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A new periocular dataset collected 
by mobile devices in unconstrained 
scenarios
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Recently, ocular biometrics in unconstrained environments using images obtained at visible 
wavelength have gained the researchers’ attention, especially with images captured by mobile 
devices. Periocular recognition has been demonstrated to be an alternative when the iris trait is not 
available due to occlusions or low image resolution. However, the periocular trait does not have 
the high uniqueness presented in the iris trait. Thus, the use of datasets containing many subjects 
is essential to assess biometric systems’ capacity to extract discriminating information from the 
periocular region. Also, to address the within-class variability caused by lighting and attributes in 
the periocular region, it is of paramount importance to use datasets with images of the same subject 
captured in distinct sessions. As the datasets available in the literature do not present all these 
factors, in this work, we present a new periocular dataset containing samples from 1122 subjects, 
acquired in 3 sessions by 196 different mobile devices. The images were captured under unconstrained 
environments with just a single instruction to the participants: to place their eyes on a region of 
interest. We also performed an extensive benchmark with several Convolutional Neural Network 
(CNN) architectures and models that have been employed in state-of-the-art approaches based on 
Multi-class Classification, Multi-task Learning, Pairwise Filters Network, and Siamese Network. The 
results achieved in the closed- and open-world protocol, considering the identification and verification 
tasks, show that this area still needs research and development.

Biometric systems that use ocular images have been extensively investigated due to the high level of singularity 
in the iris and because the periocular region can provide discriminative patterns even in noisy images1–6. The 
term ocular comprises the periocular and iris regions7. The periocular region comprises eyebrows, eyelashes 
and eyelids, while the iris is the colored region between the sclera and pupil. There are two main modes that an 
ocular biometric system can operate: identification (1:N comparison) and verification (1:1 comparison). The 
identification task consists of determining a subject’s identity, whereas the verification one verifies whether a 
subject is who she/he claims to be. There are also two main protocols to evaluate biometric systems: closed-world 
and open-world8,9. In the former, the training and test sets have different samples from exactly the same subjects. 
On the other hand, in the open-world protocol, the training and test sets must have samples from different sub-
jects. With these modes and protocols, it is possible to evaluate some characteristic of biometric approaches to 
produce discriminative features and generalization capability.

Nowadays, with the advancement of deep learning-based techniques, several methodologies applying them to 
ocular images have been proposed for several tasks, for example, spoofing detection24,25, iris and periocular region 
detection26–28, iris and sclera segmentation29,30, and iris and periocular recognition31–37. The advancement of these 
technologies can be observed by the recent contests that have been conducted to evaluate the evolution of the 
state-of-the-art methods for different applications, such as iris recognition in heterogeneous lighting conditions 
(NICE.I and NICE.II)21,38, iris recognition using mobile images (MICHE.I and MICHE.II)2,16, iris and periocular 
recognition in cross-spectral scenarios (Cross-Eyed 1 and 2)17,18, and periocular recognition using mobile images 
captured in different lighting conditions (VISOB 1 and 2)23. Note that all these contests used datasets contain-
ing images obtained in the visible wavelength. The most recent contests also used images captured by mobile 
devices2,23. The results achieved by the proposed methods have shown that it is challenging to develop a robust 
biometric system in such conditions, mainly due to the high intra-class variability. Based on recent works2,5,7, 

OPEN

1Department of Informatics, Federal University of Paraná (UFPR), Curitiba  81530‑000, Brazil. 2Postgraduate 
Program in Informatics, Pontifical Catholic University of Paraná (PUCPR), Curitiba  80215‑182, Brazil. *email: 
lazjunior@inf.ufpr.br

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-22811-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17989  | https://doi.org/10.1038/s41598-022-22811-y

www.nature.com/scientificreports/

we can state that developing an ocular biometric system that operates in unconstrained environments is still a 
challenging task, especially with images obtained by mobile devices. In this condition, the images captured by 
the volunteer may present several variations caused by occlusion, pose, eye gaze, off-angle, distance, resolution, 
and image quality (affected by the mobile device).

With the existing periocular datasets, it is difficult to assess the scalability performance of biometric applica-
tions, i.e., if an approach can produce discriminative features even in a large dataset in terms of the number of 
subjects. As we can see in Table 1, the datasets in the literature do not present a large number of subjects and 
have few capture devices and session captures. As described in some previous works5,6, one common problem 
in ocular biometric systems is the within-class variability, which is generally affected by noises and attributes 
present in the same individual images. A robust biometric system must handle images obtained from different 
capture devices, extracting distinctive representations regardless of the source and environments. In this sense, 
samples from the same subject obtained in different sessions are of paramount importance to capture the intra-
class variation caused by various noise factors.

Considering the above discussion, in this work, we introduce a new periocular dataset, called UFPR-Perioc-
ular. The subjects themselves collected the images that compose our dataset through a mobile application (app). 
In this way, the images were captured in unconstrained environments, with a minimum of cooperation from 
the participant, and have real noises caused by poor lighting, occlusion, specular reflection, blur, and motion 
blur. Figure 1 shows some samples from the UFPR-Periocular. As part of this work, we also present an extensive 
benchmark, employing several state-of-the-art architectures of CNN models that have been explored to develop 
ocular (periocular and iris) recognition biometric systems. Face and eye detection are not covered in this work. 
The recognition methods are evaluated with manually pre-processed images (also available in the dataset).

Note that our dataset is the largest one in terms of the number of subjects, sessions, and capture devices, as 
shown in Table 1. It also has more images than all datasets except VISOB. Another key feature is that the proposed 
dataset has images captured by 196 different mobile devices. The samples captured with less cooperation of the 
participant in unconstrained environments have several variations on the ocular images since they are obtained 
during three different sessions. To the best of our knowledge, this is the first periocular dataset with more than 
1, 000 subject samples and the largest one in different capture devices in the literature. Thus, we believe that it 
can provide a new benchmark to evaluate and develop new robust periocular biometric approaches.

