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Shared memory architectures have recently experienced a large increase in thread-level parallelism, lead-
ing to complex memory hierarchies with multiple cache memory levels and memory controllers. These new
designs created a Non-Uniform Memory Access (NUMA) behavior, where the performance and energy con-
sumption of memory accesses depend on the place where the data is located in the memory hierarchy.
Accesses to local caches or memory controllers are generally more efficient than accesses to remote ones. A
common way to improve the locality and balance of memory accesses is to determine the mapping of threads
to cores and data to memory controllers based on the affinity between threads and data. Such mapping tech-
niques can operate at different hardware and software levels, which impacts their complexity, applicability,
and the resulting performance and energy consumption gains. In this article, we introduce a taxonomy to
classify different mapping mechanisms and provide a comprehensive overview of existing solutions.

CCS Concepts: � Computer systems organization → Multicore architectures; � Software and its
engineering → Main memory; Scheduling

Additional Key Words and Phrases: Survey, shared memory, thread mapping, data mapping, NUMA, cache
memories, communication

ACM Reference Format:
Matthias Diener, Eduardo H. M. Cruz, Marco A. Z. Alves, Philippe O. A. Navaux, and Israel Koren. 2016.
Affinity-based thread and data mapping in shared memory systems. ACM Comput. Surv. 49, 4, Article 64
(December 2016), 38 pages.
DOI: http://dx.doi.org/10.1145/3006385

1. INTRODUCTION

Since reaching the practical limits of Instruction-Level Parallelism (ILP) [Brooks et al.
2000], processor manufacturers have been focusing on increasing the Thread-Level
Parallelism (TLP) on modern shared memory architectures to continue improving sys-
tem performance. Such multi-core, multi-threaded architectures exert a high pressure
on the memory subsystem as they have to supply large quantities of data to the many
functional units.
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Fig. 1. NUMA architecture with four NUMA nodes. Each node consists of a memory controller with several
cores attached to it.

Unfortunately, the progress in memory technologies has not kept pace with the in-
crease in data demand. Therefore, manufacturers have adopted deep and complex
memory hierarchies in order to hide memory access latencies from processors. In mod-
ern chips, these hierarchies consist of several levels of private and shared cache mem-
ories, as well as multiple memory controllers that result in a Non-Uniform Memory
Access (NUMA) behavior [Awasthi et al. 2010]. In such memory hierarchies, data move-
ments have a very high impact on the performance and energy consumption of parallel
machines [Shalf et al. 2010; Dally 2010].

Figure 1 shows an example memory hierarchy of a modern shared memory system.
The system contains four memory controllers, each forming a NUMA node, which
can access a part of the system memory. Several processing cores are attached to
each NUMA node. Furthermore, each core has a private first-level cache and shares a
second-level cache with other cores. In this system, a memory access performed by a
core can be serviced by a local cache or memory controller, or a remote one.

In such systems, the latency and energy consumption of memory accesses depend
highly on which core performs the request and which cache or memory controller
services it. In most cases, local accesses are more efficient than remote ones. It can also
become important to prevent overloading some of the caches or memory controllers
[Diener et al. 2015; Blagodurov et al. 2011] to reduce contention and increase resource
usage fairness.

In addition to the differences in the memory access performance imposed by the
hardware, parallel applications also show considerable differences in the way they ac-
cess memory, leading to the concept of affinity. Two types of affinity exist. Threads
that access the same data, referred to as data sharing [Tam et al. 2007] or communi-
cation [Barrow-Williams et al. 2009] in the literature, have an affinity between them.
Moreover, there is an affinity between threads and the memory pages that they access.

In this context, there are two approaches to affinity-based mapping, namely, thread
mapping and data mapping, and both exploit the differences in memory access behav-
ior and performance. The goal of thread mapping is to assign threads to cores in such a
way that memory accesses to data shared between threads are optimized, thus improv-
ing the usage of caches and interconnections. Data mapping aims to optimize the usage
of memory controllers by improving the assignment of memory pages to controllers.
Both types of mapping can focus on improving the locality or balance of memory ac-
cesses [Blagodurov et al. 2011; Dashti et al. 2013]. Thread and data mapping can affect
each other, and applying them jointly can result in gains that are higher than when
applying each type of mapping separately [Diener et al. 2015b].

The rest of this article is organized as follows. The next section discusses the main
concepts behind thread and data mapping. Section 3 presents our taxonomy of mapping
mechanisms. An overview and comparison of thread mapping mechanisms is given
in Section 4, while Section 5 discusses data mapping mechanisms. In Section 6, we
compare the gains of different types of mapping techniques. Section 7 summarizes our
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Fig. 2. Classification of static and dynamic memory access behavior of parallel applications.

conclusions and presents future research perspectives. Appendices A and B contain
detailed descriptions of the thread and data mapping mechanisms.

2. CONCEPTS OF THREAD AND DATA MAPPING

This section introduces the background for thread and data mapping. We give a brief
overview of memory access behavior types of parallel applications, as this determines
the mechanisms that can be used. Then, we discuss the main concepts of thread and
data mapping and present general policy types and goals for both kinds of mapping.
We conclude this section with a summary of the benefits of affinity-based mapping.

2.1. Static and Dynamic Memory Access Behavior of Parallel Applications

Parallel applications may change their memory access behavior for various reasons,
and we refer to this as a dynamic memory access behavior. Whether an application has
a dynamic memory access behavior has an impact on the gains that can be achieved,
but it also determines which types of mechanisms are suitable for this application.

At a high abstraction level, we classify the general memory access behavior of an ap-
plication as static or dynamic, as shown in Figure 2. We further divide dynamic access
behavior into two types. The first type is characterized by dynamic behavior between
separate executions, where the behavior depends on specified parameters of the appli-
cation, such as the input data or the number of threads that will be created. Moreover,
memory addresses can also change between executions, due to security techniques such
as Address Space Layout Randomization (ASLR) [Spengler 2003] or a different order
of dynamic memory allocations with functions such as malloc() and new().

The second type of dynamic behavior occurs during the execution of the applica-
tion, due to the way a parallel algorithm is implemented (such as using work-stealing
[Blumofe and Leiserson 1994] or pipeline programming models), or due to the creation
and destruction of threads or allocation/deallocation of memory. If none of these cases
occur, we classify the application’s behavior as static, that is, it remains the same during
and between executions.

The aforementioned classification of memory access behavior is important when
identifying the types of mapping policies that can be performed. If the memory access
behavior is static, no runtime migrations of threads or memory pages need to be per-
formed. Moreover, the behavior can be classified and analyzed through communication
or memory access traces, and only the behavior throughout the complete execution
needs to be considered.

For applications that show a dynamic behavior only during the execution but do not
change their behavior from one execution to the next, traces can be used to analyze their
behavior. However, the changing behavior during execution must be considered when
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performing mapping, which can require migrations during the execution to achieve
optimal gains.

For applications whose behavior changes between executions, trace-based mecha-
nisms require the generation of a new trace for each set of input parameters, as the
currently detected behavior would not be valid for future executions of the application.
Care must also be taken to limit the impact of changes to memory addresses. Online
mechanisms attempt to directly support all types of dynamic behavior.

2.2. Thread Mapping Concepts

Thread mapping1 is defined as the assignment of threads to execution cores according
to a policy that can take various objectives into account [Boillat and Kropf 1990].

2.2.1. Suitable Architectures. Thread mapping in parallel shared memory architectures
has become important with the introduction of multicore (Chip Multi-Processing, CMP)
and multithreaded (Simultaneous Multi-Threading, SMT) processors. Such systems
contain deep cache hierarchies that are shared between different sets of cores. In these
architectures, deciding where to execute each thread of a parallel application has a
significant impact on how efficiently shared caches and interconnections are used. Ear-
lier systems based on multiple single-core processors (Simultaneous Multi-Processing,
SMP) usually featured only simple, private caches and bus-based interconnections,
where the mapping of threads to processors did not influence the cache or interconnec-
tion usage.

2.2.2. Baseline Thread to Core Assignment. In most shared memory systems, the thread-
to-core assignment is handled by default by the operating system scheduler. Traditional
schedulers, such as the Completely Fair Scheduler (CFS) [Wong et al. 2008] currently
used by default in Linux, focus on load balancing and fairness [Li et al. 2009; Das et al.
2013] and have no information about the memory access behavior of the application.
Furthermore, the application itself has usually no direct influence on the mapping. For
these reasons, most thread mapping techniques explicitly bind threads to cores, thus
overriding the OS scheduler. A comprehensive overview of scheduling techniques is
provided by Zhuravlev et al. [2012].

2.2.3. Policy Goals. Affinity-based thread mapping may have two goals, improving the
locality or balance of communication. Locality of communication is usually improved
by placing threads that communicate extensively close to each other in the hardware
hierarchy in order to make use of shared caches and faster interconnections. A bal-
ance policy aims to distribute the amount of communication handled by caches and
interconnections fairly. Such a policy can be especially beneficial if the parallel appli-
cation itself has an imbalance in the communication behavior, that is, if some threads
perform more communication than others [Diener et al. 2015], or when not all avail-
able cores are used [Velkoski et al. 2013]. In such situations, improving the balance of
communication can increase the overall performance [Diener et al. 2015].

