worst execution on the target architectures according to the

size of datasets (i.e., L1-64KB, L2-256KB, and LLC-8MB). The x-axis varies the levels of parallel processing: up

to 8× for the AXV512 and up to 32× for PIM.

7.4 RANDOM MEMORY ACCESS AND HIGH DATA REUSE

In this section, we identified the operators with random memory access and high data

reuse, which is the case of the hash join and aggregations. The random memory access pattern
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of these operators rely on the accesses to hash tables, and the high data reuse depends on how

much they re-access the hash table entries.

7.4.1 Hash Join

The hash join algorithm consists of the build and probe phases. These phases have

two different memory accesses pattern: sequential memory access to read the join columns and

random memory access to access the hash table entries. The build phase generates the hash table

from the smallest relation. For instance, the TPC-H Query 03 generates two hash tables for two

join operations in the query plan. In the 1GB TPC-H, the hash table on “c_custkey” has 30,142

entries with a 173-KB memory footprint. The hash table based on “o_orderkey” has 147,126

entries with a 287-KB memory footprint. The probe phase searches the biggest relation to add

the join values to the hash table.

Figure 7.8 presents the normalized execution time for the hash join. For all dataset

sizes, the AVX512 execution is better than PIM. Two main effects impact the PIM execution: 1)

Random access is sparse most of the execution, which means that only one register lane will be

useful during PIM load operations. 2) Random access shall reuse some cache lines inside the

x86 processor, although the reuse ratio may vary depending on the workload and cache size.

Figure 7.8: Hash Join: Normalized energy consumption to the worst execution on the target architectures according

to the size of datasets (i.e., L1-64KB, L2-256KB, LLC-8MB, and DRAM-1GB). The x-axis varies the levels of

parallel processing: up to 8× for the AXV512 and up to 32× for PIM.

7.4.2 Aggregation Operator

The aggregation operator is based on a hash table to hold the aggregation values. It has

two memory access patterns: 1) Data streaming while accessing the group columns to compute

the hash addresses and the aggregation columns to accumulate the new values; 2) Random

memory access while looking up the hash table. In this experiment, the limited number of

PIM-SIMD registers restricts the data access parallelism to 16× to build the aggregation and

groups.
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Figure 7.9: Hash Join: Normalized energy consumption to the worst execution on the target architectures according

to the size of datasets (i.e., L1-64KB, L2-256KB, LLC-8MB, and DRAM-1GB). The x-axis varies the levels of

parallel processing: up to 8× for the AXV512 and up to 32× for PIM.

7.4.2.1 TPC-H Query 01

The aggregation operator in the TPC-H Query 01 has two columns for grouping, and

eight aggregation functions based on five columns from the Lineitem table. With a small number

of groups, i.e., hash table entries, the hash table also has a small memory footprint that fits

into the L1 cache. Although the operator streams the five columns to compute the aggregation

functions, Figure 7.10 shows that the memory access to the hash table dictates the performance

regardless of the degree of parallelism used by the PIM device. With an unroll depth of 2×, the

gather instruction of the AVX512 accesses two cache lines that are sufficient to load the entire

hash table to SIMD registers outperforming PIM with all unroll depth versions.

Figure 7.10: Aggregation: the execution time of the TPC-H Query 01, varying the levels of parallel processing.

7.4.2.2 TPC-H Query 03

The aggregation operator in the TPC-H Query 03 has three columns of grouping and

just one aggregation function based on two columns from the Lineitem table. The number of

hash table entries is a few hundred, which still fit in the L2 cache. This fact leads the PIM to scale

according to the degree of parallelism. The difference in performance decreases between PIM

and AVX512 compared to the results of Query 01. However, the execution of the aggregation

remains better in AVX512 (see Figure 7.11).
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Figure 7.11: Aggregation: the execution time of the TPC-H Query 03, varying the levels of parallel processing.

