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Resumo
Um dos grandes gargalos em sistemas de bancos de dados focados em leitura consiste em mover

dados em torno da hierarquia de memória para serem processados na CPU. O movimento de

dados é penalizado pela diferença de desempenho entre o processador e a memória, que é

um problema bem conhecido chamado memory wall. O surgimento de memórias inteligentes,

como o novo Hybrid Memory Cube (HMC), permitem mitigar o problema do memory wall
executando instruções em chips de lógica integrados a uma pilha de DRAMs. Essas memórias

possuem potencial para computação de operações de banco de dados direto em memória além

do armazenamento de bancos de dados. O objetivo desta dissertação é justamente a execução

do operador algébrico de seleção direto em memória para reduzir o movimento de dados

através da memória e da hierarquia de cache. O foco na operação de seleção leva em conta o

fato que a leitura de colunas a serem filtradas movem grandes quantidades de dados antes de

outras operações como junções (ou seja, otimização push-down). Inicialmente, foi avaliada a

execução da operação de seleção usando o HMC como uma DRAM comum. Posteriormente, são

apresentadas extensões à arquitetura e ao conjunto de instruções do HMC, chamado HMC-Scan,

para executar a operação de seleção próximo aos dados no chip lógico do HMC. Em particular,

a extensão HMC-Scan tem o objetivo de resolver internamente as dependências de instruções.

Contudo, nós observamos que o HMC-Scan requer muita interação entre a CPU e a memória para

avaliar a execução de filtros de consultas. Portanto, numa segunda contribuição, apresentamos a

extensão arquitetural HIPE-Scan para diminuir esta interação através da técnica de predicação. A

predicação suporta a avaliação de predicados direto em memória sem necessidade de decisões

da CPU e transforma dependências de controle em dependências de dados (isto é, execução

predicada). Nós implementamos a operação de seleção próximo aos dados nas estratégias de

execução de consulta orientada a linha/coluna/vetor para a arquitetura x86 e para nas duas

extensões HMC-Scan e HIPE-Scan. Nossas simulações mostram uma melhora de desempenho de

até 3.7× para HMC-Scan e 5.6× para HIPE-Scan quando executada a consulta 06 do benchmark

TPC-H de 1 GB na estratégia de execução orientada a coluna.

Palavras-chave: SGBD em Memória, Cubo de Memória Híbrido, Processamento em Memória.





Abstract
A large burden of processing read-mostly databases consists of moving data around the memory

hierarchy rather than processing data in the processor. The data movement is penalized by the

performance gap between the processor and the memory, which is the well-known problem called

memory wall. The emergence of smart memories, as the new Hybrid Memory Cube (HMC),

allows mitigating the memory wall problem by executing instructions in logic chips integrated to

a stack of DRAMs. These memories can enable not only in-memory databases but also have

potential for in-memory computation of database operations. In this dissertation, we focus on the

discussion of near-data query processing to reduce data movement through the memory and cache

hierarchy. We focus on the select scan database operator, because the scanning of columns moves

large amounts of data prior to other operations like joins (i.e., push-down optimization). Initially,

we evaluate the execution of the select scan using the HMC as an ordinary DRAM. Then, we

introduce extensions to the HMC Instruction Set Architecture (ISA) to execute our near-data select

scan operator inside the HMC, called HMC-Scan. In particular, we extend the HMC ISA with

HMC-Scan to internally solve instruction dependencies. To support branch-less evaluation of the

select scan and transform control-flow dependencies into data-flow dependencies (i.e., predicated

execution) we propose another HMC ISA extension called HIPE-Scan. The HIPE-Scan leads to

less iteration between processor and HMC during the execution of query filters that depends on

in-memory data. We implemented the near-data select scan in the row/column/vector-wise query

engines for x86 and two HMC extensions, HMC-Scan and HIPE-Scan achieving performance

improvements of up to 3.7× for HMC-Scan and 5.6× for HIPE-Scan when executing the Query-6

from 1 GB TPC-H database on column-wise.

Keywords: In-Memory DBMS, Hybrid Memory Cube, Processing-in-Memory.
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Chapter 1

Introduction

During the last decades the research in Database Management System (DBMS) has

been driven by disk-based data processing. Recently, in-memory databases have been gaining

importance as memories improved capacity and bandwidth, but also due to the decreasing price

of DRAM. Storing the entire database in main memory provides faster access and real-time

analytics. Besides, when we change the storage layer of the database from disk-based to main

memory we also change the bottleneck to pointer-chasing, cache-unfriendly structures, memory

hierarchy and concurrency control [56].

To overcome those bottlenecks, previous work have focused on the design of new

algorithms and data structures to make a better usage of the cache memories and multi-core

processing [21, 57, 52, 47]. Moreover, with the releasing of new hardware technologies such as

Non-Uniform Memory Access (NUMA) architecture, Single Instruction Multiple Data (SIMD),

Non-volatile Memory (NVM), Field-Programmable Gate Array (FPGA), on-chip Graphics

Processing Unit (GPU) and HMC, new hardware-conscious alternatives were proposed to

increase performance [39, 53, 8, 33, 9].

These new hardware have great impact on the design of hardware-conscious in-memory

DBMS. In this dissertation, we focus on the design of the select scan database operator to process

read-mostly On-Line Analytical Processing (OLAP) that requires moving lots of data across the

new memory hardware HMC.

1.1 Problem
In the past decades, the disparity between processor performance and main memory

latency has grown tightly, a well-known problem called “memory wall” [54]. The focus on

CPU performance development and more recently on improving parallelism with multi-core

processors resulted in performance improvements of 70% per year, while memory innovation

focused on increasing capacity resulting in performance improvement of only 10% per year [28].

This increasing gap presents direct impact on large scale data processing, specially on in-memory

databases.

In-memory databases became popular over the years due to the dropping cost per bit of

DRAM with an important storage capacity growth from megabyte to terabyte of data. However,

in-memory query processing suffers from the interconnection and cache latency required to move

large amounts of data around the memory and cache hierarchy (i.e., hit the “memory wall”).

Moreover, large data movement increases the cache pollution, once data is installed inside the

cache line (by removing potentially useful data), it will never be used again.
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1.2 Motivation
The select scan is commonly the first database operation applied during the processing

of SQL queries, because of the larger data movement compared to other database operations

when evaluating a restriction predicate to tuples. The common strategy to run the select scan,

also called push-down optimization [27], is placing the restriction predicate as far as possible

down the query plan (i.e., this means the operation in the bottom of the query plan is the one

executed first). Figure 1.1 presents a SQL query applying predicates (WHERE SQL clause) and

filtering tuples. The processing of this SQL query eventually calls the select scan operator, which

requires moving tuples from memory to the processor across the cache hierarchy to apply the

predicates to these tuples. However, in OLAP databases most of the data placed in the cache

hierarchy is barely used due to the ad-hoc nature. The scanning of the same column occurs only

a few times caching lots of irrelevant data with potential cache latency increase when accessing

unused columns. Therefore, the select scan does not benefit from cache with low data reuse.

Figure 1.1: The Query 06 from the TPC-H Benchmark applying the select scan filter in the

Lineitem table.

The emergence of smart memories, such as the HMC[9], inverts the common data

processing approach by moving computation to where data resides with many benefits, such

as reducing energy consumption and providing faster response times [41]. The HMC is a

3D die-stacked technology with stacks of DRAM logically split into 32 independent vaults,

interconnected using Through-Silicon Via (TSV) [11] to a logic chip at the end of the stack. The

logic chip executes in-memory instructions with high level of parallelism.

The releasing of 3D-stacked technologies like the HMC and the increasing demand of

processing large databases motivated the resurgence of moving the computation near data to

reduce data-movement also called Near-Data Processing (NDP). Therefore, our goal is to benefit

from the HMC to process NDP select scan avoiding data movement and boosting response time.

1.3 Research Question
In order to minimize the memory wall problem for database systems and benefit from

NDP, the first question that we focus on, is: “What happens when database systems run the select

scan over the current x86 architecture using the HMC as ordinary DRAM main memory?” We

detail the execution of a microbenchmark using the column/tuple/vector-wise query engines to

set the baseline.

Next, we discuss how to bypass the cache hierarchy of the x86 and process the select

scan inside the HMC, focusing on the second question: “Can we use the current HMC ISA

to implement near-data select scan?” Considering that the current HMC ISA is formed by

read-operate and read-modify-write, all restrictive atomic update operations over a word of

16 bytes [32, 35]. We can infer that the internal DRAM 256 bytes row-buffer (also called DRAM
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page) is underused, and we also need to interleave x86 and HMC ISA instructions to execute the

select scan. However, by interleaving instructions it often requires transferring the results of the

database operations between processor and memory impacting the pipeline efficiency.

