
Design space exploration for PIM architectures
in 3D-stacked memories

João Paulo C. de Lima
Fed. University of Rio Grande do Sul

Porto Alegre, RS, Brazil

Paulo Cesar Santos
Fed. University of Rio Grande do Sul

Porto Alegre, RS, Brazil

Marco A. Z. Alves
Fed. University of Paraná

Curitiba, PR, Brazil

Antonio C. S. Beck
Fed. University of Rio Grande do Sul

Porto Alegre, RS, Brazil

Luigi Carro
Fed. University of Rio Grande do Sul

Porto Alegre, RS, Brazil

ABSTRACT
Scaling existing architectures to large-scale data-intensive appli-
cations is limited by energy and performance losses caused by
off-chip memory communication and data movements in the cache
hierarchy. Processing-in-Memory (PIM) has been recently revisited
to address the issues of memory and power wall, mainly due to
the maturity of 3D-stacking manufacturing technology and the
increasing demand for bandwidth and parallel access in emerg-
ing data-centric applications. Recent studies have shown a wide
variety of processing mechanisms to be placed in the logic layer
of 3D-stacked memories, not to mention the already available 3D-
stacked DRAMs, such as Micron’s Hybrid Memory Cube (HMC).
Nevertheless, a few studies compare PIM accelerators to each other
and have made efforts to indicate the trade-offs between power,
area, and performance. In this paper, we review different state-of-
the-art 3D-stacked in-memory accelerators, and we analyze them
considering important constraints regarding area and power due
to critical embedded nature of PIM. Aiming to point in the direc-
tion of massive parallel PIM designs, we take the simplest design
found in this survey, and we explore the architectural design space
to meet the constraints imposed by HMC. Our results show that
the most straightforward approach can provide the highest per-
formance while consuming the lowest amount of area and power,
which makes it the most suitable design found in this survey for an
energy-efficient in-memory accelerator, whether it goes in High-
Performance Computing or Embedded Systems. For instance, the
outstanding point in the design space indicates that a performance
density of 320 GBps/mm2 and a performance efficiency of 0.6 GBp-
s/mW can be achieved in the best scenario, that is, when a massive
parallel application reaches the peak bandwidth.

CCS CONCEPTS
• Hardware → Emerging architectures;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CF ’18, May 8–10, 2018, Ischia, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5761-6/18/05. . . $15.00
https://doi.org/10.1145/3203217.3203280

KEYWORDS
Processing inMemory, Near Data Processing, HybridMemory Cube,
3D-stacked memories, vector processing, energy efficiency

ACM Reference Format:
João Paulo C. de Lima, Paulo Cesar Santos, Marco A. Z. Alves, Antonio C. S.
Beck, and Luigi Carro. 2018. Design space exploration for PIM architectures
in 3D-stacked memories. In CF ’18: CF ’18: Computing Frontiers Conference,
May 8–10, 2018, Ischia, Italy. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3203217.3203280

1 INTRODUCTION
In the last decades, memory architectures have continually under-
gone several improvements in speed bandwidth, power efficiency,
and latency. Nonetheless, improving process technology, increas-
ing clock frequency, decreasing voltage has not been enough for
breaking the walls (memory, bandwidth and power wall) which
are the main bottleneck of conventional memory systems. As the
gap between the technological basis of processors and memories
increasingly widen, even more pressure on the memory system
can be seen. Processor with a novel technology, for instance, can
issue loads faster and more data and instructions are required at a
higher bandwidth. This situation will cause more cache-lines to be
moved through the cache hierarchy, potentially being replaced and
underutilized, leading to a significant data-transfer overhead and
demand for higher bandwidth [33].

Due to constraints compelled by the end of Dennard scaling [8]
and the increasing demand for performance and exascale systems,
computer architects are required to come up with new designs to ex-
tract performance where it provides more speed-up and consumes
less energy. A viable approach to achieve such computing capacity
consists of avoiding data movement by performing computation
where the data resides, which is the main purpose of Processing-
in-Memory (PIM) and Near-Data Processing (NDP) concept and
specialization of processing units [33]. Moreover, 3D-stacking tech-
nologies open up opportunities for new designs to tackle memory
wall problems. However, 3D-stacking PIM accelerators present a
huge change to the current hardware architecture design and, con-
sequently, reveal new challenges in how massive acceleration can
be extracted.

The main problem addressed on this paper is related to an
absence of discussion of costs in PIM logic designs. Recent studies
have explored different organizations of processing elements, from
programmable cores to custom logic [2, 12, 29, 36]. However, they
can barely meet 3D-Dynamic Random Access Memory (DRAM)

113

https://doi.org/10.1145/3203217.3203280
https://doi.org/10.1145/3203217.3203280
https://doi.org/10.1145/3203217.3203280

CF ’18, May 8–10, 2018, Ischia, Italy J.P.C. de Lima et al.

constraints and match the high bandwidth provided by these mem-
ories. Given these issues, how do we find the best trade-off between
area, power density, and processing capability for in-memory ac-
celerators and which organization best suits PIM?

Observation 1) Power dissipation is still a limiting factor for
stacking memory directly on top of high-performance processors
since heat generated by CPU cores reduces retention time of data in
DRAM dies [10, 34]. Although regular cores may not be beneficial
for PIM architectures, many current studies utilize ARM cores [2,
5, 32] or lightweight alternatives [20] to build a massive parallel
system.

Observation 2) Operations involving a large amount of data,
such as gather/scatter, sorting, traversal, and data reorganization,
may have significant improvement in terms of area, power and
performance using simpler fixed-function PIM implementations in
comparison with a fully-programmable PIM design [3, 32].

Observation 3) An in-memory vector unit has the potential
to exploit the maximum internal memory bandwidth. Even for
smaller vector operations, we can still take advantage of memory
parallelism on distinct vector operations as independent Single
Instruction Multiple Data (SIMD) issues [31].

