
Manuscript Details

Manuscript number MICPRO_2019_21

Title A Technologically Agnostic Framework for Cyber-Physical and IoT Processing-
in-Memory-based Systems Simulation

Article type Research Paper

Abstract

Smart devices based on Internet of Things (IoT) and Cyber-Physical System (CPS) are emerging as an important and
complex set of applications in the modern world. These systems can generate a massive amounts of data, due to the
enormous quantity of sensors being used in modern applications, which can either stress the communication
mechanisms or need extra resources to treat data locally. In the era of efficient smart devices, the idea of transmitting
huge amounts of data is prohibitive. Furthermore, implementing traditional architectures imposes limits on achieving
the required efficiency. Within the area, power, and energy constraints, Processing-in-Memory (PIM) has emerged as
a solution for efficiently processing big data. By using PIM, the generated data can be processed locally, with reduced
power and energy costs, allowing an efficient solution for CPS and IoT data management problem. However, two main
tools are fundamental on this scenario: a simulator that allows architectural performance and behavior analysis is
essential within a project life-cycle, and a compiler able to automatically generate code for the targeted architecture
with obvious improvements of productivity. Also, with the emergence of new technologies, the ability to simulate PIM
coupled to the latest memory technologies is also important. This work presents a framework able to simulate and
automatically generate code for IoT PIM-based systems. Also, supported by the presented framework, this work
proposes an architecture that shows an efficient IoT PIM system able to compute a real image recognition application.
The proposed architecture is able to process 6x more frames per second than the baseline, while improving the
energy efficiency by 30x.

Keywords IoT; CPS; Processing-in-Memory; Simulation; Compiler

Taxonomy Emergent Computing, Internet of Things, Hardware Architecture, Cyber-Physical
System

Corresponding Author Paulo Cesar Santos

Corresponding Author's
Institution

UFRGS

Order of Authors Paulo Cesar Santos, João Paulo C. de Lima, Rafael F. de Moura, Hameeza
Ahmed, Marco Antonio Zanata Alves, Antonio Carlos Schneider Beck Filho,
Luigi Carro

Submission Files Included in this PDF

File Name [File Type]

SI_INTESA_submitted_v2.pdf [Manuscript File]

PC.jpg [Author Photo]

joao.jpg [Author Photo]

Hameeza.pdf [Author Photo]

rafael.pdf [Author Photo]

marco.jpg [Author Photo]

luigi.jpg [Author Photo]

Submission Files Not Included in this PDF

File Name [File Type]

pc.txt [Author Biography]

joao.txt [Author Biography]

rafael.txt [Author Biography]

Hameeza.txt [Author Biography]

marco.txt [Author Biography]

antonio.txt [Author Biography]

luigi.txt [Author Biography]

antonio.png [Author Photo]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

A Technologically Agnostic Framework for Cyber-Physical and IoT
Processing-in-Memory-based Systems Simulation

PAULO CESAR SANTOS∗, Institute of Informatics, UFRGS, Brazil
JOÃO PAULO C. DE LIMA, Institute of Informatics, UFRGS, Brazil
RAFAEL F. DE MOURA, Institute of Informatics, UFRGS, Brazil
HAMEEZA AHMED, Dept. Comp. and Inf. Eng, NED, Pakistan
MARCO A. Z. ALVES, Institute of Informatics, UFPR, Brazil
ANTONIO C. S. BECK, Institute of Informatics, UFRGS, Brazil
LUIGI CARRO, Institute of Informatics, UFRGS, Brazil

Abstract - Smart devices based on Internet of Things (IoT) and Cyber-Physical System (CPS) are emerging
as an important and complex set of applications in the modern world. These systems can generate a massive
amounts of data, due to the enormous quantity of sensors being used in modern applications, which can either
stress the communication mechanisms or need extra resources to treat data locally. In the era of efficient smart
devices, the idea of transmitting huge amounts of data is prohibitive. Furthermore, implementing traditional
architectures imposes limits on achieving the required efficiency. Within the area, power, and energy constraints,
Processing-in-Memory (PIM) has emerged as a solution for efficiently processing big data. By using PIM, the
generated data can be processed locally, with reduced power and energy costs, allowing an efficient solution for
CPS and IoT data management problem. However, two main tools are fundamental on this scenario: a simulator
that allows architectural performance and behavior analysis is essential within a project life-cycle, and a compiler
able to automatically generate code for the targeted architecture with obvious improvements of productivity. Also,
with the emergence of new technologies, the ability to simulate PIM coupled to the latest memory technologies
is also important. This work presents a framework able to simulate and automatically generate code for IoT
PIM-based systems. Also, supported by the presented framework, this work proposes an architecture that shows
an efficient IoT PIM system able to compute a real image recognition application. The proposed architecture is
able to process 6× more frames per second than the baseline, while improving the energy efficiency by 30×.

Additional Key Words and Phrases: IoT, CPS, Processing-in-Memory, Simulation, Compiler

1 INTRODUCTION
Smart devices have emerged as the new frontier in terms of modern applications. Being widely applied in
different environments, Internet of Things (IoT) and Cyber-Physical Systems (CPSs) are present varying
from simple systems that monitor temperature, control illumination, or turn on/off a secondary device,
to complex applications as medical analyses, driving assistance, image recognition, autonomous vehicles,
and drones. Supplied by a large number of sensors, smart devices are currently requiring the management
of large amounts of data, and high processing power. Moreover, the embedded nature of these systems
requires greater attention to energy efficiency.

∗This study was financed in part by CAPES (Finance Code 001), CNPq and FAPERGS

Authors’ addresses: Paulo Cesar Santos, Institute of Informatics, UFRGS, Porto Alegre, Brazil, pcssjunior@inf.ufrgs.br;
João Paulo C. de Lima, Institute of Informatics, UFRGS, Porto Alegre, Brazil, jpclima@inf.ufrgs.br; Rafael F. de Moura,
Institute of Informatics, UFRGS, Porto Alegre, Brazil, rfmoura@inf.ufrgs.br; Hameeza Ahmed, Dept. Comp. and Inf. Eng,
NED, Karachi, Pakistan, hameeza@neduet.edu.pk; Marco A. Z. Alves, Institute of Informatics, UFPR, Curitiba, Brazil,
mazalves@inf.ufpr.br; Antonio C. S. Beck, Institute of Informatics, UFRGS, Porto Alegre, Brazil, caco@inf.ufrgs.br; Luigi
Carro, Institute of Informatics, UFRGS, Porto Alegre, Brazil, carro@inf.ufrgs.br.

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

2 • Paulo C. Santos et al.

Recently, as the cost per transistor has been reduced exponentially over several years [56], more
complex embedded systems have emerged to support and improve even more elaborate CPS and IoT
applications, which are known by the increasing volume of data and the need to enrich them. To process
such information that all these different sensors collect, and to perform the increasingly complex operations
present in the modern applications, expensive and sophisticated computation elements, like multi-core
General Purpose Processors (GPPs) and large Graphics Processing Units (GPUs) are commonly used. For
instance, self-driving vehicles apply these expensive resources for image recognition, pedestrian detection,
etc [11]. The same can be noticed for autonomous drones, and modern experimented designs such as LG
16-cameras assay [43]. Moreover, one essential computation required in this system is executing machine
learning algorithms, as deep learning and reinforced learning, to make choices based on the environment
it is inserted [23, 25, 31, 53, 65].

Several studies have presented different approaches to process such algorithms efficiently, and the most
suitable presented in the literature is based on Processing-in-Memory (PIM) designs [9, 22, 33, 49, 61].
PIM architectures have been presented since 1990’s [35] targeting the reduction of unnecessary data
movement by allocating processing units close to data. With the advent of 3D-stacked memories, and
further with the ability of stacking logic and memories on same chip [28, 37], PIM appears as a prominent
solution able to keep the compromise between performance and energy. In addition to the ability to
reduce data movement, improve energy efficiency and performance, PIM can also take advantage of new
memory technologies [12, 60]. Since some proposals such as [49, 55] allow direct access to the new memory
technology devices, they take advantage of extracting higher amounts of memory bandwidth, Data-Level
Parallelism (DLP) and Floating Point Operations Per Second (FLOPS) from these devices.