Finally, the last question that we focus on to implement the near-data select scan is:

“What are the extensions required on the HMC ISA to leverage the full potential of the hardware

and reduce the interleaving with x86 instructions?” From this point, we analyzed the necessary

extensions that could bring improvements for database systems when execute the select scan

operation right inside the HMC while also mitigating the memory wall problem.

1.4 Contributions
In order to set our baseline, we evaluated the main query execution engines using the

HMC as ordinary DRAM. As result, we discuss the benefits and limitations of such execution by

performing a detailed analysis of the select scan execution. Besides, we conduct an analysis by

using the instructions from the current HMC ISA to evaluate the predicates in the select scan

operation.

In this dissertation we proposed extensions to the current HMC ISA to perform database

systems operations. First, we propose to add extra functional units to perform the select scan over

the whole row-buffer available of 256 bytes. With a bigger operation size, our goal is to reduce

DRAM accesses and data movement during the push-down operation. Second, we implement the

loop unrolling technique to send up to 32 independent instructions at a time to the HMC vaults

and achieve a higher level of parallelism.

After performing the initial evaluations we observed three major limitations in the HMC

ISA: First, it can only perform update instructions (operations over a single memory address),

not being able to perform operations between two distinct addresses. Second, it cannot solve data

dependency between instructions internally, relying on the processor to perform such task. Third,

control flow dependencies also need to be handled by the processor.

With such limitations in mind, we present extensions to support predicated execution of

the select scan in the HMC, called HMC Instruction Predication Extension (HIPE). HIPE can

solve internally data-flow dependencies by using internal register bank and can also transform

control-flow dependencies into data-flow dependencies by supporting predicated instructions.

This leads to less iteration between Central Processing Unit (CPU) and HMC on the

execution of query filters that depends on in-memory data. Cycle accurate simulations mimicking

the column/tuple/vector-wise query engines show performance improvements of 3.69× for

HMC-Scan and 5.44× for HIPE-Scan when executing Query-6 from 1 GB TPC-H database

on column-wise. Besides, experiments varying the selectivity factor, when compared to x86

baseline showed gains of 4.84× for HIPE-Scan using predicated execution extension over low

selectivity scenario, and 5.64× for HIPE-Scan without predication on high selectivity scenario.

Overall, in this dissertation we provide the following main contributions:

1. We analyze the execution of the select scan with column / tuple / vector-wise query

engines over the traditional x86 using the HMC as ordinary DRAM. This analysis sets

the baseline to compare with our extensions to the HMC ISA.

2. We analyze the current HMC ISA by replacing the predicate evaluation instructions in

order to reduce data movement
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3. We extend the HMC ISA to take full advantage of the DRAM row-buffer. This extension

reduces DRAM accesses at the same time reduces the amount of requests in the

push-down of the select scan.

4. We implement the loop unrolling technique to better use the multiple vaults. This

extension increases the parallelism of the select scan.

5. We extend the HMC ISA to support data dependencies and branch-less decisions when

the select scan evaluates query filters. This extension, called HMC predicated execution

(HIPE), mainly changes from control-flow, where the evaluation of the filters happens

in the processor, to in-memory data-flow with less interleaving between HMC and the

processor.

6. We discuss pros/cons of our extensions when the select scan is implemented on top of the

main query engines: column-at-a-time, tuple-at-a-time, and vectorized. Our experiments

showcase the potential of our near-data select scan running a micro-benchmark of the

TPC-H of 1 GB.

The remainder of this dissertation is organized as follows: In Chapter 2 we give an

overview of modern computer architectures and the HMC architecture, besides we describe

databases systems and the predicate processing in row-stores and column-stores. In Chapter 3 we

present the related work on Processor-in-Memory (PIM),NDP and hardware conscious DBMS. In

Chapter 4 we present our proposals for architectural extensions that perform the HMC push-down

and the HMC predicated execution of query filters. The experimental setup, methodology and

evaluation results running a TPC-H micro-benchmark is described in Chapter 5. Finally, in

Chapter 6 we discuss our conclusions and point out future work.



29

Chapter 2

Background

In this chapter we introduce concepts from the field of computer architecture and

database systems that will be used throughout this dissertation. The preliminaries behind many

of the terms and definitions used in this dissertation lies in modern computer architecture, so

a briefly discussion about CPU and HMC architecture is provided in Section 2.1. Next, we

present a general introduction on databases in Section 2.2, followed by a discussion about storage

models and query execution engines implemented in the state of the art DBMS architecture.

Implementation details that will be relevant to the task of integrating query processing with HMC

processing-in-memory approach are highlighted in Section 2.32.3.

2.1 Modern Computer Architecture
In this section, we describe the main concepts of modern computer architecture that are

most important for query processing in database systems. We also describe the architecture of

the HMC since its an important component used in this dissertation.

2.1.1 Processor Architecture
During the processor design, one of the first decisions to be made is regarding the

instructions supported, this definition establishes the ISA on the processor. This ISA also defines

the instruction format, the amount of registers visible to the programmer and compiler, and also

the addresses modes used on the instructions.

One ISA can be classified as Reduced Instruction Set Computer (RISC) or Complex

Instruction Set Computer (CISC). CISC architectures usually have many specialized and complex

instructions, with multiple instruction addresses modes and support memory accesses on many

different instructions. On the other hand, RISC architectures simplifies the processor by assemble

more simple and basic instructions, with fewer addresses modes and these are usually load/store

architectures, which means that only specific load and store instructions may access the memory.

Each specific architecture can be implemented in different ways, called organization or

micro-architectures, such as single-cycle, multi-cycle, pipelined and others. Although processors

still being produced with single- and multi-cycle organizations, for high performance purposes

(desktop and servers) the pipeline is mandatory for performance.

The pipeline can be implemented with as many stages as wanted by the designer.

However, nowadays, Intel processors usually have between 12 and 16 stages. Basically, inside

the pipeline, multiple instructions are being executed in a given instant, similar to an assembly

line. Thus, each pipeline stage is responsible for an specialized part of the instruction execution.



30

A very widespread pipeline organization is the five-stage one from MIPS, it means that each

instruction pass throw a determined stage in a total of 5 stages. Figure 2.1 presents the pipelined

execution on the top. During the processing the first stage is the Instruction Fetch (IF) responsible

to get the next instruction based in the program counter (PC). The second stage is the Instruction
Decode (ID) where the instruction is translated from the ISA to an internal representation. The

third stage is the Execute (EX) when the requested instruction is performed by a determined

functional unit. In the fourth stage, a Memory Access (MEM) is performed when the instruction

requests a store or load operation. Finally, the Write-back (WB) is the final stage when the

execution result is saved in the register bank.

Figure 2.1: Pipelined vs Superscalar execution

In order to increase this Instruction Level Parallelism (ILP) inside the processor and to

gain performance, the pipeline can be superscalar, which means that instead of one instruction

be present on each stage, the circuit supports multiple instructions per stage as represented in

the bottom of Figure 2.1. Considering the higher instruction parallelism inside the superscalar

pipelines, we can decide if the instructions will be executed on in-order or Out-of-Order (OoO)

fashion. General purposed processors with focus on high performance usually adopts OoO

execution inside its superscalar pipelines. The basic OoO processor can be divided into front-end

and back-end. Basically, the front-end is responsible for fetching new instructions from the

instruction cache memory (fetch stage), and also responsible for decode the operations into

micro-operations (μops) (decode stage). The back-end is responsible for performing μops register

renaming of the operand (rename stage), dispatch the μops for the functional units (FUs) (dispatch

stage), execute the μops inside the FUs (execution stage) and retire the ready μops (write-back

stage). Figure 2.2 presents a diagram representing a superscalar processor adpting OoO.
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Figure 2.2: Superscalar out-of-order diagram

In order to achieve parallelism in the pipeline execution it is critical to determine whether

there is a dependence between instructions. The dependencies can be classified into two types,

data and control dependencies. Here we will only focus on true data dependencies know as Read

After Write (RAW), as false data dependencies, know as Write After Write (WAW) and Write

After Read (WAR), are easily solved by the rename stage of all modern processors.

• Data dependence occurs when the operands of an instruction depends on the operands

of another instruction. In this way, the processor must be ready to deal with a chain

of dependencies between the instructions, where, the result of one operation may be

required by another.

• Control dependence occurs when the execution of the instruction is dependent from a

branch instruction decision. To overcome pipeline stalls due to control dependencies,

processors traditionally uses advanced branch predictors to predict branch target address

and direction speculating the execution of further instructions, until the branch itself is

executed. For instance, considering the select scan database operation over two columns

in a conjunction, a determined tuple from the second column will be evaluated only if

the predicate evaluation is true for the first column.

