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Abstract—recently we are seeing a considerable effort from
both academy and industry in proposing new technologies for
storage devices. Often these devices are not readily available
for evaluation and methods to allow performing their tests just
from their performance parameters are an important tool for
system administrators. Simulators are a traditional approach
for carrying out such evaluations, however, they are more
suitable for evaluating the storage device as an isolate component,
mostly due to time constraints. In this paper, we propose an
approach based on virtual machine technology that is capable of
emulate storage devices transparently for the operating system
allowing evaluation of simulating devices within a real system
using any synthetic or real workload. To emulate devices in
real environments it is necessary to use the currently available
devices as a storage medium which creates a difficulty when the
device to be emulated is faster than this storage medium. To
circumvent this limitation we introduce a new technique called
Freezing Time, which takes advantage of virtual machine pausing
mechanism to manipulate the virtual machine clock and hide
the real I/O completion time. Our approach can be implemented
just requiring the hypervisor to be modified, providing a high
degree of compatibility and flexibility since it is not necessary
to modify neither the operating system nor the application. We
evaluate our tool under a real system using old magnetic disks to
emulate faster storage devices. Experiments using our technique
presented an average latency error of 6.08% for read operations
and 6.78% for write operations when comparing a real to device.

I. INTRODUCTION

Datacenter storage requirements have become increasingly

complex due to the recent demands imposed by big data

processing. These demands have motivated many scientists

and companies to propose new ways to store and retrieve

data, such as: read ahead operation using an intelligent storage

adapter [1], adaptive intelligent storage controller and associ-

ated methods [2] and also new storage technologies like NVMe

are becoming available, although not widely accessible due

to its high cost. Thus, evaluating the impact of these new

technologies on data centers by considering the entire stack

of operating system storage, workload and real applications is

a challenge.

Simulators are important tools for the evaluation of new

storage systems. However, due to its time consumption, they

are more appropriate for the evaluation of the storage device

as an isolated component than a storage system considering all

the machine and software layers. In the standard usage case,

simulators receive a trace obtained from a system executing

a given workload, and deliver a set of performance metrics.

This approach can hardly capture the several interactions of a

storage system with the various components, such as the core

of the operating system. Rarely, the results of a simulation can

be extrapolated to the results that could be obtained with a set

of workloads.
Running a large number of programs or benchmarks is

unfeasible using an offline simulator, an alternative is to use an

emulator to make an online simulation. The approach of this

paper, is to use such an emulator, based on a virtual machine

and dilate the time during IOs. With this emulator, it is neither

required to generate a trace nor make changes to programs or

benchmarks, since the applications in the guest environment

are not aware that devices are not real. An emulator takes

time to process the emulated device, and it affects directly

the minimum latency and maximum throughput that can be

achieved, because for every access the IO has to wait for the

emulator and then for the real device. A possible approach is

to store the virtual disk entirely in RAM (or external DRAM

like device) due to its fast access time. Another approach is to

dilate time, meaning that, the time spent inside the guest is not

the same as outside of it. We can dilate time linearly for the

whole guest e.g. with a factor of ten, the guest would notice

one second elapsed for every ten seconds of “real time”, this

method would distort the time of the overall components.
Inspired by the concept of time dilation, we propose a new

technique called Freezing Time, that employs the mechanisms

of stopping the virtual machine, on which the emulated device

can be faster than the storage available or even devices that

do not exist yet, all transparently to the application and almost

without any performance limitations. In this paper we present

the following main contributions:

• Flexible emulator tool for storage simulation which re-

quires no trace or changes in user space applications or

either changes in kernel.

• Whole stack approach enabling analysis from the storage

backend device up to the application running inside the

guest.

• High precision emulation with an average latency error

of less than 7% considering read and write operations.

• Low overhead tool with less than 25% increase on

emulation time, for fast evaluation of new and future

storage devices.
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• Open source software that is available at [3], under GPL

license.