However, previous designs lacked appropriate automation tools, since all previous PIM designs have
been made based on bare metal with custom strategies. Moreover, two main issues were missing on
previous studies:

∙ on the architectural side, how to connect several sensors to be processed in an efficient way by a
PIM architecture, and how to allow the PIM to efficiently process all data collected by these sensors;

∙ on the design side, how to provide a design space exploration environment, and how to experiment
and evaluate full-stack solutions for CPS and IoT using complete tools to simulate PIM designs
and new technologies

This work extends the one in [54], presenting a design framework that comprises a GEM5-based
simulator [10] and a LLVM-based compiler [36] as a tool to ease the development of PIM architectural
projects for IoT and CPS applications. Also, we show an architectural approach to connect several
CPS and IoT devices to a PIM component, being able to share the PIM processing resources, while
taking advantage of the known Hybrid Memory Cube (HMC) module. This tool simulates the proposed
architecture (host processor, PIM accelerator, and sensors) using optimized binary codes generated by the
compiler for the target PIM. We demonstrate the usage of our framework in a case study and the gains of
performance and energy obtained using the proposed architecture to run an object detection algorithm.

2 BACKGROUND
In this section, the basics of 3D-stacked memory technology and Processing-in-Memory (PIM) are
presented.

2.1 3D-Stacked
3D Integrated Circuits (ICs) and 3D-stacked memories have emerged as a feasible solution to tackle
the memory wall problem and the little performance-efficiency improvement achieved by traditional

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

CPS and IoT PIM based Framework • 3

commodity Dynamic Random Access Memories (DRAMs). By connecting DRAM dies and logic layer
on top of each other using dense Through-Silicon Via (TSV), 3D-stacked memories can provide high
bandwidth, low latency, and significant energy-efficiency improvements in comparison to traditional
Double Data Rate (DDR) modules. The most known examples of 3D-stacking technologies from industry
are the Microns’s Hybrid Memory Cube (HMC) [28] and AMD/Hynix’s High Bandwidth Memory (HBM)
[37].

Figure 1 shows an overview of the internal organization of a 3D-stacked DRAM device. For both HMC
and HBM architectures, it consists of multiple layers of DRAM, each layer containing various banks. A
vertical slice of stacked layers composes a vault, which is connected by an independent TSV bus to a vault
controller [28]. Since each vault controller operates its vault memory region independently, it enables
vault-level parallelism similar to independent channel parallelism found in conventional DRAM modules.
In addition to the vault parallelism, the vault controller can share the TSV bus among the layers via
careful scheduling of the requests which enables bank-level parallelism within a vault [66].

According to the last specification [28], the HMC module contains either four or eight DRAM dies,
and one logic layer stacked and connected by a TSV. Each memory cube contains 32 vaults and each
vault controller is functionally independent to operate upon 16 memory banks. The available bandwidth
from all vaults is up to 320 GBps and it is accessible through multiple serial links. Moreover, the HMC
specifies atomic command requests which enable the logic layer to perform read-update-write operations
atomically on data using up to 16-byte operands. All in-band communication across a link is packetized
and there is no specific timing associated with memory requests, since vaults may reorder their internal
requests to optimize bandwidth and reduce average access latency.

Logic
Layer

DRAM
Layers

TSVs

Vault

Links

Fig. 1. Layout of a HMC-like device comprising of eight DRAM layers and a base logic layer connected by TSVs and
vertically organized in vaults [28].

2.2 PIM
The increasing demand for data-intensive applications with ever-growing workloads, and the possibility
of having 3D-stacked memory devices leveraged and reintroduced the PIM research field. Data-intensive
applications can benefit from PIM since they can compute as near as possible where the data resides,
instead of passing the data back and forth through a slow storage device, main memory and cache
memories to finally be processed by the processing unit by itself [66].

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

4 • Paulo C. Santos et al.

In the past years, several works have studied how to couple some processing logic in the memory system.
Some of them include processing units on the memory controller and DRAM module, which reduces
the cost of PIM integration, avoids costly 3D-stacking technology, and uses unmodified DRAM chips.
Others propose processing logic within the memory chip or memory array, which significantly improves
computational efficiency by taking advantage of the highest bandwidth and the lowest latency possible
directly from DRAM banks.

Meanwhile, several works [34, 41] studied the possibility of stacking memory dies and interconnecting
them through very small via, granting the emerging of 3D-stacked processing-in-memory approach.
Moreover, the evolution of TSV technique [16] solved some problems present on previous versions of
3D-stacked memory like thermal dissipation influences making feasible the production and exploitation of
stacked memories as done by the HMC [30, 50] and HBM [37] products. Both HMC and HBM designs
separate logic from memory, and deal with the old problem of using the same slow DRAM technology to
build logic processing elements.

Consequently, since 2013 3D-stacked PIMs have regained focus with different project approaches,
varying from multicore systems placed into the logic layer as presented in [2, 8, 17, 51, 57], alternative
cores [32, 47], Single Instruction Multiple Data (SIMD) units [49, 55], Graphics Processing Units (GPUs)
[64] to Coarse-Grain Reconfigurable Arrays (CGRAs) [21].

3 RELATED WORK
This section presents state-of-art PIM works regarding their feasibility for big sensor data applications
realm, how to compile and simulate for PIM architecture design.

3.1 PIM feasibility for big sensor data applications
Big sensor data applications are built on the premise that data will be collected from different sources
(audio, video, biological signals) for analysis and decision-making. Personal assistants, flying drones, and
self-driving vehicles are some of those applications that involve a massive amount of data, and they must
be processed on the device mainly due to low latency and privacy requirements. However, traditional
embedded systems architectures do not fulfill the energy requirements for on-device processing of complex
applications, such as machine learning, and it opens up a challenge to bring low-power, energy-efficient,
specialized hardware to Cyber-Physical System (CPS) and Internet of Things (IoT) devices.

Considering this class of applications, a significant part of the time is spent processing machine learning
algorithms and managing data [4]. Since most of the big sensor data analysis and decision-making is based
on statistical and artificial intelligence algorithms, a viable approach to reduce time and energy is by
optimizing them to a more data-centric and application-specific architecture. Several previous works have
already implemented distinct PIM architectures aiming to both explore the abundant internal memory
bandwidth and reduce data movement through the memory system [2, 5, 7, 18, 27, 47]. In particular,
previous works as [9, 22, 33, 49, 61, 63] have taken advantage of these new memory architectures to
accelerate unsupervised learning and IoT applications in distinct ways.

3.2 Simulating a PIM-based architecture
Most of the recent PIM works focus on fully-programmable cores, which are generally simulated by
adjusting constraints of 3D integrated circuits in existing simulators and by taking advantage of existing
execution models and compilers. To lower the time spent investigating new PIM techniques for research
purposes, the majority of the validation of PIM proposed architectures are based on simulation mechanisms.
Additionally, simulating new hardware designs contributes to the reduction and discovering of design

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

CPS and IoT PIM based Framework • 5

faults which could be detected only after the manufacturing process. Thus, the adoption of simulation
environments significantly adds to the PIM design and validation tests. On the other hand, fixed-function
in-memory processing, which includes the HMC 2.0 and the works of [3, 20, 46, 48], relies on a more
varied design methodology which generally includes custom or in-house tools.