Recently, with the advancement of devices enabling the self-capture of images that can be used as biometrics, 
the term “selfie biometrics” has been extensively explored by the research community39,40, especially in face and 
iris recognition41–43. As described by Rattani et al. [3], the term “selfie biometrics” consists of a biometric system 
where the input data is acquired by the user using the capture devices available in their device. Thus, we can 
consider the UFPR-Periocular dataset, presented in this work, as a selfie biometric dataset since its images were 
acquired by the users through their own smartphones.

The remainder of this work is organized as follows. In “Related work”, we describe the periocular datasets 
containing VIS images for periocular biometrics. In “Dataset”, we present information about the UFPR-Periocular 
dataset and the proposed protocol to evaluate biometric systems. “Benchmark” presents the CNN architectures 
used to perform the benchmark. In “Results and discussion”, we present and discuss the benchmark results. 
Finally, the conclusions are given in “Conclusion”.

Related work
In recent years, several ocular contests and datasets have been released to evaluate state-of-the-art methods 
for many applications. Zanlorensi et al.7 detailed and described several datasets and contests for iris and perio-
cular recognition. Different problems have been addressed by the researchers, such as ocular recognition in 

Table 1.   Comparison of the available periocular datasets containing visible (VIS) images with our dataset 
(UFPR-Periocular). Significant values are given in bold.

Dataset Subjects Images Sessions Capture devices

VSSIRIS10 28 560 1 2

CSIP11 50 2004 N/A 7

QUT12 53 212 N/A 2

IIITD13 62 1240 N/A 3

UPOL14 64 384 N/A 1

UTIRIS15 79 1540 2 2

MICHE-I16 92 3732 2 3

CROSS-EYED17,18 120 3, 840 N/A 2

PolyU Cross-Spectral19 209 12, 540 2 2

UBIRIS.v120 241 1877 2 1

UBIRIS.v221 261 11, 102 2 1

UBIPr22 261 10, 950 2 1

VISOB23 550 158,136 2 3

UFPR-Periocular 1122 33, 660 3 196
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unconstrained environments, ocular recognition on cross-spectral scenarios, iris/periocular region detection, 
iris/periocular region segmentation, and sclera segmentation44.

Existing periocular datasets can be organized into constrained (or controlled) or unconstrained (or non-
controlled) environments. The quality of the images is different in constrained and unconstrained environments, 
as some noise can occur in the images captured in unconstrained environments such as lighting variation, occlu-
sion, blur, specular reflection, and distance. Images can also be acquired cooperatively and non-cooperatively 
in relation to some image capture restrictions imposed on the subject. Ocular non-cooperative images can have 
some problems caused by off-angle, focus, distance, motion blur, and occlusions by some attributes such as eye-
glasses, contact lenses, and makeup.

As described in7, datasets containing images obtained at the Near-infraRed (NIR) wavelength were created 
mainly to investigate the intricate patterns present in the iris region45,46. There are also other studies on NIR 
ocular images, such as generating synthetic iris images47,48, spoofing and liveness detection49–52, contact lens 
detection53–56, and template aging57,58. The use of NIR ocular images captured in controlled environments by 
biometric systems has been studied for several years. Thus, it can be considered a mature technology that has 
been successfully employed in several applications3,45,46,59,60.

In general, better results can be achieved on biometric methods using VIS images by exploring the periocular 
region instead of the iris trait, as the iris is rich in melanin pigment that absorbs the most visible lights—not 
reflecting the iris features as occur with NIR lights59. Also, the small resolution of ocular images is a common 
problem that makes it almost impracticable to use the iris trait alone. Regarding these problems, the use of VIS 
ocular images captured in a non-cooperative way under unconstrained environments became a recent challenge. 
In this sense, several studies have been carried out on periocular biometric recognition using images obtained 
by mobile devices in uncontrolled environments using different capture devices10,16,23. The following datasets 
were developed to investigate the use of iris and periocular traits in VIS images: UPOL 14, UBIRIS.v1 20, UBIRIS.
v2 21 and UBIPr 22. There are also datasets of iris and periocular region images for cross-spectral recognition, 
i.e., match ocular images obtained at different wavelengths (NIR against VIS and vice-versa): UTIRIS 15, IIITD 
Multi-spectral Periocular 13, PolyU Cross-Spectral 19, CROSS-EYED 17,18, and QUT Multispectral Periocular 12. 
Focusing specifically on ocular recognition using non-cooperative images obtained in uncontrolled environ-
ments by mobile devices, we highlight the following datasets: MICHE-I 16, VSSIRIS 10, CSIP 11 and VISOB 23.

Nowadays, it is difficult to evaluate the scalability factor of the state-of-the-art biometric approaches due 
to the size in terms of subjects and images on the available datasets. As shown in Table 1, the most extensive 
dataset regarding subjects and images is VISOB 23, which has 158, 136 images from 550 subjects. The ICIP 2016 
Competition on mobile ocular biometric recognition23 employed this dataset, and in the WCCI/IJCNN2020 
challenge (VISOB 2.0 Dataset and Competition results available at https://​sce.​umkc.​edu/​resea​rch-​sites/​cibit/​
datas​et.​html), a second version of the dataset was launched. Both contests evaluated the periocular recognition 
using VIS images obtained by mobile devices. The second contest’s main difference is that the input images were 
a stack with five periocular images belonging to the same subject. The best methods achieved an EER of 0.06% 
and 5.26% on the first and second contests, respectively.