Our goal is to evaluate the efficiency of general-purpose in-
memory accelerators by reviewing state-of-the-art PIM designs and
doing a theoretical comparison based on results extracted from
them. In addition, this survey presents a design space exploration
in a simple PIM device found in the related works to highlight
some of the potential trade-offs of the different approaches for
PIM accelerators. Our Contribution highlights advantages and
drawbacks of state-of-the-art PIM designs, mainly establishing the
relationship between bandwidth, area, and power, while comparing
these designs to a SIMD/vector processor based on the work of
[31].

In the following section, we present an overview of 3D high-
densities memories and PIM architectures. Then, an evaluation of
different PIM approaches are made in Section 3 and we discuss
the main features of each design and their sources of performance
and power efficiency improvement. From the related works, we
choose the simplest design that presents the highest processing
bandwidth and we explored the design space of in-memory vector
unit by adjusting the Functional Unit (FU) design in Section 4. In
section 5, we compare the efficiency metrics of each related work
(area, power consumption, and bandwidth capabilities) using our
fixed-function PIM from Section 4 as baseline.

2 BACKGROUND
In this section, we provide an overview of fundamental aspects
of Commercial off-the-shelf (COTS) 3D-stacked memories and a
description of Processing-in-Memory (PIM) architectures.

2.1 3D high-density memories
High-density 3D memories rely on multiple stacked DRAM dies to
provide high bandwidth and capacity to meet the demand of today’s
system workloads. Most of the today’s major memory manufac-
turers develop 3D-DRAMs, such as Samsung’s DDR4, Tezzaron’s
DiRAM4, AMD and Hynix’s High Bandwidth Memory (HBM) and
Micron’s Hybrid Memory Cube (HMC).

As described in the last specification [17], the HMC is a package
containing either four or eight DRAM die and one logic die stacked
together and connected by Through-Silicon Via (TSV), as shown in
Figure 1. Within each cube, the memory is organized vertically into
vaults, which consist of a group of corresponding memory portions
from different DRAM dies combined with a vault controller within
the logic die. Each HMC contains 32 vaults and each vault controller
is functionally independent to operate upon 16 memory banks in
the eight DRAM layers configuration. The available bandwidth
from all vaults is up to 320 GBps and is accessible through multiple
serial links, each with a default of 16 input lanes and 16 output
lanes for full duplex operation. Moreover, the HMC specifies atomic
requests commands which enable the logic layer to perform read-
update-write operations atomically on data using 16-byte operands.

Due to independent access and simple processing capabilities
in the logic layer, HMC is broadly chosen as target device in PIM
architecture researches [2, 4, 5, 32].

2.2 PIM architectures
The main purpose of performing computation near the data resides
is to take advantage of minimum latency and higher bandwidth
available internally in the memory device. Although PIM in 3D-
DRAM is the most popular form of integration, processing elements
can also be placed in different levels of the memory hierarchy, such
as cache [1] and storage memory [14], and combined with different
memory technologies, e.g. phase-change memory and resistive
RAM.

Several attempts of integrating processing logic at different loca-
tions within planar and stacked DRAM memory chips were stud-
ied (e.g. between the sense amplifiers and the column decoder,
distributed in each vault of a 3D-stack chip, embedded logic die
between DRAM dies) [33]. However, only with the emergence
of 3D-stacking technology that architectural studies about 3D-
stacked PIM have regained great interest. Most of the studies rely
on general-purpose architectures, but a significant part of them
propose application-specific and custom logic. In fact, [23] has
categorized PIM architecture in three classes:
• Non-compute Logic-in-Memory - This class includes logic
in memory which is responsible for software-transparent
features, such as in-stack integration of memory controller
and built-in self-test capabilities present in Micron’s HMC
[17].

Logic
Layer

DRAM
Layer

TSVs

VaultLinks

Figure 1: HMC layout comprises eight DRAM layers and a
base logic layer connected by TSVs and vertically organized

in vaults.

114

Design space exploration for PIM architectures
in 3D-stacked memories CF ’18, May 8–10, 2018, Ischia, Italy

• PIM with Fixed-function Operations - This class pro-
vides pre-defined or fixed operations based on existing mem-
ory access instructions. Fixed-function PIM operations can
be divided into Bounded-operand PIM operation (BPO), which
comprises a single operation or a limited set of operations
on single or multiple data, and Compound PIM operation
(CPO), which includes a dynamic number of operations and
arbitrary number memory location. [15, 21]
• Fully programmable PIM - The last class comprises full
or simplified processors which fetch, decode and execute
instructions from the code offloaded to the PIM accelerator.

3 ADDRESSING ON THE EFFICIENCY OF
STATE-OF-THE-ART PIM ARCHITECTURES

There is an enormous space for design exploration in PIM archi-
tectures and several attempts have been made in the past years.
Since 90’s, projects such as [11, 19, 27] introduced PIM architec-
tures that exploit lower access latency and higher bandwidth by
moving processing logic closer to the memory. For many years, PIM
architectures faced the lack of a viable manufacturing technology
for processor logic and DRAM integration into a single chip as its
main obstacle, and most of the projects made in that time were only
for academic purpose. In the years of 2D-integrated research, most
of the efforts showed that specialized architecture can reveal mas-
sive speed-ups. Computational RAM [11], Intelligent RAM [27] and
[19] integrated processing elements to the memory die to perform
Single Instruction Multiple Data (SIMD) streams, query processing,
graph processing, and other irregular computations.