Although there exist numerous PIM simulators, they still lack dealing with many challenges and
difficulties in the PIM simulation. The first issue corresponds to the necessity of coupling a significant
number of different tools to represent a whole computing system and its respective modules. In [62], the
authors presented a PIM simulator that relies on the integration of three memory simulators to support
different memory technologies and one architectural simulator to provide interconnection and description
of Central Processing Unit (CPU) architectures. Likewise, in [63] is presented a PIM architecture for
wireless IoT applications which relies on the integration of one simulator for simulating both PIM and
host processing elements and a tool for estimating power consumption. Coupling several simulators to
represent the desired computing system incurs drawbacks to the design life-cycle making this simulation
approach prohibitive. When considering different simulation environments, the architectural designers
must have complete and in-depth knowledge about the simulators features, which in turn demands time-
consuming tasks. Additionally, interface and communication protocols must be created and implemented
to synchronize all the modules and simulators utilized. Also, since the involved simulators may have
different accuracy levels, system modeling patterns, and technological constraint representations, the result
of the simulation might not present the desired precision. Although [63] utilizes the same architectural
simulator for all the hardware components, different simulation accuracy level components are instantiated
to compose the whole system. Thus, the simulation approach followed by [63] not only needs a particular
synchronization mechanism but also does not reflect a real scenario where the host processor is represented
by an event-detailed processor description and the PIM elements are described only with atomic and
no-delayed operations.

Meanwhile, other simulators require the generation of trace files as input to feed them. The major
drawbacks inherit from the trace-based simulation approach are the necessity of previous execution of
the target applications in a real machine and the gathering of relevant information such as executed
instructions and data access addresses. Although [62] and [48] are built over architectural cycle-accurate
simulators, the PIM modeling and measurements are done by analyzing memory traces gathered during
the simulation.

3.3 Compiling for PIM
Despite the existence of significant work on PIM architectures research, compiler-based solutions for PIM
is still a not completely covered subject. Regarding the generation of binaries for PIM architectures, a
compiler must deal at least with three main challenges: the offloading of the instructions, the efficient
hardware resources exploitation in the memory logic layer, and the programmability. For the offloading
decision problem, the compiler must be able to decide when migrating a portion of code and its respective
instructions to execute in the PIM logic layer. To maximize the performance and energy improvements
obtained by the PIM, the compiler has to exploit the available hardware resources efficiently. Respecting
to programmability for PIM, all programmer interventions such as code notation and pragmas or the
usage of special libraries are not desired and must be avoided not to disrupt the software development
process.

Specifically for offloading decisions, [24] presents an offloading technique for PIM. However, in [24], the
offload decisions are taken offline in a non-automatic way due to its necessity of cache profiler and trace
analysis. Similarly, [26] introduces a compile-time offloading system candidate for a PIM. Nonetheless, in

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

6 • Paulo C. Santos et al.

Complex
CPU

Cache
Hierarchy

. . .

Host Processor

FUs

Register
File

. . .

Host Processor

. . .

Host Processor

Specialized
CPU

Cache
Hierarchy

Specialized
Logic

. . .

Host Processor

(a) Complex CPUs

Complex
CPU

Cache
Hierarchy

. . .

Host Processor

FUs

Register
File

. . .

Host Processor

. . .

Host Processor

Specialized
CPU

Cache
Hierarchy

Specialized
Logic

. . .

Host Processor

(b) Functional Units

Complex
CPU

Cache
Hierarchy

. . .

Host Processor

FUs

Register
File

. . .

Host Processor

. . .

Host Processor

Specialized
CPU

Cache
Hierarchy

Specialized
Logic

. . .

Host Processor

(c) Specialized CPUs

Complex
CPU

Cache
Hierarchy

. . .

Host Procesor

FUs

Register
File

. . .

Host Procesor

. . .

Host Procesor

Specialized
CPU

Cache
Hierarchy

Specialized
Logic

. . .

Host Processor

(d) in-Cell Memory Logics

Fig. 2. Types of PIM.

[26] the programmer is required to insert code notations in the portions of code that have potential to be
executed in the PIM device hurting the programmability issue. Concerning hardware resources allocation,
[2], and [62] propose compiler techniques for PIM architectures, but explicit code notations are requested
for mapping the PIM units that will execute the code.

4 A FRAMEWORK FOR PIM SIMULATION
The ability to simulate and automatically generate code for experimental systems is crucial for the
development of state-of-the-art devices. In this section we describe the proposed framework that comprises
a GEM5-based [10] simulator and an LLVM-based compiler [36]. The presented simulator arrangement is
able to simulate different types of PIM architectures, as presented in Section 4.1, and also different types
of memory technologies as shown in Section 4.3 by using the HMC organization as basis.

4.1 Simulating a PIM-based system
Since simulating applications on state-of-the-art architectures is an important issue for modern designs,
this work takes advantage of the well diffused high-level, event-driving GEM5 simulator [10] to allow the
simulation of 3D-stacked-based memories and state-of-the-art PIM logics.

As presented in Section 2, the HMC memory is widely chosen for PIM designs, due to its main
characteristic of integrate logic and DRAM layers. Hence, the HMC was chosen as the standard memory
layout for our simulation environment. Moreover, due to the heterogeneity of PIM designs, the proposed
simulator must allow to implement different types of PIM.

Figure 2 illustrates the most common PIMs that can be simulated by the present work. Figures 2a and
2b show the integration of two types of PIMs in the logic layer provided by 3D-stacked HMC module.
It is possible to notice that the 2a type consists of a complete CPU system comprising a processor and
traditional memory hierarchy. On the other hand, 2b type comprises a simple set of Functional Units
(FUs) and a set of register files. A PIM that avoids traditional cache hierarchy is presented in Figure 2c.
This type of PIM can be seen as a traditional accelerator. The PIM shown in Figure 2d is placed as close
as possible to the memory array, or even along with the memory cells. This design is applied on different
memory technologies, such as DRAM and Resistive RAM (ReRAM).

To support the simulation of the above mentioned PIM designs, the GEM5 simulator has been modified
to include Instruction Set Architecture (ISA) extension, offloading, virtual address translation and data
coherence mechanisms, just to list some of the requirements of different PIM designs.

4.1.1 HMC Modeling: Each type of PIM presented in Figure 2 requires different resources from memory
systems.

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

CPS and IoT PIM based Framework • 7

VaultCtrl.py

vault_ctrl.cc

vault_ctrl.hh

DRAMCtrl.py

dram_ctrl.cc

dram_ctrl.hh
HMC.py

GEM5 object description file

GEM5 object source file

GEM5 object header file

SERDES.py

serdes.cc

serdes.hh

Memory Technology Parameters

PIM Interface

PIM_Parameters.py

PIM_Instance.cc

PIM_Instance.hh

PIM Interface

PIM_Parameters.py

PIM_Instance.cc

PIM_Instance.hh

Fig. 3. Overview of the modified GEM5’s HMC files

The PIMs illustrated by Figures 2a and 2b lies within 3D-staked HMC vault controllers. These types
of PIM allow independent instances along all vaults making possible parallel and concurrent memory
accesses, as presented in [2, 17, 51] and [47, 49, 55]. Therefore, to support the simulation of such designs,
a new HMC representation comprising 32 independent vault controllers, 8 DRAM layers, and a low-level
interleaving was modeled. Hence, our model can properly reproduce the HMC parallelism between memory
vaults and banks. A suitable hierarchy of crossbars has been implemented to enable the correct connection
between links and vaults, which is called quadrant in HMC specification [50]. These crossbars are also
responsible for the communication between vaults, which allows the rapid exchange of data between
different instances of the PIM.

PIMs represented by Figure 2c do not require modifications in main memory, since this type of design is
seen as a typical accelerator [6]. However, the correct representation of the links is important to properly
simulate the behavior of the experimented mechanism.