In order to also overcome control dependency, the architecture designs also employees

predicated instructions. This concept was widely used on Very Long Instruction Word (VLIW)

processors [22], in order to create super-blocks, which means that, two or more basic blocks

could be fused into a single one. Predicated instructions are similar to regular instructions,
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however, the instruction will only perform write-back to the register bank depending whether

a given condition is true or not. In this way, a control-flow dependency can be transformed

into a data-flow one. Although such technique be present in nowadays processors, our tests in

laboratory shows that GNU Compiler Collection (GCC) compilers hardly uses such instructions,

even with optimizing compiler flags.

While OoO processors uses aggressive techniques to exploit possible parallelism among

the instructions. In order to further exploit the data parallelism present on the applications,

modern processors provides vector instructions that can apply one operation over multiple

data elements, these instructions are also called SIMD instruction. The vector support on the

processor is composed of vector functional units, vector registers, vector load/store unit and a set

of scalar registers. These SIMD instructions were widespread by the Multi-Media eXtension

(MMX) technology and more recent processors have the Streaming SIMD Extensions (SSE)

and Advanced Vector Extensions (AVX) technologies. The AVX 128-bit is supported in the

Sandy-Bridge processor and its vector instruction can operate over 16 single-byte values at

once [28].

2.1.2 Memory Hierarchy
In order to provide data for the increasing number of instructions being executed in

parallel, the memory should provide huge storage with fast access. However, these two objectives

are incompatible for the nowadays memory technologies. In order to overcome this demand, the

memory hierarchy was developed, providing the notion of fast and unlimited memories by using

small and fast caches nearby the processor, and huge storage capabilities with DRAM and disks

far-away the processor [28]..
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Figure 2.3: Memory hierarchy reference and latency for each level [28]
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The memory hierarchy is organized into a few levels, each of them smaller, faster and

more expensive than the next lower level. During a memory request, each level of the hierarchy

usually is searched in a sequential way. Figure 2.3 shows the multilevel memory hierarchy and

relates the latency and capacity of each level. The latency changes by a factor of 109 from the

highest to the lowest level while the capacity grows by a factor of 1012.

The memory hierarchy was developed considering that most of the programs do not

access instructions and data uniformly, but in temporal and spatial locality, meaning that after a

certain memory access, both nearby addresses and recently used addresses have high probability

to be accessed. Nevertheless, it is important to notice that application that do not present temporal

or spatial locality for a specific hierarchy level, that level will increase the data access penalty.

For instance, consider a streaming application which loops over a 128 KB vector. During the

execution, a regular L1 cache of 64 KB shall not present cache hits for the requested data, because

the data-set is bigger than the L1 cache. In this way, the application do not have any locality that

the L1 cache can exploit. Furthermore, due to the sequential request in the cache hierarchy, the

L1 cache will increase the access latency for the requested addresses by this application.

Therefore, we can see that database operations which present streaming behavior may

not benefit from the cache hierarchy, instead, it will suffer higher penalties due to the traditional

cache organization. In this way, processing performed near-memory architectures, such as HMC,

may benefit such applications, by avoiding large data movements through the memory hierarchy.

2.1.3 HMC Architecture
Figure 2.4 illustrates the overall system architecture of the HMC. It integrates multiple

DRAM dies and a single logic die, where each memory die has multiple DRAM banks. Typical

DDR-3 DRAM modules are organized in 4 8-KB rows, while the HMC DRAMs uses small rows

of 256 bytes providing lower energy consumption and faster accesses.

Figure 2.4: HMC overall layout and architecture.

Every set of 3D stacked banks forms a vertical group called vault interconnected by a

TSV bus. In the current specification [32], the HMC provides 32 vaults that can independently

access DRAM banks with a potential internal high bandwidth up to 320 GB/s.

The logic die is placed on the base of the HMC and implements the vault controller, a

mechanism that receives all the requests to the DRAM layers. Each vault controller maintains a

queue with references to the memory addresses. The vault controller may executes a memory



34

reference based in need rather than order of arrival which makes that the result can be propagated

out of order. Nevertheless, requests from the same serial link will be executed in order.

The available bandwidth of all collective vaults are accessible to I/O links connected to

a crossbar switch. The communication is done by single interconnect packets similarly to those

used by Network-on-Chip (NoC) systems [10].

Each vault has a memory controller and also its independent functional units enabling

in-memory processing. The processor sends simple operations such as load/store instructions,

while the common complex DRAM operations such as Row Precharge (RP), Row Address Strobe

(RAS), Column Address Strobe (CAS), Column Write Delay (CWD) are managed by the memory

controller of each vault.

The vault controller performs arithmetic and logical update atomic instructions with

operands size of up 16 bytes. They are variants of read-modify-write operations supported by

some memory controllers [42]. This kind of operation normally reads data from any memory

location, operates over data, then writes the result back to same memory location. Once the

operation finishes, the old data, modified data or operation status is returned back to the processor.

In the current set of instructions, the HMC allows in-memory processing, but the

processor still needs to wait for the results in order to send this data to another HMC instruction

(i.e., data-flow dependency) or to take decisions such as request other operations to be processed

(i.e., control-flow dependency). The iteration between HMC and the processor due to data-

flow dependency increases data movement through the interconnection, while the control-flow

dependency stalls the pipeline. Both situations increases the execution time and energy spent

during computations.

2.2 Relational Database Systems
A database management system (DBMS) is a set of programs that provides tools for

users and applications to store and access data. It admits multiple concurrent users to query and

modify data by using a high level language, such as SQL.

The most used type of a DBMS is the relational. A relation is a set of tuples, also called

rows, and attributes, also called columns. A database is a collection of relations stored and

managed by a DBMS. The database is defined by a schema that specifies the tables, attributes in

each table and how tables are related to each other. Figure 2.5 describes a table and a database R.

The relational algebra can be used to define the operations over a relation, including

projection (π), selection (σ), aggregation, Cartesian product (×) and a variable amount of joins

(��). For example, considering the Relation R presented in Figure 2.5 to perform a query retrieving

the tuples which the language is German, one could use the following expression in relational

algebra:

π(regionkey,language,country) = (σlanguage=′German′(R))

The physical representation of the query from the relational algebra includes a set of

correspondent physical operators combined in a query execution plan. The select scan is one of

the physical operators and it is used to filter tuples matching a determined predicate. For instance,

in Coding 2.1 the predicates are the conditions coded in the WHERE clause to filter tuples with

the SQL, such as “l_shipdate >= date’1994-01-01”’.
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2.2.1 Predicate Processing In Row-Stores
Traditionally, the storage layout implemented by most of the database management

systems (DBMS) is the N-ary Storage Model (NSM) and the systems are called row-stores.

Figure 2.5 despicts an example Relation R and the respective NSM page. The tuples are

contiguously stored in each disk page, putting the first tuple at the beginning and placing an offset

table at the end of the page to locate the starting point of each tuple.

Relation R Database R NSM 

Figure 2.5: Relation R stored in a N-ary Storage Model (NSM).

In this layout the query execution layer, generally implements the “Volcano-style” iterator

model[24] also referred as “tuple-at-a-time” processing model. It consists of open(), next() and

close() methods iterating over each tuple and applying the correspondent predicate.

1 SELECT
2 sum(l_price * l_disc) as revenue
3 FROM
4 lineitem
5 WHERE
6 l_date >= date ’1994-01-01’
7 AND l_date < date ’1994-01-01’ + interval ’1’ year
8 AND l_disc between 0.05 AND 0.07
9 AND l_quant < 24;

Código 2.1: Query 6 from TPC-H in SQL code.

Figure 2.6(a) illustrates the storage layout implemented in row-stores and the processing

flow. Considering a tuple (or row) composed of four attributes (or columns), for each step of the

common tuple-at-a-time [24] processing, the select scan loads the entire tuple (one at a time), but

only applies the operation in a small part of the tuple (i.e., only a few columns). In read-mostly

databases, the tuple-at-a-time processing wastes memory bandwidth and causes huge occurrence

of misses in cache, because the cache lines are filled with lots of irrelevant columns [3].

2.2.2 Predicate Processing In Column-Stores
An alternative to avoid polluting cache for read-mostly databases is the Decomposition

Storage Model (DSM) [17] or column-store. Figure 2.7 describes the Relation R represented in

DSM. In this layout, the data is organized in vertical partitions of attributes contiguously stored in

memory pages. Different from row-stores, in the column-stores only the needed attributes traverse

the memory hierarchy and the contiguous storage guarantees good cache locality. Figure 2.6(b)

represents how the data is organized and processed in column-stores. Considering a database

query evaluating Attributes 0, 1 and 3, the Attribute 2 is not load during the processing.