All experiments performed in this paper were made in

a reproducible manner (using open-source software and a

standard x86 architecture machinery). Our experiments show

that we were able to emulate disks with RAM like speeds

with an overhead of less than 20% in IO request time while

keeping precision as high as 94% on average.

II. RELATED WORK

Lee and Kuo [4] used a RAM disk as a faster storage

backend, in this manner they could emulate any device that

is slower than the system RAM. The disadvantage of this

approach is that RAM is often small and expensive, which

makes it impractical for simulating large devices. In our work,

we can use any backend to simulate any other storage device

of up to RAM speed.

Gu and Zhao [5] addressed this problem disabling all the

interruptions and disabling the hardware clocks on the host

kernel so that it was partially frozen. This method required to

have another machine to emulate the device and process the

IOs. Another problem was that the kernel’s network driver

used an interrupt based system, so they had to develop a

new driver using a busy-wait system to communicate with

the storage emulator. The option to implement in host’s

kernel made it extremely dependent on the hardware used to

implement.

Gupta et al. [6] explored network time dilation, but it could

be used on any other part of the system. The idea was to

linearly distort the time seen by the guest by a user defined

factor e.g. with a factor of ten the guest would notice one

second elapsed for every ten seconds on real time, this method

distorted the time of all the components, effectively making

every operation take ten times longer. The drawback of this

approach is that every component of the virtual machine will

have its time distorted and the faster the emulated device the

more distortion is required on the whole system, affecting not

only the emulated device but every other device. This im-

plementation also makes modifications to the virtual machine

monitor (Xen) and the guest’s kernel.

III. BACKGROUND

In this section we are going to present the Virtio which is

the standard kernel module used by our proposal, explaining

its internal architecture. We also present the clock managing

for the QEMU used by Freezing Time.

A. Virtual interface for IOs

Emulating a real hardware device costs many CPU cycles,

because every behavior of the device has to be emulated. For

each access on the emulated device each request must be

interpreted and act according to the real device, causing an

increased load on the host machine and lowering throughput

and consequently, IOPS (Input/Output Per Second) [7]. Virtio
(Virtual Input/Output) was created in a way that the guest and

host could communicate without having to simulate a device

or having to kick the guest, therefore lowering the load on

the host and increasing throughput and IOPS [8]. It was also

designed with compatibility in mind so that it would not be

necessary to make big changes on the guest and the VMM.

Virtio presents itself to the guest as a PCI device, this way the

guest only needs to implement a new PCI driver, and VMM

need only add vring (Virtual Ring) support to the devices they

implement [7].

The target to reach with Virtio (Virtual Input/Output)

is to unify how the probe in the Linux Kernel occurs,

so different implementations can be developed, to be

supported by hypervisor A or B. So the step to reach

this target, is to guide towards uniformity to provide

a common ABI (Application Binary Interface) for

general publication and use of buffers. Deliberately,

our Virtio ring implementation is not at all revolu-

tionary: developers should look at this code and see

nothing to dislike [9].

The Virtio driver is implemented as a stack, transport and

configuration. The desired goal is to reduce the duplication

code in virtual device drivers, so abstraction is mandatory.

To achieve the abstraction, Virtio is provided with a set of

common helpers which virtual drivers can use. The task is to

create a transport abstraction for all virtual devices which is

simple and close to optimal for efficient transport.
The probe function from the driver is called when suitable

Virtio device is found. The configuration happens in four

steps: reading and writing feature bits, reading and writing

the configuration space, reading and writing the status bits

and device reset. The device looks for device-type-specific

feature bits corresponding to features it wants to use, such

as the VIRTIO NET F CSUM feature bit indicating whether

a network device supports checksum offload. Feature bits are

explicitly acknowledged: the host knows which feature bits

are acknowledged by the guest, and hence which features

that driver understands. The second step is the configuration

space, a structure associated with the virtual device containing

device-specific information. This structure can be both read

and written by the guest. These mechanisms give us room to

grow in future, and for hosts to add features to devices with the

only requirement being that the feature bit numbers and con-

figuration space layout be agreed upon. There is also a status

word (8 bits) which the guest uses to indicate the status of the

device probe; when the VIRTIO CONFIG S DRIVER OK

is set, it shows that the guest driver has completed feature

probing. Finally, reset operation is expected to reset the device

configuration and status bits [9].
The virqueue has an API find vq that populates the structure