A different requirement is made by the type illustrated in Figure 2d. In this case, the PIM unit is
placed along the DRAM array [13, 39, 58], which requires a different approach, since representing each
cell individually would be prohibitive in terms of simulation time. Thus, we reuse the units shown in
Figure 2b to simulate this type of PIM. By adjusting specific timings in different parts of the circuits
(buses, commands, etc) it is possible to simulate groups of cells being accessed. This class is generally
limited to bulk bitwise operations, although offloading, virtual address translation and data coherence
mechanism are needed.

Figure 3 depicts the main files that have been modified on GEM5’s HMC representation. Also, it
highlights the interface point between the PIMs and memory module (and its main components).

4.1.2 Host Processor Modifications and PIM:. PIM logic implemented with existing processor cores,
such as the ones presented in Figures 2a and 2c, do not require modifications on a host processor. Also, all
communication among host and accelerator or between instances of PIMs are managed by the programmer
via software, such as OpenMP, MPI and special libraries.

On the other hand, PIM logics centered on simple processing units, such as those shown in Figures 2b
and 2d, are dependent on a host. This class of PIM requires a host processor to dispatch PIM instructions
or to perfom control-flow operations due to the fine-grain control of their logic. One approach to seamlessly

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

8 • Paulo C. Santos et al.

Support ISA
extension for PIM

CPU
MODEL

COMMUNICATION
MODEL

Support Cache
Coherence

Support Address
Calculation for PIM

CACHE
MODEL

VAULT
CTRL 0

PIM

VAULT
CTRL 31

PIM

...

HMC
MODEL

XBAR LINKS

XBAR

XBAR

...

Ports Ports Ports

Fig. 4. Overview of the modules in the PIM Simulator

offload PIM instructions from the host processor to the PIM device is to make the host CPU compatible
with a new PIM ISA. Thus, the machine code is composed of a hybrid code, which is detailed in Section 4.2.

The hybrid code is also applicable for native HMC commands [28] and some designs found in the
literature [46, 49, 55] with the cost of developing a new ISA extension. The Reconfigurable Vector Unit
(RVU) PIM design [55] was chosen to illustrate the implementation of this type of PIM. The RVU design
extends the Advanced Vector Extensions (AVX)-512 ISA by allowing the computation of huge vector
operands in memory through its large Vector Processor Units (VPUs), which provides the ability to
exploit the internal bandwidth available in 3D-stacked memories. RVU PIM allows vector operands from
16 Bytes to 8192 Bytes [40, 55], while it has a VPU of 256 Bytes and a register file of the same size
instantiated within each vault of the HMC.

Figure 4 illustrates the most important modifications made on GEM5 to support this type of PIM.
Firstly, the host CPU was upgraded to support the PIM ISA extension. The processor decoder was
updated to include the decoding of PIM instructions. Also, as RVU extends the AVX-512 ISA, the
GEM5’s X86 processor was also upgraded to support AVX-512 accordingly to [14, 15, 19]. Although RVU
uses the same addressing modes present in AVX-512, it requires modifications on the Address Generation
Unit (AGU) to calculate physical addresses of memory operands that occupy more than one virtual page
of the Operating System (OS). Secondly, the Load Store Unit (LSU) module was modified to support the
dispatching mechanism of PIM instruction with varied requirements. The LSU module also manages and
performs cache coherence by flushing cache blocks when required to keep data consistency. The RVU ISA
allows instruction with memory operand, immediate or host register operand as source to be operated on
the PIM unit. It also defines synchronous instructions that expect a response from the PIM unit to be
stored in a host register as destination. Using these types of instructions the programmer is allowed to
exchange data between PIM registers and host register seamlessly.

4.2 Compiling for PIM
Another known issue while simulating state-of-the-art architectures is how to generate code for an
experimental design. PIM types that use traditional programmable cores (Figures 2a and 2c) are able to
take advantage of existing compilers, legacy libraries and programming models. As aforementioned, the
data sharing among all processing units is done via specialized libraries [17, 26, 51, 59], which demands
programming efforts.

New PIM architectures, such as native HMC PIM and the ones presented in Figures 2b and 2d, require
a different solution. The hybrid code style can be a solution that allows the automatic offloading of
instructions directly from host to PIM, as presented in Section 4.1.2. The hybrid code style consists of a
mixed host and PIM instruction, which requires intrinsic collaboration between host and accelerator at

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

CPS and IoT PIM based Framework • 9

mov r10 , rdx
x o r ecx , ecx
RVU_256B_LOAD_DWORD RVU_3_R256B_1, pimword p t r [r sp + 1024]
RVU_256B_VPERM_DWORD RVU_3_R256B_1, RVU_3_R256B_1, RVU_3_R256B_0
RVU_256B_VADD_DWORD RVU_3_R256B_0, RVU_3_R256B_0, RVU_3_R256B_1
RVU_256B_STORE_DWORD pimword p t r [r sp + 1 5 3 6] , RVU_3_R256B_0
mov eax , dword p t r [r s i + 4∗ rcx + 16640]
i m u l eax , r9d
add eax , dword p t r [r sp + 1536]
mov dword p t r [r10] , eax
i n c rcx

Fig. 5. Example of Hybrid Code (X86 and RVU)

instruction level. Therefore, this approach requires a compiler capable of generating a hybrid machine
code containing both host ISA and PIM ISA from the same source code.

Processin-in-Memory cOmpiler (PRIMO) [1] is designed for PIMs that have the necessity of insctructions
offloading decision and generation being made by a compiler. Moreover, PRIMO has focus in the
exploitation of VPUs present in these machines. PRIMO is developed using the Low Level Virtual
Machine (LLVM) compiler tool [36]. The three main modules that comprise a modern compiler pipeline
flow, such as LLVM, are called Front-End, Middle-End and Back-End. The Front-End takes as input the
source code files and basically performs the lexical analysis, syntactic analysis and semantic analysis.
Hence, the output generated by the Front-End is an Intermediate Representation (IR) block of code which
is the first compiler’s internal representation derived from the source. The Middle-End is responsible for
applying to the IR code optimizations such as peephole optimizations, loop unrolling and vectorization.
Finally, the Back-End translates the already optimized IR into architecture instructions, performs some
specific architectural optimizations and generates the binary file to be executed further.

The PRIMO tool provides an generic implementation such that for any target PIM, the compiler can
be extended based on the architecture specific features. The modifications done in LLVM pipeline flow by
PRIMO are described as follows. For the Front-End module, any modification is needed since the actions
performed in this stage are kept the same and they are independent for any IR or architecture. Middle-End
is extended to support bigger vector widths and an offloading mechanism. The offloading technique is
based on data locality and vector width being responsible to decide whether to execute the code on
PIM. Additionally, the Middle-End has specific PIM hardware usage optimizations implemented. The
Back-End is updated to support the PIM register bank and the new extended PIM ISA. Optimizations
related to explore better vault, memory bank and VPUs level parallelism in the HMC device are also
introduced in this module. Also, optimizations regarding communication among PIM instances, register
allocation and architectural instruction translations are added in the Back-End. Finally, the binary file
containing a hybrid mix of PIM and X86 instructions is built to be executed.

The code snippet presented on Figure 5 illustrates the generated code for the RVU mechanism [1]. It
is possible to observe that the generated code contains both X86 and RVU instructions, showing the
hybrid style code where both X86 and PIM instructions are fetched, decoded, and dispatched by a host
processor (Section 4.1.2). Hence, supported by the host modifications mentioned in Section 4.1.2, each
instruction is fetched, decoded, and locally computed if recognized as typical X86 instruction. Otherwise
the instruction is prepared along host pipeline, computing addresses and flushes when required, and lastly
offloaded to the PIM to be properly processed.