There are two strategies to execute query operations in columns-stores: “column-at-a-

time”[12] and “vector-wise”[15]. In the first strategy, a query operator consumes and generates

an array of values for each column. However, large volumes of intermediate results reside in

memory from early stages of materialization, which may cause increase of data cache miss and

I/O overhead [1].



36

Tu
pl

e 
0Attribute 0

Attribute 1
Attribute 2
Attribute 3

Tu
pl

e 
1Attribute 0

Attribute 1
Attribute 2
Attribute 3

Tu
pl

e 
2Attribute 0

Attribute 1
Attribute 2
Attribute 3

Tu
pl

e 
3Attribute 0

Attribute 1
Attribute 2
Attribute 3

M
em

or
y 

ad
dr

es
s

1

3

2

4

5

7

6

8

(a) Row-store model.

M
em

or
y 

ad
dr

es
s At

tr
ib

ut
e 

0

Tuple 0
Tuple 1
Tuple 2
Tuple 3

At
tr

ib
ut

e 
1

Tuple 0
Tuple 1
Tuple 2
Tuple 3

At
tr

ib
ut

e 
2

Tuple 0
Tuple 1
Tuple 2
Tuple 3

At
tr

ib
ut

e 
3

Tuple 0
Tuple 1
Tuple 2
Tuple 3

1

2

3

4

5

6

(b) Column-store model.

Figure 2.6: Database storage and selection scan execution order.
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Figure 2.7: Relation R stored in a Decomposition Storage Model (DSM).

In the second strategy, the execution is focused on processing column chunks, called

vectors [15] that are sized to fit the cache (normally N = 1000). Operations happen over the

vectors for better use of the CPU cache. Modern column-stores implement the vectorized

execution with late materialization [2]. In this type of data materialization, database operators

generate a list of vector indices with qualified data, instead of values. For instance, a condition

in the WHERE clause only returns the indices of qualified data in the vectors that are used as

entries by the next condition, and so on. Tuples are materialized as late as possible by stitching

together the required attributes with the remaining indices.

2.3 Select Scan Strategies on Modern CPUs
The select scan operator combines a scan with a predicate evaluation in order to filter

data. There are three universal accepted strategies to implement the select scan operator, namely

branching variant, branch-less variant (i.e. predicated execution) and vectorized variant. Besides,

the compiler can apply loop unrolling optimization to improve performance. Considering the

implementation of these optimizations, modern CPU can be better exploited by improving

pipeline execution and data parallelism.

2.3.1 Branching Execution
The branching variant for the select scan operation consists on a loop iterating over

a vector input and a predicate evaluation composed of an if-statement. Algorithm 1 describes

the branching version. This implementation writes the result only when occurs a match in the

evaluation.
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Algorithm 1 Select Scan (Branching)

1: j ← 0 // output index

2: for i ← 0 to colSize − 1 do
3: if column[i] < predicate then
4: output[ j] ← i
5: j = j + 1

6: end if
7: end for

Although the implementation seems simple, it benefits only evaluations with high

selectivity (i.e. only a few tuples matches), otherwise the CPU incurs a considerable amount of

branch misprediction causing extra performance penalties [16].

2.3.2 Predicated Execution
The predicated execution can be used in the select scan to minimize the penalties by

using branching decisions. The predicated execution strategy is a branch free alternative to

make evaluations avoiding the penalties of mispredictions. The strategy shown in Algorithm 2

consists of an evaluation that always writes the result and executes the next instructions taking

into account the previous evaluation in a linear way.

Algorithm 2 Select Scan (Predicated)

1: for i ← 0 to colSize − 1 do
2: m← (column[i] < predicate?1 : 0)

3: bitmap[i] ← m
4: end for

2.3.3 Vectorization
Modern CPUs were designed with new vector units to allow the execution of a single

instruction over multiple data (i.e. SIMD) improving data parallelism. The SIMD select scan

variant applies a predicate over a vector of values generating a bitmask with 1 for matches and 0

otherwise [58]. The result extracted from the bitmask is used to perform the next operations into

a database query plan. The Algorithm 3 describes the SIMD predicate evaluation and a selective

store for the result.

Algorithm 3 Select Scan (SIMD)

1: for i ← 0 to simdArray − 1 step i+ = simdLenght do
2: mask ← simd(column[i : i + simdLenght − 1] < predicate)
3: bitmap[i : i + simdLenght − 1] ← mask[0 : simdLenght − 1]

4: end for

2.3.4 Loop Unrolling
The Loop Unrolling is a well known technique used in compilers to generate an optimized

code for modern processors [5]. The main motivation is to explore the CPU pipeline by replicating

the body of tight loops, or loops with few instructions, with benefits in ILP, register locality and

avoiding pipeline stalls [49]. The Algorithm 4 describes the implementation of the loop unrolling
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technique over a tight loop. In this case, the depth of each iteration is 4 and the body is replicated

in order to achieve a good instruction parallelism into the pipeline and also avoid stalls.

Algorithm 4 Select Scan (Loop Unrolling)

1: j ← 0 // output index // i += 4

2: for i ← 0 to colSize − 1 do
3: if column[i] < predicate then
4: output[ j] ← i
5: j = j + 1

6: end if
7: if column[i + 1] < predicate then
8: output[ j] ← i
9: j = j + 1

10: end if
11: if column[i + 2] < predicate then
12: output[ j] ← i
13: j = j + 1

14: end if
15: if column[i + 3] < predicate then
16: output[ j] ← i
17: j = j + 1

18: end if
19: end for

2.4 Conclusion
In this chapter we introduced the overall concepts used in this dissertation. We describe

the construction of DBMS and predicate processing in the x86 hardware architecture. The

reasoning behind many of the algorithms and methods used in this dissertation lies in the

architecture of HMC and modern processors, thus we described the main hardware optimization.

In the next chapter, we discuss previous work related and the their limitations covered in this

dissertation.
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Chapter 3

Related Work

In this chapter, we present related work alternatives to minimizing the memory wall

problem. We briefly discuss the ideas behind processing-in-memory (PIM), then we focus on 3D

stacked technologies and near-data processing approaches using the HMC as example. Finally,

we present some work in hardware-conscious and near-data processing for database systems.

3.1 From Processing-In-Memory to Near-Data Processing
The concept behind mixing memory and logic motivated works since the 60s [34] when

it was first investigated the ideas behind PIM. The use of processing units placed near memory

in previous works [44, 23] brought opportunities to achieve massive parallel SIMD processing

while also alternatives to position ALUs with memory arrays.

Previous work in PIM [26] proposes a PIM architecture with an external host processor to

overcome the problem of data-movement throw the memory hierarchy in data-centric applications.

The architecture aimed to execute selected instructions in memory reducing the amount of

data-movement across the processor-memory interface. However, for many years the PIM ideas

did not come out as a real alternative for solving the memory wall problem due to the technology

limitation. Recently, the releasing of 3D stacked technologies made processing right inside

memory became tangible by placing logic and memory in different chips but in same memory

package [9].

3.2 3D Stacked Technology and Hybrid Memory Cube
The use of 3D stacked memories placed inside GPUs was also considered in previous

work. A transparent instruction offloading was proposed in order to enable near-data processing

in GPUs [31]. The goal was identifying candidate blocks in the compiled code and dynamically

offload the blocks to memory using run-time information. However, this design requires control

over the program execution, which may lead to unnecessary resource use when there is no

instructions to be offloaded. Besides, it benefits only GPU workloads and the data-movement in

the main memory and processor hierarchy still occurs.

There are also work considering the use of smart-SSD devices for processing database

systems operations [18], such approach only benefits when the database cannot fit in main

memory. Besides, there is also research for mitigating the performance gap between DRAM and

FLASH devices.
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With focus on the usage of as main-memory and HMC co-processor, an architecture

extension was proposed to process MapReduce workloads [46]. The proposal incorporates

simple processing cores at the logic layer in order to perform efficient map operations with a

good memory access.

We also considered the usage of re-configurable huge functional units to process large

amounts of data with register banks inside the HMC [6, 48]. However, this design requires a

fine control from the processor to choose the best operand size. Moreover, this design is highly

expensive to implement, because it requires lots of extra logic to provide serial access to HMC,

extra interconnection and routing through the vaults, register banks and the extra control.