Also using VIS ocular images, other contests were carried out to evaluate iris and periocular recognition: 
NICE.II38, MICHE.II2, and CROSS-EYED I17 and II18. The NICE.II contest evaluated iris recognition using 

Figure 1.   Sample images from the UFPR-Periocular dataset. Observe that there is great diversity in terms 
of lighting conditions, age, gender, eyeglasses, specular reflection, occlusion, resolution, eye gaze, and ethnic 
diversity.

https://sce.umkc.edu/research-sites/cibit/dataset.html
https://sce.umkc.edu/research-sites/cibit/dataset.html
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images containing noise within the iris region. The winner method fused features extracted from the iris and the 
periocular region using ordinal measures, color histograms, texton histograms, and semantic information. The 
MICHE.II contest also evaluated iris and periocular recognition, but using images captured by mobile devices. 
The winner approach extracted features from the iris and the periocular region, using the rubber sheet model 
normalization61 and 1-D Log-Gabor filter and Multi-Block Transitional Local Binary Patterns, respectively. Lastly, 
the CROSS-EYED I and II contests evaluated iris and periocular recognition on the cross-spectral scenario. In 
both contests, the winner approach employed handcrafted features based on Symmetry Patterns (SAFE), Gabor 
Spectral Decomposition (GABOR), Scale-Invariant Feature Transform (SIFT), Local Binary Patterns (LBP), and 
Histogram of Oriented Gradients (HOG).

Inspired by impressive results achieved by deep learning-based techniques in multiple domains62, several 
methods proposing and applying such techniques have been developed to address different tasks using ocular 
images4–6,24–37. Also, as found in the literature, deep learning frameworks for ocular biometric systems are a 
recent technology that still needs improvement7. The use of ocular datasets containing images captured by mobile 
devices in unconstrained environments is a challenging task that has gained attention in recent years2,5,7,23,63.

Dataset
The UFPR-Periocular dataset was created to obtain images in unconstrained scenarios that contain realistic noises 
caused by occlusion, blur, and variations in lighting, distance, and angles. To this end, we developed a mobile 
application (app) enabling the participants to collect their pictures using their smartphones (Project approved by 
the Ethics Committee Board from the Health Science Sector of the Federal University of Paraná, Brazil—Process 
CAAE 02166918.2.0000.0102, registered in the Plataforma Brazil system—https://​plata​forma​brasil.​saude.​gov.​
br/). We confirm that all methods were carried out following relevant guidelines and regulations by the Ethics 
Committee Board from the Health Science Sector of the Federal University of Paraná. Furthermore, we confirm 
that an informed consent form has been obtained from all subjects, and we do not store any data that could be 
used to identify the subject. We confirm that all periocular images presented in this paper (Figs. 1, 3, 4, 5, 6, 7, 
and 10) were extracted from the UFPR-Periocular dataset and that we have permission to publish these images 
in open access journal. The single instructions to the participants is to place their eyes on a region of interest 
marked by a rectangle drawn in the app, as illustrated in “Picture” in Fig. 3. We also restricted the images to be 
captured in 3 sessions, with 5 images per session and a minimum interval of 8 hours between sessions. In this 
way, we guarantee that the dataset has samples of the same subject with different noises, mainly due to different 
lighting and environments. Furthermore, imposing this minimum time interval between sessions, it is possible 
to collect different attributes in the periocular region of the same subject, as the images are captured at different 
times of the day, e.g., subjects wearing and not wearing glasses and makeup. Another attractive feature of this 
dataset is that all participants are Brazilian, and as Brazil has great ethnic diversity, there are images of subjects 
from different races, making this one of the first periocular datasets with such cultural diversity.

The images were collected from June 2019 to January 2020. The gender distribution of the subjects is 
(53.65%) male and (46.35%) female, and approximately 66% of the subjects are under 31 years old. In total, the 
dataset has images captured from 196 different mobile devices—the five most used device models were: Apple 
iPhone 8 (4.1%), Apple iPhone 9 (3.1%), Xiaomi Mi 8 Lite (3.0%), Apple iPhone 7 (3.0%), and Samsung Galaxy 
J7 Prime (2.7%).

We remark that each subject captured all of their images using the same device model. The distribution of 
age, gender, and image resolutions present in our dataset is shown in Fig. 2.

The dataset has 16, 830 images of both eyes from 1, 122 subjects. Image resolutions vary from 360× 160 
to 1862× 1008 pixels—depending on the mobile device used to capture the image. We cropped/separated the 
periocular regions of the right and left eyes to perform the benchmark, assigning a unique class to each side. Note 
that, once the image was cropped, the remainder image region was discarded as claimed in our project request 
to the Ethics Committee Board to preserve at maximum the identity of the participants. We manually annotated 
the eye corners with four points per image (inside and outside eye corners) and used these points to normalize 
the periocular region regarding scale and rotation. This process is detailed in Fig. 3.

Using the center point of each eye (average corners point), the images were rotated and scaled to normalize 
the eye positions in a size of 512× 256 pixels. Then, the images were split into two patches ( 256× 256 pixels) 
to create the left and right eye sides, generating 33, 660 periocular images from 2, 244 classes. The intra- and 
inter-class variability in this dataset is mainly caused by lighting, occlusion, specular reflection, blur, motion 
blur, eyeglasses, off-angle, eye-gaze, makeup, and facial expression.

This new periocular dataset is the main contribution of this work. It can be employed in future works to evalu-
ate and perform research in biometrics, including recognition, detection and segmentation. Furthermore, it can 
also be used to explore studies on recent topics such as gender and age bias64,65, and to assess the scalability of 
biometric systems since this dataset is the largest one in the literature in terms of the number of subjects. Regard-
ing the semantic segmentation problem, we reproduced the experiments presented by Banerjee et al.66, which 
were proposed to generate segmentation masks for iris detection. This method consists of first transforming the 
raw image into the HSV and YCbCr color spaces, then using a threshold to binarize both images (HSV mask 
and YCbCr mask), and finally applying a dot product in both masks to generate the final global mask. However, 
as the images from our dataset have considerably more noise than those employed in the original work, the 
method could not obtain masks of satisfactory quality for us to consider them as ground truth. For this reason, 
the semantic segmentation problem will be addressed in future work.