Since 2013, 3D-stacked PIM has regained attention and PIM
projects have revisited different processing elements and organiza-
tions, from simple cores to Application Specific Integrated Circuits
(ASICs) and reconfigurable blocks, to provide a balance of energy-
efficiency, area-efficiency and flexibility for PIM accelerators. We
limited our analysis to those papers that propose flexible PIM ar-
chitecture integrated in logic layer of 3D-stacked memories. We
considered several studies from 2014 to 2017 and we categorize
them according to the main processing element which the logic
layer is built upon: ARM cores [2, 5, 9, 29, 32], alternative cores
[20, 25], SIMD units [26, 31], Graphics Processing Unit (GPU) [35]
and Coarse-Grain Reconfigurable Array (CGRA) [12].

In past studies, [35] integrated Compute Units (CU) based on
AMD’s Graphics Core Next (GCN) architecture, and sized the num-
ber of CUs by establishing the power and area budget according
to HMC constraints. The authors of [29] analyzed the impact of
ARM cores in the logic layer for embarrassing parallel and largely
localized memory access workloads. The Active Memory Cube, a
vector architecture capable of performing floating-point, predicated
operations and gather/scatter access across HMC, revealed huge
performance for matrix multiplication and DAXPY kernels [25].
Tesseract is an accelerator for large-scale graph processing which
places ARM core in each HMC vault [2].

A heterogeneous reconfigurable array for PIM systems, which
combines both coarse-grain and fine-grain logic blocks, is presented
by [12] and outperforms FPGA and CGRA-based PIM system on ker-
nels of graph processing, MapReduce, and Deep Neural Networks.
The authors of [26, 30, 31] proposed a fixed-function accelerator

based on Intel’s Advanced Vector Extensions (AVX) to perform
data transfer, data reordering, logical, floating-point and integer
operations, and evaluate the mechanism on processing query over
column database, spiking neural networks and operations on linked
data structures. The study proposed by [5] presented the Smart
Cube Memory and a full system analysis, and evaluated gains of
latency reduction on graph kernels.

The authors of [9] revealed huge performance speed-up on ba-
sic operators of data analytic processing by placing SIMD-enabled
ARM cores on each HMC vault. The Harmonica core is a light-
weight Single Instruction Multiple Thread (SIMT) core designed
specifically for 3D-stacked DRAMs. [20] presented a description of
Harmonica’s micro-architecture, Instruction Set Architecture (ISA),
and interface for thread creation, and evaluated the mechanism
on several kernel applications as well. A design space exploration
on ARM cores in the logic layer is presented by [32], where they
established a power budget and varied frequency, cache size, num-
ber of cores and, finally, estimated its impact on MapReduce and
OpenMP benchmarks. In the following sections, the approaches
and results from previous state-of-art works are compared to each
other in order to guide future designs.

3.1 Application and performance
considerations

CPUs and GPUs have been continually evolving towards higher
frequencies and number of Functional Units (FUs) because the
source of performance improvement in traditional architectures is
still based on processing bandwidth. Although recent memories
cannot deliver data at the same rate CPUs and GPUs can consume,
compute-bounded applications are mostly impacted by processing
power and memory latency, rather than by memory bandwidth. On
the other hand, the performance of memory-bounded applications
depends more on memory bandwidth.

To demonstrate how processing bandwidth can determine the
compute-bounded application performance, we take mean GFlops
rate of two simple benchmarks running on GPUs. The first one is an
SGEMM microbenchmark running on a GeForce GTX280. Increas-
ing the order of the matrix to 4096 elements, we are able to saturate
the processing bandwidth to 370 GFlop/s. Although GTX280 can
theoretically provide 933 GFlops, the saturation bandwidth rep-
resents more than 10 times the memory bandwidth available on
this device (141.7 GBps). The second example is an N-body bench-
mark, a simulation of a dynamical system of particles, from CUDA
samples source code in a Titan Xp GPU. The N-body simulation
can achieve up to 7904 GFlop/s, which represents 65% of the maxi-
mum processing bandwidth and more than 14 times the memory
bandwidth available on Titan Xp.

In Section 2.1 we explained how 3D-DRAMs can provide a mas-
sive memory bandwidth. Assuming that the HMC architecture can
deliver up to 10 GBps per vault, each Processing Unit (PU) needs
to deliver more than 10 GBps to take full advantage of internal
memory bandwidth. Moreover, considering that most of the data-
intensive applications also present a little but representative amount
of reuse, the processing power of each PU ideally must be greater
than memory bandwidth as well.

115

CF ’18, May 8–10, 2018, Ischia, Italy J.P.C. de Lima et al.

Table 1

Reference Technological Number of vaults Number of Logic Area Maximum bandwidth Power
process per device cores description (mm2/vault) per vault (GBps) (mW/vault)

A [35] 16nm 16 12 AMD’s Compute Unit (CU) @650MHz 2.5 120* 625
B [29] 32nm 16 16 ARM Cortex-A5 @1GHz 0.51 8* 80
C [25] 14nm 32 32 4-lane VLIW-based @1.25 GHz 0.8# 40 312
D [2] 28nm 32 32 ARM Cortex-A5 + FPU @2GHz 0.68 16* 320
E [12] 45nm 8 n/a HRL @200MHz 6 51.2 625

F [26, 30, 31] 32nm 32 32 Reconfigurable Vector Unit (RVU) @1GHz n/a 320 206
G [5] 28nm 16 1 OoO ARM Cortex-A15 @1GHz 4.13 1 37.5
H [9] 28nm 32 32 ARM Cortex-A35 SIMD 1024-bit @1GHz 1.15 128 180
I [20] 15nm 32 32 Harmonica (SIMT) @650MHz 1.5 12 300
J [32] 40nm 16 16 ARM Cortex-A5 @1.4GHz 0.51 11.2* 625

* Estimated values based on ARM Cortex-A5 and -A15 data-sheets. # Estimated area.