Despite some work [59, 20] considered that the thermal limit of 85ºC for the HMC must

be respected by architecture extensions, in this work we have not evaluated such impact since this

evaluation is out of the scope of this dissertation. In order to allow our architecture extension

operation we considered a cooling system similar to the proposed in previous work on HMC

characterization [25].

3.3 Hardware Conscious and Near-Data Processing
The impact of the memory-wall problem motivated several work in the field of database

systems over the past decades focusing on algorithms to exploit the cache benefits [54, 4, 14, 13].

There were also efforts to build hardware-conscious database systems in many directions,

including, cache-conscious adaptive indexes [30] and NUMA-aware algorithms [38, 45, 19].

Nevertheless, none of them explored the data-movement mitigation, since they focus on avoiding

unnecessary DRAM accesses by making use of relevant data in cache.

In the context of near-data processing, the work called JAFAR [55] was presented as

an external DRAM accelerator to push down select scan operations near-data in DDR-3. The

architecture presented in JAFAR processes a 64-bit word at a time by intercepting memory

requests from the CPU in the DRAM I/O buffer. However, the data access must be coordinated

to avoid collisions with CPU requests. Besides, JAFAR runs outside the processor and requires

specific address translation to perform operations over the correct data inside the DRAM. In

contrast, we take advantage of the logic layer of the HMC which provides instructions that can

be triggered by the processor to execute the select scan without the necessity of coordination to

access external hardware. This design choice maintains the common out-of-order execution and

the address translation from the Translation Look-aside Buffer (TLB) while also allows different

ranges of word sizes up to 256 bytes to better usage the HMC row-buffer.

The use of the HMC as main memory was also evaluated in DBMSs by placing an

accelerator inside the logic layer of the HMC, but to support join algorithms [40]. The proposal

redesigns the hash and merge join algorithms in order to minimize the single word access

(e.g., 16 bytes) avoiding row buffer re-access. Unfortunately, it does not consider the necessary

modifications in HMC to perform such operations for row-stores neither has evaluated the

parallelism provided by the HMC.

The use of predicated execution was investigated in several work [36, 37] over the past

decades, but none of these previous work implemented predication on smart memories.

3.4 Conclusion
Considering the discussions in this section, none of the past work analyze the current

processing support of the HMC over read-mostly workload in row/column/vector-wise engines,
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neither they analyze further modifications in the logic layer of the HMC to fully execute database

instructions in order to reduce data-movement.

Our approach using HMC instructions explores the logic layer of HMC to process

data with native HMC operations. It adds architectural modifications in the operation size and

supports for predicated execution to diminish accesses to DRAM while also provides high levels

of parallel processing. Furthermore, we evaluated the execution of the main query execution

engines in HMC demonstrating its potential for both row-stores and column-stores systems. In

the next Chapter we present our proposals and discuss how each research question is answered.
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Chapter 4

Near-Data Scan for Database Systems

In this chapter, we focus on the questions raised in Chapter 1 to present our proposal

and define the extensions for the HMC logic layer. First, we discuss the select scan execution

with the x86 implementation and the HMC as ordinary DRAM. Then, we propose an extension

to the HMC ISA to leverage the full potential of the hardware by adding a comparison instruction

and vector processing units. Then, we propose another extension to allow predicated execution

and reduce the interleaving with x86 instructions.

4.1 Query Processing in HMC as DRAM
With the HMC at hand, the first question we focus on is: “What happens when database

systems run the select scan over the current x86 architecture using the HMC as ordinary DRAM?”

Let us consider the “column-at-a-time” [12] execution model to evaluate the select scan in the

query plan. Figure 4.1 depicts a select scan in three columns of a table. In “Column 0”, a full

scan is required when evaluating the first filter in the query plan. The output of the scan is a

bitmap with 1’s for matched entries and 0’s for not matched entries. The x86 processor loads

only the matching entries to perform the second scan in “Column 1”. This processing repeats for

“Column 2” as we move on in the query plan.

Figure 4.1: Select scans in the “column-at-a-time” model.
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Figure 4.2 illustrates the data movement to process the select scan operation with the

current x86 architecture instructions and the HMC placed as main-memory. In this scenario, the

assembly instructions to process select scans keep up unmodified.
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Figure 4.2: Traditional x86 processing using the HMC as DRAM.

Initially, the x86 assembly instructions are allocated in the processor pipeline. In current

x86 architecture with AVX-128 approach, an instruction may request up to 16 bytes of data to the

cache memory. In general, this is only sufficient for a chunk of the column and multiple requests

are required to scan the entire column. In the first access, a cache miss in L1 and LLC requires a

memory access. The processor then requests 64 bytes to main memory, but the HMC placed as

main-memory provides 256 bytes per access in the buffer. Afterwards, only 64 bytes are returned

back to cache and, when data is positioned in cache, the processor only operates over 16 bytes to

finally evaluate query filters for the column chunk.

We run a micro-benchmark to understand the execution of the select scan using the

DDR-3 and HMC in two ways: (1) the x86 processor executing the select scan with the HMC as

DRAM and (2) the HMC executing the select scan replacing the x86 assembly instructions for

those of the current HMC ISA specification. We discuss the changes in the assembly code of

the query and how they are executed later on in this paper, but basically we swap x86 compare

instructions to HMC compare instructions and the execution pipeline sends the instruction to

execute in the HMC. In our motivation experiment, we execute the TPC-H Query 06 with the

traditional strategies: “tuple-at-a-time” [24], “column-at-a-time” [12] and “vector-wise” [15].

Figure 4.3 shows the response time of Query 06 in 1 GB database in the x86 and in the

HMC architectures. We provide further details of the execution environment in Section 5. When

we put the HMC as ordinary DRAM the select scan achieves up to 65% of better performance

compared with DDR-3. This occurs due to high bandwidth provided by the HMC and the Dynamic

Random Access Memory (DRAM) operations managed by the vault controller. Comparing x86

with HMC as DRAM and HMC executing comparison instructions, we observe that the x86
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Figure 4.3: TPC-H Query 06 micro-benchmark: the x86 instructions over the DDR-3 and HMC

as ordinary DRAM and the HMC instructions.

processor still presents the best response times when running the select scan rather than in the

HMC no matter the query engine. Although the HMC ISA was proposed to optimize in-memory

operations, the problem when simply running the select scan in the HMC is related to the current

HMC ISA. First, there is only single memory address operations (update instruction), not being

able to perform operations between two distinct addresses, only between address and immediate.

Second only compare-and-swap instructions are available, making it costly to operate over data,

since data may be modified after the compare operation to evaluate query filters. Third, the

instructions operate over 16 bytes of data wasting the potential of the hardware. We observe

that the column and vector-wise engines suffer less impact with the small 16 bytes load request,

because only the requested columns in the query statement move data around (or the bit-vector in

the vector-wise). Fourth, the processor only triggers HMC instructions enough to use only few

parallelism between the vaults (i.e., only a small portion of parallelism is explored).

4.2 Select Scan Push-Down to HMC
In this section, we expose what happens to the select scan when extrapolating some

architectural limitations Therefore, we present two extensions to the logic layer of the HMC

to execute the select scan (HMC-Scan): (1) a comparison instruction between address and

immediate (i.e., HMC compare instruction to evaluate query filters) and (2) vector functional

units to utilize the DRAM row-buffer available of 256 bytes. Our goal with the HMC-Scan is to

bypass the cache hierarchy reducing DRAM accesses and data movement in the push-down [50].

Figure 4.4 depicts our extension. In this proposal, the x86 processor instructions

interleave with HMC instructions. This means the x86 processor continues to trigger all the

instructions, but the execution and data access are up to the logic layer of the HMC, bypassing

the cache hierarchy. However, we require modifications in the HMC to execute the HMC-Scan as

the current ISA only supports compare-and-swap instruction (HMC_SWP) to evaluate values.

HMC-Scan Implementation We present the HMC compare instruction to operate over a

memory address and an immediate. This instruction works similarly to the reciprocal x86
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Figure 4.4: HMC-Scan bypassing the cache hierarchy to operate over 256 bytes of data in the

logic layer.

compare instruction (CMP). With this new instruction, the x86 processor no longer compares the

values in the registers to evaluate the query filters, but only receives the operation status bits and

hands over to the logic layer of the HMC the evaluation of the query filters. Figure 4.5 presents

two versions of the TPC-H Query 06 written in C language and simplified assembly. For now,

we only refer to the “Selective Load Scan” C language version to understand the execution of the

HMC-Scan. The assembly code is discussed in the next section.