Experimental protocols.  We propose protocols for the two most common tasks in biometric systems: 
identification (1:N) and verification (1:1). The identification task consists of determining a subject sample iden-

https://plataformabrasil.saude.gov.br/
https://plataformabrasil.saude.gov.br/
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Figure 2.   Age, gender and image resolution distributions in the UFPR-Periocular dataset. (a) note that gender 
has a balanced distribution, but the age range is concentrated under 30 years old (64% of the subjects). (b) more 
than 45% of the images have a resolution between 1034× 480 and 1736× 772 pixels, and more than 65% of the 
images have resolution higher than 740× 400 pixels.

Picture

Cropped Annotated

NormalizedLeft Right

Figure 3.   Image acquisition and normalization process. First, after the subject took the shot, the rectangular 
region (outlined in blue) was cropped and stored. Then, the images were normalized in terms of rotation and 
scale using the manual annotations of the corners of the eyes. Lastly, the normalized images were cropped, 
generating the periocular regions of the left and right eyes.
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tity (probe) within a known dataset or a cluster (gallery). The probe is compared against all the gallery sam-
ples, considering the closest match as the subject’s identity. Furthermore, probabilistic models can be employed/
trained using the gallery data to determine the probe subject’s identity based on the highest confidence output. 
The verification task refers to the problem of verifying whether a subject is who she/he claims to be. If two sam-
ples match sufficiently, the identity is verified; otherwise, it is rejected59. Verification is usually used for positive 
recognition, where the goal is to prevent multiple people from using the same identity. The identification is a 
critical component in negative recognition, where the goal is to prevent a single person from using multiple 
identities67. Furthermore, the proposed protocol also encompasses two different scenarios: closed-world and 
open-world. In the closed-world protocol, the dataset is split through different samples from the same subject, 
i.e., training and test sets have samples of the same subjects. In the open-world protocol, there are different sub-
jects both in the training and test sets. The identification task is performed in the closed-world protocol, while 
the verification task can be performed in both closed and open-world protocols. In the open-world protocol, we 
also propose two different splits regarding the training and validation sets. Note that we do not change the test 
set, keeping it in the open-world protocol, and only vary the training protocols. The first split uses the closed-
world protocol, in which the training and validation sets have samples from the same subjects. The second split, 
on the other hand, has different subjects in the training and validation sets, i.e., in an open-world protocol. With 
these two training/validation splits, it is possible to use multi-class networks (classification/identification) and 
also models based on the similarity of two distinct inputs (verification task): Siamese networks, triplet networks, 
and pairwise filters. Although models built for the verification task can be trained through the closed-world pro-
tocol, the design can be better improved using the open-world protocol to split the training and validation sets, 
as it is a more realistic scenario regarding the test set. Table 2 summarizes the proposed protocols.

We defined 3 folds with a stratified split into training, validation, and test sets for both biometric tasks (iden-
tification and verification) for all protocols. The test set comprises all against all comparisons for genuine pairs 
and aiming to reduce the pairwise comparisons only impostor pairs using the images of all subjects with the same 
sequence index, i.e., the i-th images of each subject are combined two at-a-time to generate all impostor pairs, 
for 1 ≤ i ≤ n , where n = 3 sessions× 5 images . As the UFPR-Periocular dataset has images captured under 3 
sessions, we designated one session as a test set for each fold in the closed-world protocol. Thus, we have images 
from sessions 1 and 2, 2 and 3, 3 and 1 for training/validation, and sessions 3, 1, and 2 for testing, respectively for 
each of the three folds. To evaluate the ability of the models to recognize subjects samples at different environ-
ments, for all folds, we employed samples of both sessions in the training and validation sets to fed the models 
with images from the same subject varying the capture conditions. For each subject, we employed the first 3 
images of each session for training and the remaining 2 for validation ( 60%/40% for training/validation splits). 
The test set contains new images from the subjects present in the training/validations sets with different noises 
caused by the environment, lighting, occlusion, and facial attributes.

For the open-world protocol we generate the training, validation, and test sets by splitting the dataset through 
different subjects. Thus, for each fold, the test set has samples of subjects not present in the training/validation 
set. Splitting sequentially by the subject index for each fold, we have samples of 748 subjects for training/valida-
tion and 374 subjects for testing. Moreover, we propose two different splits for the training/validation splits, the 
first one containing images of the same subject in the training and validation sets (closed-world validation). The 
second one contains samples from different subjects in the training and validation sets (open-world validation). 
Both training/validation protocols have pros and cons. The advantage of using the closed-world validation is that 
the training has samples of more subjects than the open-world validation protocol. However, in this scenario, 
the models can only learn distinctive features for the gallery samples and may not extract distinctive features 
for subjects not present in the training process. On the other hand, the open-world validation has samples of 
fewer subjects than the closed-world validation protocol, presenting a more realistic scenario since samples of 
subjects not known in the training stage are present in the validation set. In the closed-world validation protocol, 
for each one of the 748 subjects in the training set, we used the first 3 images of each session for training, and 
the remaining 2 for validation ( 60%/40% for training/validation splits). In the open-world validation protocol, 
we employed samples of the first 700 subjects for training and samples of the remaining 48 subjects to validate 
each fold. The number of the generated pairwise comparison for all protocols are detailed in Table 2. The files 
determining all splits and setups detailed in this section are available along with the UFPR-Periocular dataset.