7.4.2.3 Zipf Distribution

In the previous experiments with TPC-H queries 01 and 03, the hash table fit into the

L1 and L2 caches. Now, we investigate the aggregation operator with the Zipf workload varying

the size of the dataset using bigger sizes than the cache memories. The Zipf distribution was also

used by the related work [137] to evaluate the aggregation operator.

Figure 7.12 shows that the execution time using AVX512 is still better than PIM and

that the difference in energy consumption is quite marginal. The AVX512 performance results

come from the high reuse of the hash table, especially for small hash tables that fit into the

caches. The random access to the hash table restricts the data access parallelism of the PIM

device, incurring in the same effects observed in the hash join (see Section 7.4.1), i.e., low usage

of SIMD register lanes and x86 cache memory reuse.

7.4.3 Discussion

All in all, the hash join algorithm and the aggregation operator are susceptibles to the

random memory access to the hash table and to the high reuse of hash entries. Figure 7.13 illus-

trates the problem of random access pattern inside a 3D-staked memory, it depicts serialization

accesses to the vault V0. We observed, at least, three random requests to memory banks within

V0 that cause memory access serialization.

The results of the hash join reveal the random access pattern problem. For example in

Figure 7.8, the PIM unrolled 1× and 32× have the same performance, which means that regard-

less of the levels of parallelism used, the memory access serialization dictates the performance.

However, the PIM execution reduces energy consumption in all datasets. Figure 7.9 shows that

the energy savings by PIM increases as the hash table becomes bigger. The reasons behind those

results are because AVX512 with bigger datasets generates more data movement than PIM to

access the hash table entries from the main memory.

On the other hand, the hash table access pattern dictates the performance of the aggrega-

tion operator regardless of the performance metric. The random access shows low data reuse as

at most 32 memory addresses from the 64 possible addresses in the SIMD lanes can be accessed

at once. In this case, hashing will require two loads to compute the hash keys if the unroll depth
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(a) Aggregation with Zipf distribution: execution time normalized to PIM-256B 1x.

(b) Aggregation with Zipf distribution: energy consumption normalized to PIM-256B 1x.

Figure 7.12: Normalized execution time and energy consumption of the aggregation operator with the Zipf

distribution. These performance metrics were normalized to the worst execution (i.e., PIM-256B 1×), varying the

size of datasets (i.e., L1-64KB, L2-256KB, LLC-8MB, and DRAM-1GB) and levels of parallel processing.

is set to 32×. As a remark, we did not consider, in this study, aggregations without grouping,

i.e., no hash table, because it is a corner case in analytic workloads that we keep open for future

work.

7.5 RANDOM MEMORY ACCESS AND HIGH DATA REUSE

In this section, we discuss the results of operators with random memory access and a

moderate data reuse, which is the case of the Sort-Merge Join algorithm.

7.5.1 Sort-Merge Join

The execution of the Sort-Merge Join presents two different memory access patterns

from its two phases. The first phase generates random memory access when sorting the join

columns, while the second phase generates sequential memory access when merging the sorted
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Figure 7.13: Random memory access serialization to the vault V0 within the PIM device, where V0 → Bx is the

access to the memory bank Bx of the vault V0.

columns. Figure 7.14 presents the execution results using as much parallelism as possible. We

use an unroll depth of 8× in both PIM and AVX512, because the SIMD sort-merge algorithm

reserves SIMD registers to hold intermediate values, such as lowest/highest values from min/max
instructions and others from the shuffle instructions.

The execution of the AVX512 performs better while the datasets fit into the caches due

to faster data access, as observed in both metrics: time and energy. The execution time remains

smaller in the AVX512 execution. However, the energy consumption is higher on datasets bigger

than the LLC due to the data movement. In those cases, the PIM uses around 40% less energy

than AVX512, see Figure 7.15.