The “selective load scan” consists of an “if-else-statement” that evaluates the matching

bitmaps to perform or not load instructions. Therefore, the first scan evaluates the whole column

and the resulting bitmap is used to avoid unnecessary loads. At the end of the processing, the

final bitmap associates the column entries that received matches in all the query filters. For

instance, initially the “Selective Load Scan” evaluates the entire l_shipdate column to build the

bitmap of matches. This bitmap is used as a condition when scanning the l_discount column to

avoid unwanted loads.

Hardware extension We refer again to the “selective load scan” code to understand our

hardware extension. The execution of the HMC-Scan requires a new vector functional unit to

operate over 256 bytes per vault instead of the current 16 bytes. This requires implementing 32

vaults × 64 scalar (i.e., 4 bytes) functional units.

With these functional units the logic layer requests 256 bytes of data from the DRAM

bank to execute the compare instruction from the processor to scan the l_shipdate column. The

vault controller responds the request and evaluates the query filter with 256 bytes of data at

once. At the end of each compare instruction, the result is sent back to the x86 processor to be

written in the respective bitmap to that column. The processor continues with the remaining
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Figure 4.5: The translation of the TPC-H Query 06 to C and simplified assembly version. Our

two versions consider the HIPE-Scan instruction set performing full load scan or performing

selective load scan using predicated instructions.

database operators moving on in the query plan evaluating the l_discount column. The following

adaptations are required to implement the HMC-Scan:

• Database: We require no change in the source code of the DBMS to implement our

proposal, but we need to recompile it to insert the HMC instructions, similarly to the

SSE and AVX approaches.

• Processor: The processor needs an extension to its ISA to provide the execution of

HMC instructions. The instructions pass the pipeline in the same way as a memory load

operation. The HMC instructions work with virtual addresses, although the addresses

have to be translated by the Translation Look-aside Buffer (TLB) in order to respect a

correct permission policy to access the given address range.

• HMC: We based our implementation in the modifications proposed to HMC in [6] to

extend the HMC instruction size to 256 bytes. Our goal is to take advantage of the full

row buffer size that makes available 256 bytes of contiguous data for each bank access

during each access, reducing thus the number of DRAM accesses.
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4.3 HIPE: HMC Instruction Predication Extension
The HMC-Scan evaluates near-data query filters for in-memory databases. However,

the HMC ISA is limited to perform update-instructions between a single memory address and

an immediate. For instance, data resulted from a query filter must be returned to the processor

in case it needs to be written to a second memory address. Although the comparison and

store instructions are both executed inside the HMC, the interaction with the x86 processor

creates data-flow dependency, which cannot be solved straight inside the HMC. Besides, the

x86 processor is also required to solved control-flow dependency in order to decide over the

execution of each instruction in the query plan, as discussed in Section 2. With such limitations

in mind, in this section we describe our HMC extension to support data-flow inside the HMC

and then replace control-flow by data-flow dependency to reduce the interaction with the x86

processor [51].

We refer again to Figure 4.5 to exemplify the interaction between the x86 processor

and the HMC while running the “Full Load Scan” version of the TPC-H Query 06. When the

database opts for this version of the query, the evaluation of each column does not take into

account matching entries between columns and therefore does not worry about unwanted load

operations. The evaluation of filters occurs independently in each column and creates branches

in the execution of the code.

Let us consider the branched execution of a source code depicted by Figure 4.6. In

control-flow decisions, the evaluation of conditions leads to the correct branch and the rest of

the code only executes after the branch finishes its instructions. The problem with the branched

code is the number of CPU cycles required to determine the next memory address to fetch when

traversing a branch (i.e., jump instruction), which wastes memory bandwidth. Previous work

could only solve such problem by inserting a full processor inside the memory, which has a huge

area overhead.

LOAD bitmap1
CMP   bitmap1 p1

LOAD bitmap2
CMP   bitmap2

A

C

Predicated Execution

LOAD p_discount1
CMP   p_discount1

if (p1)B
if (p1)

LOAD bitmap1
CMP   bitmap1

LOAD p_discount1
CMP   p_discount1

true
false

LOAD bitmap2
CMP   bitmap2

A

B

C

Branch Execution

p1

Figure 4.6: Branched vs. predicated execution of query filters.

Instead, we propose to use predicated execution of the select scan code, called HIPE-Scan.

Using predicated instructions we can merge multiple basic-blocks into a single super-block. It

means that, the branch is removed and the instructions annotated. The annotations mean that the

code may only be executed considering a certain condition. Figure 4.6 also shows the predicated

execution of a code. This sequence of instructions presents only data-flow dependencies and
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no longer require the x86 processor to solve any control-flow. During the execution, in the case

the predicate is false, the predicated instructions will be squashed by the logic layer, i.e. these

instructions are converted to NOP operations and simply discarded.

Hardware extension Figure 4.7 depicts the extensions to the HMC architecture to allow the

predicated execution. HIPE is formed by an instruction buffer to keep incoming instructions

into the mechanism. A register bank, formed by 36 registers of 256 bytes each (total of 9 KB).

The instructions are executed in-order, and each HIPE instruction belongs to one of the three

classes: lock/unlock, load/store, ALU operation. The lock/unlock are used to gain access to the

HIPE structure, avoiding conflicts to the register bank. The load/store instructions perform data

transfers between the DRAM and the register bank. The ALU operations perform computations

inside the ALU. The load/store and ALU instructions evaluate predicates. This means they

execute if some register matches the wanted value.
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Figure 4.7: The architecture of HIPE.

The register bank stores not only the result value, but also the zero flag from each

operation used during the predicated execution. The register bank implements a interlock

mechanism, which means that each register has a valid flag, in order to continue the execution

during independent loads, only stopping the execution on real data dependencies.

The predication match logic is responsible for checking before the instruction execution

if the predicate is true or false. In case the predicate is true, the predicated instruction can be

triggered normally. In case the predicate is false, the instruction is transformed into a NOP.

We are now in position to discuss the assembly code of both query versions and replace

control-flow to data-flow dependency in the HMC. In the assembly code of the “Full Load Scan”

version, all the instructions execute sequentially, but more importantly comparisons require the

decision from the x86 processor to move on in the execution. Now, the assembly code of the
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“Selective Load Scan” version presents the predicated execution, where no instructions annotated

with pH1 are executed if the query filter evaluates false.

Similarly to the HMC-Scan support, the following modifications are required to

implement the HIPE-Scan:

• Database: we require no changes in the source code of the database system to implement

the HIPE-Scan, but it needs to be recompiled to use HIPE instructions.

• Processor: the processor needs an extension to its ISA to provide the execution of HIPE

instructions by the pipeline and the TLB.

• HMC: We based our extension to execute predicated execution inside the HMC on the

state-of-the-art of HMC processing, called HIVE [6]. Our goal is to take advantage of

the data-flow support already provided by this previous work and extend it to support

predicated instructions.
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Chapter 5

Experimental Evaluation

In this chapter we present the simulation environment, the experimental methodology

and the results with the implementation of the select scan on top of the tuple/column/vector-wise

query engines implemented as HMC-Scan and HIPE-Scan.

5.1 Methodology and Setup
We used the SiNUCA cycle-accurate in-house simulator [7] to evaluate our proposal.

SiNUCA was validated against real machines and allows modelling our custom architectural

modifications inside the HMC to understand the system behavior when executing the select
scan, considering an aggressive out-of-order processor, advanced multi-banked and non-blocking

caches together with the HMC. Table 5.1 shows the major system parameters used in our study.

In order to generate the simulation inputs we have implemented the tuple/column/vector-

wise query engines running the query 06 from TPC-H benchmark. First, we analyzed the

generated assembly code from the compilation to build the basic blocks that belongs to the select

scan operation. Next, we identified the execution flow and the order of each basic block execution.

Finally, we traced the memory footprint during the execution to identify load and store operations.

The baseline architecture was inspired by the Intel Sandy-Bridge processor micro-

architecture referred to as x86. The Sandy-Bridge was configured with AVX-128 instruction set

capabilities, and in all cases, the main memory used was the HMC version 2.1 [29]. For this

baseline (x86), all the instructions are executed in the x86 processor.

The approach called HMC-Scan uses the current set of operations support by HMC

ISA extending it to different operator sizes from 16 bytes up to 256 bytes. In this case we are

executing the compare instructions inside the HMC interleaving it with x86 instructions.

We call HIPE-Scan the approach using the extended HMC ISA that supports data-flow

inside the HMC, and also supports predicated instructions also inside the HMC

5.2 Evaluation Plan
We focused our experiments on TPC-H, a decision support database benchmark widely

adopted to assess the performance of DBMSs by representing a read-mostly workload. TPC-H

consists of a suite of twenty-two business oriented ad-hoc queries that have broad industry-wise

relevance and examine large volumes of data that can be configured in three dataset size: 1GB,
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Table 5.1: Simulation parameters for evaluated systems.

