
Optimizing memory affinity with a hybrid compiler/OS
approach

Matthias Diener
Informatics Institute – UFRGS

mdiener@inf.ufrgs.br

Eduardo H. M. Cruz
Informatics Institute – UFRGS

ehmcruz@inf.ufrgs.br

Marco A. Z. Alves
Department of Informatics – UFPR

mazalves@inf.ufpr.br

Edson Borin
Institute of Computing – Unicamp

edson@ic.unicamp.br

Philippe O. A. Navaux
Informatics Institute – UFRGS

navaux@inf.ufrgs.br

ABSTRACT
Optimizing the memory access behavior is an important challenge
to improve the performance and energy consumption of parallel
applications on shared memory architectures. Modern systems con-
tain complexmemory hierarchies withmultiple memory controllers
and several levels of caches. In such machines, analyzing the affinity
between threads and data to map them to the hardware hierarchy
reduces the cost of memory accesses. In this paper, we introduce
a hybrid technique to optimize the memory access behavior of
parallel applications. It is based on a compiler optimization that
inserts code to predict, at runtime, the memory access behavior of
the application and an OS mechanism that uses this information to
optimize the mapping of threads and data. In contrast to previous
work, our proposal uses a proactive technique to improve the fu-
ture memory access behavior using predictions instead of the past
behavior. Our mechanism achieves substantial performance gains
for a variety of parallel applications.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
• Software and its engineering → Main memory;

KEYWORDS
NUMA, data mapping, thread mapping, memory affinity

ACM Reference format:
Matthias Diener, Eduardo H. M. Cruz, Marco A. Z. Alves, Edson Borin,
and Philippe O. A. Navaux. 2017. Optimizing memory affinity with a hybrid
compiler/OS approach. In Proceedings of CF’17, Siena, Italy, May 15-17, 2017,
9 pages.
DOI: http://dx.doi.org/10.1145/3075564.3075566

This work received funding from the EUH2020 Programme and fromMCTI/RNP-Brazil
under the HPC4E project, grant agreement no. 689772, as well as from CNPq/CAPES.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CF’17, Siena, Italy
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4487-6/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3075564.3075566

1 INTRODUCTION
The rising number of cores in shared memory architectures has led
to a higher complexity of the memory hierarchy. In modern systems,
this hierarchy consists of several cache levels that are shared by
different cores, as well as a Non-Uniform Memory Access (NUMA)
behavior [14] due to multiple memory controllers in the system,
which form a NUMA node each. In such architectures, choosing
where to place threads and memory pages in the hardware affects
the performance and energy consumption of memory accesses [29].
Most previous mechanisms reduce the cost of memory accesses
by increasing their locality [11, 21]. Recent research also improves
their balance to avoid overloading NUMA nodes [8, 10].

Locality and balance of memory accesses can be improved in
two ways, which we call affinity-based thread mapping and data
mapping. In thread mapping, threads that access the same data are
mapped in such a way to the hardware hierarchy that they can ben-
efit from shared caches, improving cache utilization and reducing
the number of cache misses [33]. In data mapping, memory pages
are mapped to the NUMA nodes such that the number of remote
memory accesses is reduced [28] or the load on the memory con-
trollers is balanced [1]. Fewer cache misses and less data movement
also increase energy efficiency. Thread and data mapping affect
each other and can be combined for optimal improvements [11].

Previous work uses sampling to collect information about the
memory access behavior [4, 8, 11], limiting the accuracy, or uses
memory tracing [10, 21], which has a high overhead and is not
able to handle dynamic behavior. Other work does not handle both
thread and data mapping [8], or does not take multiple applica-
tions into account [25]. Several proposals require special hardware
support to determine application behavior [5, 8, 31] or modify appli-
cation source code to perform the mapping [28]. Most mechanisms
do not have prior information about the behavior and need to in-
clude training phases, during which opportunities for gains are lost,
apart from a runtime overhead.

In this paper, we propose a hybrid approach to optimize the mem-
ory placement of parallel applications running on shared memory
architectures. It combines the high accuracy and low overhead
of automatic memory access prediction through a compiler-based
analysis with the flexibility and generality of an OS-based mapping.
Our proposal consists of two parts, which are performed during
application execution. First, the memory access behavior of the
application is predicted via compiler-inserted code with a high
accuracy and negligible overhead. This code predicts the access
behavior of parallel loops based on their actual input data during

221

CF’17, May 15-17, 2017, Siena, Italy Diener et al.

execution. Second, the predicted behavior is passed to the OS via a
system call, which performs the thread and data mapping.

To the best of our knowledge, this is the first hybrid mechanism
to support both thread and data mapping. Our approach has several
important advantages compared to previous work. First of all, it
requires no hardware changes or specific hardware counters, is fully
automatic and needs no external information about the application
behavior, either via traces or source code changes/annotations. It is
proactive instead of reactive, because mapping decisions are guided
by predicted behavior, not by observed behavior in the past, which
allows it to perform earlier and more accurate mapping decisions
with a lower overhead than reactive mechanisms. We evaluate our
proposal with a set of parallel benchmarks with different memory
access behaviors, showing that it outperforms previous techniques
and achieves results close to an Oracle-based mapping.

2 RELATEDWORK
We divide previous research on affinity-based mapping into three
broad groups according to where the mapping is performed: OS-
based mechanisms, compiler or runtime library-based mechanisms,
and mechanisms at the hardware level.

Traditional OS-based data mapping strategies for NUMA archi-
tectures are first-touch, interleave and next-touch. In the first-touch
policy [22], a page is allocated on the first NUMA node that per-
forms an access to the page. This is the default policy for most
current operating systems. An interleave policy distributes mem-
ory pages equally between nodes to balance the load on the memory
controllers. Next-touch policies mark pages such that they are mi-
grated to the node that performs the next access to them [17].

Improved policies focus mostly on refining the data mapping
during execution by using online profiling. LaRowe et al. [15] pro-
pose page migration and replication policies for early NUMA archi-
tectures. Verghese et al. [32] propose similar page migration and
replication mechanisms, but use cache misses as a metric to guide
mapping decisions. Recent Linux kernels include the NUMA Bal-
ancing technique [4], which uses page faults of parallel applications
to detect memory accesses and perform a sampled next-touch strat-
egy. A previous proposal with similar goals was AutoNUMA [3].
Whenever a page fault happens and the page is not located on the
NUMA node that caused the fault, the page is migrated to that node.
Extra page faults are used to increase detection accuracy.