2.2.4. Policy Types. Affinity-based thread mapping can be performed in two ways. In
an allocation policy, each thread is assigned to a particular core, via operating system
functions or runtime environment options, and remains on that core until the end of
execution. Such a policy does not impose a runtime overhead on the application but
cannot react if the behavior changes during execution. In a migration policy, threads
are migrated between cores during runtime according to the detected communication

1Thread mapping is also referred to as task mapping or process mapping in the literature. Since we focus
on shared memory systems, we will use the name thread mapping in this article, and refer to task mapping
only for runtime environments that explicitly use tasks for parallelization, such as MPI.
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behavior. These policies cause a runtime overhead during execution, mostly due to an
increase in the number of cache misses [Constantinou et al. 2005] and TLB shoot-
downs [Villavieja et al. 2011] due to migrations, apart from the overhead of calling the
migration functions themselves. Still, migration policies are able to handle dynamic
application behavior.

2.2.5. Determining the Thread Mapping. Two pieces of information are necessary to de-
termine the thread mapping. First, the way in which threads access shared data must
be known. This behavior is usually represented as a communication matrix, in which
each element contains the amount of communication between the threads whose IDs
are given by the column and row indices. Information about the communication behav-
ior can be generated with the techniques presented in Section 4. Second, the mapping
mechanism needs information about the hardware hierarchy, such as the processors,
cores, and cache levels. This hierarchy can be discovered with tools such as hwloc
[Broquedis et al. 2010b].

A thread mapping algorithm uses the communication behavior and hardware hier-
archy to determine an improved thread mapping, which is then used to assign threads
to cores or migrate them between cores. Such a thread mapping is generally a global
operation, that is, the mapping is determined for all threads of an application at the
same time. As long as the number of threads is sufficiently low, most currently avail-
able algorithms can determine an improved mapping in a short time [Jeannot et al.
2014]

Many such algorithms have been proposed in the literature. Since calculating
an optimal thread mapping is an NP-complete problem [Radojković et al. 2013],
most algorithms use approximations to reduce the complexity to polynomial [Jeannot
et al. 2014]. Most algorithms are based on graph representations of the communica-
tion behavior and the hardware hierarchy and use graph partitioning [Karypis and
Kumar 1998] or graph matching [Cruz et al. 2012] techniques to determine the im-
proved thread mapping. Examples of such algorithms include Scotch [Pellegrini 1994,
2010], METIS [Karypis and Kumar 1996, 1998], and the graph mapping algorithm
that is part of the Zoltan toolkit [Devine et al. 2006].

In most shared memory architectures, the hardware hierarchy can be represented
as a tree, which can lead to more effective algorithms [Jeannot and Mercier 2010; Träff
2002]. Examples of such algorithms include Treematch [Jeannot and Mercier 2010;
Jeannot et al. 2014] and EagerMap [Cruz et al. 2015b]. A thread mapping mechanism
uses the output from the mapping algorithm to allocate threads to cores or migrate
them. Several studies compare such algorithms in terms of quality, execution time, and
stability [Jeannot and Mercier 2010; Jeannot et al. 2014; Glantz et al. 2015; Cruz et al.
2015b].

2.2.6. Thread Mapping Example. Figure 3 presents an example illustrating the operation
of various thread mapping policy types and goals. For this example, assume that we
execute a parallel application consisting of five threads, 0–4, with the communication
behavior shown in Figure 3(a). The matrix entries contain the amount of communi-
cation between pairs of threads, expressed as the number of bytes or messages that
were exchanged. In the example, two pairs of threads, (0,4) and (1,3), perform equal
amounts of communication, while thread 2 does not communicate at all.

Assume further that we want to execute this application on the hardware architec-
ture shown in Figure 3(b), consisting of two processors with two cores each, where
every core can execute two threads at the same time via SMT. The processors have
a cache that is shared among the cores, while each core also has a private cache. For
the migration policies, assume that the threads are initially assigned to cores using a
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Fig. 3. Overview of thread mapping policy types and goals.
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round-robin policy, as shown in Figure 3(b), where the first thread is mapped to the
first Processing Unit (PU), the second thread to the second PU, and so on.

Figure 3(c) presents how different types of mapping policies could handle such a
scenario. An allocation-based policy that focuses on improving locality results in a
mapping where most communication is handled by a single processor, achieving a high
locality but also resulting in a high imbalance. A balancing policy can distribute threads
more fairly, but results in a lower overall locality.

The migration-based policies yield the same final thread mapping, but require several
thread migrations, three for a locality policy and four for the balancing policy in this
example. In both cases, two threads are migrated across processors, resulting in a
higher overhead than intra-processor migrations due to cache misses on more cache
levels [Constantinou et al. 2005].

2.2.7. Related Techniques. Several techniques that focus on improving communication
are out of the scope of this article and will not be discussed in detail. Many of these tech-
niques focus on mapping in distributed memory environments, such as clusters, in order
to improve network interconnection performance. Examples of mapping techniques for
cluster environments include proposals by Bhatele [2010], Karlsson et al. [2012], and
Soryani et al. [2013]. We will not cover such schemes because our goal is to discuss
mapping in shared memory architectures.

A related type of techniques that affects communication is based on communication
avoidance [Ballard et al. 2014; You et al. 2015]. These techniques focus on decreasing
the impact of communication by reducing the amount of data that needs to be commu-
nicated among threads in order to overcome the considerable performance and energy
consumption impact of communication [Shalf et al. 2010]. They focus on improving
parallel algorithms and can be seen as orthogonal to thread mapping techniques, since
the impact of a reduced amount of communication can be often further lowered by us-
ing a better thread mapping. A comprehensive overview of communication avoidance
algorithms is given in Ballard et al. [2014].

2.3. Data Mapping Concepts

Data mapping is defined as the assignment of memory pages to memory controllers (or
NUMA nodes) in systems with multiple DRAM memory controllers [Wholey 1991]. For
optimal efficiency, data mapping should be combined with thread mapping, in order to
reduce thread migrations between NUMA nodes [Corbalan et al. 2003] and to place
threads that access the same data on the same node [Brecht 1993].

An improved data mapping policy analyzes how memory pages are accessed by
threads and NUMA nodes, and maps a page to the most suitable node. In contrast
to thread mapping, the high number of memory pages (up to billions in current sys-
tems) often necessitates the use of local decisions, that is, data mapping decisions that
consider only a single page or a small group of pages at the same time.

2.3.1. Underlying Architectures. NUMA systems have undergone significant changes in
the past decades. Early NUMA research prototypes, such as IBM’s RP3 [Pfister et al.
1985], Stanford’s DASH [Lenoski et al. 1992], and Kendall Square Research’s KSR-1
[Frank et al. 1993], failed to gain traction in the computer market but generated con-
siderable research interest. More recent research architectures such as Sun’s Wildfire
system [Hagersten and Koster 1999] showed that NUMA can improve the scalability
of parallel machines compared to traditional Uniform Memory Access (UMA) sys-
tems [Noordergraaf and van der Pas 1999].

NUMA machines and data mapping have received renewed attention when chip
makers started to integrate memory controllers in their computing systems designs
and introduced point-to-point interconnections, such as Intel’s QuickPath Interconnect
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(QPI) [Ziakas et al. 2010] and AMD’s HyperTransport [Conway 2007], between mem-
ory controllers and the main memory as well as between processors. Systems with
more than one such processor, therefore, have a NUMA behavior. Modern NUMA ar-
chitectures can include multiple memory controllers on the same chip, leading to a
NUMA behavior even on a single processor. Data mapping in shared programming
models that target execution in cluster systems, such as Partitioned Global Address
Space (PGAS) [Anbar et al. 2016], are out of the scope of this article.

2.3.2. Baseline Memory Page to Node Mapping. Assigning memory pages to NUMA nodes
is an important problem in NUMA architectures. It impacts the execution of an appli-
cation, in the absence of a dedicated migration mechanism, as migrations are expensive
due to the requirement to copy potentially large amounts of data between nodes. For
this reason, baseline data mapping mechanisms are usually static, in contrast to the
standard thread mapping policies.

The most basic policy is based on home-node allocation, where memory pages are
placed on the NUMA node where a memory allocation is performed (such as via a
malloc() function), before the first access to the data. That is, whenever a thread
allocates memory, this memory is allocated on the node the thread is executing on.
Such a policy is only of theoretical interest and not in use nowadays.

A standard policy still in use today is the interleave (or interleaved) policy, which
maps pages according to their address. Usually, the node is determined by the least
significant bits of the virtual page address. In this way, contiguous page ranges are
mapped to different nodes, leading to similar numbers of pages on each node and
a high memory access balance in case pages are accessed uniformly. However, the
locality of memory accesses is usually low. Interleave is available on Linux through the
numactl tool [Kleen 2004].

As a locality improvement to the interleave policy, the first-touch policy was devel-
oped [Singh et al. 1993; Marchetti et al. 1995]. In this policy, each page is mapped to
the NUMA node from which the first memory access to the page is performed, usually
during the execution of the page fault handler. The idea behind this policy is that the
thread that performs the first access to the page is likely to perform the majority of
subsequent accesses to the page, leading to a high memory access locality. However,
with this policy the application has a direct influence on the data mapping, and con-
sequently, the application developer should take this policy into account when writing
the application. First-touch is the default policy for many current operating systems,
including Linux [Lankes et al. 2010], Solaris [Oracle 2010], and Windows [van der Pas
2009], and is generally used as the baseline for performance improvements.