for the queue, giving the Virtio device an index number. A

virtqueue is simply a queue into which buffers are posted by

the guest for consumption by the host, and multiple buffers

can be added for batching, improving performance since the

cost to notify the host is expensive.
The Virtio ring is the transport for Linux Virtio, consists

of three parts: the descriptor array where the guest chain

contains length/address pairs, the available ring that indicates
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which descriptor chains are ready for use and the used ring

where the host indicates which descriptor chains were used.

The size of the ring is variable but must be a power of two.

Each descriptor contains the guest’s physical address of the

buffer, its length, an optional next buffer for chaining and two

flags: one indicates if it is valid and another if it is writable or

readable. The available ring consists of a free-running index,

an interrupt suppression flag, and an array of indices into

the descriptor table (representing the heads of buffers). The

separation of the descriptors from the available ring is due to

the asynchronous nature of the virtqueue: the available ring

may circle many times with fast-serviced descriptors while

slow descriptors might still await completion. Used ring and

available ring are similar; they are written by the host as

descriptor chains are consumed. The flags that indicate if it

is a used or available buffer are used for optimization since

notification forces the guest to exit from the guest mode, those

flags are also used by the guest driver to advise that further

interrupts are not required.

Fig. 1. IO path in the Virtio-queue, from VCPU until the device block [10].

Figure 1 represents the path the IO take in the system

from the VCPU to the device. Virtio block is a part of the

Virtio system responsible for integrating those parts described

above and exporting a block-like interface to the kernel. Other

modules do the same thing for other peripherals like Virtio-net,
Virtio-gpu, etc.

B. Timekeeping: choosing a clock source

Emulating a clock source decreases performance but it

increases the guest compatibility, so most, if not all, of the

VMMs have an option to do so. Common options are HPET

(High Precision Event Timer) [11] and TSC (Time Stamp

Counter) [11]. TSC is a good clock source to use on the

host because there is independent hardware in the CPU with

its dedicated circuitry which is not affected by CPU clock

changes. However, there are some drawbacks when sharing it

with a VM, since it is the same clock as the host, the guest

would see time pass faster because the clock would still be

running even when the VMM’s process is not running on the

host, making precise timing and interruptions inaccurate.

Another problem is live migration; some VMM have an

option to migrate a running guest to a different host without

powering the guest off. During the migration, the guest needs

to disable interruptions and, during this period, time may need

to be caught up. After live migration, timers based on the TSC

or HPET (if it is not emulated) may be running at different

rates requiring some adjustment by the VMM. Additionally,

if the destination host has a faster TSC it cannot be exposed

to the guest without the potential of time running faster than

normal, a slower TSC is less of a problem as the VMM can

make adjustments to make it catch up with the source host

TSC [11].

Kvmclock was explicitly designed to solve those problems,

the guests can register a memory page to contain the kvmclock
data and the VMM will write to it until explicitly disabled

or the guest is turned off. Since it is neither emulated nor

the host’s TSC the VMM will write multipliers and offsets

compared to the host’s TSC so the guest can convert those

values back into nanosecond resolution seeing only the time

it was running with a small overhead. QEMU wraps those

features as functions by the name KVM GET CLOCK and

KVM SET CLOCK, and those are used on live VM migra-

tion.

We managed to use those features to mimic a guest live

migration making the time taken to complete the VM disk IO

controllable. When the VMM receives an IO request, it will

kick the guest and save its clock. After the IO has finished,

the VMM restore the clock and resume the guest, making it

believe that specific time was spent on this IO.