Current research uses a history of memory accesses to limit un-
necessary migrations and perform thread mapping. An example of
such a technique is kMAF [9, 11], which uses page faults to deter-
mine data sharing and page accesses, and uses this information for
thread and data mapping. The Carrefour mechanism [8, 13] uses
Instruction-Based Sampling (IBS), available on recent AMD archi-
tectures, to detect the memory access behavior. Pages are migrated
or replicated depending on the access pattern to it. Awasthi et al. [1]
propose balancing the memory controller load by migrating pages
from overloaded controllers to less loaded ones. They estimate load
from row buffer hit rates gathered through simulation.

Compiler and runtime-based mapping mechanisms only have
knowledge about a single application, and their mapping decisions
can interfere between them if there are several applications running
at the same time. Majo et al. [19] identify memory accesses to

remote NUMA nodes as a challenge for optimal performance and
introduce a set of OpenMP directives to perform distribution of
data. The best distribution policy has to be chosen manually and
may differ between different hardware architectures. SPM [25] uses
a similar characterization technique as our proposal, but performs
the mapping in a support library. SPM has only a partial view of
the application, on the single thread level. Pages are migrated to
the thread that is predicted to access them first. No thread mapping
or balancing operations are performed.

Nikolopoulos et al. [24] propose an OpenMP library that gath-
ers information about thread migrations and memory statistics
of parallel applications to migrate pages between NUMA nodes.
Libraries that support NUMA-aware memory allocation include
libnuma and MAi [28]. With these libraries, data structures can be
allocated according to the specification of the programmer. These
techniques can achieve large improvements, but place the burden
of the mapping on the programmer and might require rewriting
the code for each different architecture. An evolution of MAi, the
Minas framework [27], optionally uses a source code preprocessor
to statically determine data mapping policies for arrays.

Hardware-based mapping mechanisms use hardware counter
statistics for mapping decisions. Marathe et al. [20] present an au-
tomatic page placement scheme for NUMA platforms by tracking
memory addresses from the performance monitoring unit (PMU)
of the Intel Itanium processor. The profiling mechanism is enabled
only during the start of each application due to the high over-
head. Tikir et al. [30, 31] use UltraSPARC III hardware counters
to provide information for data mapping. Their proposal is lim-
ited to architectures with software-managed Translation Lookaside
Buffers (TLBs), which covers only a minority of current systems.
The Locality-Aware Page Table (LAPT) [5] is an extended page
table that stores the memory access behavior for each page in the
page table entry. This information is updated by the Memory Man-
agement Unit (MMU) on every TLB access, requiring hardware
changes. Intense Pages Mapping (IPM) [7] also gathers information
from TLB misses, but can be implemented natively in machines
with software-managed TLBs, such as Intel Itanium. However, in
more common architectures with hardware-managed TLBs, IPM
also requires hardware changes to access TLB contents.

We conclude that our hybrid proposal is the first mechanism to
have all the following important properties: (1) it handles thread and
data mapping jointly, (2) it has prior information about the memory
access behavior, increasing its potential for performance gains,
(3) its mapping is based on the kernel level, supporting multiple
applications executing at the same time, (4) it requires no changes
to applications or the hardware, (5) it supports policies that focus on
locality or balance, (6) it requires no previous execution to profile
the application.Wewill compare the gains of our proposal to several
of the techniques presented in this section.

3 PREDICTING MEMORY ACCESS BEHAVIOR
VIA LOOP INSTRUMENTATION

Predictingmemory access behavior is the critical step for thread and
data mapping, since incorrect information might result in wrong
migration decisions and therefore performance losses. In most pre-
vious automatic mechanisms, the prediction is performed with an

222

Optimizing memory affinity with a hybrid compiler/OS approach CF’17, May 15-17, 2017, Siena, Italy

1 for (i=tid*(N/T); i<(tid+1)*(N/T); i++)
2 A[i] = A[i] + B[i];

(a) Original code.

1 // start, end, and number of accesses of A:
2 void* A_start = &A[(tid)*(N/T)];
3 void* A_end = &A[(tid+1)*(N/T)-1];
4 unsigned long A_accesses = 2*(N/T);
5 // start, end, and number of accesses of B:
6 void* B_start = &B[(tid)*(N/T)];
7 void* B_end = &B[(tid+1)*(N/T)-1];
8 unsigned long B_accesses = (N/T);
9 // Inform OS of the new access patterns:
10 access_pattern(A_start, A_end, A_accesses);
11 access_pattern(B_start, B_end, B_accesses);
12 for (i=tid*(N/T); i<(tid+1)*(N/T); i++)
13 A[i] = A[i] + B[i];
14 // Inform OS to clear patterns:
15 delete_patterns();

(b) Code with instrumentation.

Figure 1: Example code of a parallel vector addition.

online profiling mechanism [4, 8, 11], in which the system con-
tinuously monitors the application’s memory access behavior and
estimates the future behavior based on past information. For ex-
ample, if the mechanism detects many remote memory accesses
per second on a set of pages, it may predict that this behavior will
continue in the future and trigger the migration of these pages.

Online profiling suffers from three main problems that limit the
performance gains that can be achieved. (1) The past behavior may
not indicate how the system will behave in the future. For example,
a loop that is currently executing is shaping the memory access
pattern, but it is about to finish. (2) The profiling mechanism adds
an extra performance overhead, for instance by adding extra page
faults to monitor memory accesses. (3) The mechanism requires the
execution to be profiled for some time before making a prediction,
during which opportunities for improvements are lost.

To avoid these issues and perform an accurate, low overhead
prediction of memory access behavior, we leverage a technique
proposed by Piccoli et al. [25] to instrument the application code
so that it provides hints during execution regarding the memory
access behavior of loops before entering them. Such a technique
has a high potential, since loop codes usually perform the majority
of memory accesses and determine the memory access pattern [31].

The prediction is divided into two steps. First, the compiler ana-
lyzes the application and inserts code at the outer loops’ pre-headers
to compute the arrays’ footprints and access frequencies as a func-
tion of program variables. Second, at runtime, the inserted code
computes the footprint and the access frequency of arrays accessed
inside the loop from the actual execution parameters and provides
this information to the OS via system calls.