The compiler selects the most suitable instructions to offload to the PIM accelerator, trying to exploit all
available resources. It is possible to notice on Figure 5 that instructions like RVU_256B_VADD_DWORD

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

10 • Paulo C. Santos et al.

can be seen as a group of four AVX-512 ADD instruction, and the load operation RVU_256B_LOAD_DWORD
can load 256 Bytes of data from main memory at once to an internal RVU register. Also, from the code
snippet, it can be seen the RVU registers nomenclatures, which shows that for each HMC vault a group
of RVU register is available.

4.3 Technological Agnostic Capabilities
PIM architectures have been studied for decades. However, with the advancement of 3D-stacked technolo-
gies, PIM have regained attention as the 3D-stacked allows the mix of logic and memory (DRAM) on
same chip. Furthermore, academical and industrial researches have present new memory technologies,
such as ReRAM, Phase-Change Memory [12, 29, 60], as well as ways to use memory to achieve energy-
efficient computing. However, creating a specific simulator for each technology is a time consuming task,
mainly when the motivation is to evaluate different memory technologies. In this way, ReRAM, DRAM,
Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM) read/write latencies and energy
costs obtained by CACTI or other type of estimation can be embedded in GEM5, as already tested in
previous work [42]. Then, the framework is easily extended to simulate different memory technologies
and PIM mechanisms by configuring the timings to represent the required behavior. In the same way,
the memory controller can be improved to support analogical operations and simulate addition and
multiplications inside the memory crossbar [29].

5 CASE STUDY
With the spread of sensing devices collecting huge amounts of data, and the requirement that each small
device be able to efficiently support complex applications, a new class of hardware devices have emerged.
Moreover, the ever increasing amount of data leads to a processing hungry fashion applications, which
urges processing power.

The CPS and IoT devices represents this new class, being applied from the Industry 4.0, critical medical
systems, home devices, autonomous vehicles, and military drones to toys, mobile smart devices, academic
studies, research environment monitoring, etc.

Nowadays, one of the most critical, complex and demanded application applies deep learning algorithms
in CPS and IoT devices. Object detection, pattern and speech recognition, context-aware recommender
systems are common examples. A most complex example are shown by computer vision in autonomous
vehicles, where LiDAR, radars, and camera sensors generate streaming videos that must be processed in
a constrained time. The example can become more power hungry with the addition of Neural Network
(NN) based applications such as pedestrian detection, transit and traffic recognition, which requires huge
processing power on large volume of data.

Since this is a challenging scenario, the chosen case study consists in coupling several camera sensors to
a PIM and efficiently implement an image recognition software for this architecture by using our proposed
framework. As application domain example, we have chosen to use the algorithm provided by [52] in our
experiments. Their algorithm, called YOLO9000, is a state-of-the-art real-time object detection algorithm
faster than previous algorithms of the same class while providing enough accuracy.

5.1 Proposed Architecture
The main challenge on embedded devices lies on allow high processing power and energy efficiency
together. CPS and IoT devices are expected to leverage this behavior. To support this idea, the proposed
architecture avoids traditional complex I/O interfaces by taking advantage of available resources present on

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

CPS and IoT PIM based Framework • 11

SIMPLE
HOST

PROCESSOR

DRAM LAYER

DRAM LAYER

DRAM LAYER

DRAM LAYER

LOGIC LAYER

Interconnection Layer
SERDES

Fig. 6. Small Host Processor + HMC + Sensors

HMC module. Figure 6 illustrates a generic solution for this application domain. The proposed architecture
can be applied to any previously mentioned state-of-the-art architecture (Figure 2 in Section 4.1).

It is composed of a PIM, a host processor, and sensors directly connected to the 3D-stacked memory.
In the case of HMC module, the sensors are connected directly to the memory via high-speed serial links,
the same used to connect host CPUs and memory device [28]. Each sensor is configured with a physical
base address, and all write operations from these sensors are based on that address. This way, as each
sensor has its own range of addresses, the sensors can trigger write operations without the need of address
translation, while ensure data consistence. Also, the proposed architecture allow the concurrent writing
behavior with no penalties, which means that many sensors can write data directly to the memory taking
advantage of the inherent parallelism and the high bandwidth in an efficient fashion.

5.2 Simulating Approach
In the proposed architecture, the PIM instructions are decoded and dispatched by a small X86 host
processor. The cache is needed to store host-side and PIM instructions, but most of the YOLO kernel
(heavy computation) is processed using PIM instructions, and the memory requests are made only inside
the HMC device. The host CPU is mostly used in branch instructions of YOLO kernel and also other
parts of the software responsible for scheduling operations on the range of cameras, which allow us to run
frames from different sources simultaneously.

Traffic generators are attached to high-speed serial links to simulate sensors storing data. As the
workload from different sources can be easily explored by Thread Level Parallelism (TLP), we consider a
multi-issue processor with 32 independent lanes. To do so, we have employed a simple static scheduler
and an interconnection structure to exploit concurrent executions. This static scheduler is used to map
the different sensors to our device and allow us to run frames from different sources simultaneously. Then,
each sensor is seen as a thread with reserved memory space, where the PIM instructions modify the data
over a particular memory region.

6 EXPERIMENTAL APPLICATION
In this section, we describe the simulation setup and methodology employed, and the results of our
experiments.

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

12 • Paulo C. Santos et al.

Table 1. Baseline and design system configuration.

Baseline x86 Processor
X86-based out-of-order multi-core processor;
4 cores@3GHz; IL1 64KB + DL1 64KB; L2 256kB; L3 Cache 8MB; 8 issues - SSE and AVX-512 Instruction Set Capable;
Power Consumption 40W@32nm;

ARM-based PIM
ARM-based in-order single-core processor;
16 PIM Instances - 1 core@2GHz; IL1 64kB + DL1 64kB; no L2; no L3; 6 issues - Neon-128 Instruction Set Capable;

X86-based PIM
X86-based out-of-order single-core processor;
16 PIM Instances - 1 core@2GHz; IL1 64kB + DL1 64kB; no L2; no L3; 8 issues - AVX-512 Instruction Set Capable;

RVU PIM
1GHz; 32 Independent Functional Units; Integer and Floating-Point Capable;
Vectorial Operations up to 256 Bytes per Functional Units; 32 Independent Register Bank of 8x256Bytes each;
Latency (cycles): 1-alu, 3-mul. and 20-div. integer units; 5-alu, 5-mul. and 20-div. floating-point units;
Interconnection between vaults: 5 cycles latency;
X86-based in-order Host Processor - 2GHz; Single Core; IL1 64KB + DL1 64KB; no L2; no L3;
Power Consumption 4W@32nm + 16W@32nm [38, 40];

HMC Module
HMC version 2.0 specification;
Total DRAM Size 8GBytes - 8 Layers - 8Gbit per layer
32 Vaults - 16 Banks per Vault; 4 high speed Serial Links;
Energy Consumption 10pJ/bit [30, 40]

DRAM Timings
CAS, RP, RCD, RAS, CWD latency (9-9-9-24-7 cycles);

ReRAM Timings [44]
Write, Read latency (0.25-0.25 ns per cell);
Considering 16MB per bank;
Energy Consumption 10-5pJ/cell [42];

6.1 Experimental Setup
Firstly, in order to compare the simulation time, and to show the generality of the proposed framework,
this section shows a comparison between a single-core out-of-order Intel processor and a multi-core version
of the same processor, both coupled with the developed HMC module. Moreover, to show the PIM
simulation capabilities, two types of PIM are implemented, illustrated in Figure 2a ([55])and Figure 2b
(inspired by [2, 17]). Since the RVU PIM requires instruction offloading, it is coupled with a single-core
processor host for instruction offloading, and all PIMs are integrated within the logic layer provided by
the HMC, which is configured with 32 vaults to accommodate up to 32 PIM instances.

Secondly, the presented framework is used to simulate the IoT design as case study shown in the
Section 5. The experiment consists of connecting several video-camera sensors (IoT devices) to the same
HMC module, and the image recognition application is applied to each single frame. A PIM is responsible
for efficiently compute the data.