IV. FREEZING TIME STORAGE EMULATOR

Our main idea behind Freezing Time was to build a fast

and efficient disk emulator using KVM and Virtio that would

only dilate the time of the emulated device and not the whole

system, allowing the user to make time comparisons and

benchmark of full systems. We also wanted to create a tool

that did not require the application to be recompiled and would

not increase the total time of the experiment in orders of

magnitude as in cycle-accurate simulators [12], [13], [14].

Our approach was to detect the guest IO as early as possible

inside the VMM and resume the guest just before guest’s

VCPUS returning to guest mode (we will call this event by

its syscall name KVM RUN).

The nomenclature KVM RUN is used by Kernel-based
Virtual Machine (KVM), among other nomenclature such as

KVM CREATE VM, KVM CREATE VCPU, however in our

context the most important is KVM RUN, which consist in

setup the CPU in guest mode, so the VCPU can run each

instruction natively. Each VMM that wishes to run on behalf

of KVM must use those APIs, in our case QEMU uses

it. So tacking off the CPU from KVM RUN means kicking
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the VCPU from guest mode, and the control goes back to

QEMU. On this manner we have a chance to manipulate the

VM CLOCK, since it is not running. With this approach, it

becomes possible to precisely emulate new devices with a

small overhead.

Fig. 2. Flow of an IO request until completion, from guest to the device in
the host (the time unit are meaningless, it is just a reference when the guest
is “frozen”).

Figure 2 represents an abstraction of the implementation that

we propose in this paper which is transparent to both host’s

and guest’s kernel. The lower half of the figure represents the

host system and the Time-line perceived by the real machine,

while the upper half is the virtual system (guest) and the

virtual Time-line perceived by it, time units in this figure are

meaningless, just to show when the guest’s time is “frozen”.

At the point of guest time number one, the guest user space

process requests an IO to the guest’s kernel, after that the

kernel converts it to a disk command and issues it to the virtual

disk. QEMU then receives this command and kick the guest at

the number seven; the VMM translates the command to an IO

request to the host’s kernel, which in turn sends the command

to the real device. Once the device processes it, it forwards

the reply to QEMU through the host’s kernel, so at this time

QEMU can send the reply to the emulator. After the emulator

has finished processing the reply, QEMU issues a KVM RUN
and send it to the virtual disk in the guest. Finally, the virtual

disk has the reply and sends it to the process that requests it

through the guest’s kernel at guest’s time number eight. Notice

that we could even inject time in the virtual machine in order

to simulate some specific behavior of the disk device.

With our approach of pausing the time in the guest as soon

as the IO is detected (eventually injecting time) and resuming

the VCPUS as soon as it goes into context, we make the guest

believe that the time has not elapsed, as shown in the gap from

host time number seven until fourteen on Figure 2.

In the following section, we will show the implementation

of the emulator based on QEMU version 2.5.0.

A. Implementation

Our emulator is based on QEMU, of which at the time of the

implementation the latest version was 2.5.0. Implementations

on other VMMs systems besides QEMU can be studied, but

as we need to modify the inner layers VMMs’ source code

should be available. The first challenge was understanding the

inner working of QEMU and its interaction with KVM. QEMU
usually has the following threads: one thread per vcpu, one

iothread and some other helper threads (e.g. VNC) that are

not relevant in this context. Every time the VMM has to do a

privileged operation (e.g. access the back storage) it has to kick
the guest and lock a global mutex, serializing every IO, when

this operation finishes the IO the thread releases the mutex

and issue a KVM RUN to resume the guest operation [8], [7].

That implementation creates a big impact on performance

as for every IO, not only the guest has to be kicked but it

also serializes every access. Since version 1.4, QEMU has

a feature called dataplane, and the idea is that a device

configured with this feature will have its iothread therefore not

being bottlenecked by the global mutex. Another advantage to

this feature is that by creating a new thread for this device,

given that the host has enough CPU cores, the load on the

machine will be more evenly distributed among the CPUs,

thus decreasing latency.