A typical low-power Out-of-Order (OoO) core can achieve a
peak bandwidth much lower than each HMC vault is capable of
providing, which end up being a limiting factor to extract mem-
ory parallelism in PIM architectures. A common ARM Cortex-A57
@2GHz, for instance, can read up to 5.3 GBps in an ideal case
[9]. In addition, the results of [29] cope with such statement: data-
intensive applications, such as MapReduce kernel, are limited to
achieve a peak read bandwidth of approximately 3.4 TBps because
the processing power is limited to 4 TBps (512 PIM cores), de-
spite the environment were capable of providing 8 TBps (32 HMC).
MapReduce kernels are a great example of how applications em-
barrassing parallel and mostly memory-bounded can be harmed by
CPU designs that cannot match 3D-DRAMs bandwidth.

In terms of bandwidth and performance, the designs proposed by
[9, 12, 25, 31, 35] present the highest streaming bandwidth among
the studies listed in Table 1. The seventh column in Table 1 repre-
sents the maximum theoretical bandwidth that can consume from
each vault. Coupled with SIMD-enabled operations, high streaming
bandwidth is widely known as the main source of performance
improvement for data-intensive applications. Although each design
in Table 1 uses different benchmarks, they provide an evidence that
processor bandwidth is a limiting factor to speed-up most of the
data-intensive applications in PIM architectures.

3.2 Area and power considerations
One of the main problems of manufacturing 3D-stacked PIM accel-
erators integrated to is to meet 3D-DRAM constraints. 3D-stacked
PIM must be: area-efficient, i.e. it must provide compute throughput
to match high bandwidth available in HMC, and power-efficient, i.e.
it must reduce total energy consumption and avoid causing thermal
issues in DRAM stacks [12].

The first generation of HMC devices, which comprises 1Gb dis-
tributed in 4 DRAM layers (50nm) and a logic layer (90nm), con-
sumes 11W [28]. On the other hand, [10] discuss the thermal feasi-
bility of 3D-stackedmemories logic die and find amaximum of 8.5W
of power consumption in the logic layer considering a low-cost
cooling mechanism. Based on the power budget of 11W presented
by [28], several designs [2, 12, 32, 35] define the maximum number
of cores by this power budget (respectively 625mW and 312mW per
vault for the first and second generation of HMC), although 11W
can represent an increment of 100% in original HMC power. Area
constraints are discussed in Section 4 since we estimated the area
available on HMC by downscaling to more recent technological
process and also by scaling to higher capacity memories.

Table 1 also summarizes the area and power consumption of
PU normalized to each vault. From this Table, one can observe
that designs with simple FUs capable of performing large vector
operations can provide a better compromise between area, power
and bandwidth per vault. The data presented in Table 1 will be
used later in Section 5 to analyze the efficiency of each design
and compare them with the results obtained in the design space
exploration in Section 4.

4 DESIGN SPACE EXPLORATION FOR
IN-MEMORY VECTOR UNIT

In Section 3 we conclude that fixed PIM approach is the most effi-
cient. In this way, among several approaches and to better illustrate
our conclusion we targeted on redesigning the mechanism pre-
sented by [31] without harming its performance.

First, we chose to use a traditional set of adders, multipliers, and
multiplexers to implement the FUs that allows the SIMD operations
proposed by [26, 31]. Furthermore, we take into account the differ-
ent operations and instructions needed to execute the applications
that authors considered among their work presented on [26, 30, 31].
Moreover, authors claimed that their approach is capable of parallel
compute up to 64x 32bits or 32x 64bits operations per HMC vault.
Also, considering that a FU of 64bits is able to compute 32bits op-
erations, another 32 FUs of 32bits need to be available in order to
make possible the 64x 32bits parallel operations.

Therefore, we implemented a vector unit based on traditional
units containing 32x32bits and 32x64bits, integer and float-pointing
FUs (adders and multipliers), an 8x32x64bits register file, and a
Finit State Machine (FSM) able to represent a single RVU instance.
Supported by Cadence RTL Compiler tool, we extracted area, power
consumption, and operating frequency for our implementation in
32nm process technology. Table 2 summarizes the synthesis results
of traditional FUs for different frequencies. From this table it is
possible to notice that the power consumption reaches 2.3W for a
single vault, which is considerably high since our case study [31]
claims 206mW per vault. It means that a different organization of
FUs is required.

Although the characteristics of HMC make its logic layer suit-
able for PIM mechanisms, the design of this layer must meet the
constraints given by DRAM layers. According to [18], a design
comprising of 1Gb DRAM cells per layer distributed along 16 vaults
takes 68mm2 using 50nm of technological process. Hence, theoreti-
cally up to 68mm2 of circuit logic can be supported by this layer.
Moreover, other studies also found area results ranging from 3.5

116

Design space exploration for PIM architectures
in 3D-stacked memories CF ’18, May 8–10, 2018, Ischia, Italy

Table 2: Per vault grouped set of traditional FUs
32x64bits + 32x32bits adders and multipliers

Frequency(MHz) Bandwidth (GB/s) Area(mm2) Power(mW)

250 64 0.703 350

500 128 0.916 983

750 192 1.123 1770

1000 256 1.210 1969

1250 320 1.351 2360

to 4.4mm2 [9, 13] per vault for 1Gb DRAM cells and 16 vaults. Al-
though we chose an 8GB, 8 layers, 32 vaults HMC configuration
for our evaluation which would increase the total area, we also
chose to downscale the technological processing to 32nm. We use
CACTI-3D [7] for estimating the area of 8GB HMC, which results
in 144.13mm2. The configuration has 32 vaults which provides an
area of 4.5mm2 per vault where the FUs must fit in the available
logical layer.