Benchmark
To carry out an extensive benchmark, we employ different models and strategies based on deep learning 
that achieved promising results in the ImageNet dataset/contest68 and were applied in recent works of ocular 
recognition6,32,35,36,69. These methods differ from each other in network architecture, loss function, and training 

Table 2.   Images, classes, and pairwise comparison distributions for the closed-world (CW) and open-
world (OW) protocols. Values for each fold (3 folds).

Protocol Train/val

Images/classes Genuine pairs/impostor pairs

Train Validation Test Train Validation Test

CW CW/CW 13, 464/2244 8976/2244 11, 220/2244 33, 660/90, 599, 256 13, 464/40, 266, 336 22, 440/12, 583, 230

OW OW/CW 13, 464/1496 8976/1496 11, 220/748 53, 856/90, 579, 060 22, 440/40, 257, 360 78, 540/4, 190, 670

OW OW/OW 15, 000/1000 7440/496 11, 220/748 105, 000/112, 387, 500 52, 080/27, 621, 000 78, 540/4, 190, 670



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17989  | https://doi.org/10.1038/s41598-022-22811-y

www.nature.com/scientificreports/

strategies. We employed the following CNN models: Multi-class classification, Multi-task learning, Siamese 
networks, and Pairwise filters networks. Please note that we did not evaluate detection in this paper. We employ 
the images already cropped and resized (to normalize distance and rotation) to evaluate the recognition methods. 
In the following subsections, we describe and detail each one of them.

Multi‑class classification.  Multi-class classification is the task of classifying instances into three or 
more classes, where each sample must have a single unique class/label. Several techniques70–72 have been pro-
posed combining multiple binary classifiers to solve multi-class classification problems. Deep learning-based 
approaches usually address this problem through CNN models with softmax cross-entropy loss. Therefore, we 
start by evaluating several CNN architectures that achieved expressive results in the ImageNet dataset/contest68. 
In summary, the architecture of these models has several convolutional, pooling, activation, and fully-connected 
layers, as shown in Fig. 4.

In the training stage, a batch of images and their labels feed these models. The model extracts the image fea-
tures through convolutional, pooling, and fully connected (dense) layers. The last layer is composed of a fully con-
nected layer using the softmax cross-entropy as a loss function. In this work, following previous approaches21,73,74, 
we considered each eye of each subject as a unique class, i.e., the left and right eyes belong to different classes. In 
this way, as expected, a person’s identity can only be verified by the same eye side, i.e., the left and right eyes of 
the same person can not be matched. Below we describe the main characteristics of each model.

VGG.  The VGG model, proposed by Simonyan and Zisserman75, consists of a CNN using small convolution 
filters ( 3× 3 ) with a fixed stride of 1 pixel. The spatial polling is computed by 5 max-pooling layers over a 2× 2 
pixel window. Two models were proposed varying the number of convolutional layers: VGG16 and VGG19. 
Both models have two fully connected layers at the top with 4096 channels each—these architectures achieved 
the first and second places in the localization and classification tracks on the ImageNet Challenge 2014. The 
authors also stated that it is possible to improve prior-art configurations by increasing the depth of the models. 
Parkhi et al.76 applied these models (called VGG16-Face) on the face recognition problem, showing that a deep 
CNN with a simpler network architecture can achieve results comparable to the state of the art. Furthermore, 
recent approaches for ocular (iris/periocular) biometrics employing VGG models have demonstrated the abil-
ity to produce discriminant features6,32,35,36,69,77,78. In this work, we employed the VGG16 and VGG16-Face to 
perform the benchmark.

ResNet.  The Residual Network (ResNet) was introduced by He et  al.79 and applied to biometrics for face 
recognition80, iris recognition6,35,69,77,81 and periocular recognition6,37,78,82. The authors addressed the degrada-
tion (vanishing gradient) problem caused by deeper network architectures proposing a deep residual learn-
ing framework. They added shortcut connections between residual blocks to insert residual information. These 
residual blocks are composed of a weighted layer followed by batch normalization, an activation function, 
another weighted layer, and batch normalization. Let F(x) be a residual block, and x the input of this block (iden-
tity map), the residual information consists of adding x to F(x), i.e., F(x)+ x , and using it as input to the next 
residual block. Different architectures were proposed and evaluated, varying the depth of the models: ResNet50, 
ResNet101, and ResNet152. These models achieved promising results on the ImageNet dataset68. In83, He et al. 
proposed the ResNetV2 by changing the residual block by adding a pre-activation into it. Empirical experiments 
showed that the proposed method improved the network generalization ability, reporting better results than 
ResNetV1 on ImageNet.

InceptionResNet.  The InceptionResNet model84, combines the residual connections79 and the inception 
architecture85. The first inception model86, known as GoogLeNet, introduced the Inception module aiming to 
increase the network depth while keeping a relatively low computational cost. The main idea of inception is to 
approximate a sparse CNN with a normal dense construction. The inception module consists of several convo-
lutional layers, where their output filter banks are concatenated and used as the input to the next module. The 
model version difference is based on the organization inside its inception module. Combining the residual con-
nections with the InceptionV3 and InceptionV4 models, the author developed InceptionResNetV1 and Incep-
tionResNetV2, respectively. Experiments performed on the ImageNet dataset showed that the InceptionResNet 

Input Images Convolutional model
F.C.

Features
F.C.

Softmax

Figure 4.   Multi-class classification CNN architecture.
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models trained faster and reached slightly better results than the inception architecture84. In our experiments, we 
employed the InceptionResNetV2 model since it achieved the best results on ImageNet.