Our implementation works on both iothread and dataplane
modes, but the focus is on the dataplane mode due to its

lower latency giving more precise results in our emulator. The

main concern was to detect, as soon as possible when an IO

occurred on the emulated disk to kick the guest and set, as

late as possible, the guest clock and issue a KVM RUN after

the IO has finished.

The dataplane thread will keep polling the FD (File De-

scriptor) which represents its device, so we inserted our code

right after the thread identifies that an IO request is popped
from the Virtio ring, and not a command to the device itself

(i.e. restart the device). Thus, our code request the global

mutex lock, to avoid the iothread or VCPUS threads from

trying to do a privileged instruction and interfere with the

process, kick the guest and save the guest clock. Now that

the guest is out of context the time elapsed from now on will

be undetected by the guest, which means that the host can

serve the requested IO on any medium and the guest (when

resumed) will notice only the user-defined latency.

After the IO has finished, we synchronize the QEMU
threads just before KVM RUN, and the global mutex lock is

released so that the other threads can finish their tasks. The

dataplane thread stays on a busy-wait for the other threads,

and when they arrive at the barrier it sets the clock back to

when the guest was paused, lifts the barrier and the guest

returns to KVM RUN mode.

B. Virtual IO path: From the guest application to the host
storage

Every IO made by the guest has to go through multiple

layers from guest’s virtual memory, guest’s kernel, QEMU and

host’s kernel before eventually reaching the storage backend.

Figure 3 shows a high-level abstraction of the path an IO

goes through. This section we will explain these steps in more

detail.
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Fig. 3. Going through in all layers of an IO request. Adapted from [15].

Whenever a process running in the guest generates an IO,

the guest’s kernel checks if that request is already on the page

cache, like a normal non-virtualized system would, in the case

of a page cache hit, then the kernel returns the requested data.

Now, let’s suppose that the IO is neither on the guest cache

nor in the host’s, then, the guest’s kernel sends the request

to the generic block layer which in turn sends to the IO

scheduler, then to the Virtio block driver and finally to the

virtqueue of the emulated device. Now on the host side, the

KVM kernel module detects the request and sends it to the

vhost-scsi inside the QEMU, explained in more detail below.

Then the dataplane thread wakes up and begin to process the

request, from now on the host’s kernel recognizes that thread

as a normal process and treats the request as it would for any

other process in the host going through the VFS and page

cache all the way to the local disk.

After the host’s kernel finalizes the request and notifies

the QEMU process, the guest’s kernel polls the PCI bus and

retrieves the answer to the request and forwards it to the guest’s

process.

C. Overhead of our emulator

The time seen by the guest during the IO is ideally equal

to zero but we cannot detect an IO and kick it instantly. The

overhead is composed of two parts: the bigger one is the time

elapsed since the guest kernel issued the request to the Virtio
driver and the dataplane thread detects a request and kick the

guest. The second part is when the IO is finished, the clock

is restored in the guest and the VMM issues a KVM RUN.
During the injection or when the guest is frozen, interruptions

in it are not affected, since we just apply time dilation after

all VCPUs are out of context.

When a QEMU device is configured to use the dataplane
mode, the thread polls only that FD (File Descriptor that

have been setup to the Virtio device) which means that it

will do fewer checks since it already knows what device is

represented by that FD. When the guest adds a request to

the Virtio ring it generates an interruption on the IRQ of

the device, which the host kernel translates to an event on

the FD. The dataplane thread removes the request from the

Virtio ring, at this time we request the global mutex lock to

avoid the iothread or VCPUS threads from trying to do a

privileged instruction and interfere with the process, checks

if it is a data (read or write) request and, if it is, save the

guest clock and kick it. The label A on Figure 4 represents

the cost of kicking all the VCPUS, this process is serial and

not instantaneous, so the time taken between kicking the first

and the last vcpu is distorted. This time distortion directly

affects the overhead of the emulator, decreasing the maximum

achievable performance. After QEMU finishes kicking the

guest, the host can complete the request without the guest

noticing the time passing by.