The baseline system, the PIM configurations, power, and energy consumption constraints are described
in the Table 1. For all tests, the system used to run the simulator is comprised of a processor Intel i7-4700
and 16GB of main memory.

6.2 Simulation time
In order to evaluate the performance of the proposed GEM5 modifications, Figure 7 shows the simulation
time comparison between the baseline processor and the different multi-core and PIM implementations
running 3 simple kernels - vecsum, stencil-2d, and matrixmul. All results are normalized to the simulation

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

CPS and IoT PIM based Framework • 13

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1
 C

o
re

 S
SE

1
 C

o
re

 A
V

X
5

1
2

4
 C

o
re

s
SS

E

4
 C

o
re

s
A

V
X

5
1

2

1
2

8
B

2
5

6
B

5
1

2
B

1
02

4
B

2
0

4
8

B

4
09

6
B

8
19

2
B

A
R

M
 N

eo
n

1
28

X
8

6+
A

V
X

5
1

2

Host X86 RVU (FU Type) FullCore-PIM
(16 Instances)

Si
m

u
la

ti
o

n
 T

im
e

N
o

rm
al

iz
ed

 t
o

 1
 C

o
re

 S
SE

VECSUM 16MB Stencil 2D 512x512 MM 512x512

Fig. 7. Simulation time for a 4-core processor, different RVU operand sizes [55], an ARM-based PIM, and a X86-based
PIM with its 16 core Instances

time of the single core SSE scenario, and in all cases the HMC module is used, accordingly to Table 1
parameters.

From Figure 7 it is possible to observe that the X86 multi-core scenario requires bigger simulation time
than the single-core approach. This occurs because the GEM5 is a sequential simulator, improving the
execution time according to the amount of hardware simulated. On the other hand, in case of full-cores
PIM approach, they are implemented using simpler cores, with significantly reduced cache levels, which
improves simulation time. Furthermore, another important point that must be observed is the number
of simulated instructions, which is proportional to the available operand sizes. As the simulated PIM
and AVX-512 processors reduce the number of instructions executed (due to the improvement on vector
capabilities), the simulation time is drastically reduced. Also, it is important to notice that the RVU
PIM is able to operate through different operand sizes per instructions, thus operating from 128 Bytes to
8192 Bytes of data at once, which further reduces the simulation time (and performance as presented in
the Section 6.3).

6.3 Image Recognition Experimentation for IoT Devices
Supported by the present framework, this section evaluates the behavior, operations, and performance of
the proposed architecture presented in Section 5. Moreover, different General Purpose Processor (GPP)
and PIM designs are evaluated, in order to show the generality of the simulating environment.

Following the case study, Figure 8 illustrates how several IoT devices can be connected to the proposed
system. Three Links provided by HMC are used as input buses from IoT sensors, while one is reserved
to the host processor that is responsible for triggering instructions to the RVU instances. The YOLO
application is computed by the experimented designs, whose data are serviced by traffic generators
representing cameras.

6.3.1 Performance Evaluation. As aforementioned, the Yolo application represents an important modern
application class. Moreover, the Convolutional Neural Nertwork (CNN) algorithm is widely used in
different image recognition applications, and we show that the PIM approach is suitable for this class of

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

14 • Paulo C. Santos et al.

IoT
DeviceIoT
DeviceIoT
Device

IoT
DeviceIoT
DeviceIoT
Device

IoT
DeviceIoT
DeviceIoT
Device

CPU
MODEL

COMMUNICATION
MODEL

CACHE
MODEL

HMC
MODEL

Ports Ports PortsLinks

to/from Host

to/from HMC
From IoT Devices

link0
link1

link2

link3

PIM
MODEL

Fig. 8. Several IoT connected to native HMC links

application in the present experiment. In order to exploit the proposed architecture, we connect an IoT
device to a link, and we tune up the source Frames per Second (FPS). The goal in this experiment is
to find the FPS limit that each evaluated architecture can achieve, while continuously, at each frame,
execute the image recognition application. The goal is to find the maximum FPS that each evaluated
architecture can achieve, while continuously, at each frame, execute the image recognition application.

Figure 9 presents the performance achieved by the evaluated architectures running the YOLO application.
It shows the maximum number of images that the traditional processors and the implemented PIMs
can compute per second (FPS). For all cases, it is shown the simulations coupled with HMC module
using DRAM timings and ReRAM timings. Also, in Figure 9, the stacked bars highlight the difference of
behavior on the application caused by each architecture and memory technology.

Firstly, to analyze the impact of different processing architectures, it is possible to notice that the
traditional processor configured with 4 cores coupled to HMC memory can achieve 8 FPS, while on
the other extreme, the RVU coupled with same HMC can achieve 64 FPS. One can observe that the
RVU approach, supported by its large vector operands (up to 8kB), takes advantage of the streaming
portion of the code (GEMM + Memory access). However, RVU uses its host processor to compute
branch instructions, and sequential scalar operations and memory access, which is shown by the Others +
Memory.

Figure 9 also shows the results achieved by the ARM-based and X86-AVX512-based PIMs. Both are
implemented with 16 instances (16 PIM-cores distributed along the HMC vaults), and they achieve 39 and
48 FPS, respectively. Moreover, both cases show that the main efforts are put on the computation of the

0

10

20

30

40

50

60

70

0

200

400

600

800

1000

Fr
am

e
p

er
 S

ec
o

n
d

 (
FP

S)

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

GEMM + Memory Others + Memory FPS

Fig. 9. FPS results and operation time distribution

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

CPS and IoT PIM based Framework • 15

GEMM algorithm. This happens because their implementation does not count on bigger cache memories,
and neither counts of large vector operand capabilities, although they are able to take advantage of near
data computing.

The reduced access time results presented by ReRAM can be observed Figure 9. By changing from
DRAM to ReRAM, all systems experience a performance improvement, however it occurs in different
proportions for each evaluated system. The FPS achieved by the 4 cores GPP improved from 8 to 11 FPS,
while the improvement presented by the RVU jumped from 64 to 71 FPS. In case of GPP systems,
regardless the use of cache memories (8MB of LLC), the streaming behavior of the application requires
several memory access (64 Bytes per access), which shows the significance of the memory access latency.
Differently, due to its large vector operands, RVU takes advantage of bandwidth more than latency
reduction, which can be noticed by the slightly increased on the processing time for GEMM operations
that now appears requiring a larger portion. This way, the multi-core GPP achieves 39% of performance
improvement, while the RVU achieves 11%.

In case of GPP PIMs, similar to RVU, the near data processing behavior allows a better usage of the
internal bandwidth. However, these designs present small vector capabilities that limits their performance.
Therefore, by adopting ReRAM, the ARM-PIM and X86-PIM has increased from 39 to 42 FPS (6.5%),
and from 48 to 51 FPS (6%), respectively.

6.3.2 Energy Consumption Evaluation. Modern applications of CPS and IoT devices are expected to
compute an ever increasing data fashion. Moreover, the nature of such applications are moving towards a
more complex and processing hungry requirements. However, as the processing power increases, energy
consumption remains a major concern in these systems. Based on this and supported by McPAT [38] and
CACTI [45], by implementing the hardware description in the present framework it is possible to estimate
the energy consumption for the experimented designs. Figure10 summarizes the total and the distributed
energy consumption for the GPP and RVU while processing the YOLO application for one frame.

It is noticeable that by replacing main memory (DRAM to ReRAM), the total energy consumption (red
dot) decreases for all designs. This behavior is more pronounced on typical GPP, which is corroborated
by the FPS performance improvement shown in Figure 9. As the GPP requires more memory accesses,
the impact of main memory energy is bigger.