2.3.3. Policy Goals. Affinity-based data mapping, like thread mapping, can focus on two
goals, improving the locality or balance of memory accesses to NUMA nodes. Locality of
memory accesses is usually improved by placing memory pages on NUMA nodes that
access these pages often, in order to avoid accesses from remote nodes [Corbet 2012b].
Such a policy can, however, result in an imbalance in certain circumstances with some
memory controllers performing more accesses than others. Furthermore, an application
might allocate data non-uniformly on the nodes, causing an imbalance. A balance policy
aims to equalize the number of accesses that each controller handles [Blagodurov
et al. 2011] in order not to overload some controllers. For many parallel applications,
improving locality also improves balance [Diener et al. 2015].

2.3.4. Policy Types. Affinity-based data mapping can be performed in three ways, al-
location, migration, and replication. Allocation and migration are analogous to the
respective thread mapping strategies. All three policy types can be applied to memory
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pages or to (parts of) data structures. We will refer to memory pages in the explanation
below.

In an allocation policy, each page is assigned to a NUMA node and remains on that
node until execution is finished. Such a policy does not impose a runtime overhead on
the application but cannot react if the behavior changes during execution.

In a migration policy, pages are migrated between NUMA nodes during runtime
according to the detected memory access behavior. Such a policy causes a runtime
overhead during execution, mostly due to the copying of data between nodes, apart
from the overhead for calling the migration functions themselves. However, migration
policies are able to respond to changes in the application’s behavior during execution.

In a replication policy, pages that are accessed from multiple NUMA nodes are
replicated on those nodes. Replication has the advantage of improving both locality and
balance of memory accesses simultaneously. However, it suffers from two drawbacks.
First, since pages are duplicated, less memory is available to the application. Second,
write memory accesses usually require the propagation of the changes to the other
copies of the same page in order to maintain coherence, a situation that is similar to
cache coherence protocols. For this reason, replication is more beneficial for data that
is seldom modified.

2.3.5. Determining the Data Mapping. Deciding on an improved data mapping is usually
more straightforward than determining a thread mapping, with simpler data struc-
tures and algorithms. Many data mapping algorithms can calculate a mapping for a
single page with a constant complexity, with a linear complexity for all pages, while
many thread mapping algorithms have a polynomial complexity, as discussed in Sec-
tion 2.2.5. There is also no need for graph representations of the behavior, as in many
thread mapping algorithms. The memory access behavior can be represented in the
form of a page usage pattern that describes the number of memory access per page or
per data structure from each NUMA node. An example of such a pattern is shown in
Figure 4(a). A data mapping algorithm can analyze this pattern to determine the most
suitable NUMA node for each page or data structure.

2.3.6. Data Mapping Example. The example shown in Figure 4 illustrates the different
policy types and goals of data mapping. Assume that we execute a parallel application
with four threads, accessing in total four pages with the page usage pattern shown in
Figure 4(a). Out of the four pages, three are accessed exclusively by a single thread.
Page 3 is shared uniformly by two threads.

Figure 4(b) shows the hardware architecture that this application is executing on.
It consists of four NUMA nodes. Each node is running a single thread mapped with a
round-robin thread mapping, as previously shown in Section 2.2.6. This thread map-
ping is maintained for all data mapping policies. For the data mapping policies that are
based on migrations and replications, we further assume that all pages are initially
mapped to a NUMA node using a round-robin mapping.

The behavior of the different types of data mapping policies is shown in Figure 4(c).
The allocation-based locality policy places two pages on the first node and no pages on
the last node, creating an imbalance but resulting in a high memory access locality.
The balancing policy maps the same number of pages to all nodes, resulting in a better
balance at the expense of a lower locality. The migration-based policies result in the
same mapping as the allocation-based policies but require three and two migrations
for locality and balance, respectively.

The replication-based policy improves both locality and balance and only one be-
havior is shown for this type of policy [Brorsson 1989; LaRowe et al. 1992; Bull and
Johnson 2002; Dashti et al. 2013]. Since page 3 is accessed by multiple NUMA nodes, it
is a candidate for replication. In the example, the policy replicates it from the last node
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Fig. 4. Overview of data mapping policy goals and types.
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to the first one, as shown in the figure. All other pages are accessed only by a single
node and are, therefore, only migrated to the corresponding node without replication.

The resulting data mapping has a higher locality than that achieved by the other
two policy types, as memory accesses from thread 3 are also performed to a local node.
Furthermore, the balance is almost as good as for the other two policy types that focus
on improving balance. However, the overall memory usage is higher by 25%, and it is
necessary to maintain the coherence of page 3 on write operations.

2.4. Benefits of Improved Mappings

Thread and data mapping aim to improve the memory accesses to shared and private
data in parallel applications. This section discusses how such mappings can improve
performance and energy efficiency.

2.4.1. Performance Improvements. Thread mapping improves the efficiency of the inter-
connections, reducing inter-chip traffic that has a higher latency and lower bandwidth
than intra-chip interconnections. It also reduces the number of cache misses of parallel
applications. In read-only situations, executing threads on the same shared cache re-
duces data replication in caches, thereby increasing the available cache space [Chishti
et al. 2005]. In read-write or write-write situations, an improved thread mapping also
reduces cache line invalidations, reducing the traffic on the interconnections as well as
preventing a cache miss on the next access to the cache line [Zhou et al. 2009].

Data mapping improves the memory locality on NUMA machines by reducing the
number of accesses to remote memory banks. Like thread mapping, it improves the
efficiency of the interconnections by reducing the traffic between NUMA nodes. It can
also prevent an imbalance in the use of memory controllers. This increases the memory
bandwidth available in the system and reduces the average memory access latency.

Thread and data mappings can be performed in an integrated way for increased
performance gains [Diener et al. 2015b]. Thread mapping prevents unnecessary thread
migrations between NUMA nodes so that the data mapping can be more effective. If
several threads that run on different NUMA nodes access the same page, data mapping
alone is not effective. By performing thread mapping, threads that access the same data
are executed on the same NUMA node, thereby increasing the benefits of data mapping.

2.4.2. Energy Consumption Improvements. Improved thread and data mappings can also
reduce the energy consumption of parallel applications. By reducing the application
execution time, static energy consumption will be lowered proportionally in most cir-
cumstances, since the static energy consumption goes up linearly with the total exe-
cution time. Reducing the number of cache misses and traffic on the interconnections
also decreases the dynamic energy consumption. Overall, thread and data mappings
can result in a reduction in energy consumption that is linearly proportional to the
reduction in execution time [Diener et al. 2015].

3. A TAXONOMY OF AFFINITY-BASED MAPPING MECHANISMS

Affinity-based mapping mechanisms generally consist of two parts: the analysis of
memory access behavior, and the mapping policy. Important characteristics of the
analysis are: when is it performed (whether information is available before execution
starts), which metrics are used to describe the behavior, at which level information is
gathered (hardware, operating system, runtime environment, or application, among
others), and whether the hardware or software need to be modified.

Based on the analyzed behavior, a mapping mechanism needs to follow a policy to
determine where threads and data should be placed and when they should be migrated.
The policy can be characterized in terms of its goals (such as improving locality or
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Fig. 5. A taxonomy of affinity-based thread and data mapping mechanisms.

balance), when it is applied (before or during execution), and whether the application
or runtime environment need to be modified.

Considering the way the analysis and policy parts are performed (in the context of
the execution of a parallel application) and their characteristics, we have developed a
taxonomy of affinity-based mapping mechanisms, consisting of two groups (user-level
and system-level mechanisms) divided into seven types, as shown in Figure 5.

3.1. User-Level Mechanisms

User-level mapping mechanisms target single parallel applications. They are usually
implemented in user-level software and require no special privileges or hardware ac-
cess for their execution. All policy types and policy goals mentioned in Section 2 are
supported.

3.1.1. Source Code Changes. Mapping mechanisms based on source code changes rely
on source code or behavior analysis performed by the developer manually or with
the help of tools to profile the program (requiring a prior execution). The mapping is
then done by changing the source code of the parallel application. To perform thread
mapping, application developers can use operating system functions to execute threads
on a specified set of processing units. Many runtime environments for OpenMP and
MPI offer functions to specify a thread mapping.

Data mapping can be performed by introducing an explicit memory access at the
beginning of execution such that each memory page is accessed first by the thread that
will access it extensively later, which can be beneficial in first-touch data mapping poli-
cies. Another possibility is to use libraries that support memory allocation on specific
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NUMA nodes. To handle the case where the memory access behavior changes during
execution, most operating systems include functions to migrate memory pages during
execution.

Such mapping mechanisms can yield significant improvements if the developer has
detailed knowledge of the application’s behavior. They are, however, intrusive, as they
potentially require complex changes to the source code of the application and adaptation
to different hardware architectures.

3.1.2. Compiler Analysis. Mechanisms based on compiler analysis perform the mapping
in the compiler or its runtime support libraries (such as OpenMP). Such a mapping
can be static, for example, by using a preprocessor to analyze the application source
code and insert functions to perform the mapping. To support dynamic memory access
behaviors, the analysis needs to be performed dynamically as well, for example, by
inserting code into the application that performs the analysis online. Compiler-based
techniques are generally limited to specific compiler versions and runtime libraries.

3.1.3. Offline Profiling. Mapping mechanisms based on offline profiling consist of two
steps: First, the application is profiled to determine its memory access behavior, for
example through memory or communication traces. The profile is then analyzed to
determine an improved mapping. In the second step, the determined mappings are
applied during the execution of the application. The mapping is usually implemented
by modifying the source code of the application or by using options of the runtime
environment.

The profiling phase is potentially time-consuming and is not applicable if the ap-
plication changes its behavior between executions, as discussed in Section 2.1. Fur-
thermore, the data generated during profiling might be very large, necessitating a
time-consuming analysis [Zhai et al. 2011]. However, it incurs only a minimal runtime
overhead, as the behavior analysis and mapping decisions are performed before the
application starts.