Figure 7.14: Sort-Merge Join: Normalized excecution time on the target architectures with loop unroll depth

of 8x, varying the size of the datasets (i.e., L1-64KB, L2-256KB, LLC-8MB, DRAM-1GB, DRAM-2GB, and

DRAM-4GB).

7.5.2 Discussion

In brief, the AVX512 overcomes PIM in terms of the execution time in the hash and sort-

merge join. The PIM execution saves more energy avoiding off-chip data movement. Another

significant join algorithm is the radix-join [103], which could be evaluated to reduce the energy
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Figure 7.15: Sort-Merge Join: Normalized energy consumption on the target architectures with loop unroll depth

of 8x, varying the size of the datasets (i.e., L1-64KB, L2-256KB, LLC-8MB, DRAM-1GB, DRAM-2GB, and

DRAM-4GB).

consumption of the AVX512. Roughly, the radix-join has two distinct data access patterns: a

random pattern while building radix-clusters for both join relations and a sequential one to probe

the clusters with a nested-loop [103]. The random access pattern is also present in the hash

join experiments, where our recommendation is to use PIM for energy saving. The sequential

memory access is the same pattern evaluated in the NLJ experiments, in which PIM saves around

50% of the energy consumption, even in a dataset fitting in the L1 cache. The main reason for

energy waste is the off-chip data movement. In our evaluation, such a factor shall not reduce

with radix-join because its memory access patterns are already present in the experiments of the

other algorithms. However, radix-join is a compelling case for future work.

All in all, we conclude that the performance of the join operator is very susceptible to

the cache settings, the dataset size, and the target performance metric. The AVX512 execution

benefits from the caching mechanism when the join columns fit into the caches or during random

memory accesses, which enables data reuse inside the caches.

7.6 PIPELINED VS. VECTORIZED QUERY EXECUTION

In this section, we compare the pipelined and vectorized query execution models. We

implemented the selection vector and bitmap data structures to support the execution of both

models. In the pipelined execution, the selection operator uses those data structures to hold

intermediate results in SIMD registers as long as possible, avoiding data re-access. These results

are used by the next operators to filter columns along the CPU pipeline. In the vectorized

execution, the selection operates on vectors of 1024 elements1 and stores the intermediate data

structures into the memory to be loaded by the next operator in the query plan. Those store/load
instructions are the main factor that differs between the implementation and performance of

these query execution models.

1The same quantity defined by related word [8].
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We analyze the selection operator that is followed by the build phase of a hash join.

We noticed an opportunity to fuse these two operators in the TPC-H Query 03 query plan, the

selection filter “c_mktsegment = ’BUILDING’”, and the build of the hash table on c_custkey

because there is no pipeline breaker [49] between them. Therefore, SIMD registers hold an

intermediate selection vector that is used to filter the c_custkey column (gather instruction).

Keeping the selection vector in SIMD registers precludes the exploitation of the maximum 32×
data access parallelism of PIM. In our implementation, 16 SIMD registers hold the selection

column (c_mktsegment), while the selection vector uses the remaining registers.

Figure 7.16 presents the execution time and energy consumption of the pipelined

and vectorized execution. Results show that the pipelined execution performs better than the

vectorized in both architectures due to the additional store/load instructions on the selection

vector. PIM reduces the execution time of the pipelined system when the 32 vaults are activated.

In the AVX512 hardware, we observed almost 50% of energy saving due to the high selectivity

of the selection vector that filters around 80% of the join column, and also the random access

pattern to build the hash table.

Figure 7.16: Pipelined vs Vectorized execution on TPC-H Query 03 with a selection operator followed by building.

The gray lines correspond to the vectorized execution model and black lines to the pipelined one.