Figure 1 illustrates the code transformation performed by the
compiler in a parallel vector addition. For each vector that is ac-
cessed inside the loops (for example, vector A), the compiler per-
forms a symbolic range analysis on the expressions used to index
the vector elements and produces code to compute the first and last
positions of the vector that are accessed during loop execution. Each

thread has a different identifier, stored in the tid variable. Since A
is accessed using variable i and the symbolic range analysis of i
indicates that it may assume values in the range from tid × N /T
to (tid + 1) × N /T , the first (A_start) and the last (A_end) po-
sitions of A that can be accessed during the loop execution are
&A[tid*(N/T)] and &A[(tid+1)*(N/T)-1], respectively.

The compiler also uses symbolic range analysis to estimate loop
trip counts and produces expressions that compute the access fre-
quency of each vector (for instance, A_accesses). As an example,
A is accessed 2 × N /T times per thread, since it is accessed twice
(one read and one write operation) in the body of the inner loop and
the loop body itself is executed N /T times per thread according to
trip count estimates. After inserting code to compute the first and
last positions of the vector and its access frequency, the compiler
inserts code to call the access_pattern system call before the
loop body and code to call the delete_patterns system call
after the loop body, to provide the access patterns to the OS.

Note that at compilation time, the compiler does not know the
values of N, T and tid, hence, estimating the loops’ trip counts
and the range of the vector accesses at compile time is not possible.
However, by means of a symbolic range analysis, the compiler
is capable of producing simple expressions that compute the trip
counts and vector access ranges as a function of N, T and tid.
These expressions are embedded into the code to be evaluated at
runtime, when the values of these variables are known.

Even though we use a simple example to illustrate how the sys-
tem works, the compiler analysis can capture complex memory
access patterns and has shown a very high accuracy with a wide
range of applications [25]. Some highly irregular or highly dynamic
access patterns might not be captured accurately, however, such
patterns are usually not sensitive to mapping and would not gener-
ate a performance loss from our mechanism. Since the prediction is
performed at runtime, it takes changes in the program behavior into
account, such as changing the input parameters of an application.

Note that there is no need to know the data partitioning among
threads at compile time. The symbolic analysis produces code that
will infer, for each thread, the data that may be accessed by the
threads at runtime. As the system call is executed by each thread, the
kernel needs to limit the number of migrations that are performed,
which will be explained in the next section. We implemented our
proposal in the clang compiler [16]. Since clang only recently gained
support for OpenMP, we use Pthreads in our implementation, but
the concepts of our proposal can be ported to other parallel APIs
such as OpenMP with a moderate effort.

4 THE KERNEL MAPPING MECHANISM
We implemented the mapping part of our proposed mechanism
in the Linux kernel. The mapping receives information provided
by the compiler-inserted code, analyzes it, and combines it with
information of the hardware topology that is collected at the kernel
level to calculate optimized mappings. In this section, we describe
the interface between the compiler and kernel and present how the
kernel performs thread and data mapping.

223

CF’17, May 15-17, 2017, Siena, Italy Diener et al.

Algorithm 1: access_pattern: Implementation of the sys-
tem call in the kernel.
Input: addr_start, addr_end, accesses
GlobalData: hTable

1 begin
2 for addr← addr_start ; addr ≤ addr_end ; addr += PAGESIZE do
3 pageInfo← findPageInfo(hTable, addr);
4 SetAsSharer(pageInfo, tid);
5 accesses_per_page← accesses / ((addr_end − addr_start) /

PAGESIZE);
6 ThreadMapping(addr_start, addr_end, accesses_per_page);
7 DataMapping(addr_start, addr_end, accesses_per_page);

4 0 0 0 1
3 0 0 1 1
2 0 1 1 0
1 1 1 0 0
0 1 0 0 0

0 1 2 3 4
Figure 2: Sharing matrix of an application with 5 threads.
Cells contain the amount of sharing between thread pairs.

4.1 Retrieving information from user space
The interface between the compiler and kernel consists of two sys-
tem calls. The access_pattern call is shown in Algorithm 1.
The system call receives the memory access information from user
space, including the memory address range from addr_start
to addr_end, and the estimated amount of memory accesses
accesses in the range. The thread ID tid is determined by the
kernel as it knows which thread performed the call.

We store the information provided by the call in a hash table,
which is indexed by the page address. This is done in line 2, where
we iterate over all pages of the memory address range provided by
the call. For each page, we fetch its information from the hash table
(line 3) and set the thread passed in the system call as a sharer of
the page (line 4). We calculate the number of memory accesses per
page in line 5. After storing the data, we perform the thread and
data mapping, which are explained in the following subsections.

Thedelete_patterns system call removes information about
the access patterns from the mechanism in order to indicate that a
new program phase starts and the access pattern might change.

4.2 Performing the thread mapping
To analyze the sharing pattern between the threads, the memory
address ranges of all threads are compared to each other. Whenever
there is an overlap of memory addresses of different threads, we
consider this area as shared. We store the amount of data shared
between each pair of threads in a sharing matrix. For each shared
area between threads x and y, we increment the sharing matrix in
the cells (x ,y) and (y,x).

To illustrate how the data sharing is detected, consider the fol-
lowing example. A vector of N elements in the main memory is
accessed in a parallel block byT threads. Each thread i accesses the
memory range from i × N /T to (i + 1) × N /T . The border of each
domain is shared between consecutive threads. Therefore, every

Algorithm 2: ThreadMapping: Detects the data sharing
and generates a mapping of threads to cores.
Input: addr_start, addr_end, accesses
GlobalData: hTable, hardwareTopology, shMatrix[][], oldFriends[],

nThreads
1 begin
2 for addr← addr_start ; addr ≤ addr_end ; addr += PAGESIZE do
3 pageInfo← findPageInfo(hTable, addr);
4 for j← 0 ; j < pageInfo.nSharers ; j++ do
5 shMatrix[tid][pageInfo.sharers[j]] += accesses;
6 shMatrix[pageInfo.sharers[j]][tid] += accesses;
7 for i← 0 ; i < nThreads ; i++ do
8 friends[i]← argmax(shMatrix[i]);
9 for changed← 0, i← 0 ; i < nThreads ; i++ do

10 changed← changed + (friends[i] , oldFriends[i]);
11 if changed > 1 then
12 map← EagerMap(shMatrix, hardwareTopology);
13 MigrateThreads(map);
14 oldFriends← friends;

time our algorithm detects the overlapping memory area of threads
i and i + 1, we increment the sharing matrix in cells (i , i + 1) and
(i + 1, i). Figure 2 shows the sharing matrix for this application,
where cells indicate the amount of data sharing.