3.1.4. Online Profiling. Online profiling mechanisms perform the mapping during the
execution of the parallel application, using information gathered only during execution.
At the user level, relatively little information about memory accesses is available.
Therefore, many mechanisms use indirect information about the behavior, such as
cache misses or the number of executed instructions per cycle in order to estimate the
behavior.

An important advantage of these techniques is that no expensive analysis before
execution has to be performed. The main challenge for this type of mechanism is the
(potentially variable) tradeoff between accuracy and runtime overhead, as the informa-
tion gathering and migration may have a large impact on the application, reducing or
even nullifying the benefits of mapping. Collecting information about every memory ac-
cess usually increases considerably the overhead compared to normal execution [Diener
et al. 2015b]. Furthermore, since no prior information about the application behavior
is available, future behavior must be predicted using past behavior.

The implementation of these mechanisms is usually based on a modified runtime
environment, which gathers the information and performs the mapping.

3.1.5. Runtime Options. Some thread and data mappings can be applied directly
through options of the runtime environment, including parallel libraries and the ker-
nel, without modifying the parallel application. For thread mapping, many common
OpenMP and MPI runtime environments offer options based on simple policies, such
as a compact mapping. Most data mapping runtime options are provided by the oper-
ating system, for example, by specifying an interleave policy for the application.
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Table I. Common Characteristics of Thread and Data Mapping Mechanisms

User-level System-level
Source code Compiler Offline Online Runtime Offline Online

Property changes analysis profiling profiling options profiling profiling
Effort for user High Low Low Low Low Low Low
Prior information Yes Yes Yes No Yes Yes No
Req. previous execution No No Yes No No Yes No
Dynamic behavior Yes Yes Partially1 Yes No Partially1 Yes
Changes to application Yes Recomp. No No No No No
Multiple applications No No No No No No Yes
Runtime overhead Low Low Low Med. Low Low Med.

1Support for dynamic behavior during execution only.

Runtime environment options do not provide a way to analyze the memory access
behavior. Other mechanisms, such as source code analysis or profiling, can be used to
determine the behavior and the best mapping. These mapping mechanisms provide
the easiest way to improve the memory affinity of a parallel application with little or
no overhead. However, the policies are relatively coarse-grained, especially for data
mapping, which can limit their gains.

3.2. System-Level Mechanisms

The most important property of system-level mapping mechanisms is that they can
take into account the behavior of multiple applications executing at the same time,
in contrast to user-level solutions. They are generally implemented in the operating
system or in hardware and therefore require special privileges or superuser access to
operate. Some mechanisms are only applicable to certain hardware architectures, or
even require hardware changes to function properly.

Since they operate at the system level, such mechanisms have no detailed informa-
tion about the application’s data structures and can, therefore, formulate data mapping
policies only on top of pages, not data structures. All other policy types are principally
supported by system-level mechanisms.

3.2.1. Offline Profiling. Similar to its user-level counterpart, offline profiling uses a sep-
arate profiling step before deciding on a mapping. The mapping itself is commonly
implemented by modifying the source code of the application or by using options of
the runtime environment. System-level mechanisms use special hardware counters or
hardware-based memory tracers to monitor the memory access behavior, information
that is usually not available at the user level.

3.2.2. Online Profiling. Similar to offline profiling, online profiling uses system-level
statistics to guide mapping decisions during application execution. Such statistics in-
clude page faults, TLB misses, and cache coherence messages. Based on the measured
statistics, mapping is done by invoking operating system functions.

3.3. Characteristics of Taxonomy Types

Each of the seven types discussed in the previous sections have characteristics that
are shared by most mechanisms of a particular type. These common characteristics are
discussed in this section and summarized in Table I.

3.3.1. Effort for Developer and User. For all mapping types, only source code changes to
the applications present a high overhead for the developer or user. All other mech-
anism types may require extensive modifications to operating systems or runtime
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environments, but these modifications are only required once and are then available
to many applications.

3.3.2. Availability of Prior Information. Availability of prior information means that infor-
mation about the memory access behavior is available before the behavior actually
occurs. For example, the access behavior within a parallel loop might be known before
that loop is executed.

Having prior information has the advantage that future memory access behavior does
not have to be predicted using past behavior. Such prior information is also required for
mechanisms that perform allocation-based policies. All mechanism types except online
profiling can have at least some prior information.

3.3.3. Need for a Previous Execution. A related question is whether a mechanism re-
quires a complete previous execution to gather information about the memory access
behavior. As discussed in Section 2.1, for applications whose behavior changes between
executions, previous executions (such as those from offline profiling mechanisms) may
result in applying incorrect mappings, apart from causing a profiling overhead.

3.3.4. Support for Dynamic Behavior. If an application has a dynamic behavior during
execution, as discussed in Section 2.1, mechanisms that perform only static mapping,
before application start or at initialization, may yield only limited improvements. Mech-
anisms that can react to changes at runtime are able to handle better applications with
a dynamic behavior, at the expense of a higher runtime overhead.

3.3.5. Changes to Application or Runtime Libraries. Mapping mechanisms that require
changes to applications or runtime libraries are more difficult to apply and less general
than mechanisms that need no such changes.

3.3.6. Support for Multiple Applications. Modern computer systems are often shared be-
tween several users that are executing different applications concurrently. In such
scenarios, mapping decisions for different applications might interfere with each other.
For greater generality, a mapping mechanism should therefore be able to take several
applications into account.

3.3.7. Runtime Overhead. Runtime overhead refers to the impact of the mapping on the
running application. Since they do not involve copying of data, allocation-based policies
have usually lower overheads than those based on migration or replication.

3.4. Summary

We introduced a taxonomy for mapping mechanisms in this section. Based on where
the mapping is applied (user level or system level), we have identified seven classes
of mechanisms that have different properties. The same taxonomy can be applied to
both thread and data mapping mechanisms. These mechanisms will be presented in
the next two sections.

4. THREAD MAPPING MECHANISMS

In this section, we provide an overview of the thread mapping mechanisms according
to the taxonomy and characteristics presented in Section 3. A detailed description of
each mechanism is provided in Appendix A.

Table II contains an overview of the work in affinity-based thread mapping presented
in this section. The table shows the supported parallel communication models (based
on message passing or accesses to shared memory areas), as well as policy types and
goals for each of the mechanisms.

At the user level, there are only a few thread mapping mechanisms that are based on
source code changes, due to the ubiquity and simplicity of mapping options in runtime
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Table II. Summary of the Thread Mapping Mechanisms

systems, as well as the difficulty to detect communication behavior. For the same
reasons, few proposals for compiler analysis exist. Proposals for offline profiling focus
mostly on MPI-based applications, where messages can be traced by instrumenting
message-passing functions with a relatively low overhead. Mechanisms for user-level
online profiling rely on indirect execution statistics and are therefore more suitable
for shared-memory applications, where offline profiling causes a high overhead. Many
parallel environments, both for shared memory and message passing, directly support
runtime options to map threads.

At the system level, we are not aware of any thread mapping mechanisms that use
offline profiling. Several solutions for online profiling have been proposed, and they are
based on statistics gathered from the hardware or operating system.

For thread mapping, the vast majority of mechanisms target single running applica-
tions and are implemented at the user level. This is related to the fact that relatively
little information is necessary to perform the mapping, as only information about the
communication pattern is required, but not the data that is actually communicated.
Furthermore, applying a thread mapping is straightforward in many parallel pro-
gramming environments. Recent years have seen a large number of online profiling
mechanisms, both at the user and system levels.

5. DATA MAPPING MECHANISMS

This section presents an overview of the data mapping mechanisms according to our
taxonomy presented in Section 3. A detailed description of each mechanism is provided
in Appendix B.
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Table III. Summary of the Data Mapping Mechanisms

An overview of the work in data mapping presented in this section is shown in
Table III. The table presents, for each proposed mechanism, whether it includes support
for thread mapping and shows the policy types and goals supported, according to our
discussion in Section 2.3.

At the user level, many data mapping mechanisms are based on source code changes,
in contrast to thread mapping. The reason for this difference is the higher complexity
of data mapping, which is difficult to solve using simple user-level mechanisms. Sev-
eral techniques using compiler analysis have been proposed, although these are often
restricted to capturing simple memory access patterns. Only few solutions for offline
profiling have been proposed, mainly due to the substantial runtime overhead. Simi-
larly, online profiling has received little attention in user-space, since such mechanisms
can be implemented at the system level with a higher generality. Data mapping based
on runtime options is uncommon, with few environments providing explicit support for
mapping.

At the system level, several offline profiling mechanisms have been proposed, which
gather information about memory access behavior from hardware counters to guide
data mapping decisions on subsequent executions. A large number of proposals use
online profiling at the system level, gathering hardware or operating system statistics
to migrate memory pages at runtime.
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Compared to thread mapping, a larger portion of the data mapping mechanisms are
implemented at the system level, especially for online profiling. This is related to the
comparative difficulty of performing data mapping in user space, since the amount of
information required for data mapping is much higher and requires a lower granularity
of information. Furthermore, applying the mapping in user space is highly intrusive
and prone to conflict with the mapping of other applications that are running at the
same time.

Another important observation is that replication-based policies that were domi-
nant in data mapping research for early NUMA architectures have almost completely
disappeared. On modern NUMA machines, replication of data requires complex and
expensive coherence mechanisms in case of write operations, which make such policies
only beneficial for data that is mostly read. Modern policies are commonly based on
allocation and migration.