MobileNet.  The first version of the MobileNet model (MobileNetV1)87 was developed focusing on mobile and 
embedded vision applications, in which it is desirable that the CNN model has a small size and high compu-
tational efficiency. This model is based on depthwise separable filters, which are composed of depthwise and 
pointwise convolutions. As described in87, depthwise convolutions apply a single filter for each input channel, 
and pointwise convolutions use a 1× 1 convolution to compute a linear combination of the depthwise output. 
Both layers use batch normalization and ReLU activation. MobileNetV1 achieved promising results in both 
terms of performance and accuracy on several tasks such as fine-grained recognition, large scale geolocation, 
face attributes classification, object detection, and face recognition87. MobileNetV288 combines the first version 
architecture with an inverted ResNet79 structure, which has shortcut connections between the bottleneck layers. 
Experiments performed in different tasks such as image classification, object detection, and image segmentation 
showed that the MobileNetV2 can achieve high accuracy with low computation costs compared to state-of-the-
art methods88.

DenseNet.  The Dense Convolutional Network (DenseNet) model89 consists of a CNN architecture where each 
layer is connected to every other layer in a feed-forward way. Thus, let L be the number of layers from a network, 
a DenseNet layer has L(L+1)

2  direct connections with subsequent layers—instead of L as a traditional CNN model. 
As in the ResNet models79,83, these connections can handle the vanishing-gradient problem and ensure maxi-
mum information flow between layers. The feed-forward is preserved, passing the output from all layers as an 
additional input to the subsequent ones in a channel-wise concatenation. The DenseNet models achieved state-
of-the-art accuracies in image classification on the CIFAR10/100 and ImageNet datasets68,89. The authors pro-
posed different models varying the depth of the network. In our experiments, we employed DenseNet121 (the 
shallowest one).

Xception.  Xception model was inspired by inception modules, being defined as an intermediate step between 
convolution and depthwise separable convolution operation90. The proposed architecture replaces the standard 
inception modules with depthwise separable convolutions and residual connections. The Xception is similar to 
InceptionV3 in terms of parameters but outperforms it on the ImageNet dataset68.

Multi‑task learning.  Multi-task learning improves generalization using the domain information of related 
tasks as an inductive bias91. This architecture learns several tasks using a shared CNN model, where each task can 
help the generalization of other tasks. Caruana91 introduced the Multi-task learning concept and evaluated it in 
different domains, demonstrating that this method can achieve better results than single-task learning models 
for related tasks. In deep neural networks, multi-task learning can be performed by two different setups: hard or 
soft parameter sharing92. All the hidden (convolutional) layer weights are shared in the hard parameter sharing, 
i.e., the model learns a single representation for all tasks. In this configuration, it is also possible to add specific 
layers for different tasks93. On the other hand, each task is processed by a different model in the soft parameter 
sharing. Then, the parameters of these models are regularized to encourage similarities among them.

As shown in Fig. 5, our Multi-task network shares all convolutional layers and some dense layers. The model 
has exclusive dense layers for each task, followed by the prediction layers, using the softmax cross-entropy as 
function loss.

Input Images Convolutional model F.C.
Features

F.C.
Softmax

Figure 5.   Multi-task CNN architecture. In this model, each task has its own output and all tasks share the 
convolutional layers. The loss of all tasks is used to update the weights of the convolutional layers.
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In this work, based on the results of multi-class classification, we employ MobileNetV2 as the base model on 
our multi-task approach. Furthermore, as detailed in Table 3, we build our multi-task model with hard parameter 
sharing for the following 5 tasks: (i) class prediction, (ii) age rate, (iii) gender, (iv) eye side, and (v) smartphone 
model.

For the age estimation task, we generate the classes by grouping ages into the following 10 ranges: 18–20, 
21–23, 24–26, 27–29, 30–34, 35–39, 40–49, 50–59, 60–69, and 70–79. The gender and eye side prediction tasks 
have only 2 classes, while the smartphone model prediction has 196 classes. Note that it is possible to employ 
weighted loss for each task in the Multi-task learning networks, penalizing the wrong classification of some tasks 
more than others. For simplicity, in this work, we do not use weighted losses in our experiments, giving equal 
importance to all tasks.

As shown in Table 3, we build exclusive dense layers for each task by connecting them directly to the backbone 
model (MobileNetV2). Then, each dense layer is connected to its respective prediction layer, making it possible 
that each task has its own specialized (feature) dense layer.

Pairwise filters network.  Inspired by Liu et al.94, which is one of the first works applying deep learning 
for iris verification, we also evaluate the performance of the pairwise filters network. This kind of model directly 
learns the similarity between a pair of images through pairwise filters. The Pairwise Filters Network is a Multi-
class classification model that contains one or two outputs informing whether the input pairs are from the same 
class or from different classes. The difference is that the network input is a pair of images instead of a single 
image. Thus, the network architecture consists of convolutional, pooling, activation, and fully connected layers, 
as shown in Fig. 6.

As described by Liu et al.94, in this kind of model the similarity map is generated through convolution and 
summarizes the feature maps of a pair of input images. We generate the input pairs by concatenating the images 
at their channel levels. Let two RGB images with shapes of 224× 224× 3 , concatenating both images by their 
channels; the resulting input image will have a shape of 224× 224× 6 ( 224× 244 pixels by 6 channels, 3 from 
the first image and 3 from the second image). These images proceed through convolution layers that generate 
feature maps regarding their similarity. The output of our model has two neurons and uses a softmax cross-
entropy loss. As the verification problem has only two classes, this model’s output can have only one neuron 
using a binary cross-entropy loss function. As in the Multi-task network, we employ MobileNetV2 as the base 
model for our Pairwise Filters Network.

Siamese network.  Siamese networks were first described by Bromley et al.95 for signature verification. This 
architecture consists of twin branches sharing their trainable parameters. Such models are generally employed 
for verification tasks since they learn similarities/distances between a pair of inputs. As illustrated in Fig. 7, each 

Table 3.   Multi-task architecture in the closed-world protocol.