QEMU uses a technique called coroutine [16] to try to

mitigate the problem with multiple call-back functions [17].

We modified this technique to include our injection mechanism

after the IO is finished, we force the coroutine to sleep for a

user-defined amount of time which will be seen by the guest

as the device’s latency. The timer starts after the KVM RUN
command.

At the end, we synchronize the vcpu threads just before

issuing the KVM RUN command and restore the guest clock,

label B on Figure 4 represents the overhead of the VCPUS

returning to execution.

In the following section, we will validate the procedure

described above, by acquiring statistics through tracing tools

and synthetic IOs.

V. EXPERIMENTAL RESULTS

In order to show the emulator effectiveness we did the

following set of experiments: First, in the section V-A, we

show the fastest IO that technically could be achieved in

our test system using a RAM disk device. Following that,

in section V-B, we show the results of our experiment of

emulating an SSD without any modifications to guest nor

the host (except on QEMU) using a slower storage backend.

Finally, in section V-D we measure the overhead of the

emulation and how long the guest thinks the experiment ran

and how long it took.

The experiments in this paper were dedicated to simulating

an SSD. At the moment of the experiments described in this

paper, the devices available were: Server Grade SSD Cloud

Speed 500 (model TG32C1) manufactured by Smart Storage

Systems. HDD (Hard Disk Drive) (model JPT39C), with

size of 1 TB, using SATA interface, speed of 3.0 Gb/s, and

7200 RPMs manufactured by Hitachi Global. The selection

was done to cover a mechanical device (HDD) and a non-

mechanical device (SSD). The host’s and guest’s operation

system were Debian Jessie, kernel version 4.4.4 installed

on a separate HDD, to not influence the experiments. The

test bench machine was an AMD FX(tm)-6300 Six-Core

Processor, 3.5 GHz, with 12 GB of DDR3. All the experiments

executed in this paper were performed on this specific system

mentioned above. Thus, we expect that values obtained in our

experiments will vary from system to system.

We made the experiments using blktrace (Block IO layer

tracing), blkparse (Block IO layer parser) and fio (flexible IO
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Fig. 4. Overview of the time dilation mechanism inside the hypervisor (QEMU).

tester). Blktrace is a block IO layer tracing utility that provides

the ability to collect detailed traces from the kernel for each

IO processed by the block IO layer [18]. Blkparse parses the

output events stored in files generated by blktrace in a human

readable way [18], while fio simulates a specific workload

configured by the user such as sequential or random read/write,

block size, number of threads, etc.

QEMU has two types of storage backend, iothread and

dataplane [19]. Our tests showed that the dataplane mode

is one order of magnitude more efficient than the iothread
mode, due to this fact, only the dataplane mode was used in

our evaluation.

The experiments consist of the following steps:

1) Run blktrace to collect IO events. We are only interested

in the response time.

2) While blktrace is running, run the workload; in our

experiments, fio plays that rule, making IOs to the device

in question.

3) When the workload has completed, stop the blktrace
utility (thus saving all traces over the entire workload).

4) Extract the pertinent IO information from the traces

saved by blktrace using the blkparse utility.

The experiments consist of running the fio program five

times on the SSD, HDD and RAM devices described above,

synchronously reading and writing, data with size of 4 GB

with chunks of 4 KB to the backend storage device, for one

and four VCPUS with a fixed amount of 2 GB of RAM in the

guest. After each execution, the guest cache was flushed, and

QEMU was configured to not cache IOs on the host.

A. Empirical IO speed limit

This section describes our emulator limit in performance,

based on our experiments, and how we achieved it.

To illustrate the optimal performance, we configured QEMU
to use the RAM as the storage backend to show the fastest

IO that can be achieved, and show some CDF (Cumulative

Distribution Function) charts with the results.