OoO Execution Cores 16 cores @ 2.0 GHz, 32 nm; 6-wide issue; 16 B fetch;

Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;

MOB entries: 64-read, 36-write; 1-load, 1-store units (1-1 cycle);

3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);

1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle); 1 branch per fetch;

Branch predictor: Two-level GAs. 4,096 entry BTB;

L1 Data + Inst. Cache 32 KB, 8-way, 2-cycle; Stride prefetch; 64 B line;

MSHR size: 10-request, 10-write, 10-eviction; LRU policy;

L2 Cache Private 256 KB, 8-way, 4-cycle; Stream prefetch; 64 B line;

MSHR size: 20-request, 20-write, 10-eviction; LRU policy;

L3 Cache Shared 40 MB (16-banks), 2.5 MB per bank; LRU policy; 16-way,

6-cycle; 64 B line; Bi-directional ring; Inclusive;

MOESI protocol; MSHR size: 64-request, 64-write, 64-eviction;

HMC v2.1 32 vaults, 8 DRAM banks/vault; DRAM@166 MHz;

8 GB total size; 256 B Row buffer; Closed-page policy;

8 B burst width at 2:1 core-to-bus freq. ratio; 4-links@8 GHz;

DRAM: CAS, RP, RCD, RAS, CWD cycles (9-9-9-24-7);

Per vault func. units (logical bitwise & integer); Latency: 1 cpu-cycle;

Operation size (bytes): 16, 32, 64, 128, 256 (up to 16-B originally);

HIPE Logic Unified func. units (integer + floating-point) @1 GHz;

Latency (cpu-cycles): 2-alu, 6-mul. and 40-div. int. units;

Latency (cpu-cycles): 10-alu, 10-mul. and 40-div. fp. units;

Op. sizes (bytes): 16, 32, 64, 128, 256; Register bank: 36x 256 B;

10GB and 100GB. In our experiments, we generated a database of 1GB and we stick to a

micro-benchmark running the TPC-H Query 06. This query implements complex boolean

expressions, what results in a possibility of push-down the most selective predicates. It also

consists of conjunctions to the lineitem table without join operations. We let join operations

for future work as it requires understanding the impact of each one of the many different join

algorithms on the HMC.

To evaluate the execution of the select scan with the tuple-at-a-time execution, the

matched tuples are materialized as intermediate results. In the column-at-a-time execution, the

predicate is performed for the first column, and it stores a bitmap with “1” for match and “0” for

no match to be used ahead by the further predicates. In the vectorized execution, we generated

the bitmap for each vector, such as the proposed design principles for SIMD vectorization of

main-memory database operators [43]. We considered that each tuple from the lineitem table

occupies 64-bytes, which is equal to the cache line size and this assumption is beneficial for x86.

During our experiments, we run the tuple-at-a-time engine considering a row-store storage model

and the other two query engines (column-at-a-time and vectorized execution) considering the

column-store storage model.

In order to perform our experiments, we divided the select scan implementation for

multiple predicates into the two variations, referred as: selective load scan and full load scan.

Table 5.2 describes the evaluation plan and the scan implementation used for each

architecture. In the first and second experiments, we evaluated the best operand size and loop



53

Table 5.2: Experiments evaluation plan

Evaluation/Architecture x86 HMC-Scan HIPE-Scan

Operand Size Selective Selective Full

Loop Unroll Depth Selective Selective Full

Selectivity Selective Selective Full/Selective

unrolling depth for each architecture. The x86 and HMC-Scan architectures implement the

selective load scan, while the HIPE-Scan implements the full load scan.

When we performed the third experiment analyzing the impact of selectivity when

filtering different amounts of data, we evaluated HIPE-Scan with both the selective load scan
and full load scan. When performing the selective load scan, the HIPE-Scan make use of the

predicated execution architecture provided by the HMC ISA extension proposed in this work.

5.3 Evaluation Results
5.3.1 Impact of Operand Sizes

We evaluated the TPC-H Query 06 using HMC-Scan and HIPE-Scan using five different

data operand sizes from 16 to 256 bytes (i.e. limited by the row buffer size), while we set the x86

to work with up to 64 bytes (i.e. the biggest x86 supported instruction size AVX-512).

Tuple-at-a-time: Figure 5.1 shows that the time to process the select scan increased in 97%

compared to x86 when performing 16 bytes width operations in the HMC-Scan. We observed

the same result when performing with 32 and 64 bytes width operations. They increased the

response time by 1.02× and 1.19× respectively compared to x86. As expected, the increase of

the response time was due to the amount of DRAM access to open and close the row-buffer

during each access (i.e., due to the closed-page policy) with a 64 bytes cache line to fetch by each

x86 load instruction. The best scenario happens when the operand size is set to 256 bytes. The

execution time dropped in 18% compared to the x86 baseline with the best time, because the

select scan is allowed to process 4 contiguous tuples per operation without suffering from the

latency of the cache hierarchy.

The execution with HIPE-Scan processing 16 bytes at a time resulted in an increase

of 3× in the execution time when compared to x86 baseline. When extended to 256 bytes, the

execution time was only 11% bigger than x86. The increasing in execution time occurs due to

the control-dependency of each isolated lock/unlock block when loading large amounts of data

with HIPE-Scan.

Column-at-a-time: Figure 5.2 presents that the execution time using the HMC-Scan operating

over 16 bytes of data increased in 10% compared to the x86 due to effect of the closed page

policy. To mitigate this effect and also reduce the amount of DRAM accesses, we increased the

amount of data processed by each instruction to the entire row-buffer size of 256 bytes, reducing

the execution time by 4.38×.

The execution with HIPE-Scan over 16 bytes per instruction increased the execution

time in 9.45× compared to x86 (AVX-128) execution. When the instruction is extended to operate

over 256 bytes, the execution time dropped in 10% against the AVX-128, but it increases 2×

compared with the best case of x86 execution (AVX-512). Notice that after processing the first
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Figure 5.1: Tuple-at-a-time execution varying operation size.

column, the processor needs to fetch the previous generated bitmap to decide the portions of the

second column it needs to process. This generates data dependency and delays the execution

of HIPE-Scan instructions as more DRAM accesses need to be performed, in contrast to cache

access for x86 and HMC-Scan.
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5.3.2 Impact of Unrolling Depths
In this section, we choose the best case observed in the previous experiment with 64 bytes

for x86 and 256 bytes for HMC-Scan and HIPE-Scan operand size using the column-store storage

model to analyze the impact of loop unrolling technique. In this case, we evaluated two query

execution strategies, column-at-a-time and vectorized execution.
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We evaluated five different unrolling depths, ranging from 1x to 32x, while we set the

x86 to up to 8x (i.e. the deepest unroll implemented by compilers due to the reduced number of

general purpose registers).

Column-at-a-time: Figure 5.3 shows that the HMC-Scan reduces the execution time by 5.05×

with the 32× depth when compared to x86 (AVX-512). As expected the unrolling loop technique

allows more parallelism, although the x86 execution takes advantage until the depth of 4x. A

slight increase happens in the x86 depth of 8×, because the amount of code in the loop body

results in a higher miss ratio in the instruction cache. Besides, another factor limitation that

occurs in aggressive unrolling loop is the shortfall in registers. The pressure made by the amount

of instructions forces that several registers be allocated. Thus, the code may lose the performance

advantages creating shortfall in registers.

The evaluation with HIPE-Scan presented in Figure 5.4 shows the performance im-

provement provided by the HMC parallelism. When we performed the unroll depth of 32×

the execution time reduces in 7.6× compared with x86 (AVX-512) without unrolling, and 5.4×

compared with x86 (AVX-512) with depth of 4×. The HIPE-Scan implementation allows the

processor to send 32 independent instructions per loop iteration, which implicates in a full

parallelism usage between the 32 HMC vaults. Besides, the full load scan algorithm reduces

the necessity of control from the processor by sending all the load instructions sequentially. By

increasing the amount of code in the loop body the HMC doesn’t suffer like the CPU, since the

CPU has a limitation fo loop unrolling due to the increasing in the cache instruction miss rate.
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HIPE-Scan.

Vectorized execution: Figure 5.4 presents the results for the vectorized execution. In this

query execution strategy, the processing occurs in a granularity of vectors by each column.

The HMC-Scan presents the best result with the depth of 8× reducing in 3.36× the

execution time compared to x86 (AVX-512) in the best case with the depth of 4×. When
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HMC-Scan executes the depth of 16× and 32× the execution time starts get worst due to the

increasing number of x86 instructions to perform the bitmap evaluation between predicates.