The simplest design implemented by the RVU, which applies small in-order processor, avoids complex
large cache memories, and improves performance, reflects in the energy consumption. The improvement
on energy consumption achieves 10× when compared against the 4-cores GPP system. Also, Figure 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AVX512-4Cores+HMC AVX512-4Cores+ReRAM Host+RVU+HMC Host+RVU+ReRAMN
o

rm
al

iz
ed

 T
o

ta
l E

n
er

gy
 C

o
n

su
m

p
ti

o
n

an
d

 E
n

er
gy

 D
is

tr
ib

u
ti

o
n

GPP + Caches RVU Main Memory Main Memory leakage Total Energy per Frame

Fig. 10. Normalized energy consumption

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

16 • Paulo C. Santos et al.

shows that the RVU FUs dominates the energy consumption of the system, and per frame, it consumes
65% of the total energy couples with ReRAM.

7 CONCLUSIONS AND FUTURE WORK
This work presents a design framework based on the GEM5 environment and an LLVM-based compiler
to simulate CPS and IoT devices. Our case study shows that, by connecting several sensors on the fast
links present on the HMC module design, one can concurrently process several workload streams from
different sources in the same PIM system by exploiting SIMD in machine learning algorithms, such as
real-time object recognition. Moreover, this work shows that IoT devices can collect massive data, which
requires substantial computational power that can be supplied by the state-of-the-art PIM mechanism.
The efficient exploitation of the RVU PIM design is shown in the Section 6. As a proof of concept, we
simulated different scenarios of our proposed architecture for IoT devices running Yolo application using
DRAM and ReRAM memory technologies, which achieves 64 FPS and 71 FPS, respectively. The required
simulation time is proportional to the original GEM5 simulation engine. Finally, the simulator can be
easily extended to support new features to be evaluated in the design exploration of PIM architecture
using the same compiler, and we have demonstrated that it can be modified to assess the effects of new
organizations and technologies.

In order to further explore the proposed architecture, as future work a study presenting a large number
of heterogeneous sensors can show the limits of the system. Also, in this scenario a scheduler to efficiently
exploit the resources will be a challenge.

REFERENCES
[1] Hameeza Ahmed, Paulo C. Santos, João Paulo Lima, Rafael F. Moura, Marco A. Z. Alves, Luigi Carro, and Antonio

C. S. Beck. 2019. A Compiler for Automatic Selection of Suitable Processing-in-Memory Instructions. In Design,
Automation and Test in Europe Conf. and Exhibition (DATE), 2019.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2016. A scalable processing-in-memory
accelerator for parallel graph processing. ACM SIGARCH Computer Architecture News 43, 3 (2016), 105–117.

[3] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled Instructions: A Low-overhead,
Locality-aware Processing-in-memory Architecture. In Int. Symp. on Computer Architecture (ISCA).

[4] Omar Y Al-Jarrah, Paul D Yoo, Sami Muhaidat, George K Karagiannidis, and Kamal Taha. 2015. Efficient machine
learning for big data: A review. Big Data Research 2, 3 (2015), 87–93.

[5] M. A. Z. Alves, M. Diener, P. C. Santos, and L. Carro. 2016. Large vector extensions inside the HMC. In Conf. on
Design, Automation & Test in Europe.

[6] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and Nam Sung Kim. 2016. Chameleon: Versatile and
practical near-DRAM acceleration architecture for large memory systems. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Press, 50.

[7] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2016. A Case for Near Memory gem5 Inside the Smart
Memory Cube. In Workshop on Emerging Memory Solutions, 2016.

[8] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2016. Design and evaluation of a processing-in-memory
architecture for the smart memory cube. In International Conference on Architecture of Computing Systems. Springer,
19–31.

[9] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2017. Neurostream: Scalable and Energy Efficient Deep
Learning with Smart Memory Cubes. arXiv preprint arXiv:1701.06420 (2017).

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, et al. 2011. The Gem5 Simulator. SIGARCH
Comput. Archit. News 39, 2 (Aug. 2011), 1–7.

[11] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, et al. 2016. End to end
learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016).

[12] Geoffrey W Burr, Matthew J Brightsky, Abu Sebastian, Huai-Yu Cheng, et al. 2016. Recent progress in phase-change
memory technology. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 6, 2 (2016), 146–162.

753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

CPS and IoT PIM based Framework • 17

[13] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. Prime:
A novel processing-in-memory architecture for neural network computation in reram-based main memory. In ACM
SIGARCH Computer Architecture News, Vol. 44. IEEE Press, 27–39.

[14] Intel Corportation. 2015. Intel Architecture Instruction Set Extensions Programming Reference. Intel Corportation
(2015).

[15] Intel Corportation. 2016. Intel 64 and IA-32 architectures software developer’s manual. Intel Corportation (2016).
[16] W Rhett Davis, John Wilson, Stephen Mick, Jian Xu, Hao Hua, Christopher Mineo, Ambarish M Sule, Michael Steer,

and Paul D Franzon. 2005. Demystifying 3D ICs: The pros and cons of going vertical. IEEE Design & Test of
Computers 22, 6 (2005), 498–510.

[17] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier Picorel, Babak Falsafi, Boris Grot,
and Dionisios Pnevmatikatos. 2017. The mondrian data engine. In Computer Architecture (ISCA), 2017 ACM/IEEE
44th Annual International Symposium on. IEEE, 639–651.

[18] A. Farmahini-Farahani, J. H. Ahn, K. Compton, and N. S. Kim. 2014. DRAMA: an architecture for accelerated
processing near memory. Computer Architecture Letters 99 (2014).

[19] Agner Fog et al. 2011. Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns
for Intel, AMD and VIA CPUs. Copenhagen University College of Engineering 97 (2011), 114.

[20] Di Gao, Tianhao Shen, and Cheng Zhuo. 2018. A design framework for processing-in-memory accelerator. In Proceedings
of the 20th System Level Interconnect Prediction Workshop. ACM.

[21] Mingyu Gao and Christos Kozyrakis. 2016. HRL: Efficient and flexible reconfigurable logic for near-data processing. In
High Performance Computer Architecture (HPCA), 2016 IEEE International Symposium on. Ieee, 126–137.

[22] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017. TETRIS: Scalable and Efficient
Neural Network Acceleration with 3D Memory. In Int. Conf. on Architectural Support for Programming Languages
and Operating Systems. ACM, 751–764.

[23] Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013).
[24] Ramyad Hadidi, Lifeng Nai, Hyojong Kim, and Hyesoon Kim. 2017. CAIRO: A Compiler-Assisted Technique for Enabling

Instruction-Level Offloading of Processing-In-Memory. ACM Transactions on Architecture and Code Optimization
(TACO) 14, 4 (2017), 48.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition. 770–778.

[26] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O’Connor, Nandita Vijaykumar, Onur
Mutlu, and Stephen W Keckler. 2016. Transparent offloading and mapping (TOM): Enabling programmer-transparent
near-data processing in GPU systems. ACM SIGARCH Computer Architecture News 44, 3 (2016), 204–216.

[27] Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K Chang, Amirali Boroumand, Saugata Ghose, and Onur
Mutlu. 2016. Accelerating pointer chasing in 3D-stacked memory: Challenges, mechanisms, evaluation. In Int. Conf.
on Computer Design (ICCD).

[28] Hybrid Memory Cube Consortium. 2013. Hybrid Memory Cube Specification Rev. 2.0.
http://www.hybridmemorycube.org/.

[29] Mohsen Imani, Saransh Gupta, and Tajana Rosing. 2017. Ultra-efficient processing in-memory for data intensive
applications. In Annual Design Automation Conference. ACM.

[30] Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new DRAM architecture increases density and performance.
In VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 87–88.