Now, we analyze the selection operator followed by aggregation in the query plan of the

TPC-H Query 01. The selection predicate filters a small subset (around 1.5%) of the Lineitem
table, and 98.5% remains to aggregate. The selection operator outputs a bitmap of bytes instead

of a selection vector due to the low selectivity of the selection predicate. In this query plan, the

pipelined execution with a bitmap as an intermediate structure achieves the maximum degree of

parallelism of PIM overcoming the AVX512 processing. The selection operator reads data from

all vaults to apply the selection predicate. This strategy compensates for the random memory

access of the hash table. In the vectorized execution, SIMD registers hold the bitmap to build

the grouping and aggregation columns using the selective load instruction. The aggregation

operator applies the conflict-free updates technique [125] to mitigate the concurrence to the hash

table. Figure 7.17 shows a marginal improvement to run a selection followed by aggregation

on PIM. The vectorized and pipelined executions are worth when at least 4 or 16 vaults active,

respectively.
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Figure 7.17: Pipelined vs Vectorized execution on TPC-H Query 01 with a selection operator followed by aggregation.

The gray lines correspond to the vectorized execution model and black lines to the pipelined one.

We conclude that random memory patterns hamper the data access parallelism of PIM

in both execution systems. This shows opportunities to re-design hash-based algorithms for PIM

hardware.

7.7 THE EFFECT OF SELECTIVITY

For a more holistic macro-benchmark examination, we evaluate the effect of the selec-

tivity of the TPC-H Query 03 in the pipelined query system (the best performance of AVX512,

as observed in Section 7.6). We randomly ranged the selectivity of the c_mktsegment between

0.1% and 100%. Varying the selectivity on the pipelined system implies to change the size of the

selection vector and the projectivity on column c_custkey, and also the cardinality of the join,

i.e., the number of entries in the hash table.

Figure 7.18 shows our findings. For selectivities between 0.1% and 10% on small

datasets (e.g., TPC-H 1GB), PIM reaches a better performance in both metrics compared to

the AVX512 because the selectivity reduces the hash table size alleviating the memory access

serialization. For selectivities greater or equal to 25%, the AVX512 outperforms PIM due to two

main reasons: 1) The hash table has more entries that imply a higher join cardinality and more

memory access serialization; 2) The dataset fits into the caches leading to data reuse. However,

for big datasets, e.g., TPC-H 100GB, PIM is faster than the AVX512 regardless of the selectivity

because the input columns, the selection vector, and the hash table do not fit into the caches at

the same time. Especially in the TPC-H 100GB, PIM execution time ranges from 1.6x to 3x

faster than the AVX512 when varying the selectivity from 100% to 0.1%, respectively. Likewise,

PIM uses less energy from 5% to 70% compared to AVX512.

Although the selectivity affects query processing, the size of the dataset and intermediate

data structures, and the cache settings are the main factors to decide for PIM in the pipelined

query execution model.
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(a) Varying Selectivity: normalized execution time.

(b) Varying Selectivity: normalized energy consumption.

Figure 7.18: Normalized execution time and energy consumption of the pipelined system according to the worst

execution on datasets of 1GB and 100GB, varying the selectivity from 0.1% to 100%.

7.8 SUMMARY

We provided a substantial analysis of the database operators on PIM and AVX512. The

results clearly showed that the selection and projection operators take advantage of the PIM

capabilities that avoid some pitfalls of the data movement problem.

At the same time, the join algorithms are rather intricate. In the NLJ results, the AVX512

processing demonstrates a better performance while the data fit into the L1 or L2 cache, thanks

to the data reuse. However, the performance degrades when the inner table/column is bigger than

the L2 cache. In this case, the PIM execution outperforms AVX512 in terms of execution time

and energy consumption.

The hash join presents a better execution time for the AVX512 processing due to its

random memory access pattern that constrains the data access parallelism of PIM devices. On

the other hand, it spends more energy to transfer data along with the memory caches to the CPU.

The sort-merge join reached better execution time on the AVX512 processing. In terms of energy

consumption, it favors the PIM whether the data do not fit into the caches otherwise AVX512

processing.