# Layer Connected to Input Output

0 MobileNetV2 (88 layers) – 224× 224× 3 1280

1 Dense (classes) #0 1280 256

2 Dense (age) #0 1280 256

3 Dense (gender) #0 1280 256

4 Dense (eye side) #0 1280 256

5 Dense (smartphone model) #0 1280 256

6 Predict (classes) #1 256 2244

7 Predict (age) #2 256 10

8 Predict (gender) #3 256 2

9 Predict (eye side) #4 256 2

10 Predict (smartphone model) #5 256 196

Input
�Pair Images

F.C.
Features

F.C.
SoftmaxConvolutional model - Pairwise filters

Figure 6.   Pairwise filters CNN architecture. This model contains filters that directly learn the similarity 
between a pair of images. The output informs whether the images are of the same person or not.
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branch of the Siamese structure is composed of a CNN model followed by some dense layers. These models can 
also have shared and non-shared dense layers at the top.

As detailed in Table 4, we employ MobileNetV2 as the base model for each branch of the Siamese network. 
We use the contrastive loss96,97 in the training stage to compute the similarity between the input pair images.

As described in97, let DW be the Euclidean distance between two input vectors, the contrastive loss can be 
written as follows:

where

and P is the number of training pairs, (Y ,X1,X2)
i corresponds to the i-th label (Y) of the sample pair X1,X2 , and 

LS and LD are partial losses for a pair of similar and dissimilar points, respectively. The objective of this function is 
to minimize L for LS and LD by computing low and high values of DW for similar and dissimilar pairs, respectively.

The contrastive loss was proposed and applied to face verification96,97 and has been employed for periocular 
recognition98,99 and iris recognition69.

Results and discussion
This section presents the benchmark results for the identification and verification tasks. We first describe 
the experimental setup used to perform the benchmark. Then, we report and discuss the results achieved by 
each approach.

Experimental setup.  Inspired by several recent works6,32,34,35,37,63,69,82,100, we perform the benchmark 
employing pre-trained models on ImageNet and also for face recognition (VGG16-Face and ResNet50-Face). 
Afterward, we fine-tuned these models using the UFPR-Periocular dataset. Similar to recent works on ocular 
recognition7,32,35,36, we modify all models by adding a fully convolutional layer before the last layer (softmax) to 
generate a feature vector with a size of 256 for each image. The default input size of the models is 224× 224× 3 , 
except for the InceptionResNet and Xception models, which have an input size of 299× 299× 3 . Note that the 
input dimensions are different because we are using pre-trained models and therefore our fine-tuning process 
should follow the original architectures’ input size. In this way, for training and evaluation, the periocular images 
were resized to fit the input size required for each method, i.e., 299× 299× 3 for both InceptionResNet and 
Xception and 244× 244× 3 for the remaining models.

(1)C(W) =

P
∑

i=1

L(W , (Y ,X1,X2)
i),

(2)L(W , (Y ,X1,X2)
i) = (1− Y)LS(D

i
W )+ YLD(D

i
W ) ,

F.C.
FeaturesConvolutional modelInput Images

F.C.
Contrastive

Shared layers

Figure 7.   Siamese CNN architecture. This model is composed of two twin branches of convolutional layers 
sharing their trainable parameters. The output computes a distance between the input image pairs.

Table 4.   Siamese network architecture description.

# Layer Connected to Input Output

0 Branch_a (MobileNetV2 (88 layers)) – 224× 224× 3 256

1 Branch_b (MobileNetV2 (88 layers)) – 224× 224× 3 256

2 Dense #0 and #1 512 256

3 Euclidean dist. / Contrastive loss #2 256 1
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For all methods, the training was performed during 60 epochs with a learning rate of 10−3 for the first 15 
epochs and 5× 10−4 for the remaining epochs using the Stochastic Gradient Descent (SGD) optimizer. Then, 
we used the weights from the epoch that achieves the lower loss in the validation set to perform the evaluation.

We employ Rank 1 and Rank 5 accuracy for the identification task, and the Area Under the Curve (AUC), 
Equal Error Rate (EER), and Decidability (DEC) metrics for verification. Furthermore, to generate the verifica-
tion scores, we compute the cosine distance between the deep representations generated by each CNN model. 
As described and applied in several works with state-of-the-art results5,6,32,35, the cosine distance is computed by 
the cosine angle between two vectors, being invariant to scalar transformation. This measure gives more atten-
tion to the orientation than to the coefficient of magnitude of the representations, being an interesting metric to 
compute the similarity between two vectors. The cosine metric distance is given by:

where A and B stand for the feature vectors.
Regarding the models explicitly developed for the verification tasks, i.e., the Siamese and the Pairwise Filters 

networks, as this task has unbalanced samples of genuine and impostors pairs, selecting the best samples to 
perform the training is challenging. Thus, trying to fit the models by feeding them samples as diverse as pos-
sible, we employed all genuine pairs and randomly selected the same number from the impostor pairs for each 
epoch. Hence, each epoch may have different impostor samples. However, for a fair comparison, we generated the 
random impostor pairs only once for each epoch and fold, and used the same samples for training both models.

The reported results are from five repetitions for each fold, except for the Siamese and Pairwise filter networks, 
in which we ran only three repetitions due to the high computational cost. All experiments were performed on 
a computer with an AMD Ryzen Threadripper 1920X 3.5GHz (4.0GHz Turbo) CPU, 64 GB of RAM and an 
NVIDIA Quadro RTX 8000 GPU (48 GB). All CNN models were implemented in Python using the Tensorflow 
(https://​www.​tenso​rflow.​org/) and Keras (https://​keras.​io/) frameworks.