6. THREAD AND DATA MAPPING EXAMPLE

To illustrate the operation and benefits of various types of mapping mechanisms, we
present next a case study of a scientific application kernel, Ondes3D. Ondes3D sim-
ulates the propagation of seismic waves due to earthquakes using a finite-differences
numerical method [Aochi et al. 2013]. Its parallel version is implemented with
OpenMP [Dupros et al. 2008].

Ondes3D has a static memory access behavior and is, therefore, suitable to a wide
range of mapping techniques, including those that require memory access traces.
Its communication pattern is determined by domain decomposition, leading to high
amounts of communication between neighboring threads. In the baseline version of
Ondes3D, all input data is initialized by the master thread, leading to an unfavorable
data mapping with a first-touch policy, that causes a high number of remote NUMA
accesses as well as a high imbalance.

6.1. Mapping Mechanisms

Four different types of mapping mechanisms are compared to the baseline version for
Ondes3D. These mechanisms were selected since they represent the most common
mapping solutions and can be applied to a large variety of applications and hardware
architectures. All four mechanisms perform both thread and data mapping.

6.1.1. Source Code Changes. We modified the source code of Ondes3D to implement a
manual thread and data mapping. Due to the nearest-neighbor communication pattern,
we implemented a Compact thread mapping via the sched_setaffinity() system call
of Linux. At the beginning of the parallel phase of the application, after threads have
been created, each thread is bound to a core through this system call such that threads
with neighboring IDs are placed on cores that are nearby in the memory hierarchy and
share a cache.

Data mapping was implemented via forced first-touch from each thread by manually
determining which thread will access which part of the data structures, and initializing
the parts of the data structures by this thread. In this way, pages will be located on the
NUMA node that performs most accesses to them, improving both locality and balance
of memory accesses.

6.1.2. Offline Profiling at the User Level. We use the Numalize mechanism [Diener et al.
2015b] to perform an offline profiling of Ondes3D based on a complete memory access
trace. Numalize determines optimized thread and data mappings that are applied to
the application via a kernel module that allocates threads and data according to the
specified location.
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Fig. 6. Results of the Ondes3D benchmark with various mapping mechanisms. Percentages on top of the
bars show the performance improvements relative to the baseline.

6.1.3. Runtime Options. We executed Ondes3D with a Compact thread mapping via the
GOMP_CPU_AFFINITY environment variable provided by gcc’s OpenMP implementation.
Since no runtime environment options exist that can improve locality through data
mapping, we decided to improve at least the balance of the data mapping with an
Interleave data mapping policy using the numactl tool.

6.1.4. Online Profiling at the System Level. As an example of an online profiling mecha-
nisms, we selected the NUMA Balancing technique that is part of recent releases of
the Linux kernel. NUMA Balancing migrates threads so that threads that access the
same data will be grouped onto the same NUMA node. Furthermore, it migrates mem-
ory pages to the node where they are accessed. NUMA Balancing was executed in its
default configuration provided by kernel version 3.13.

6.2. Methodology of the Experiments

Ondes3D was executed with two input sets, small and large, to show the influence of
execution time on the gains that can be achieved by each type of mechanism. Both
use the same input data but differ in the number of iterations. The application was
executed on a 4-node NUMA machine. Each of the four NUMA nodes contains an Intel
Xeon X7550 processor with eight cores and 2-way SMT. Each core has private L1 and
L2 caches, while the large L3 cache is shared among all eight cores on the processor.

All experiments were performed on Linux kernel version 3.13. Ondes3D was compiled
with gcc version 4.6.3 with the -O2 optimization flag. We show the average execution
time and the standard error of 10 executions for each configuration.

6.3. Results

The results of our experiment are shown in Figure 6. It is important to point out that
mapping can achieve large performance improvements of more than 200% compared to
the baseline. This indicates the significance of data mapping in modern shared memory
systems.

Regarding the different mapping techniques, we can see that source code changes
and offline profiling provide the largest improvements. However, these are also the
mechanisms that have the highest up-front overhead, by requiring source code changes
and recompilation or a time-consuming memory trace generation (for this application,
the tracing causes a slowdown of 120× compared to normal execution). For both input
sets, offline profiling results in slightly higher gains than the source code changes, since
the profile also contains information about data structures that were not optimized by
the source code changes, such as thread stacks.
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The runtime environment options that were specified also caused a significant per-
formance improvement, though not as high as the other mechanisms due to the lack
of locality improvements via data mapping. However, this can be an attractive way
to improve performance without a deep analysis of application behavior and without
overhead. Online profiling, as expected, is more suitable for the larger input set due to
the need to learn the application behavior during execution. For the large input set, it
achieves a performance improvement that is comparable to the offline profiling.

7. CONCLUSIONS AND RESEARCH PERSPECTIVES

In recent years, the trend to support higher levels of parallelism in shared memory
architectures has been evident and is projected to continue in the foreseeable future
with the proliferation of many-core chips. In such systems, memory accesses of parallel
applications represent a major challenge for application performance and energy con-
sumption. To optimize memory accesses, two types of mapping techniques have been
proposed: one that exploits the affinity between threads (thread mapping); and another
that exploits affinity between threads and the data that they access (data mapping).

Mapping mechanisms have different characteristics, as well as advantages and dis-
advantages, depending on where and how they are implemented. These difference
affect their applicability, gains, and overhead. In this article, we presented a taxonomy
of mapping mechanisms consisting of two groups (user-level and system-level mech-
anisms) that are subdivided into seven classes. We then classified the large body of
research that exists in this area into these groups. This classification showed that
online profiling of applications has been the focus of considerable research efforts.

Our analysis also identified two gaps in current mapping research. Filling those
gaps could lead to more efficient mechanisms. First of all, most current mechanisms
are implemented completely at a single point in the hardware or software. Although
some proposals use hardware information to perform mapping decisions in software,
multiple software levels have not yet been explored. A hybrid mechanism that works
at multiple levels can be an interesting solution, for example by combining a memory
access analysis via a compiler mechanism with a mapping policy implemented in the
kernel. In this way, advantages of both types of mechanisms can be combined.

The second gap that we identified is related to the fact that most current mecha-
nisms are assuming a homogeneous hardware architecture, that is, all cores have the
same computational power, processors have a symmetrical cache hierarchy and there
is only a simple local/remote hierarchy of memory controllers. However, modern sys-
tems are starting to have a heterogeneous architecture. For example, processors such as
ARM’s big.LITTLE [ARM Limited 2013] have some cores that have a higher computa-
tional power and energy consumption than other cores on the same chip. Furthermore,
architectures with multiple memory controllers on the same chip, often include a hi-
erarchical NUMA behavior, with memory accesses to the local NUMA node, a remote
node on the same chip and a remote node on a different chip. These heterogeneity
issues have not yet been explored.

APPENDIXES

The appendices contain descriptions of the thread and data mapping mechanisms.

A. DESCRIPTION OF THREAD MAPPING MECHANISMS

A.1. User-Level Mechanisms

A.1.1. Source Code Changes.
Overview. Information about the memory access behavior is collected typically by a

manual analysis of communication behavior (e.g., by determining how data structures
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are shared among threads) or by tracing and analyzing communication messages or
memory accesses. The communication behavior is used to determine an improved map-
ping of threads for the target architecture. The improved mapping is applied by calling
mapping functions from the application or support libraries to bind threads to specific
cores.

Since the most time-consuming parts of the mapping are performed before the actual
execution of the application, the runtime overhead is very low, and such mechanisms
can usually achieve improvements close to the optimum in case the behavior is deter-
mined correctly. However, apart from the requirements to change source codes, these
mechanisms are highly dependent on hardware, operating systems, and parallel li-
braries, which limits their applicability.

To gather information about the hardware, tools such as hwloc [Broquedis et al.
2010b] or the older libtopology/PLPA [The Open MPI project 2009] can be used. Binding
threads to specific cores can be achieved via the hwloc_set_cpubind() function of hwloc,
which offers a platform-independent interface. Examples of system calls for thread
mapping on the operating system level include sched_setaffinity() (Linux, BSD),
SetThreadAffinityMask() (Windows) and processor_bind() (Solaris).

Examples of binding functions for specific runtime environments include
ippSetAffinity() (Intel OpenMP) and pthread_attr_setaffinity_np() (Pthreads on
Linux, BSD). The OpenMP standard also offers the proc_bind clause in version 4 of
the standard [OpenMP Architecture Review Board 2013], which sets a thread mapping
policy for a particular parallel region. The proposed omp_set_proc_bind() function in-
terface [Eichenberger et al. 2012] was not included in the OpenMP standard.

Mapping Mechanisms. Rodrigues et al. [2009] evaluate affinity-based mapping of
MPI tasks in the BRAMS weather simulation application [Freitas et al. 2009]. Com-
munication is detected by inserting wrapper functions in the application’s MPI func-
tion calls to trace messages, while the mapping is determined with the Scotch library
[Pellegrini 1994]. The authors modify the MPICH runtime library [Gropp 2002] to
perform the mapping via the sched_setaffinity() system call.

Ito et al. [2013] evaluate task mapping for two parallel applications that are based
on domain decomposition of structured and unstructured grids. The communication
pattern of each application is specified by the developer. The pattern is defined by the
domain decomposition method, where communication happens between neighboring
domains. At the beginning of each execution, the communication speed in the archi-
tectures is measured through point-to-point exchange of data between all pairs of
MPI processes. Scotch is then used to determine the improved mapping. The mapping
steps (except the communication pattern) are implemented directly inside the parallel
applications.