Our conclusion about the aggregation operator is that the AVX512 processing still

performs better than PIM. The main reason is due to the high data reuse of hash table entries,
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which leverage the caching mechanism of modern CPUs, i.e., high reuse of HT entries means

that most data access is on the latency of caches, which is much lesser than the DRAM latency.

Besides, we provided a comparison of the pipelined and vectorized query execution

models with intricate results. Therefore, we further analyzed the impact of selectivity using the

pipelined query model on the TPC-H 1GB and 100GB. The results show a clear advantage of

PIM on huge datasets, e.g., TPC-H 100GB. Those results open new challenges for a new concept

that we define as a hybrid PIM-x86 SIMD query execution system, presented in the next chapter.



92

8 HYBRID PIM-X86 SIMD QUERY EXECUTION SYSTEM

In this chapter, we discuss the potential of a Hybrid PIM-x86 query execution system.

We assume the materialization system again and present our discussion with the execution of

a macro-benchmark of TPC-H Query 03. We begin with related work of query scheduling on

emerging hardware. Then we introduce our approach for a hybrid query scheduler between PIM

and x86, considering the two performance metrics: execution time and energy consumption,

Section 8.2. We conclude with challenges and opportunities for the co-design of Database-PIM

in Section 8.3.

8.1 RELATED WORK & DISCUSSION

We have classified the related work on query scheduler into two categories, and we

discuss the main pros and cons compared with our solution, as follows:

Scheduling On Emerging Hardwares. Current intra-query scheduling focused on

co-processing between GPU and CPU to improve execution time based on runtime learning

model [138] and operator cost model [139]. The authors of [140, 141] also tested a similar

hybrid co-processing in the Intel Xeon Phi co-processor.

Kernel Scheduling on PIM-Assisted GPU. Related work in GPU architectures pro-

posed scheduling techniques with PIM devices installed as GPU main memory. GPU applications

are split into independent GPU-kernels and interleave the processing of each kernel between the

GPU cores and the PIM device [4, 142, 143]. Although GPUs are devices with high parallel

processing degree, data still need to be transferred around the memory hierarchy before moving

to the GPU-PIM device.

Discussion. The main difference regarding those approaches to ours is that we focus

on in-memory processing with data transfer only when needed. The hybrid scheduling between

CPU and GPU tackles compute-intensive applications and neglects the potential of PIM to run

data-intensive ones. Even a hybrid co-processing with GPU and PIM needs to move data among

the memory hierarchy until the CPU and also generates extra data transfer from the CPU to the

shared memory within the graphic card (GPU).

8.2 HYBRID PIM-X86 QUERY SCHEDULER

The results and our analysis in Chapter 7 reveal a surely demand on how to interleave

PIM and x86 style-like processing in today’s DBMSs. Also, Figure 8.2 shows the execution

breakdown in the DRAM-1 GB dataset with the best execution of each operator in the target

architectures. For instance, we choose the hash join that showed the best performance among

the join algorithms, and it is the most applied join algorithm in today’s DBMSs. Processing the
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PIM-specific query plan improves the execution time by 12.5% and spends 66% less energy

than the AVX512-specific query plan. This result matches the energy efficiency featured by

commercial PIM architectures.

Figure 8.1: TPC-H Query 03 execution breakdown in both target architectures.

In Table 8.1, we correlate the results presented in Chapter 7 with their best processing

architectures according to the dataset size and performance metric. We take into account those

results to implement the heuristics that coordinates the execution of operators between PIM and

x86.

Table 8.1: Database Operators Summary.

Operator Dataset Performance Processing

Fit in cache? Metrics Architectures
Selection no/yes time/energy PIM
Projection no/yes time/energy PIM

Join

Nested L1/L2 time AVX512
Loop LLC time PIM

yes energy PIM
Hash no/yes time AVX512
Join no/yes energy PIM

no/yes time AVX512
Sort yes energy AVX512

Merge no energy PIM
Aggregation no/yes time/energy AVX512

Figure 8.2 presents the macro-benchmark results of hybrid coordination. The hybrid

query plan reduces the execution time by 35% and 45% compared to both hardware-specific

PIM and AVX512 plan execution, respectively. For energy consumption, the hybrid query plan

consumes less than half of the AVX512 energy but presents a marginal result compared to

the PIM plan. All in all, the hybrid query scheduler presents promising results to foster new

developments of many-core DBMSs.