One can observe from Table 2 that for an operating frequency
of 1GHz, 1.2mm2 is occupied by the 64 FUs while achieving near
2W of power consumption. Despite the area can fit on the available
logical space of 4.5mm2, the power consumption for each vault can
increase 6 times the total power of HMC [18], while resulting in
more than 64W for all 32 vaults. In this way, although the fixed
PIM using huge vector approach has proved to be more efficient
in theory, a new approach in terms of efficient FUs design urges.
Therefore, we focus on reducing the power consumption of the
required set of FUs.

4.1 Architecture Model Definition
Concerned about the power required by the simple FUs approach,
this section presents a design able to maintain the same bandwidth
available on [31], as presented on Table 2, while it reduces the
power consumption with no performance harm.

Traditionally, FUs of 64bits are able to operate over operands of
32bits, as aforementioned. In our design, we go further allowing
each 64bits unit capable of operating on 1 operand of 64bits, 2
operands of 32bits, or 4 operands of 16 bits in parallel. Furthermore,
by adopting this design we were able to reduce the needed amount
of units, which means that instead of using a total of 64 units per
vault (32x 64bits + 32x 32bits) we are able to use 32 units of 64bits

Result

Shared
Resources

1
6

b
it

s
d

at
ap

at
h

Multiple-Precision
Floating-Point

Multiple-Datapath

1
6

b
it

s
d

at
ap

at
h

1
6

b
it

s
d

at
ap

at
h

1
6

b
it

s
d

at
ap

at
h

1
6

b
it

s
d

at
ap

at
h

Multiple-Width
Integer

Multiple-Datapath

1
6

b
it

s
d

at
ap

at
h

1
6

b
it

s
d

at
ap

at
h

1
6

b
it

s
d

at
ap

at
h

Operand A

16bit 16bit 16bit 16bit

Operand B

16bit 16bit 16bit 16bit

Operand C

16bit 16bit 16bit 16bit

Interconnections

64bits

32bits 32bits

Figure 2: Multiple-Width Multiple-Datapaths
Fused Integer/Floating Point Functional Unit.

capable of computing operations over 32x 64bits, 64x 32bits or
128x 16bits.

In order to implement the proposed design, we based our work
on [6, 16, 24]. In [16] is shown a multi-precision floating-point
multiply-add fused unit able to share resources between single and
double precision floating-point operands, while the work presented
in [24] is able to share resources for single, double and quad pre-
cision floating-points. The work presented in [6] shows a way to
share resources between integer and floating-point operands. By
sharing hardware, these works are able to reduce area and power
consumption. Our work focus on supporting half, single, and dou-
ble precision floating point numbers, and also integer operands of
16bits, 32bits, and 64bits. In this way, our contribution mixes pre-
viously explained ideas while splitting the adders and multipliers
to allow its parallel utilization for different operand sizes. Figure 2
illustrates the proposed hardware organization.

We chose to implement a 16bits datapath for integer and floating-
point operations. Initially, these datapaths share adders and multi-
pliers in a similar way as presented in [6]. After that we integrate
2 and 4 datapaths, which allows computing 32 and 64 bits respec-
tively, inspired by [16, 24]. In this way, to reproduce the work of
reference presented in [31], 32 FUs are grouped as illustrated on
Figure 3. The design presented shows 32 register-files and 32 FUs
connected by an interconnection network. Each register-file has
512bits of storage capacity, and it can be accessed in portions of
16, 32, or 64bits, as shown in Figure 3. Also, the design shows that
each register file and its respective FU can be accessed indepen-
dently, which allows up to 32 scalar operations. Triggering various
FUs it is possible to exploit SIMD operations. According to [31] its
instructions is based on AVX-512 instruction set, which requires
the support of complex data movement SIMD instructions, such as
broadcast and permutation.

We synthesize the set of FUs using a 32nm technological node
and the same operating frequencies presented in Table 2. The syn-
thesis results for our design is presented in Table 3. It is important
to notice that although the frequencies of our designs are increased
linearly (250MHz), area and power does not follow the same pat-
tern because there are different options and pre-defined cells for
different frequencies in the 32nm library.

Register
File

8x 64bit
16x 32bit
32x 16bit

Reconf.
IFPU

4x16bits
2x32bits
1x64bits

Mux Network

C
o

m
m

an
d

 &
 c

o
n

tr
o

l

Mux
control

Function
Control

Register
Control

Register
File

8x 64bit
16x 32bit
32x 16bit

Reconf.
IFPU

4x16bits
2x32bits
1x64bits

Function
Control

Register
Control

Functional
Unit 0

Functional
Unit 31

W
ri

te
 P

o
rt

R
ea

d
 P

o
rt

R
ea

d
 P

o
rt

R
ea

d
 P

o
rt

R
ea

d
 P

o
rt

W
ri

te
 P

o
rt

. . .

Figure 3: Grouped Multiple Functional Units
Multiple-width Register Files - Multiple-Precision

Integer/FP Units

117

CF ’18, May 8–10, 2018, Ischia, Italy J.P.C. de Lima et al.

Table 3: Per vault grouped set of optimized FUs
Multiple-Precision FP/Integer 32x64bits

Frequency(MHz) Bandwidth (GB/s) Area(mm2) Power(mW)

250 64 0.502 119.44

500 128 0.621 258.30

750 192 1.198 400.57

1000 256 1.269 585.50

1250 320 1.302 703.42

The main gain from our design is related to power consumption,
for example, it is possible to notice that using traditional FUs 1.9mW
is achieved for 1GHz of frequency while using multiple-precision
approach 585mW is possible at 1GHz. However, despite our efforts
we are not able to achieve the power consumption of 206mW per
vault as claimed in [31]. Therefore, the next section will use the
results from Table 3 in order to compare several design approaches.