B. Emulating an SSD

Now we will show how the HDD and SSD react to the

experiments without the emulator, as we did with RAM, later
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Fig. 5. Cumulative distribution using a disk in RAM as backend, technically,
fastest IO that can be reach.

we will simulate the SSD but using a HDD as storage back-

end. The injected time was obtained empirically, by running

the experiments on the SSD without any virtualization and

injecting this time on each IO.

Figure 6 shows how the HDD reacts to the tests inside the

guest without any modification in QEMU. Figure 6 shows

the CDF (Cumulative Distribution Function) of the time to

complete an IO request on an HDD, with that plot we can

see that below 0.125 (or a 12.5%) of the write requests are

very fast due (before 2000 μs) to the HDD buffer. As we can

see, 100% of write requests are below 5ms and reads are

between 2.5ms and 10ms. It is clear that samples on the

HDD are multiple orders of magnitude more heterogeneous

than the RAM or an SSD.

With respect to an SSD, Figure 7 shows its behavior without

the emulator. 100% of write requests are below 200 μs and

reads are between 200 μs and 400 μs. It is closer to RAM

devices than HDD but still near an order of magnitude worse.

Figure 8 shows the results of the experiments using our

emulator to simulate the SSD using the HDD storage backend.

The aim of Figure 8 is to show how our technique provides
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Fig. 6. Cumulative distribution using HDD as backend with emulator off;
100% of write requests are below 5ms and reads are between 2.5ms and
10ms.
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Fig. 7. Cumulative distribution using SSD as backend with emulator off;
100% of write requests are below 200 μs and reads are between 200 μs and
400 μs.

results inside the observed variability of the original device.

The results are divided by operation and by the number of

VCPUs used and each boxplot shows the distribution of the

error difference between the mean SSD request and each of

the IO requests of the emulated SSD with the HDD backend

(for each scenario). The original variability of the IO requests

in the SSD is shown with a transparent shade rectangle, as we

can see the emulation is inside the rectangle on most of the

scenarios. These results are obtained using the mean of the IO

requests as input for the delay parameter, that is the simplest

way to model, but more complex ”delay” simulations could

also be used. For example, we can include cache effects in the

simulation.
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Fig. 8. Experiment emulating the SSD using an HDD as storage backend. The
original variability of the IO requests in the SSD is shown with a transparent
shaded rectangle, as we can see the emulation is inside the rectangle on most
of the scenarios, although we have used the mean of the IO requests as input
for the delay parameter.

C. Performance evaluation of a user space application in our
emulator.

A question that may arise is, how good is the performance

of user space process, using our emulator? What we want to

show in this section is the performance of a simple application,

in a regular environment compared with our emulator. To show

the performance, we chose the ffmpeg (Fast Forward MPEG

(Motion Picture Experts Group)), since is a simple tool which

is IO and CPU bound. Our objective is, to convert the video,

which implies read some chunks of the video (read IOs),

convert the video (CPU bound) and write the converted video

(write IO).

To accomplish this task we picked a random video with

3474123501 bytes in size, and 229838 frames. The original

format of this video is mp4 (MPEG Layer-4 Audio) which

we convert into h264 (Hikvision 264). So, to evaluate and get

the results we setup a RAM disk as the backend storage device,

as a reference to our experiment. The reason that we chose

this device is because of its well-known behavior, as seen in

section V-A, on this manner we eliminated any entropy, that

could interfere with the results. In our emulator we setup the

parameters in the freezing time layer to emulate this RAM

storage device, but using the HDD as storage backend. Then

we ran the conversion of the video in the regular environment,

then in our emulator. To validate we run ten instances in each

environment and the results can be seen on the Table I:

Analyzing the results on the Table I we observe that we

were able to mimic the RAM storage backend behavior. The

accuracy is 98% on average, it is really close to the time

elapsed to process the conversion of the video using the RAM

storage backend. These value can be confirmed by the same

value of the FPS, which is also 98% as expected. According

to the coefficient of variation the low value indicates that the
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Fig. 9. Rate of the differences of IOs between the SSD device and the same device emulated, The emulator with one and four VCPUs.