After updating the sharing matrix, we evaluate if it changed
enough to perform a migration of threads, in order to reduce the
overhead of the mapping algorithm and unnecessary migrations.
We first verify which thread communicates most to each thread
of the parallel application, which we call the friend thread. After-
wards, we calculate how many threads changed their friend thread
compared to the previous system call. If the number of these is
higher than 1, we call the thread mapping algorithm. Otherwise,
no thread migration is performed.

When calling the mapping algorithm, the sharing matrix is com-
bined with information about the memory hierarchy, which is
available in the kernel, to calculate the thread mapping. We use
the EagerMap algorithm [6], which has a very low overhead on
the running application and scales well up to thousands of threads.
EagerMap receives as input the sharing matrix and a graph repre-
sentation of the memory hierarchy, in which the vertices represent
cores, caches, and NUMA nodes, and the edges the links between
the components. EagerMap outputs a thread mapping in which
threads that share a lot of data are mapped to cores nearby in the
memory hierarchy.

Algorithm 2 shows how the thread mapping procedure is imple-
mented. The outer loop in line 2 iterates over all pages of the mem-
ory address range provided in the system call. For each page, we
iterate over the threads that accessed the page (loop in line 4), and
increment the sharing matrix as previously explained (lines 5–6).
Afterwards, we analyze if the sharing pattern changed (lines 7–11)
and then call EagerMap to calculate the thread mapping (line 12)
and migrate the threads (line 13).

4.3 Performing the data mapping
To perform the data mapping, we need to differentiate the cases in
which the memory address range provided in the system call has or

224

Optimizing memory affinity with a hybrid compiler/OS approach CF’17, May 15-17, 2017, Siena, Italy

not been accessed before. In case the page has been accessed before,
we migrate the page to another node if necessary. In case the page
has not been accessed before, the page still does not physically
exists in the main memory due to the demand paging technique.
Therefore, we store the destination NUMA node of the pages that
have not been accessed before in the hash table. When a page is
accessed for the first time, we check if there is an entry in the hash
table for the corresponding page. If there is an entry, we allocate
the page in the NUMA node of the thread stored in the hash table.
Otherwise, the destination NUMA node is selected using the native
policies of the kernel.

A detailed description of the data mapping procedure can be
found in Algorithm 3. As previously, the outer loop in line 2 iterates
over all pages of the memory address range listed in the system call.
For each page, we first evaluate if the page is suitable for a locality
based mapping. In order to do that, we calculate the exclusivity level
of the page [11]. The exclusivity level corresponds to the highest
number of memory accesses to the page from a single thread in
relation to the number of accesses from all threads (lines 4–14).

After calculating the exclusivity, we compare it against a thresh-
old called localityThreshold (line 15). If the exclusivity is greater
than the threshold, we use a locality based data mapping, by setting
the destination node as the node who most access the page. Other-
wise, we use an interleaved page mapping, in which the node of
the page is determined from the lowest significant bits of the page
address. This threshold is important in case a page is accessed by

Algorithm 3: DataMapping: Analyzes the page usage and
performs the data mapping.
Input: addr_start, addr_end, accesses
GlobalData: hTable, nNodes

1 begin
2 for addr← addr_start ; addr ≤ addr_end ; addr += PAGESIZE do
3 pageInfo← findPageInfo(hTable, addr);
4 for j←0 ; j<nNodes ; j++ do
5 access[j]← 0;
6 for j←0 ; j<pageInfo.nSharers ; j++ do
7 access[nodeOfThread(pageInfo.sharers[j])] += accesses;
8 max← 0;
9 sum← access[0];

10 for j←1 ; j<nNodes ; j++ do
11 sum← sum + access[j];
12 if access[j] > access[max] then
13 max← j;
14 excl← access[max] / sum;
15 if excl > localityThreshold then
16 node← max;
17 else
18 node← addrmod nNodes;
19 if CurrentNode(addr) , node then
20 if PageAllocated(addr) then
21 MigratePage(addr, node);
22 else
23 StorePageFirstTouch(addr, node);

multiple threads, that is, if multiple system calls provide informa-
tion regarding the same page. For such shared pages, the threshold
limits the number of migrations.

We experimented with several values for the localityThreshold ,
between 0.7 and 0.95. The performance improvements were not very
sensitive to the particular value in this range, and we experiment
with a value of 0.85. Finally, we verify if the page has been accessed
before (line 20). If it does, we migrate the page to the destination
node. Otherwise, we store the destination node in the hash table
to use it when the page is accessed for the first time, removing the
need for migrating the page.

4.4 Supporting multiple applications
One of the main advantages of performing the mapping in the
kernel is the fact that multiple concurrently executing applications
can be taken into account when performing the thread and data
mapping, as the kernel has the complete view of the system. We im-
plemented a simple but efficient technique to support the execution
of multiple applications at the same time. The main challenge lies
in the fact that the virtual addresses of different applications might
overlap, which would mean that one application might affect the
thread or data mapping of another. To overcome this issue, we also
save the ID of the process that the page belongs to in the hash table,
such that we can differentiate between pages of different processes
that have the same virtual address.

The same thread and data mapping algorithms are employed for
the parallel applications. As there is only a single sharing matrix for
the entire system, the elements of the sharing matrix corresponding
to pair of threads from different processes would be zero. Hence,
threads from the same processes are always mapped closer than
threads from different processes, which is the desired result. The
data mapping is calculated for each page separately, as before, and
we differentiate between different applications via the process ID.
In this way, our mapping policies can take contention on the whole
system into account without the need for a special support.

4.5 Complexity of our proposal
The compiler overhead is determined by the number of data struc-
tures, as instrumentation code is inserted on a per-structure and
per-loop basis. For each data structure and loop, the added code
has a constant time complexity. The system call stores information
about memory accesses for each page, resulting in a time com-
plexity of O(P), where P represents the number of pages the data
structure uses. The complexity of the thread mapping is determined
by the EagerMap algorithm, which has a time complexity of O(T 3),
where T represents the number of threads. The data mapping algo-
rithm has a time complexity ofO(P), considering that the number of
NUMA nodes and sharers is constant, resulting in a final complexity
of O(T 3 + P).

5 EXPERIMENTAL EVALUATION
We compare our proposed hybrid mapping mechanism to the cur-
rent state-of-the-art solutions with a set of parallel benchmarks
on two machines. This section begins with a description of the
experimental methodology, followed by experiments with a single

225

CF’17, May 15-17, 2017, Siena, Italy Diener et al.

running parallel application. We also evaluate our technique with
multiple applications that are executing concurrently.