5 COMPARISON BETWEEN LOGIC
ALTERNATIVES

The following subsections depict performance, area and power
comparisons with the results presented in Section 3. As listed in
Table 1, the designs were implemented using different technological
processes and it requires a technology scaling for a proper com-
parison. Thus, we scaled all designs to 28nm process, as most of
the related works were implemented in this technological node.
We also approximated area and power results using similar works,
data-sheets, or by using McPat [22] for those related works that did
not present such values.

As the configuration of each related work varies in the number
of vaults and cores, we normalized all designs to 32 vaults to provide
results that can be directly compared to each other. The main idea is
to seek the highest performance while comparing area and power.
We consider the maximum theoretical bandwidth of the target
memory as 320 GBps (10 GBps/vault). In the following subsections,
we also use the term bandwidth to refer to the processing capability
of a Processing-in-Memory (PIM) processing unit, and not only to
its capacity to access the memory. In this section we referred to
designs presented in Table 1 by their letter indexes. The results for
implementation F were obtained from Table 3, which was discussed
in Section 4.

0
.2

4

2
.3

0

0

50

100

150

200

250

Pe
rf

o
rn

an
ce

 D
en

si
ty

 (
G

B
p

s/
m

m
²)

A B C D E F250 F500 F750 F1000 F1250 G H I J

Figure 4: Performance Density - GBps/mm2

All designs scaled to 28nm

0

2000

4000

6000

8000

10000

0 50 100 150 200 250

M
ax

 B
an

d
w

id
th

 (
G

B
p

s)

Area (mm²)
A B C D E F250 F500 F750 F1000 F1250 G H I J

Figure 5: Maximum Bandwidth vs Required Area
All designs Normalized to 32 vaults

5.1 Area breakdown
The area is critical for PIM architectures, as it is expected that
these logical designs fit within the logical layer available in 3D-
stacked memories. Figure 4 shows the performance density for all
designs presented in Table 1. Performance density was computed
as bandwidth per area (used by processing logic), or GBps/mm2.
According to Table 1, the designs F and H present the highest
theoretical processing bandwidth per vault, respectively, 320 GBps
and 128 GBps.

In Figure 5, the designs were normalized to 32 vaults in order to
illustrate the highest performance and the required area for each
implementation while keeping an equivalent system organization.
From Figure 5, one can also restate that in-order ARM cores have
reduced cost in area, but lack of capabilities to provide high pro-
cessing bandwidth, except for H which incorporates large Single
Instruction Multiple Data (SIMD) in its design. These results show
the efficiency of F approach in terms of performance density.

5.2 Power breakdown
Power consumption is another important challenge to accommo-
date logical hardware inside 3D-stacked memories. In Figure 6 we
show the performance efficiency for each design, which is calcu-
lated by relating the bandwidth (GBps) and power consumption
(mW). Despite design H is able to achieve the highest performance
efficiency, H can only compute fixed point operations, while the
others are able to operate on floating-point representations. As
pointed in [9], H efficiency could be reduced by approximately
8× if floating-point were supported. Nevertheless, the designs F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rf

o
rn

an
ce

 E
ff

ic
ie

n
cy

 (
G

B
p

s/
m

W
)

A B C D E F250 F500 F750 F1000 F1250 G H I J

Figure 6: Performance Efficiency - GBps/mW
All designs scaled to 28nm

118

Design space exploration for PIM architectures
in 3D-stacked memories CF ’18, May 8–10, 2018, Ischia, Italy

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30 35

M
ax

 B
an

d
w

id
th

 (
G

B
p

s)

Power Consumption (W)
A B C D E F250 F500 F750 F1000 F1250 G H I J

Figure 7: Maximum Bandwidth vs Required Power
All designs normalized to 32 vaults

are able to operate on multi-precision floating-point, achieving a
performance efficiency between 0.5 and 0.6 GBps/mW for their
variations.

Similar to what happens in Section 5.1, fully programmable PIM
cores also consume extra power to keep their complex mechanism
mostly when out-of-order execution model and larger caches exist.
For instance, the lowest performance efficiency values are found
in designs G, I and J , which respectively correspond to an Out-of-
Order (OoO) core, Single Instruction Multiple Thread (SIMT) core,
and an in-order core with large caches and higher clock frequency.
Therefore, these cores cannot achieve the required bandwidth with-
out spending a higher amount of power. Figure 7 illustrates the
required power for each design to achieve the theoretical maximum
bandwidth for 32 vaults. One can observe the similarities between
H and F500: both achieve the same bandwidth with practically
the same total power consumption, as both lies on large SIMD
Functional Units (FUs).

5.3 Matching the Performance and Area limits
In order to complete our analysis, in this section, we aim at equating
the performance for all designs presented in Table 1. For this, we
extrapolate the respective number of cores of each design in order
to achieve the same performance of F1250 (320 GBps per vault).
Table 4 presents absolute estimated values of area, power, and
number of cores required to achieve the target performance. From
Table 4, it is important to notice that most of the designs that
use typical ARM cores cannot be placed in the area and power
budget, respectively discussed in Section 4 and 3.2 available on
Hybrid Memory Cube (HMC) devices, requiring from 80 (H) to 1280
(B) cores to achieve a maximum bandwidth of 320 GBps. Despite
designs F use less area, our estimation indicates that designH is able
to consume slightly less power than designs F in this extrapolation.
Considering the absence of floating-point units in design H , one
can foresee that F consume the lowest amount of power given the
features provided.

5.4 Limits of parallelism and execution model
High-performance computing architectures have historically re-
lied on two approaches to extract parallelism in a single thread:
Instruction Level Parallelism (ILP) and Data Level Parallelism (DLP)
paradigms. Both paradigms have limits dictated by data dependency,
which is particular to each application. Related work based on ARM

core [2, 5, 9, 29, 32] are generally based on ILP, except for the [9]
that can also exploit DLP. ARM cores can exploit parallelism in mul-
tiple threads without changing the current software infrastructure
and rely on a mature programming model, such as OpenMP.