Regarding energy results, we observe several trade-offs whenever moving computation

from the x86 to the PIM logic: 1) We expect that the functional units (ALU’s) and the number

of data accesses will consume the equivalent amount of energy. During data streaming, both

x86 and PIM execution shall process an equal quantity of computing operations, spending the
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Figure 8.2: Execution breakdown when applying our findings to process a hybrid query plan for Query 3 in the

target architectures.

same amount of energy per operation no matter the hardware; 2) We can significantly save

energy reducing off-chip data transfers, as they consume 62.7%, on average, of the total system

energy budget [1]; 3) We also reduce the energy consumption of the cache subsystem with less

data being stored and evicted from the cache memories. The energy consumption of the cache

subsystem accounts for 25% to 50% of the full processor energy consumption [144]; 4) We

expect that energy consumption increases to send the instructions inside the memory. On-chip

processing requires extra hardware to handle the instructions and the messaging of their status to

the CPU at the end of each operation. However, the payload of instructions and messages to the

CPU is much smaller than a cache line, resulting in a positive trade-off in terms of energy.

8.3 CHALLENGES & OPPORTUNITIES

Hybrid query execution and optimization require a holistic view of a query optimizer to

exploit heterogeneous co-processing. Next, we identify a list of challenges for the co-design of

Database-PIM.

Simultaneous Co-processing: In heterogeneous processing environments, the opti-

mizer needs to identify opportunities of co-processing to avoid idle devices or inefficient power-

consumption (e.g., the power wall problem [117]). Operator-pipelining is also an important

technique to be further investigated. Besides, the simultaneous CPU and PIM processing may

add hard-to-predict concurrency into the main memory.

Query Plan Optimization: The search space to optimize query plans is already a

problem for traditional query optimizer. The addition of hybrid query plans increases the

complexity to generate efficient candidate query plans. A PIM-aware query optimizer needs to

take into account hardware-specific features to choose the appropriate running device, such as

limited processing power and reduced data movement for PIM, and fast processing with caching

mechanisms for superscalar CPUs.

Transactions: Intrinsically arithmetic and logical PIM update instructions are

atomic [18]. This opens research opportunities for near-data transactions and Hybrid Transaction-

al/Analytical Processing (HTAP). The current PIM ISA supports compare-and-swap instruction

to evaluate values. Therefore, PIM update instructions can be synchronized in-memory without
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wasting cache-check time or extra memory bandwidth. The opportunity is to reduce the overhead

of locking and latching, which correspond to 30% of the instructions in OLTP [145].

DBMS Adoption: We envision that Database Management Systems (DBMSs) should

invoke PIM instructions at the operator code base, similarly to the SSE and AVX approaches.

We also consider code optimization to provide intrinsic functions for PIM ISA.
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9 CONCLUSION & FUTURE WORK

In this thesis, we investigated the design and implementation of query execution in

modern Processing-In-Memory hardware. The new 3D-stacked memories are promising PIM

hardware to tackle the data movement problem. They have been designing to improve memory

bandwidth with multiple parallel data access, besides the integration of DRAM dies and logical

units through the TSV bus. These emerging memory hardware opens new challenges and

opportunities for data-centric systems that require moving large amounts of data around memory,

such as DBMSs for OLAP workloads. Therefore, we aim to mitigate the data movement

problem on analytic query execution due to the the side effects of the legacy von Neumann

computing-centric model.

To the best of our knowledge, a little is known about the potential of PIM for OLAP.