5.1 Methodology of the experiments
This section discusses the machines, benchmarks, and mapping
mechanisms that were used in our evaluation.

5.1.1 Machines. Experiments were performed on two NUMA
machines, Xeon and Opteron, which have 4 and 8 NUMA nodes,
respectively. Xeon consists of 4 Intel Xeon X7550 processors. Each
processor has its own memory controller and contains 8 cores.
Each core can execute 2 threads at the same time via Simultaneous
MultiThreading (SMT). The Opteron machine is an example of a
NUMA architecture with multiple memory controllers per chip. It
consists of 4 AMD Opteron 6386 processors, each with 2 memory
controllers and 8 cores. It also supports execution of 2 threads
per core. An overview of the architectures, including their NUMA
factors calculated with the Lmbench benchmark [23], is shown in
Table 1. Since both machines can execute 64 tasks at the same time,
we run all parallel applications with 64 threads.

5.1.2 Benchmarks. We evaluate our proposal with a set of par-
allel benchmarks parallelized with Pthreads. Our baseline for the
experiments consists of six applications with widely different mem-
ory access behaviors. We evaluate four applications from the linear
algebra domain: matrix multiplication, matrix addition, Cholesky
decomposition, and LU decomposition. We also use an implemen-
tation of the K-Nearest Neighbors (KNN) data-mining algorithm
and a parallel bucket sort implementation. The memory usage of
the applications varies between 12 MB (KNN) and 27 GB (matrix
addition), creating different sensitivities to mapping.

We verified that our proposal works correctly with all applica-
tions from two common Pthreads-based benchmark suites, SPLASH-
2 [34] and PARSEC [2]. However, most of these applications are
not sensitive to mapping [12, 26]. For this reason, we selected the
two benchmarks that are most sensitive to mapping, Streamcluster
and Ocean_cp, from these suites. Streamcluster is an example of
an application with a highly dynamic memory access behavior. We
use the splash2x implementation of Ocean_cp contained in recent
releases of the PARSEC suite. Both Streamcluster and Ocean_cp
were executed with the native input size.

5.1.3 Mapping mechanisms. We compare the following map-
ping mechanisms:OS, Compact, Interleave,Oracle,NUMA Balancing,
kMAF, Carrefour, SPM, and Hybrid.

Table 1: Overview of the two systems used in the evaluation.

Property Value

X
e o
n

NUMA 4 nodes, 1 NUMA node/processor, NUMA factor 1.5
Processors 4× Intel Xeon X7550, 2.0 GHz, 8 cores, 2-way SMT
Caches 8× 32 KB+32 KB L1, 8× 256 KB L2, 18 MB L3
Memory 128 GB DDR3-1066, page size 4 KB

O
pt
er
on

NUMA 8 nodes, 2 NUMA nodes/processor, NUMA factor 2.8
Processors 4× AMD Opteron 6386, 2.8 GHz, 8 cores, 2-way CMT
Caches 8× 16 KB+64 KB L1, 8× 2 MB L2, 2× 6 MB L3
Memory 128 GB DDR3-1600, page size 4 KB

The Linux OS forms the baseline of our experiments. We run an
unmodified kernel, version 3.13, and use its default first-touch page
allocation policy and the Completely Fair Scheduler (CFS).

The Compact thread mapping is a simple policy to improve
memory affinity by placing threads with neighboring IDs (such as
threads 0 and 1) close in the memory hierarchy, such as on cores
sharing a cache. Data mapping is performed via a first-touch policy.

The Interleave data mapping policy, available via the numactl
tool, distributes pages equally among the NUMA nodes according
to the page address, and is a simple way to improve memory access
balance. Thread mapping is handled by the Linux scheduler.

The Oracle thread and data mapping is used to measure the the-
oretical improvements that can be achieved. To calculate it, we
use a Pin-based [18] memory tracer to list all memory accesses of
each application on a per-thread level. We then apply the same
algorithms used for our proposed mechanism to calculate the map-
pings and store the mappings in files. These files are read by the
kernel during application startup, which then performs the thread
and data mapping. Since all calculations are performed before the
application starts, this mechanism has no runtime overhead.

TheNUMABalancing datamappingmechanism [4] of kernel 3.13
uses a sampling-based next-touch migration policy. When an appli-
cation causes a page fault, the page is migrated to the NUMA node
on which the thread is executing. Extra page faults are inserted
into the running application to increase accuracy.

kMAF [11] performs an optimized thread and data mapping
during the execution of parallel applications. The mechanism has,
similarly to NUMA Balancing, no prior information about appli-
cation behavior and performs the analysis and migration from
information gathered from page faults during execution.

The Carrefour mechanism [8] uses AMD IBS techniques to char-
acterize memory access behavior and migrate/replicate pages. It
requires features only available in AMD systems and is therefore
only compatible with our Opteron machine.

The Selective Page Migration (SPM) technique [25] is an example
of a pure user space data mapping solution. Thread mapping is
handled by the Linux scheduler.

Our proposed Hybrid mechanism was implemented in clang,
version 3.5, and the Linux kernel, version 3.13.

All experiments were performed 20 times. We show the aver-
age values (presented as gains or reductions compared to the OS
mapping) as well as the standard error.

5.2 Running single applications
We compare all mapping mechanisms against each other while
executing a single parallel application at a time. The streamcluster
benchmark will be also discussed in more detail in Section 5.3.

5.2.1 Xeon. Figure 3 shows the performance gains compared to
the OS on the Xeon machine. From the results, we can separate the
benchmarks into two groups. Bucket sort and KNN are applications
with an unstructured memory access pattern, which means that
pages will get accessed by all threads in a similar way, with lots of
sharing between threads. Furthermore, their memory usage is quite
low, such that most data fits into the caches of Xeon. In these situa-
tions, mapping can only achieve small improvements compared to
the OS. The matrix multiplication has a higher memory usage, but

226

Optimizing memory affinity with a hybrid compiler/OS approach CF’17, May 15-17, 2017, Siena, Italy

0%
2%
4%
6%
8%
10%
12%

Bucket sort

Pe
rf
or
m
an

ce

0%

50%

100%

150%

Matrix addition

Pe
rf
or
m
an

ce

Compact Interleave Oracle kMAF

NUMA Balancing SPM Hybrid

0%

50%

100%

150%

200%

Cholesky

Pe
rf
or
m
an

ce

0%

50%

100%

150%

200%

250%

LU decomposition

Pe
rf
or
m
an

ce

0%

5%

10%

15%

20%

Matrix multiplication

Pe
rf
or
m
an

ce

−6%
−4%
−2%
0%
2%
4%
6%
8%
10%
12%
14%

KNN

Pe
rf
or
m
an

ce

0%
10%
20%
30%
40%
50%
60%
70%
80%

Streamcluster

Pe
rf
or
m
an

ce

0%
10%
20%
30%
40%
50%
60%
70%
80%

Ocean_cp

Pe
rf
or
m
an

ce

0%
10%
20%
30%
40%
50%
60%
70%
80%

Geometric means

Pe
rf
or
m
an

ce

Figure 3: Performance gains on Xeon, normalized to the OS.