The evaluation with HIPE-Scan demonstrates the high potential of the HMC bandwidth.

By comparing to x86 (AVX-512), the execution time dropped in 7.66× in the best case (32×

depth), performing 32 independent instructions at time inside the HIPE-Scan. When the loop

is unrolled, HIPE-Scan overlaps DRAM latency with consistent parallel requests, due to the

interlock register bank. With this depth, each loop iteration is capable of sending requests over 4

KBytes (4 vectors of 1024 KBytes) of data to be processed inside the HMC.
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Figure 5.4: Vector-at-a-time execution varying loop unrolling depth for x86, HMC-Scan and

HIPE-Scan.

5.3.3 Impact of Selectivity
In this section, we choose the best loop unrolling depth for each architecture to observe

the impact of evaluating different amounts of data when varying the selectivity. Figure 5.5

describes the execution time for the column-at-a-time engine varying the selectivity of the

shipdate attribute.

The selectivity factor has important impact in the x86 architecture, increasing the

execution time by almost 90% comparing the 0.001 and 100 selectivity factors. When compared

to the HMC-Scan the execution time difference between x86 and HMC-Scan varies from 2.98×

in the selectivity factor of 0.001 to up to 2.88× in the selectivity factor of 100.

For the HIPE-Scan performing the full load scan algorithm, the selectivity factor has

no impact in execution time, since in this case both wanted and unwanted data are requested

and checked independent of the selectivity. The cache bypassing also brings benefits since it

is not necessary to check the cache in order to perform the predicates. When compared to x86

architecture it shows an improvement of 3.00× for 0.001 selectivity factor and 5.64× for the 100

factor.

The evaluation of the HIPE-Scan performing the selective load scan algorithm achieves

a better result when operates with selectivity smaller than 1%. HIPE-Scan using predication
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Figure 5.5: Evaluating execution time of TPC-H Q6 varying the selectivity factor in the different

hardware architectures in the column-at-a-time engine.

could improve by 4.84× for the 0.001 selectivity factor, and 4.82× for 100 factor. By using the

predicated execution, the algorithm on HIPE-Scan can avoid many DRAM accesses considering

the previous bitmap evaluation and for the 0.001 factor it could translate in high performance

improvements.

Thus, we can notice a clear trade-off between the full load scan and the selective load
scan considering different selective factors. Such trade-off shows us that the database scheduler

needs adaptations to maximize the gains from the architecture.

5.3.4 Understanding the Impact of Predication
In this section, we present the execution flow diagram to explain the trade-off between

HIPE-Scan with and without predication. In this example, we consider that every instruction

inside HIPE takes 1 cycle and load/store latency varies between 80 cycle when there is few

operations in parallel (low contention) and 100 cycles when multiple operations are happening in

parallel (high contention). It is important to notice that the simulator considers different latency

and more component details, in such manner that the simulation results differ from the results in

this simplified example.

Figure 5.6 describes the HIPE-Scan instructions when executing the full load scan on

the l_discount column with the bitmap generated by the scan on the l_shipdate column. This

example illustrates a select scan unrolled 4×. After a lock instruction during each clock cycle,

a 256 bytes-wide load is requested, then the bitmap of the l_shipdate column scan is loaded.

Considering the DRAM access latency with high contention, the query filters of the l_discount
column are performed after the cycle 102. From cycle 106, the results are compared with the

bitmap of the l_shipdate column generating the next bitmap to be stored in memory. Therefore,

the data-dependency between the first LD and the CMP produces an stall of almost 100 cycles

per column in each lock/unlock block. The scan over 4× 256 bytes takes 192 cycles due to the

data-dependency between the first load with the first comparison and the store with the unlock

instruction. Besides, since the previous bitmap result is used only after the instructions of load

and compare operations, a full scan will be performed in each column.

Figure 5.7 and Figure 5.8 illustrate what happens when using the selective load scan
supported by the predicated execution for high and low selectivity, respectively. Figure 5.7

presents the worst-case scenario, where we observe an increase of 36% in the execution time

compared to the full load scan. We observe an extra DRAM read latency included in the critical
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Figure 5.6: HIPE full load scan execution (no predication/loop optimization).
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Figure 5.7: HIPE selective load scan (predication/loop optimization) worst/average case.
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Figure 5.8: HIPE selective load scan (predication/loop optimization) best case.

path, because the selective load scan first loads and compare the bitmap from the l_shipdate
column before issuing the load for the l_discount column. Figure 5.8) presents the best-case

scenario. We observe 9% of reduction in the execution time compared to the full load scan.

This scenario turns out to be a common case, where no load is issued, due to the low number

of matches in the l_shipdate column. Preliminary results show that such the reduction in the

number of loads also reduces 5% in energy consumption of the DRAM.

In summary, the full load scan increases the DRAM contention and also wastes energy

loading non-required data in the low selectivity scenario. On the other hand, the full load scan
performs better due to the lack of extra data-dependency for the high selective scenario.
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Chapter 6

Conclusions and Future Work

In this dissertation we presented a new near-data approach to process select scan database

operations inside the Hybrid Memory Cube (HMC) to address the performance gap between

memory and processor. To this end, we presented two extensions to the HMC Instruction Set

Architecture (ISA) called HMC-Scan and HIPE-Scan.

The research questions that motivated our work, were:

1. What happens when database systems run the select scan over the current x86 architecture

using the HMC as ordinary DRAM?

2. Can we use the current HMC Instruction Set Architecture (ISA) to implement the

near-data select scan?

3. What are the extensions to the HMC ISA to leverage the full potential of the hardware

and reduce the interleaving with x86 instructions?

Motivated by the first question, we implemented the main query execution engines

to execute the Query 06 from the TPC-H benchmark. We evaluated these engines against the

execution with the current HMC ISA. When using the HMC as ordinary DRAM the processor

presented important overhead in data-movement. Even worse, the data provided by the HMC in

each access remained underused.

Next, to answer the second question we used the current HMC ISA to execute the

select scan with no noticeable performance improvements. The result motivated the hardware

extensions proposed in this dissertation.

To answer the third question, we formulated some architecture extensions and we

evaluated them against the main query execution engines in a x86 (AVX-128 and AVX-512)

architecture. The execution of the select scan inside the HMC outperformed the tuple-at-a-time

in 30%, the column-at-a-time in 5.64× and the vectorized execution in 5.17× when compared to

baseline that used x86 execution with HMC as ordinary DRAM.

We conclude that our results support the development of future in-memory DBMS

to benefit from near-data processing architectures, like the HMC. However, much work needs

to be done to explore all the DRAM parallelism present on the memory devices, including

understanding the impact of the many algorithms implemented by the relational operators. We

observed that choosing the correct algorithm on different selectivity factors may have great

impact on the performance, which may occur to other metrics inside the database.
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6.1 Future Work
An important next step includes understanding other database operations inside the

HMC such as: joins, projections and aggregations. When the evaluation and adaptations finish it

could be possible allocate each operation from a query plan to be executed in the best hardware

to achieve good performance while also saving energy.

To sum up, we set the following ideas for future work:

1. Develop a many-core scheduler to analyze the query plan and choose the best hardware

to each query operator. This requires a cost model to decide between x86 and HMC

instructions during run-time, since not always the near-data processing is the right

choice for DBMSs. Besides, a general cost model could also help to adapt Database

Systems for other co-processor such as GPUs, FPGAs and SSDs.

2. A deep energy consumption analysis to provide the possible gains in reducing DRAM

access and data-movement with the extensions proposed in this dissertation.

6.2 Published Papers
The resulting publications of our work are presented below:

• Diego G. Tomé, Marco A. Z. Alves, and Eduardo C. Almeida. Uma abordagem para

processamento em memória de operacões de seleção em sistemas de bancos de dados.

In Simpósio Brasileiro de banco de Dados (SBBD), 2017.

• Diego G. Tomé, Paulo C. Santos, Luigi Carro, and et al. HIPE: HMC instruction

predication extension applied on database processing. In Desing Automation and Test

in Europe (DATE), pages 710–715, 2018.

The following papers were produced as part of the development of this dissertation:

• Paulo C. Santos, Geraldo F. Oliveira, Diego G. Tome, and et al. Operand size

reconfigurationfor big data processing in memory. In Desing Automation and Test in

Europe (DATE), pages 710–715, 2017.

• Aline S. Cordeiro e Tiago R. Kepe e Diego G. Tomé e Eduardo C. de Almeida e

Marco A. Z. Alves. Intrinsics-hmc: An automatic trace generator for simulations of

processing-in-memory instructions. XVIII Simpósio em Sistemas Computacionais de

Alto Desempenho-WSCAD, 2017.
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