We conclude that the choice of the processing hardware paradigm (either PIM-style or x86-style

based on the von Neumann model) for query execution depends on the query operators (i.e., the

taxonomy of operators: memory access pattern and data reuse), the target performance metric,

cache settings, and the size of datasets.

This thesis provides a thorough study of the distinguishable query execution models

with PIM support: materialized, vectorized, and pipelined. One of the most efficient modern

PIM architecture is HIVE that supports on-chip processing with SIMD registers of 256-bytes

wide. For a fair comparison, we evaluated the execution of database operators on HIVE against

the widest SIMD architecture of the current x86 processor, i.e., the AVX512. Our goal is to

understand how DBMSs can benefit from PIM to alleviate the data movement problem. Thus

we gauged the execution time and energy consumption of the most memory demanding query

operators.

Materialized Query Execution Model
The materialized query execution model processes just one query operator per call in a column-at-

a-time fashion. In such a system, we identified that the selection and projection query operators

exploit the maximum of data access parallelism provided by PIM architectures. Hence, they are

also able to run in parallel 32 SIMD instructions of 256-bytes, which has a significant advantage

over the x86 processor that also must move data around the caches. In Chapter 5, we empirically

demonstrated that these operators corresponding to around 70% of the execution time and 50%

of energy spent by the 100GB TPC-H benchmark. These operators are around one order of

magnitude faster on PIM, with an energy reduction of about 50%, this implies a significant and

promissing improvement with PIM on DBMSs.

The join operator has different results, because the performance depends on the memory

access pattern and the size of the dataset. The Nested Loop Join is susceptible to the cache
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settings. Therefore, in such an algorithm, the x86 processing has a better execution time, while

the input datasets fit into the L1 or L2 caches (due to the data reuse). The PIM execution is faster

for datasets equal to or greater than the L3 cache. In all cases, PIM saves around 50% of energy

regardless of the size of the dataset.

One valuable contribution of our experimental study appears when analyzing the hash

join algorithm. We uncovered the effects of low usage of SIMD register lanes and also the data

reuse that appears in the x86 processing. These characteristics inhibit data access parallelism and

processing capabilities of PIM, degrading the performance of applications that generates massive

random memory access during the execution. For example, the PIM hardware is between 40%

to 60% slower for processing the hash join. At the same time, PIM saves energy as bigger is

the size of the dataset, reducing by almost 65% the energy spent to process datasets greater than

the LLC. Another contribution of this thesis is our SIMD sorting algorithm that requires fewer

SIMD instructions than the state-of-the-art in both PIM and AVX512 architectures. We observed

that our algorithm presented the best results when executed by AVX512.

We noticed that aggregations on PIM are very intricate, because the hash table access

pattern dictates the performance. The aggregation queries that we evaluated have high reuse of

hash table entries, which leverage the caching mechanism on x86 processing. As a result, using

distinct hash table distributions (e.g., TPC-H Query 01 and 03, and Zipf distribution), the PIM

hardware could not improve the execution time and the energy consumption.

Vectorized and Pipelined Query Execution Models
The vectorized query execution model allows compilers to generate efficient loop-pipelined code

and avoids the high interpretation overhead caused by the Volcano-style model. Although this

system has a better usage of the caching mechanism, it has to materialize intermediate data at a

vector granularity. On the other hand, the pipelined query execution model enables pipeline data,

which keeps data into CPU registers as long as possible.

The experiments showed a slightly better performance of the pipelined system over

the vectorized one on both architectures. Varying the selectivity and the size of datasets on the

pipelined system, the AVX512 has a better performance with high selectivities on small datasets.

However, on big datasets (e.g., TPC-H 100GB), the PIM execution on the pipelined system

reduces the execution time from 1.6× to 3× and uses less energy from 5% to 70% compared

to the AVX512. These results are due to the cache subsystem settings because the dataset and

intermediate data do not fit into the caches at the same time. This is clear evidence of the data

movement problem that PIM can mitigate.