0%

10%

20%

30%

40%

50%

Bucket Sort

Pe
rf
or
m
an

ce

0%

50%

100%

150%

Matrix addition

Pe
rf
or
m
an

ce

Compact Interleave Oracle kMAF

NUMA Balancing SPM Carrefour Hybrid

0%

50%

100%

150%

200%

250%

Cholesky

Pe
rf
or
m
an

ce

0%
50%
100%
150%
200%
250%
300%
350%
400%
450%
500%

LU decomposition

Pe
rf
or
m
an

ce

0%

50%

100%

150%

200%

250%

Matrix multiplication

Pe
rf
or
m
an

ce

0%

10%

20%

30%

40%

KNN

Pe
rf
or
m
an

ce

0%
25%
50%
75%
100%
125%
150%
175%

Streamcluster

Pe
rf
or
m
an

ce

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
110%

Ocean_cp

Pe
rf
or
m
an

ce

0%
20%
40%
60%
80%
100%
120%
140%
160%

Geometric means

Pe
rf
or
m
an

ce

Figure 4: Performance gains on Opteron, normalized to the OS.

results in only small improvements frommapping, since most of the
data has a good cache locality. The other benchmarks, matrix addi-
tion, Cholesky decomposition, LU decomposition, Streamcluster,
and Ocean_cp, benefit more from mapping due to their structured
memory access patterns and high memory usage.

The results show that thread mapping alone, as performed by the
Compact mechanism, does not achieve substantial improvements
compared to the OS in most cases. A data mapping-only policy like
NUMA Balancing is able to reduce execution time in general, but
increases it in the case of KNN slightly. Performing automatic thread
and data mapping jointly, as done by kMAF, can achieve higher
improvements than NUMA Balancing in some cases and avoids
the performance reduction. The Oracle mechanism has no runtime
overhead and therefore achieves the highest improvements. SPM
and our Hybrid proposal have similar results, with slightly higher
improvements for Hybrid for most benchmarks. The reason is that
Hybrid also performs threadmapping and can distribute pagesmore
equally, in contrast to SPM. It is important to mention that Hybrid is
the mechanism with the closest results to the Oracle, which shows
that the compiler can provide very accurate information and that
prior information can result in higher improvements than when
the behavior has to be detected indirectly during execution.

5.2.2 Opteron. Due to its larger number of NUMA nodes and
higher NUMA factor, performance improvements on Opteron are
generally higher than on Xeon. Due to its smaller cache size, even
the benchmarks with a low memory usage can benefit more from
mapping. As before, the simple thread clustering performed by
the Compact mapping does not improve performance substantially
in most cases and reduces it for some applications. Although the
Interleave mapping results in higher gains than Compact, the gains
are still far from the Oracle mapping, indicating that the applica-
tions are not imbalanced. kMAF and NUMA Balancing result in low
improvements that are between Compact and Interleave in most
cases. Carrefour is limited by the number of pages that it can char-
acterize (30,000), and it shows performance improvements only for
the benchmarks with a small memory usage. Hybrid reaches per-
formance gains of up to 380% for LU and significantly outperforms
SPM for several benchmarks.

5.2.3 Runtime overhead. To evaluate the runtime overhead, we
measured the time spent in the instrumentation code and the kernel.
We present the time overhead for the matrix addition, which had the
highest overhead due to its high memory usage. Overhead values
are 0.019 ms for the added instrumentation code, 0.746 ms for the
thread mapping, and 30.1 ms for the data mapping. Values were
almost identical on Xeon and Opteron. The results show that the
overall overhead is determined mostly by the data mapping. Still,
even in this memory-intensive application, the overhead is very
low, as the data mapping of our mechanism scales linearly with
memory usage. During each mapping operation only one thread is
waiting, and our proposal does not stall the whole application.

5.2.4 Summary. The results of our experiments show that sim-
ple mapping policies that do not take the actual memory access
behavior into account, such as Compact and Interleave, do not
provide substantial performance improvements relative to the OS.
Furthermore, mechanisms without prior information about the
behavior, such as NUMA Balancing and kMAF, also have limited
gains. By having prior information about the behavior and by ap-
plying both thread and data mapping polices jointly, as our Hybrid
mechanism, the highest gains can be achieved.

227

CF’17, May 15-17, 2017, Siena, Italy Diener et al.

−80%
−70%
−60%
−50%
−40%
−30%
−20%
−10%

0%
10%

Streamcluster

Q
PI

tr
aff

ic

−80%
−70%
−60%
−50%
−40%
−30%
−20%
−10%

0%
10%

Streamcluster

L3
m
is
se
s

Compact Interleave Oracle kMAF

NUMA Balancing SPM Hybrid

−50%

−40%

−30%

−20%

−10%

0%

Streamcluster

En
er
gy

co
ns
um

pt
io
n

Figure 5: Streamcluster results on Xeon, normalized to the OS.

5.3 The Streamcluster benchmark
The Streamcluster benchmark is an example of an application
with a highly dynamic memory access behavior, consisting of six
phases. Parts of the input data set remain allocated and are accessed
throughout the whole execution. Furthermore, Streamcluster al-
locates additional memory within each phase for temporary data
structures. Such a behavior presents large challenges for mapping,
as threads and data need to be migrated at each phase. Apart from
the performance gains, we present the reduction of L3 cache misses,
inter-processor QPI traffic, and system energy consumption.

Results are presented in Figure 5. Due to the relatively large
caches on Xeon, the Compact thread mapping already results in
quite high improvements, and the other mechanisms only improve
slightly compared to Compact. The impact of threadmapping can be
seen in the large reduction of L3 cache misses, which is higher than
the reduction of QPI traffic. Energy consumption was significantly
reduced as well, in a similar way as performance was improved,
due to shorter execution times and a more efficient execution.