The designs presented by [20] and [35] combine Thread Level
Parallelism (TLP) and are supported by mature software infrastruc-
tures such as CUDA and OpenCL. Such parallelism is found in most
of today’s throughput-hungry computing applications. However,
those architectures are not suitable for single-thread workloads.

The work of [31] combines both ILP and DLP paradigms using
reconfigurable vector units and multiple operand sizes. In the mech-
anism proposed by [31], each vault has its own instruction queue
and its own SIMD FU, which allows the exploitation of massive par-
allel ILP and DLP, respectively. The programming model is based
on compiler decision. However, compiler and the cycle-accurate
simulator are nearing completion, and the architecture has open
issues on simultaneous multi-thread execution.

The VLIW approach [25] presents different ways of extracting
parallelism, such as ILP, multithreading, vector and spatial SIMD.
Moreover, software infrastructure was designed, and programming
model is based on OpenMP 4.0. On the other hand, the parallelism in
the CGRA approach [12] is inherited from CGRA/FPGA automation
flow. The software stack divides an application into coarse-grained
phases called kernels, which are translated using high-level synthe-
sis into kernel circuits that exploit DLP.

6 CONCLUSIONS AND FUTUREWORK
In this survey, we evaluate different state-of-the-art 3D-stacked
in-memory accelerators, and we compare them against the simplest
design found in the literature.

We show that many PIM architectures reuse existing low-power
and high-performance processors used in traditional architectures.
We revealed that several studies size the number of cores according
to a power budget that is difficult to achieve using simple cooling
mechanisms in a HMC device. In general, placing full processors
into a single logic layer introduces a significant area and power
overhead, and more importantly, it cannot fully utilize the band-
width provided by high-density memories in realistic designs.

We also show how the issuing rate of load/store unit of such
processors can be a bottleneck for applications considered compute-
bounded and mostly memory-bounded, such as MapReduce, in
specific environments. This situation happens when the memory
bandwidth is higher than the processing power, which is the case
of many architectures that use low-power processors and HMC.
Placing full processors into the logic layer of HMC in a traditional
fashion can take advantage of existing compilers, programming
models, and offloading mechanisms. Also, sharing the same Instruc-
tion Set Architecture (ISA) enables the PIM accelerator to execute
unmodified host code. However, to fit some full processors into
a single logic layer, area and power are increased, and it leads to
performance overhead in comparison to fixed-function PIM accel-
erators.

The design presented in the Section 4, which is a fixed-function
PIM based on [31], provides the highest processing bandwidth, al-
though it depends on a host processor to issue SIMD operations.

119

CF ’18, May 8–10, 2018, Ischia, Italy J.P.C. de Lima et al.

Table 4: Total Area, Power and Number of Cores needed to achieve 10TBps of processing power (320GBps per vault)

A B C D E F250 F500 F750 F1000 F1250 G H I J

Total Area (mm2) 653.3 499.8 819.2 435.2 464.5 61.4 38.1 48.9 38.8 31.9 42291.2 92 4460.0 228.48

Total Power (W) 93.2 89.6 159.7 204.8 77.7 16.7 18.1 18.7 20.4 19.6 384.1 14.4 477.8 400

Number of Cores 64 1280 256 640 n/a 160 80 53.33 40 32 640 80 853.3 914.3

As 3D-stacked PIM accelerators need to meet power and area con-
straints, we explored the design space of in-memory vector unit by
adjusting the FU design.

In future works, we intend to evaluate applications from dif-
ferent domains and estimate the energy behavior of each type of
PIM accelerator. Also, we plan to analyze multithread behavior on
different PIM approaches.

REFERENCES
[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David

Blaauw, and Reetuparna Das. 2017. Compute Caches. In Int. Symp. on High
Performance Computer Architecture (HPCA). IEEE.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph processing.
In Int. Symp. on Computer Architecture (ISCA). IEEE.

[3] Berkin Akin, Franz Franchetti, and James C Hoe. 2015. Data reorganization
in memory using 3D-stacked DRAM. In Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium on. IEEE, 131–143.

[4] Marco AZ Alves, Matthias Diener, Paulo C Santos, and Luigi Carro. 2016. Large
vector extensions inside the HMC. In Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). IEEE.

[5] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2016. Design and
evaluation of a processing-in-memory architecture for the smart memory cube.
In Int. Conf. on Architecture of Computing Systems (ARCS). Springer.

[6] Tom M. Bruintjes, Karel H. G. Walters, Sabih H. Gerez, Bert Molenkamp, and
Gerard J. M. Smit. 2012. Sabrewing: A Lightweight Architecture for Combined
Floating-point and Integer Arithmetic. ACM Trans. Architecture and Code Opti-
mization 8, 4 (Jan. 2012).

[7] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B. Brockman, and
Norman P. Jouppi. 2012. CACTI-3DD: Architecture-level Modeling for 3D Die-
stacked DRAM Main Memory. In Design, Automation & Test in Europe Conference
& Exhibition (DATE).

[8] Robert HDennard, Fritz HGaensslen, V Leo Rideout, Ernest Bassous, and Andre R
LeBlanc. 1974. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits 9, 5 (1974).

[9] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier
Picorel, Babak Falsafi, Boris Grot, and Dionisios Pnevmatikatos. 2017. The mon-
drian data engine. In Int. Symp. on Computer Architecture. ACM.

[10] Yasuko Eckert, Nuwan Jayasena, and Gabriel H. Loh. 2014. Thermal Feasibility
of Die-Stacked Processing in Memory. In 2nd Workshop on Near-Data Processing
(WoNDP).