[31] Andrej Karpathy. 2015. The unreasonable effectiveness of recurrent neural networks. Andrej Karpathy blog (2015).
[32] Chad D Kersey, Hyesoon Kim, and Sudhakar Yalamanchili. 2017. Lightweight SIMT core designs for intelligent 3D

stacked DRAM. In Proceedings of the International Symposium on Memory Systems. ACM, 49–59.
[33] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal Mukhopadhyay. 2016. Neurocube: A

Programmable Digital Neuromorphic Architecture with High-Density 3D Memory. Int. Symp. on Computer Architecture,
ISCA (2016).

[34] Michael B Kleiner, Stefan A Kuhn, and Werner Weber. 1995. Performance improvement of the memory hierarchy
of RISC-systems by application of 3-D-technology. In Electronic Components and Technology Conference, 1995.
Proceedings., 45th. IEEE, 645–655.

[35] Peter M Kogge, Jay B Brockman, Thomas Sterling, and Guang Gao. 1997. Processing in memory: Chips to petaflops.
In Workshop on Mixing Logic and DRAM: Chips that Compute and Remember at ISCA, Vol. 97. Citeseer.

[36] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In Int. Symp. on Code Generation and Optimization: Feedback-directed and Runtime optimization. IEEE Computer
Society, 75.

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

18 • Paulo C. Santos et al.

[37] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin, J. H.
Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park, B. Chung, and S. Hong. 2014. 25.2 A 1.2V 8Gb 8-channel 128GB/s
high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and
TSV. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). 432–433.

[38] Sheng Li, Jung Ho Ahn, Richard D Strong, et al. 2013. The McPAT Framework for Multicore and Manycore Architectures:
Simultaneously Modeling Power, Area, and Timing. Transactions on Architecture and Code Optimization 10, 1 (2013),
5.

[39] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016. Pinatubo: A processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile memories. In Proceedings of the 53rd Annual Design
Automation Conference. ACM, 173.

[40] João Paulo Lima, Paulo C. Santos, Marco A. Z. Alves, Antonio C. S. Beck, and Luigi Carro. 2018. Design space
exploration for PIM architectures in 3D-stacked memories. In Proceedings of the Computing Frontiers Conference.
ACM.

[41] Christianto C Liu, Ilya Ganusov, Martin Burtscher, and Sandip Tiwari. 2005. Bridging the processor-memory
performance gapwith 3D IC technology. IEEE Design & Test of Computers 6 (2005), 556–564.

[42] Manqing Mao, Yu Cao, Shimeng Yu, and Chaitali Chakrabarti. 2016. Optimizing latency, energy, and reliability of
1T1R ReRAM through cross-layer techniques. IEEE Journal on Emerging and Selected Topics in Circuits and Systems
6, 3 (2016), 352–363.

[43] Kyungmin Cho Jaemoo Lee Jongkyeong Park Minchul Kim, Jeonghyun Lee. [n. d.]. LG Electronics 16-cameras - Patent
US010135963.

[44] Amir Morad, Leonid Yavits, Shahar Kvatinsky, and Ran Ginosar. 2016. Resistive GP-SIMD processing-in-memory.
ACM Transactions on Architecture and Code Optimization (TACO) 12, 4 (2016), 57.

[45] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009. CACTI 6.0: A tool to model large
caches. HP laboratories (2009), 22–31.

[46] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, et al. 2017. Graphpim: Enabling instruction-level pim
offloading in graph computing frameworks. In Int. Symp. on High Performance Computer Architecture (HPCA). IEEE,
457–468.

[47] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. Y. Cher, et al. 2015. Active Memory Cube: A
processing-in-memory architecture for exascale systems. IBM Journal of Research and Development 59, 2/3 (March
2015), 17:1–17:14.

[48] Geraldo F Oliveira, Paulo C Santos, Marco AZ Alves, and Luigi Carro. 2017. A Generic Processing in Memory
Cycle Accurate Simulator under Hybrid Memory Cube Architecture. In Int. Conf. on Embedded Computer Systems:
Architectures, Modeling and Simulation.

[49] Geraldo F Oliveira, Paulo C Santos, Marco AZ Alves, and Luigi Carro. 2017. NIM: An HMC-Based Machine for
Neuron Computation. In International Symposium on Applied Reconfigurable Computing. Springer, Cham, 28–35.

[50] J Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In 2011 IEEE Hot Chips 23 Symposium (HCS). IEEE,
1–24.

[51] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijayalakshmi Srinivasan, Alper Buyuktosunoglu,
Al Davis, and Feifei Li. 2014. NDC: Analyzing the impact of 3D-stacked memory+ logic devices on MapReduce
workloads. In 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 190–200.

[52] Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster, Stronger. arXiv preprint arXiv:1612.08242 (2016).
[53] Mengye Ren, Ryan Kiros, and Richard Zemel. 2015. Exploring models and data for image question answering. In

Advances in Neural Information Processing Systems. 2953–2961.
[54] Paulo C. Santos, Joao Paulo C. de Lima, Rafael Fão de Moura, Hameeza Ahmed, Marco Antonio Zanata Alves,

Antonio C. S. Beck, and Luigi Carro. 2018. Exploring IoT platform with technologically agnostic processing-in-memory
framework. In INTESA@ESWEEK.

[55] Paulo C Santos, Geraldo F Oliveira, Diego G Tomé, Marco AZ Alves, Eduardo C Almeida, and Luigi Carro. 2017.
Operand size reconfiguration for big data processing in memory. In Proceedings of the Conference on Design, Automation
& Test in Europe. European Design and Automation Association, 710–715.

[56] R. R. Schaller. 1997. Moore’s law: past, present and future. IEEE Spectrum 34, 6 (Jun 1997), 52–59.
[57] Marko Scrbak, Mahzabeen Islam, Krishna M Kavi, Mike Ignatowski, and Nuwan Jayasena. 2017. Exploring the

Processing-in-Memory design space. Journal of Systems Architecture 75 (2017), 59–67.
[58] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A Kozuch,

Onur Mutlu, Phillip B Gibbons, and Todd C Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise operations

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

CPS and IoT PIM based Framework • 19

using commodity DRAM technology. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 273–287.

[59] Zehra Sura, Arpith Jacob, Tong Chen, Bryan Rosenburg, Olivier Sallenave, Carlo Bertolli, Samuel Antao, Jose
Brunheroto, Yoonho Park, Kevin O’Brien, et al. 2015. Data access optimization in a processing-in-memory system. In
Proceedings of the 12th ACM International Conference on Computing Frontiers. ACM, 6.

[60] Yuan Xie. 2011. Modeling, architecture, and applications for emerging memory technologies. IEEE Design & Test of
Computers 28, 1 (2011), 44–51.

[61] Lifan Xu, Dong Ping Zhang, and Nuwan Jayasena. 2015. Scaling Deep Learning on Multiple In-Memory Processors.
WoNDP: 3rd Workshop on Near-Data Processing (2015).

[62] Sheng Xu, Xiaoming Chen, Ying Wang, Yinhe Han, Xuehai Qian, and Xiaowei Li. 2018. PIMSim: A Flexible and
Detailed Processing-in-Memory Simulator. IEEE Computer Architecture Letters (2018).

[63] Xu Yang, Yumin Hou, and Hu He. 2019. A Processing-in-Memory Architecture Programming Paradigm for Wireless
Internet-of-Things Applications. Sensors 19, 1 (2019), 140.

[64] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse, Lifan Xu, and Michael Ignatowski.
2014. TOP-PIM: throughput-oriented programmable processing in memory. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing. ACM, 85–98.

[65] Richard Zhang, Phillip Isola, and Alexei A Efros. 2016. Colorful image colorization. In European Conference on
Computer Vision. Springer, 649–666.

[66] Qiuling Zhu, Berkin Akin, H Ekin Sumbul, Fazle Sadi, James C Hoe, Larry Pileggi, and Franz Franchetti. 2013. A
3D-stacked logic-in-memory accelerator for application-specific data intensive computing. In 3D Systems Integration
Conference (3DIC), 2013 IEEE International. IEEE, 1–7.