5.4 Running multiple applications
An important feature of our hybrid mechanism is that it seamlessly
supports multiple parallel applications that are executing at the
same time, as discussed in Section 4.4.

5.4.1 Methodology. To analyze the impact of various memory
access behaviors on the results, we selected three pairs of parallel
applications that showed different suitabilities for mapping on Xeon
in our single benchmark experiments: LU+matrix addition, as ex-
amples of applications with high suitability; BucketSort+Cholesky,
as a mix of applications with low and high suitability; and matrix
multiplication+KNN, which showed only small performance im-
provements from mapping. Applications run with 64 threads each,
with the same input parameters as before.

We compare three mapping mechanisms (OS, SPM, and Hybrid)
with two different configurations (Sequential and Parallel). We also
show results with Carrefour on Opteron. In the sequential configu-
ration, the second application starts after the first one terminates.
In this configuration, there is less interference between applications
and less contention for resources such as caches, interconnections,
memory controllers and functional units. However, the utilization
of resources may not be optimal in this case. For example, when a
thread stalls while waiting for a memory request, another thread
might make use of functional units at that time. In the parallel
configuration, both applications are started at the same time, and
we measure the time until both terminate. This configuration has

opposite properties of the sequential case, with higher contention
for resources but a more efficient usage.

5.4.2 Results. Figure 6 shows the results for the execution time
(in seconds) on Xeon. We can see that the OS sequential case is the
slowest. By running the applications in parallel, overall performance
can already be improved by about 15% for the OS, as resource usage
becomes more efficient. The SPM mechanism shows the opposite
behavior, where the sequential case is about 10% faster than the
parallel case for the LU+matrix addition pair, indicating that the
data mappings performed by SPM of the two applications interfere
with each other. As more threads are running than the machine
can execute at the same time, the OS will perform more thread
migrations, rendering the data mapping ineffective.

Similarly, the BucketSort+Cholesky pair also suffers a perfor-
mance degradation from parallel execution with SPM. As matrix
multiplication and KNN are less sensitive to mapping, SPM re-
sults in small improvements with a parallel execution. The Hybrid
mechanism results in the highest improvements overall, reducing
execution time by more than 50% compared to the OS-sequential
case, with larger gains in the Hybrid-parallel case.

The results for the Opteron machine are shown in Figure 7. The
general behavior is very similar to Xeon, with higher gains overall.
SPM loses performance in the parallel case for two benchmark pairs.
In parallel execution, Hybrid never hurts performance. These results
show that our proposal successfully handles multiple applications.
The main reason for the large improvements compared to OS and
SPM lie in the fact that Hybrid performs thread mapping, which
reduces the number of unnecessary migrations of threads between
cores and NUMA nodes.

5.4.3 Summary. These experiments showed thatmappingmech-
anisms that work only in user space can hurt parallel application
performance due to the interference between multiple applications.

0
1
2
3
4
5
6
7
8
9

LU+MatrixAdd

Ex
ec
ut
io
n
ti
m
e
(s
ec
)

0
1
2
3
4
5
6
7
8
9
10
11

BucketSort+Cholesky

Ex
ec
ut
io
n
ti
m
e
(s
ec
)

OS sequential SPM sequential Hybrid sequential

OS parallel SPM parallel Hybrid parallel

0
1
2
3
4
5
6
7
8
9
10

MatrixMul+KNN

Ex
ec
ut
io
n
ti
m
e
(s
ec
)

Figure 6: Running multiple applications on Xeon.

0
1
2
3
4
5
6
7

LU+MatrixAdd

Ex
ec
ut
io
n
ti
m
e
(s
ec
)

0
1
2
3
4
5
6
7
8
9
10

BucketSort+Cholesky

Ex
ec
ut
io
n
ti
m
e
(s
ec
)

OS seq. SPM seq. Carrefour seq. Hybrid seq.
OS par. SPM par. Carrefour par. Hybrid par.

0
1
2
3
4
5
6
7
8
9
10

MatrixMul+KNN

Ex
ec
ut
io
n
ti
m
e
(s
ec
)

Figure 7: Running multiple applications on Opteron.

228

Optimizing memory affinity with a hybrid compiler/OS approach CF’17, May 15-17, 2017, Siena, Italy

By performing a hybrid mapping, the performance loss can be
avoided, and the performance gains are higher in several cases.

6 CONCLUSIONS
The increasing parallelism in shared memory machines has led to
challenges for the memory subsystem, where the performance and
energy consumption of memory accesses depend on the location of
threads and the data they access. Memory accesses can be improved
with thread and data mapping, which consist of an analysis of the
memory access behavior of a parallel application, and a mapping
policy that uses the analyzed behavior to optimize mappings.

We introduced a hybrid approach to themapping problem, which
uses a compiler extension to insert code that predicts, at runtime,
the application’s memory access patterns and passes it to the OS
to perform thread and data mapping. Our mechanism works fully
automatically during the execution of the application, and needs no
changes to the application or prior information about its behavior.

We implemented our proposal in clang and the Linux kernel
and performed experiments with a set of parallel applications on
two NUMA machines. Results show that our proposal substantially
outperforms previous work in most cases, reaching gains of up to
380%. For the future, we will extend our proposal to a wider range
of parallel applications, including those that use OpenMP.

REFERENCES
[1] Manu Awasthi, David W. Nellans, Kshitij Sudan, Rajeev Balasubramonian, and

Al Davis. 2010. Handling the Problems and Opportunities Posed by Multiple On-
Chip Memory Controllers. In International Conference on Parallel Architectures
and Compilation Techniques (PACT).

[2] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
International Conference on Parallel Architectures and Compilation Techniques
(PACT).

[3] Jonathan Corbet. 2012. AutoNUMA: the other approach to NUMA scheduling.
(2012). http://lwn.net/Articles/488709/

[4] Jonathan Corbet. 2012. Toward better NUMA scheduling. (2012). http://lwn.net/
Articles/486858/

[5] Eduardo H. M. Cruz, Matthias Diener, Marco A. Z. Alves, Laércio L. Pilla, and
Philippe O. A. Navaux. 2016. LAPT: A Locality-Aware Page Table for thread and
data mapping. Parallel Comput. 54, May (2016).

[6] Eduardo H. M. Cruz, Matthias Diener, Laércio L. Pilla, and Philippe O. A. Navaux.
2015. An Efficient Algorithm for Communication-Based Task Mapping. In In-
ternational Conference on Parallel, Distributed, and Network-Based Processing
(PDP).