[11] Duncan G Elliott, Michael Stumm, W Martin Snelgrove, Christian Cojocaru,
and Robert McKenzie. 1999. Computational RAM: Implementing processors in
memory. IEEE Design & Test of Computers 16 (1999).

[12] Mingyu Gao and Christos Kozyrakis. 2016. HRL: efficient and flexible reconfig-
urable logic for near-data processing. In Int. Symp. High Performance Computer
Architecture (HPCA).

[13] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017.
Tetris: Scalable and efficient neural network acceleration with 3d memory. In
Int. Conf. on Architectural Support for Programming Languages and Operating
Systems.

[14] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun
Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, et al. 2016.
Biscuit: A framework for near-data processing of big data workloads. In Int. Symp.
on Computer Architecture (ISCA). IEEE.

[15] Byungchul Hong, Gwangsun Kim, Jung Ho Ahn, Yongkee Kwon, Hongsik Kim,
and John Kim. 2016. Accelerating linked-list traversal through near-data process-
ing. In Int. Conf. on Parallel Architecture and Compilation Techniques (PACT).

[16] L. Huang, L. Shen, K. Dai, and Z. Wang. 2007. A New Architecture For Multiple-
Precision Floating-Point Multiply-Add Fused Unit Design. In Symposium on
Computer Arithmetic (ARITH), 2007.

[17] Hybrid Memory Cube Consortium. 2013. Hybrid Memory Cube Specification
Rev. 2.0. (2013). http://www.hybridmemorycube.org/.

[18] Joe Jeddeloh and Brent Keeth. 2012. Hybridmemory cube newDRAMarchitecture
increases density and performance. In Int. Symp. on VLSI Technology (VLSIT).

[19] Yi Kang,Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam, P. Pattnaik,
and J. Torrellas. 1999. FlexRAM: toward an advanced intelligent memory system.
In Int. Conf. on Computer Design: VLSI in Computers and Processors.

[20] Chad D Kersey, Hyesoon Kim, and Sudhakar Yalamanchili. 2017. Lightweight
SIMT core designs for intelligent 3D stacked DRAM. In Int. Symp. on Memory
Systems (MEMSYS). ACM.

[21] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. 2016. Neurocube: A programmable digital neuromorphic archi-
tecture with high-density 3D memory. In Int. Symp. on Computer Architecture
(ISCA). IEEE.

[22] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures. In Int. Symp. on
Microarchitecture (MICRO-42). IEEE/ACM.

[23] Gabriel H Loh, Nuwan Jayasena, M Oskin, Mark Nutter, David Roberts, Mitesh
Meswani, D Ping Zhang, and Mike Ignatowski. 2013. A processing in memory
taxonomy and a case for studying fixed-function pim. In Workshop on Near-Data
Processing.

[24] K. Manolopoulos, D. Reisis, and V.A. Chouliaras. 2016. An Efficient Multiple
Precision Floating-point Multiply-Add Fused Unit. Journal of Microelectronic 49
(2016).

[25] Ravi Nair, Samuel F Antao, Carlo Bertolli, Pradip Bose, Jose R Brunheroto, Tong
Chen, C-Y Cher, Carlos HA Costa, Jun Doi, Constantinos Evangelinos, et al. 2015.
Active memory cube: A processing-in-memory architecture for exascale systems.
IBM Journal of Research and Development 59 (2015).

[26] Geraldo F. Oliveira, Paulo C. Santos, Marco A.Z. Alves, and Luigi Carro. 2017.
NIM: An HMC-Based Machine for Neuron Computation. In Int. Symp. on Applied
Reconfigurable Computing (ARC). Springer.

[27] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. 1997. A
case for intelligent RAM. IEEE micro 17 (1997).

[28] J Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In Hot Chips 23 Sympo-
sium (HCS). IEEE.

[29] Seth H Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijay-
alakshmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li. 2014. NDC:
Analyzing the impact of 3D-stacked memory+ logic devices on MapReduce work-
loads. In Int. Symp. on Performance Analysis of Systems and Software (ISPASS).

[30] Paulo C. Santos, Geraldo F. Oliveira, Joao P. Lima, Marco A.Z. Alves, Luigi Carro,
and Antonio C.S. Beck. 2018. Processing in 3D memories to speed up operations
on complex data structures. In Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE.

[31] Paulo C. Santos, Geraldo F. Oliveira, Diego G. Tomé, Marco A.Z. Alves, Eduardo C.
Almeida, and Luigi Carro. 2017. Operand size reconfiguration for big data process-
ing in memory. In Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE.

[32] Marko Scrbak, Mahzabeen Islam, Krishna M Kavi, Mike Ignatowski, and Nuwan
Jayasena. 2017. Exploring the Processing-in-Memory design space. Journal of
Systems Architecture 75 (2017).

[33] Patrick Siegl, Rainer Buchty, and Mladen Berekovic. 2016. Data-Centric Com-
puting Frontiers: A Survey On Processing-In-Memory. In Int. Symp. on Memory
Systems (MEMSYS). ACM.

[34] Christian Weis, Matthias Jung, Peter Ehses, Cristiano Santos, Pascal Vivet, Sven
Goossens, Martijn Koedam, and Norbert Wehn. 2015. Retention time measure-
ments and modelling of bit error rates of WIDE I/O DRAM in MPSoCs. In Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE.

[35] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: throughput-oriented pro-
grammable processing in memory. In Int. Symp. on High-performance Parallel
and Distributed Computing. ACM.

[36] Qiuling Zhu, Berkin Akin, H Ekin Sumbul, Fazle Sadi, James C Hoe, Larry Pi-
leggi, and Franz Franchetti. 2013. A 3D-stacked logic-in-memory accelerator
for application-specific data intensive computing. In Int. 3D Systems Integration
Conference (3DIC). IEEE.

120