Diener et al. [2010] and Diener [2010] present a solution for multithreaded applica-
tions. The communication pattern of the application is detected by instrumenting the
Simics microarchitecture simulator [Magnusson et al. 2002], which traces all memory
accesses of all threads and writes them to a file. The traces are checked for memory
accesses to the same address by different threads in order to build a communication
pattern. Based on the pattern, an improved mapping is determined with a heuristic
greedy algorithm. The applications are modified to apply the resulting mapping with
the sched_setaffinity() system call. Experiments with several parallel applications
based on Pthreads were performed on 2-way SMT Intel Nehalem machines and 8-way
SMT Sun Niagara2 systems.

A.1.2. Compiler Analysis. The ForestGOMP framework [Broquedis et al. 2010a, 2010c]
is an extension to the libGOMP library provided by the GCC compiler. Every time an

ACM Computing Surveys, Vol. 49, No. 4, Article 64, Publication date: December 2016.



64:22 M. Diener et al.

OpenMP parallel region is entered, ForestGOMP groups the threads that execute that
region into a bubble. Nested parallel regions create a tree of bubbles. Such bubbles
usually share data and need to synchronize, causing communication. ForestGOMP
also creates a tree model of the shared memory architecture based on the cores, cache
memories, and processors in the system.

To perform the mapping from thread groups to elements of the hardware tree,
ForestGOMP extends the BubbleSched framework [Thibault et al. 2007] and also
allows the developer to create new scheduling policies. Their default policy, Cache,
maintains threads of the same bubble close to each other in the hierarchy in order to
improve communication and cache usage. ForestGOMP also allows the programmer to
annotate OpenMP pragmas with scheduling hints.

Ding et al. [2013] implement a compiler extension for the Intel compiler that analyzes
data reuse patterns in parallel loops. Loop iterations are then mapped to the cache
hierarchy such that the locality of data accesses is optimized. Data that is reused in a
shorter time is mapped such that is placed in higher-level caches, which are closer to the
cores. Threads are mapped to cores with a custom algorithm that takes into account the
data reuse and cache hierarchy. The mechanism requires loops to be dependency-free
to allow reordering of iterations.

A.1.3. Offline Profiling.
Overview. In mapping mechanisms based on offline profiling, the analysis and policy

steps are highly distinct. For the analysis, profiling methods such as message and
memory access tracing are employed to determine the communication pattern. An
improved mapping is determined with a mapping algorithm. This mapping is then
applied to the application by providing runtime options or calling affinity functions
from the application, as described in Sections A.1.1 and A.1.5. Most currently available
mechanisms target either MPI-based or Pthreads/OpenMP-based applications.

MPI-Based Applications. Communication in MPI-based applications is usually de-
tected by tracing MPI messages between tasks, for example, by creating function wrap-
pers for MPI functions that cause communication. Information stored about the mes-
sages includes the sender and receiver tasks, as well as the number of bytes. Examples
of such mechanisms are the MPI Parallel Environment (MPE) [Chan et al. 1998], ez-
trace [Trahay et al. 2011] and the Intel Trace Analyzer and Collector (ITAC) [Intel
2013].

MPIPP [Chen et al. 2006] is a framework to find improved task mappings for MPI-
based applications, consisting of a message tracer and a mapping algorithm. MPIPP
initially maps each task to a random core. At each iteration, MPIPP selects pairs of
tasks to exchange between cores such that the communication cost is reduced. The
quality of the determined mapping depends highly on the initial random mapping.

Mercier and Clet-Ortega [2009] evaluate task mapping for the NAS-MPI benchmark
suite [Bailey et al. 1991]. Communication patterns are generated via traces, and the
mapping is determined with the Scotch algorithm [Pellegrini 1994]. Processes are
mapped with the numactl command [Kleen 2004].

Mercier and Jeannot [2011] use a different approach to improve affinity. Instead
of modifying the location of MPI processes, they reorder ranks in such a way that
communication is improved. This has the advantage of supporting migrations in case
the communication behavior changes during execution. Communication patterns need
to be provided by the developer or can be generated with a trace. The order of the ranks
is determined with the Treematch algorithm [Jeannot et al. 2014].

Brandfass et al. [2013] use a similar rank reordering mechanism for MPI-based Com-
putational Fluid Dynamics (CFD) codes. Tasks are assigned by minimizing the overall
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communication cost using an approximation algorithm for the Quadratic Assignment
Problem (QAP). The mapping is performed by modifying the machine file that describes
the location of MPI processes at application start-up.

Applications Based on OpenMP and Pthreads. Offline profiling of applications that
use shared memory parallelization APIs, such as OpenMP and Pthreads, usually has a
higher overhead than MPI-based applications, as communication is performed implic-
itly through memory accesses [Diener et al. 2016], and not explicitly through function
calls.

Numalize [Diener et al. 2015b] is a mechanism to trace memory accesses of parallel
applications, based on the Pin dynamic binary instrumentation tool [Luk et al. 2005].
After analyzing the trace, Numalize outputs the communication matrix and improved
thread mappings for the current architecture, which can be applied by providing run-
time options.

A.1.4. Online Profiling. Autopin [Klug et al. 2008; Ott et al. 2008] executes a parallel
application with various mappings passed to it, monitoring the Instructions Per Cy-
cle (IPC) metric of each mapping. When profiling has finished, the application continues
execution with the mapping that resulted in the highest IPC. This profiling and migra-
tion process is continued throughout the whole execution. In this way, communication
is improved implicitly. However, the gains of this mechanism are highly dependent on
the set of initial mappings provided to Autopin.

The BlackBox scheduler [Radojković et al. 2013, 2012] is based on similar concepts.
It tests different thread mappings and executes the application with the mapping
that resulted in the highest performance. If the number of threads is low, all possible
thread mappings are evaluated, but if the number of threads is too high to evaluate all
mapping possibilities, BlackBox executes the application with 1,000 random mappings
to select the fastest one. BlackBox was evaluated on an 8-way SMT UltraSPARC T2
system with a parallel network packet filter benchmark.

The mechanisms of Tam et al. [2007] and Azimi et al. [2009] use hardware perfor-
mance counters of the IBM Power5 architecture to analyze memory accesses of parallel
applications. The mechanism reads a counter that contains the latest memory address
that resulted in a remote cache access and stores a list of these addresses for each core.
Periodically, the mechanism analyzes those lists. If several lists contain the same ad-
dress, the address is used for communication. Threads are then migrated such that the
number of remote accesses is reduced. This procedure is repeated throughout the exe-
cution. Due to the limitation to remote cache accesses, the accuracy of the mechanism
is limited.

The previously mentioned ForestGOMP mechanism [Broquedis et al. 2010a, 2010c]
also allows refining the thread mapping based on runtime information provided by
hardware counters. However, the authors do not specify which counters can be used
and do not provide further information on the implementation.

A.1.5. Runtime Options. When using runtime options to perform thread mapping, it is
necessary to analyze the communication through other means, such as source code
analysis or offline profiling presented previously. In contrast to source code changes,
specifying the mapping as a runtime option has no runtime overhead and requires
no recompilation. Runtime options are typically limited to specifying static mappings,
without migrations during executions.

Most runtime environments provide a default set of policies from which the user can
choose. In the Compact mapping, neighboring threads are mapped close to each other
in the hardware hierarchy [Eichenberger et al. 2012]. Such a mapping can be beneficial
when neighboring threads have a high level of communication among them. The Scatter
policy distributes threads as evenly as possible within the machine [Eichenberger
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et al. 2012], leading to a mapping where neighboring threads are mapped far from
each other. The RoundRobin mapping assigns threads to cores that have the same ID,
that is, thread 0 is mapped to core 0, thread 1 to core 1, and so on Argonne National
Laboratory [2014]. Most environments also support a Custom mapping, where the
exact placement of threads to cores can be specified by the user.

Some environments provide command line options to specify the mapping. For
example, MPICH has the -binding parameter for the mpirun command [Argonne
National Laboratory 2014]. Other MPI libraries provide a similar mechanism via files
that specify the mapping, such as Open MPI [Gabriel et al. 2004] with its rankfile
mechanism [The Open MPI Project 2013].

Many OpenMP frameworks offer selection of a thread mapping policy via en-
vironment variables. Two well-known mechanisms are the GOMP_CPU_AFFINITY of
GCC OpenMP [Eichenberger et al. 2012] and KMP_AFFINITY in Intel’s OpenMP im-
plementation [Intel 2012]. Version 4 of the OpenMP offers a portable variable,
OMP_PLACES [OpenMP Architecture Review Board 2013], which also supports speci-
fying different policies for different levels of nested OpenMP statements.

Several tools allow a thread mapping to be performed directly from the command line
of the parallel application. These include hwloc-bind [Broquedis et al. 2010b], taskset,
and numactl [Kleen 2004].

Hursey et al. [2011] present the Locality-Aware Mapping Algorithm (LAMA) for
Open MPI. LAMA is a mechanism to distribute processes among machines, sockets,
and cores, according to the general policy selected by the user. It creates a rankfile,
which can be used for subsequent executions.

A.2. System-Level Mechanisms

A.2.1. Offline Profiling. Although no explicit system-level offline profiling mechanism
currently exists, to the best of our knowledge, the Numalize tool [Diener et al. 2015b]
implements communication detection based on the physical system memory, not on the
virtual memory of the application. Therefore, it is possible to extend it to support a
system-wide profiling and mapping mechanism.