[7] Eduardo H. M. Cruz, Matthias Diener, Laercio L. Pilla, and Philippe O. A. Navaux.
2016. Hardware-Assisted Thread and Data Mapping in Hierarchical Multicore
Architectures. ACM Transactions on Architecture and Code Optimization (TACO)
13, 3 (2016), 1–25. DOI:http://dx.doi.org/10.1145/2975587

[8] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud
Lachaize, Baptiste Lepers, Vivien Quéma, and Mark Roth. 2013. Traffic Man-
agement: A Holistic Approach to Memory Placement on NUMA Systems. In
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS).

[9] Matthias Diener, Eduardo H. M. Cruz, Marco A. Z. Alves, Philippe O. A. Navaux,
Anselm Busse, and Hans-Ulrich Heiss. 2016. Kernel-Based Thread and Data
Mapping for Improved Memory Affinity. IEEE Transactions on Parallel and
Distributed Systems (TPDS) 27, 9 (2016).

[10] Matthias Diener, Eduardo H. M. Cruz, and Philippe O. A. Navaux. 2015. Locality
vs. Balance: Exploring Data Mapping Policies on NUMA Systems. In International
Conference on Parallel, Distributed, and Network-Based Processing (PDP).

[11] Matthias Diener, Eduardo H. M. Cruz, Philippe O. A. Navaux, Anselm Busse,
and Hans-Ulrich Heiß. 2014. kMAF: Automatic Kernel-Level Management of
Thread and Data Affinity. In International Conference on Parallel Architectures
and Compilation Techniques (PACT).

[12] Matthias Diener, Eduardo H. M. Cruz, Laércio L. Pilla, Fabrice Dupros, and
Philippe O. A. Navaux. 2015. Characterizing Communication and Page Usage
of Parallel Applications for Thread and Data Mapping. Performance Evaluation

88-89, June (2015).
[13] Fabien Gaud, Baptiste Lepers, Justin Funston, Mohammad Dashti, Alexandra

Fedorova, Vivien Quéma, Renaud Lachaize, and Mark Roth. 2015. Challenges of
memory management on modern NUMA systems. Commun. ACM 58, 12 (2015).

[14] Christoph Lameter. 2013. An overview of non-uniform memory access. Commun.
ACM 56, 9 (2013).

[15] Richard P. LaRowe, Mark A. Holliday, and Carla Schlatter Ellis. 1992. An Analysis
of Dynamic Page Placement on a NUMA Multiprocessor. ACM SIGMETRICS
Performance Evaluation Review 20, 1 (1992).

[16] Chris Lattner. 2011. LLVM and Clang: Advancing Compiler Technology. In Free
and Open Source Developers European Meeting (FOSDEM).

[17] Henrik Löf and Sverker Holmgren. 2005. affinity-on-next-touch: Increasing the
Performance of an Industrial PDE Solver on a cc-NUMA System. In International
Conference on Supercomputing (ICS).

[18] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI).

[19] Zoltan Majo and Thomas R. Gross. 2012. Matching memory access patterns
and data placement for NUMA systems. In International Symposium on Code
Generation and Optimization (CGO).

[20] Jaydeep Marathe and Frank Mueller. 2006. Hardware Profile-guided Automatic
Page Placement for ccNUMA Systems. InACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP).

[21] Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. 2010. Feedback-Directed
Page Placement for ccNUMA via Hardware-generated Memory Traces. Journal
of Parallel and Distributed Computing (JPDC) 70, 12 (2010).

[22] Michael Marchetti, Leonidas Kontothanassis, Ricardo Bianchini, and Michael L.
Scott. 1995. Using Simple Page Placement Policies to Reduce the Cost of Cache
Fills in Coherent Shared-Memory Systems. In International Parallel Processing
Symposium (IPPS).

[23] Larry McVoy and Carl Staelin. 1996. Lmbench: Portable Tools for Performance
Analysis.. In USENIX Annual Technical Conference (ATC).

[24] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Constantine D. Poly-
chronopoulos, Jesús Labarta, and Eduard Ayguadé. 2000. UPMLIB: A Runtime
System for Tuning the Memory Performance of OpenMP Programs on Scalable
Shared-MemoryMultiprocessors. In Languages, Compilers, and Run-Time Systems
for Scalable Computers (LCR).

[25] Guilherme Piccoli, Henrique N. Santos, Raphael E. Rodrigues, Christiane Pousa,
Edson Borin, and Fernando M. Quintão Pereira. 2014. Compiler support for
selective page migration in NUMA architectures. In International Conference on
Parallel Architectures and Compilation Techniques (PACT).

[26] Aske Plaat, Henri E. Bal, Rutger F. H. Hofman, and Thilo Kielmann. 2001. Sen-
sitivity of parallel applications to large differences in bandwidth and latency
in two-layer interconnects. Future Generation Computer Systems 17, 6 (2001),
769–782.

[27] Christiane Pousa Ribeiro, Marcio Castro, Jean-François Méhaut, and Alexandre
Carissimi. 2010. Improving memory affinity of geophysics applications on
NUMA platforms using Minas. In International Conference on High Performance
Computing for Computational Science (VECPAR).

[28] Christiane Pousa Ribeiro, Jean-François Méhaut, Alexandre Carissimi, Marcio
Castro, and Luiz Gustavo Fernandes. 2009. Memory Affinity for Hierarchical
Shared Memory Multiprocessors. In International Symposium on Computer Ar-
chitecture and High Performance Computing (SBAC-PAD).

[29] John Shalf, Sudip Dosanjh, and John Morrison. 2010. Exascale Computing Tech-
nology Challenges. In High Performance Computing for Computational Science
(VECPAR).

[30] Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2004. Using Hardware Counters
to Automatically Improve Memory Performance. In ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC).

[31] Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2008. Hardware monitors for
dynamic page migration. Journal of Parallel and Distributed Computing (JPDC)
68, 9 (sep 2008).

[32] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. 1996. Oper-
ating system support for improving data locality on CC-NUMA compute servers.
In International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[33] Wei Wang, Tanima Dey, Jason Mars, Lingjia Tang, Jack W Davidson, and
Mary Lou Soffa. 2012. Performance Analysis of Thread Mappings with a Holistic
View of the Hardware Resources. In IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS).

[34] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 programs: characterization and method-
ological considerations. In International Symposium on Computer Architecture
(ISCA).

229

http://lwn.net/Articles/488709/
http://lwn.net/Articles/486858/
http://lwn.net/Articles/486858/
http://dx.doi.org/10.1145/2975587