TABLE I
PERFORMANCE OF FFMPEG, COMPARE THE REGULAR AND OUR

EMULATOR ENVIRONMENT.

Statics type HDD RAM Emulating
RAM

Average time (s) 65.46 3.52 3.58
Coefficient of variation 0.01 0.02 0.09

Frames per seconds 3637 73311 74292
Wall clock time (s) 669 48 892

100

50

0

50

read(1) read(4) write(1) write(4)
% Error IO Time per operation and #CPUs

%
 E

rro
r I

O
 ti

m
e

-28.6 uS-37.5 uS -27.2 uS

-20.6 uS

RAM IO Original Variability

-20.6

Fig. 10. Overhead when using the emulator with delay 0, in a HDD backend,
compared to RAM. Overhead goes from 37.5 μs to 20.6 μs in median.

accuracy of the ten instances were enough to validate the

results. The overhead of the emulator compared to the wall

clock, is just 223 seconds (25%), when we are emulating

the RAM storage. Notice that, when using simulators this

overhead would be much greater (e.g. the simulation time

would take 1000× more than an virtual machine [20]).

D. Overhead of the emulator

As explained earlier, the overhead of the emulator relies

mostly on the fact that the process of Freezing Time using

the kick mechanism is not instantaneous and cannot be run

in parallel, which means that with an increased number of

VCPUs we have increased overhead. The next chart shows

the overhead of the emulator with the increase of VCPUs.

Figure 9 represents how many IO requests were faster or

slower than the default behavior of the SSD. Positive values

in X-axis represent how much slower the IO request was

(in percentage), and negative values are how much faster

the IO request was. The Y-axis indicates how many IO

requests occurred. The vertical lines limits each type of IO

request, where 95% of the samples are. The experiment using

one VCPU is represented by the + symbol and continuous

vertical line, and the x symbol and dashed line represents the

experiment using four VCPUs.

In both Figures 9 (a) and (b), the curves are slightly offset

from center, this means that the value we chose to simulate the

SSD was not accurate enough, setting a smaller value should

just offset the curves to the center. Also, the precision of the

emulator is about 80% of the real behavior, but previous tests

show that, on average, they are similar.

On the other hand, Figure 10 shows the overhead when

using an HDD backend to simulate a RAM device (which

should be the worst case). We can see how the overhead goes

from 37.5 μs to 20.6 μs in absolute terms. On percentagewise,

this overhead may seem big, but the absolute time is small

compared even with the usual RAM variability observed.

VI. CONCLUSION

In this paper we presented a solution to emulate existing

and non-existing disk devices. The motivation to provide such

environment is to emulate expensive and fast devices to make

decisions in infrastructure. Nevertheless it could also be used

for fine tuning IOs in highly demanding applications or any
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other purpose that needs to tune latencies. We achieved this

goal by implementing the emulator using a time dilation

technique. Our implementation indeed has an overhead, but

we showed that it was small and performance impact was

also small due to the Virtio framework. Another goal that we

managed to accomplish was to be able to inject a specific

amount of time to each IO. Our main desired feature of not

making any modifications to neither guest’s kernel nor host’s

kernel was also accomplished.

We implemented the time dilation mechanism by kicking
the guest whenever an IO occurred on the emulated device,

on this way QEMU could take as long as necessary to process

the IO without the guest noticing the delay. We wanted to

keep the mechanism as efficient and flexible as possible, so

we implemented it using the Virtio framework and KVM, so

no emulation of the CPU was made.

To evaluate the proposed solution, we presented results

from several experiments that benchmarked the emulator.

The experiments revealed that the time dilation mechanism

works properly, but time distortion on CPU-bound applications

occurred. The behavior of the emulated device was close to the

real one, the mean was 7% lower than the SSD, on average for

both read and write IOs. As future work we plan to extend our

technique to simulate other devices such as NVRAM devices.

The code of the emulator is available for free under GPL

license on [3].
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