A.2.2. Online Profiling. Online communication detection has two main challenges, accu-
racy and overhead. Regarding the accuracy, since communication is implicit, care must
be taken to obtain accurate temporal information about the communication [Diener
et al. 2016]. Limiting the overhead means that efficient sampling strategies have to be
used in order to reduce the impact on the running application.

Cruz et al. [2012, 2015a] propose detecting the communication pattern by comparing
the contents of the Translation Lookaside Buffer (TLB). The most recently used pages
of a core have a corresponding entry in its TLB. The mechanism compares the contents
of all TLBs in the system and identifies as communication when the same entry is found
in the TLBs of different cores. Temporal information is maintained, since the lifetime of
TLB entries is limited. Most current hardware architectures require hardware changes
to support this technique, since the TLB contents are usually managed by the processor
and can not be accessed by software.

Cruz et al. [2012, 2014a] also proposed monitoring cache line invalidation messages
to determine which cores access the same cache line. Each invalidation message is
considered as a communication event, while the aggregated amount of communication
of all cores is used to estimate the behavior. Temporal information is kept updated
by adding an aging mechanism to the detected behavior so that old information is
gradually removed. This mechanism requires extensive hardware changes because it
adds a vector to each core to store the number of invalidation messages received by all
other cores.
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SPCD [Diener et al. 2013] and CDSM [Diener et al. 2015a] use page faults to detect
communication. Page faults by different processes at the same addresses are considered
as communication. To reduce the impact of old information, an aging mechanism is
used. In order to increase the accuracy of the mechanism, artificial page faults are
introduced during the execution of the parallel applications by iterating over the page
table and clearing the page present bit of selected pages, up to a limit of 1% of the total
number of pages. With these extra faults, the application behavior can be observed
throughout the whole execution, and threads can be migrated according to changes in
the behavior.

B. DESCRIPTION OF DATA MAPPING MECHANISMS

B.1. User-Level Mechanisms

B.1.1. Source Code Changes. Many libraries support NUMA-aware memory alloca-
tion. These include libnuma [Kleen 2004; Drepper 2007], the Memory Affinity inter-
face (MAi) [Ribeiro et al. 2009; Ribeiro 2011], and Minas [Ribeiro et al. 2010; Ribeiro
2011]. With these libraries, data structures can be allocated according to the specifica-
tion of the developer, for example, to a particular NUMA node, or with an interleave
policy. Such techniques can achieve large performance improvements but place the
burden of the mapping on the developer and might require rewriting the code for each
different architecture.

An example usage of such libraries is provided by Dupros et al. [2010], who per-
formed an in-depth analysis of the Ondes3D application [Dupros et al. 2008], which
simulates the propagation of seismic waves. They evaluate performance with various
data mapping strategies implemented with the help of the MAi library. Results show
that allocating memory pages on the NUMA node that performs the most accesses to
data structures resulted in the highest performance.

Cruz et al. [2011] use memory access tracing with the Simics microarchitecture sim-
ulator [Magnusson et al. 2002] to guide thread and data mapping decisions. The traces
are analyzed to find the placement of threads and data that results in the highest local-
ity of memory accesses. The mapping is implemented via the Minas framework for the
applications from the OpenMP implementation of the NAS Parallel Benchmark (NPB)
suite [Jin et al. 1999]. Due to the high simulation overhead, only small input sizes were
evaluated.

Majo and Gross [2012] perform an extensive analysis of the memory access behavior
of three parallel applications (streamcluster, ferret, and dedup) from the PARSEC
benchmark suite [Bienia et al. 2008]. They identify memory accesses to remote NUMA
nodes as a challenge for optimal performance and restructure each of the applications
to improve memory access locality, cache usage, and hardware prefetcher effectiveness.

Majo and Gross [2015] present a library for Intel Threading Building Blocks (TBB)
that allows a programmer to specify data distribution and computation schedules for
parallel applications. To improve portability, the programmer specifications can be
parametrized with the number of processors available at runtime, which is provided
by the runtime environment. The authors modify five applications from the NAS and
PARSEC benchmark suites and achieve performance improvements of up to 44% on
three machines compared to standard TBB.

Mariano et al. [2016] analyze a large irregular application, HashSieve [Mariano
et al. 2015], that is based on parallel memory accesses to large hash tables. Such a
memory access behavior is a challenge for NUMA architectures, as caches are mostly
ineffective (due to the high memory usage and unpredictable access behavior) and
offer few possibilities for locality improvements. The authors were able to improve this
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application by implementing a software prefetch mechanism and using an interleave
strategy for the data structures.

B.1.2. Compiler Analysis. Bircsak et al. [2000] describe a next-touch strategy in the
OpenMP runtime environment provided by the Compaq Fortran compiler. In next-touch
policies, first proposed by Noordergraaf et al. [1999], a page or data structure is marked
in such a way that it will be migrated to the node that performs the next access to
it. Bircsak et al. introduce special OpenMP pragmas to annotate the source code to
determine which variables should be migrated with this policy.

Nikolopoulos et al. [2000a, 2000b, 2000c] propose UPMlib, an OpenMP library that
gathers information about thread migrations and memory statistics of parallel applica-
tions to aggressively migrate pages between NUMA nodes when threads are migrated.
UPMlib intercepts thread migrations and uses hardware counters on SGI Irix ma-
chines to detect pages with large numbers of remote accesses, which are candidates for
migration.

The ForestGOMP framework [Broquedis et al. 2010a, 2010c] presented in Sec-
tion 4 also contains a NUMA-aware memory scheduler to improve memory affinity
for OpenMP applications. The thread teams created by parallel OpenMP sections have
a memory set attached to them, which the runtime library schedules to the same
NUMA node, thereby increasing memory access locality.

The previously mentioned Minas framework [Ribeiro et al. 2010, 2011] also includes
an optional source code preprocessor (MApp – Memory Affinity Preprocessor) to identify
memory access patterns to large arrays at compile time. For each array, the prepro-
cessor selects the most suitable data mapping policy and modifies the source code to
achieve the mapping. Apart from a recompilation, no user intervention is necessary.
However, the mechanism is limited to source code that can be analyzed at compile time
and does not support migrations.

The Selective Page Migration (SPM) mechanism [Piccoli et al. 2014] performs mem-
ory access analysis via compiler-inserted code dynamically during execution. The au-
thors modify the clang compiler [Lattner 2011] to instrument parallel loops. The instru-
mentation code predicts during runtime the memory access behavior of a loop before it
is executed, taking into account the actual execution parameters. The prediction guides
the migration of memory pages to the nodes where they will be accessed most during
the loop.

B.1.3. Offline Profiling. Several tools provide information about the memory access pat-
tern to pages of parallel applications and suggest policies that can improve the data
mapping. Numalize [Diener et al. 2015b] is based on the Pin DBI tool [Luk et al. 2005]
and traces all memory access by the application, aggregating the results on the page
granularity. Based on the measured behavior, Numalize suggests specific mapping
policies and stores them in files. These mappings can be applied with a Linux kernel
module that reads these files and applies the specified mapping.

TABARNAC [Beniamine et al. 2015] is an extension to Numalize that can provide
a graphical visualization of the page usage, helping the developer to understand and
improve an application’s memory access behavior. The authors use it to improve the IS
benchmark from the OpenMP implementation of NPB.

Several other tools have been proposed to analyze the memory access behavior on
NUMA machines. These include the HPCToolkit [Adhianto et al. 2010; Liu and Mellor-
Crummey 2014], MemAxes [Giménez et al. 2014, 2015], Memphis [McCurdy and Vetter
2010], and MemProf [Lachaize et al. 2012]. Although these tools can identify common
memory access issues, they usually do not provide improved mapping policies.
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B.1.4. Online Profiling. Löf et al. [2005] present and evaluate a next-touch mechanism
based on online profiling for applications running on the Solaris operating system.
The profiling is performed by periodically making a system call from the application
(madvise() with the MADV_ACCESS_LWP argument) that specifies address ranges for the
next-touch policy. This system call tells Solaris to migrate pages in that range to the
NUMA node from which the next memory access is performed. The advantage of such
a mechanism for the developer is that he does not have to determine an improved data
mapping, he just needs to specify at which points during execution the access behavior
might change.

Goglin and Furmento [2009] implement two next-touch mechanisms for Linux based
on the ideas presented by Löf et al. [2005]. Their first mechanism was implemented
completely in user-space without any special kernel support. An application uses the
mprotect() system call to mark an address range as inaccessible. On the next memory
access to an address within that range, the kernel signals a segmentation fault, which
can be caught and handled by the application. In the segmentation fault handler of the
application, the page that was accessed is moved to the node where the access came
from, and the page is marked as accessible again. Terboven et al. [2008] implement a
very similar mechanism for applications based on OpenMP. They additionally discuss
the importance of thread affinity.

Goglin and Furmento’s [2009] second mechanism contains kernel support for migra-
tion, although the next-touch policy is still guided from user space. Similar to before,
an application informs the kernel via a system call about an address range for the
next-touch and the kernel marks these pages as inaccessible. On the next memory ac-
cess, the kernel migrates the page and marks it as accessible, without an intervention
from the application. The authors compare both implementations and conclude that
the mechanism with kernel support is more efficient, mostly due to fewer transitions
between kernel and user space.

Lankes et al. [2010] independently developed a very similar kernel-based mechanism
for Linux and report comparable results regarding the difference between pure user
space and kernel-assisted migrations.