Hybrid PIM-X86 SIMD Query Execution System
We have identified a sure demand for building a hybrid query execution system. Our first

approach to that system is a hybrid query scheduler that receives a query plan and coordinates

the execution of that plan between x86 and PIM. This coordination is based on heuristics from
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the experiments in Chapter 7 with promising preliminary results. The hybrid query execution

reduced the execution time between 35% and 45% compared to hardware-specific query plans

and saved 2× more energy than the AVX512-specific query plan.

We conclude that DBMSs require a clever co-design of Database-PIM to reduce the

effects of data movement on analytic query execution. Our findings allow advancing further on

that co-design and implementation of SIMD query operators on PIM and x86-style processing.

Therefore, the hybrid PIM-X86 scheduler is one of our contributions to that direction.

9.1 FUTURE WORK

Although the hybrid query scheduler achieves promising performance results, at the

scheduler level (physical query level) there are not thorough information about the interaction of

operators in the query plan. The query optimizer is responsible for choosing the best-estimated

execution plan with a holistic view on how query operators iterate and share data among the

pipeline of operators, which is crucial for building an optimized hybrid query plan.

Our hybrid query scheduler allows the DBMS to interleave the execution of query

operators between x86 and PIM. Our findings in this thesis open new research opportunities

for the co-design of Database-PIM. Considering such a many-core environment, one important

aspect is to identify misscheduled operators, i.e., operator instances running at an incorrect

processing hardware that leads to performance loss. Therefore, we envision a dynamic scheduler

that monitors the execution of the hybrid query plan, then case the performance of a monitored

operator has an unpredictable loss, the scheduler can take a runtime schedule decision or can

maintain a learning base with all major information for accurate demand schedule decisions.

We realized an opportunity to design a small cache inside the PIM device. The main

goal is to reuse data within the memory device and to provide suitable support for the hash and

sort-merge join algorithms, and also aggregations. Such an in-memory cache shall boost PIM

against the cases that the x86 processing had a better performance due to the data reuse.
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9.2 PUBLISHED PAPERS

The list with published papers during this thesis are present bellow:

1. 1 Tiago R. Kepe, Eduardo C. de Almeida, Marco A. Z. Alves. Database Processing-in-
Memory: An Experimental Study. Proceedings of Very Large Data Bases, PVLDB,

13(3): 334-347, 2019.

2. 2 Tiago R. Kepe, Eduardo C. de Almeida, Marco A. Z. Alves, Jorge A. Meira.

Database Processing-in-Memory: A Vision. Database and Expert Systems Applica-

tions, DEXA, 2019. Linz, Austria.

3. Tiago R. Kepe, Eduardo C. de Almeida, Marco A. Z. Alves. Processamento de Banco
de Dados em Memória. Brazilian Symposium on Databases, SBBD, 2019. Fortaleza,

Ceará, Brazil.

4. Tiago Rodrigo Kepe. Dynamic Database Operator Scheduling for Processing-in-
Memory. PhD Workshop, PhD@VLDB, 2018. Rio de Janeiro, Brazil.

5. Diego G. Tome, Tiago R. Kepe, Marco A. Z. Alves, Eduardo C. de Almeida. Near-
Data Filters: Taking Another Brick from the Memory Wall. International Work-

shop on Accelerating Analytics and Data Management Systems Using Modern Proces-

sor and Storage Architectures, ADMS@VLDB 2018. Rio de Janeiro, Brazil.

6. Aline S. Cordeiro, Tiago R. Kepe, Diego Tome, Marco Alves, and Eduardo Almeida.

Intrinsics-HMC: An Automatic Trace Generator for Simulations of Processing-
In-Memory Instructions. WSCAD, 2017.

1Represents the one of the most important publications to consolidate our experiments and results.

2Represents the one of the most important publications to validate our design for the co-design of Database-PIM.
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