Ogasawara [2009] proposes a data mapping method for Java applications via a
NUMA-aware Garbage Collector (GC). During each garbage collection run, the JVM de-
termines which thread accesses each object the most, called the Dominant Thread (DoT)
of each object. After determining this, the GC migrates each object to the NUMA node
where the thread is running.

B.1.5. Runtime Options. The numactl application [Kleen 2004] is a Linux tool to specify
process bindings (as discussed in Section A.1.5) and can also be used to select different
data mapping policies for applications, such as an interleave policy or allocation on a
specified NUMA node.

B.2. System-Level Mechanisms

B.2.1. Offline Profiling. Bolosky et al. [Bolosky et al. 1991; Bolosky and Scott 1992] create
a model for data mapping based on replication and migration of pages for early NUMA
systems. The model is based on the cost of memory accesses and the cost of migrations.
Their model is evaluated by single-stepping and decoding each instruction of a set of
parallel applications in order to trace all memory accesses to data. With the help of
the trace and their model, the authors implemented and evaluated an optimal data
mapping policy that can greatly reduce the cost of memory accesses.

Chandra et al. [1994] studied page migration policies in the Stanford DASH com-
puter [Lenoski et al. 1992], consisting of 16 MIPS R3000 processors. Information about
page usage was gathered offline by measuring cache misses and TLB misses on the
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page granularity with information provided by the MIPS R3000 processor. Based on the
collected information, the authors simulate several migration policies with different
migration limits. Thread mapping is handled by reducing the likelihood of migrations
between processors and NUMA nodes in the IRIX scheduler used in the experiments.
They find that basing migration decisions on cache miss information results in the high-
est overall gains, although TLB misses proved to be almost as effective. The authors
also configured their mechanism to run online. However, no performance improve-
ments were achieved in this scenario due to the high overhead of the virtual memory
subsystem of the IRIX operating system.

Marathe and Mueller [2006] make use of hardware counters from the Performance
Monitoring Unit (PMU) of Intel Itanium 2 processors to generate samples of memory
addresses accessed by each thread. The profiling mechanism imposes a high overhead,
as it requires traps to the operating system on every high-latency memory load oper-
ation or TLB miss. For this reason, the profiling is enabled only during the beginning
of each application, therefore losing the opportunity to handle changes during the
execution of the application. They also propose that the developer of the application
should instrument the source code of the application to provide the operating system
with information regarding the areas of the application that should have their memory
accesses monitored.

Marathe et al. [2010] use the same hardware-based profiling mechanism to generate
memory access traces for data mapping. In the software level, they capture the memory
addresses sampled by the PMU and associate them to the thread that performed the
memory access, thus generating a memory trace. The memory trace is then analyzed
to select an improved data mapping based on improving the locality of accesses. In sub-
sequent executions of the application, its pages are mapped according to the improved
mapping.

B.2.2. Online Profiling. LaRowe et al. [1991, 1992] present an analytical model of page
placement for early NUMA architectures without hardware cache coherence. They
propose page migration and replication policies, where the same page is stored on
multiple NUMA nodes. Implemented in the DUnX research kernel, policy decisions
are performed during page faults, with a page scanner daemon periodically triggering
additional evaluations via extra page faults. The coherence between replicated pages
is maintained with the same software mechanism that performs cache coherence. No
balancing of pages or thread mapping is performed. Similarly, Bolosky and Scott [1992]
also mention page-fault–based online policies.

Verghese et al. [1996a, 1996b] propose similar dynamic page migration and replica-
tion mechanisms for SGI’s IRIX operating system but use cache misses as a metric to
guide mapping decisions. They require information about all cache misses and migrate
pages to a node with lots of cache misses from a single thread or replicate a pages if
it receives a lot of cache misses from multiple threads. The authors also evaluate the
number of TLB misses as a metric to guide the mapping but conclude that it is not
accurate enough for data mapping. For modern architectures, this detailed informa-
tion about cache misses cannot be gathered with an acceptable overhead. Cache misses
themselves are a more indirect measure of the memory access behavior, especially re-
garding the node where a page should be mapped to. On modern systems with large
caches, cache misses might indicate that the page is not used frequently from a node,
which can imply that a page should not be migrated to a node with lots of cache misses
to that page. Furthermore, this proposal has similar drawbacks as LaRowe’s, such as
the lack of balance-based data mapping and a thread mapping policy, as well as the
overhead of maintaining coherence of replicated pages on modern systems.

Awashti et al. [2010] propose two page migration mechanisms that use queuing
delays and row-buffer hit rates from memory controllers. The first is called Adaptive
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First-Touch and consists of gathering statistics of the memory controller to map the
data of the application in future executions. The second mechanism uses the same
information but allows online page migration during the execution of the application.
They select the destination NUMA node considering the difference of the access latency
between the source and destination NUMA nodes, as well as the row-buffer hit rate and
queuing delays of the memory controller. The mechanism does not have information
about which data each thread accesses. The page to be migrated is randomly chosen
and may lead to an increase in the number of remote accesses.

More recent proposals in operating systems also use page faults for data mapping.
Modern versions of the Linux kernel (since version 3.8) include the NUMA Balancing
technique [Corbet 2012b] for the x86_64 architecture. NUMA Balancing support was
extended to the PowerPC architecture in kernel version 3.14. A previous proposal with
similar goals was AutoNUMA [Corbet 2012a]. NUMA Balancing uses the page faults
of parallel applications to detect memory accesses and performs a sampled next-touch
strategy. Whenever a page fault happens and the page is not located on the NUMA node
that caused the fault, the page is migrated to that node. However, this mechanism keeps
no history of accesses, which can lead to a high number of migrations, and it performs
no thread mapping to improve the gains of the data mapping.

Current research uses a history of memory accesses to limit unnecessary migrations
and perform thread mapping. The Carrefour mechanism [Dashti et al. 2013; Gaud
et al. 2015] has similar goals as NUMA Balancing, but uses Instruction-Based Sam-
pling (IBS) [Drongowski 2007], available in recent AMD architectures, to detect the
memory access behavior. It maintains a history of memory accesses to limit unnec-
essary migrations. Additionally, it allows replication of pages that are mostly read.
However, the authors need to use the sampled accesses to predict if a page will be writ-
ten to, as these writes have a large overhead due to the coherence, and the OS keeps
only very coarse-grained information about the write permissions to pages [Basu et al.
2013]. To limit the runtime overhead, Carrefour limits its characterization and data
mapping to 30,000 pages [Dashti et al. 2013] (corresponding to about 120MByte of
main memory with 4KByte pages), which limits its applicability to small applications.
The authors suggest that Carrefour could be ported to Intel-based architectures via
the Precise Event-Based Sampling (PEBS) framework [Levinthal 2009].

The kernel Memory Affinity Framework (kMAF) [Diener et al. 2014; Diener 2015]
uses page faults to detect the memory access behavior. Whenever a page fault happens,
kMAF verifies the ID of the thread that generated the fault, as well as the memory
address of the fault. To increase its accuracy, kMAF introduces additional page faults.
These additional page faults impose an overhead to the system, since each fault causes
an interrupt to the operating system. Like other sampling-based mechanisms, kMAF
has to limit to the number of samples of memory accesses to control the overhead,
limiting the accuracy of the detected memory access behavior.

Tikir et al. [2004, 2008] use UltraSPARC III hardware counters to provide informa-
tion for the data mapping. They bind the threads to the cores using a round-robin policy,
without considering any data sharing behavior. The hardware counters are provided
by the Sun Fire Link, which counts and samples the transactions on the address bus of
the Sun Fireplane interconnect. They insert instrumentation code into the application
with the Dyninst library [Buck and Hollingsworth 2000] to gather profiling informa-
tion, to migrate the memory pages, to bind application threads to processors, and to
detect the application termination. The authors also propose using other information
to guide mapping, including statistics from the Translation Lookaside Buffers (TLBs).
Their proposal focuses on architectures with software-managed TLBs, which is only a
minority of current systems.
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The Locality-Aware Page Table (LAPT) [Cruz et al. 2014b] is an extended page table
that stores the memory access behavior for each page in the page table entry. This
memory access behavior comprises the last threads that accessed the pages. LAPT also
keeps a communication matrix containing the affinity between the threads. This infor-
mation is updated by the Memory Management Unit (MMU) on every TLB access. The
operating system evaluates the page table periodically, updating the affinity between
the page and the NUMA nodes for data mapping. Additionally, it analyzes the commu-
nication matrix to determine the thread mapping. Threads and data are periodically
migrated according to the determined memory access behavior.

Similarly to the Carrefour, kMAF, and NUMA Balancing mechanisms, Gennaro
et al. [2016] propose a mapping technique based on the page faults of multithreaded
applications. In contrast to the previous mechanisms, Gennaro et al. identify multiple
accesses from different threads to the same pages as a source of inaccuracy for such
detection techniques, as a page fault caused by one thread will be resolved, at which
point it masks eventual accesses to the page by other threads. The authors solve this
issue by creating additional thread-specific page tables that can each resolve their own
page faults. In this way, threads that access the same data do not mask each others’
page faults.
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Eduard Ayguadé. 2000b. UPMLIB: A runtime system for tuning the memory performance of OpenMP
programs on scalable shared-memory multiprocessors. In Languages, Compilers, and Run-Time Systems
for Scalable Computers (LCR’00). 85–99. DOI:http://dx.doi.org/10.1007/3-540-40889-4_7

Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D. Polychronopoulos, Jesús Labarta,
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