Benchmark results.  The results obtained by each approach in the closed-world and open-world protocols 
are presented in this section. An ablation study were performed evaluating each task’s influence in the identifica-
tion mode on the Multi-task learning network. Table 5 shows the size and the number of trainable parameters of 
each CNN model used as a benchmark. This information was extracted from the models employed in the closed-
world protocol since they have more neurons on the last layer than the open-world protocol models. We also 
report the results achieved by employing the state-of-the-art method that achieved first place in the VISOB 2 
competition on mobile ocular biometric recognition101. This method6 consists of an ensemble of five ResNet-50 
models pre-trained for face recognition and fine-tuned using the periocular images of our dataset and employ-
ing the same experimental protocol described in this work.

As can be seen, the benchmark has a great diversity of models with different sizes and parameters due to their 
difference in structure, depth, concept, and architectures.

Closed‑world protocol.  We perform the benchmark for both the identification and verification tasks in the 
closed-world protocol. All results are presented in Table  6 and Fig.  8. Even though the MobileNetV2 is the 
shortest model in size and trainable parameters, it achieved the best results for identification and verification 
tasks. Therefore, we employed MobileNetV2 as the base model for the Multi-task, Siamese, and Pairwise Filters 
networks.

The Multi-task model achieved the best results in Rank 1, Rank 5, AUC, and EER metrics. We emphasize that 
we only explored other tasks such as—age, gender, eye side, and mobile device model—at the training stage of 
this model. We extracted the representations only for the classification task to evaluate identification (using the 

(3)dc(A,B) = 1−

∑N
j=1 AjBj

√

∑N
j=1 A

2
j

√

∑N
j=1 B

2
j

,

Table 5.   Size (MB) and number of trainable parameters of the CNN models used in the benchmark.

Model Size (MB) Trainable parameters

VGG16 1088 135, 886, 084

VGG16-Face 1088 135, 886, 084

InceptionResNet 445 55, 246, 372

ResNet50V2 400 49, 786, 436

ResNet50 198 24, 609, 284

ResNet50-Face 198 24, 609, 284

Xception 176 21, 908, 204

DenseNet121 64 7, 792, 964

MobileNetV2 26 3, 128, 516

Multi-task 37 4, 494, 230

Siamese 21 2, 551, 808

Pairwise 20 2, 349, 479

https://www.tensorflow.org/
https://keras.io/
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softmax layer) and verification (using the cosine distance) tasks. The Siamese network obtained the worst results 
in the benchmark. In contrast, the Pairwise Filters network reached the higher Decidability index, indicating 
that it was the most useful to separate genuine and impostors distributions. Nevertheless, it did not achieve the 
best results in terms of AUC and EER.

The models pre-trained for face recognition generally achieve best results than those pre-trained on the 
ImageNet dataset as stated in some previous works32,100.

Open‑world protocol.  The main idea of the open-world protocol is to evaluate the capability of the methods 
to extract discriminant features from samples of classes that are not present in the training stage. Thus, for this 
protocol, we perform a benchmark only for the verification task. The results are shown in Table 7 and Fig. 9.

As in the closed-world protocol, the Multi-task model achieved the best results in Rank 1, Rank 5, AUC, and 
EER, and the Pairwise network achieved the best Decidability index. The Siamese and Pairwise Filters networks 
trained using the closed-world validation split reached better results than when trained using the open-world 
validation split. We believe this occurred due to the fact that there are fewer classes in the training set in the 
open-world validation split than in the closed-world validation split. Although the open-world validation split 
corresponds to a more realistic scenario regarding the test set, the networks trained with samples from a larger 
number of classes can reach a higher capability of generalization, producing discriminative representations even 
for samples from classes not present in the training stage.

Multi‑task learning.  The Multi-task model reached the best results in the closed- and open-world protocols. 
As this network simultaneously learns different tasks, we perform an ablation study by running some experi-
ments with 4 new models created by removing one of the tasks at a time. The experiments were carried out in 

Table 6.   Benchmark results in the closed-world protocol for the identification and verification tasks. 
Significant values are given in bold.

Model

Identification (1:N) Verification (1:1)

Rank 1 (%) Rank 5 (%) AUC (%) EER (%) Decidability

VGG16 50.56± 3.30 68.73± 3.01 99.41± 0.11 3.59± 0.32 4.4544± 0.1502

VGG16-Face 56.29± 1.62 73.84± 1.48 99.43± 0.08 3.44± 0.28 4.5069± 0.1379

Xception 57.43± 1.43 75.88± 1.52 99.77± 0.04 2.19± 0.18 4.2470± 0.0538

ResNet50V2 63.18± 2.14 77.79± 1.81 99.74± 0.04 2.24± 0.18 4.9382± 0.1184

InceptionResNet 65.16± 2.45 81.53± 1.99 99.78± 0.15 1.85± 0.40 4.5561± 0.1183

ResNet50 71.06± 1.14 85.22± 0.82 99.89± 0.02 1.41± 0.10 5.1242± 0.0634

ResNet50-Face 73.76± 1.43 86.86± 1.02 99.83± 0.03 1.74± 0.12 5.2400± 0.0837

DenseNet121 75.54± 1.36 88.53± 0.97 99.93± 0.02 1.11± 0.09 5.1730± 0.0497

MobileNetV2 77.98± 1.08 90.19± 0.79 99.93± 0.01 1.13± 0.07 5.2477± 0.0650

Multi-task 84.32± 0.71 94.55± 0.58 99.96± 0.01 0.81± 0.06 5.1978± 0.0340

Visob 2.0 Winner6,101 – – 99.94± 0.01 1.02± 0.09 6.0345± 0.0788

Siamese – – 98.94± 0.22 4.86± 0.44 3.0005± 0.1871

Pairwise – – 99.44± 0.66 3.06± 1.84 6.4503± 1.2270

Figure 8.   Receiver operating characteristic curve to compare methods in the closed-world protocol.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17989  | https://doi.org/10.1038/s41598-022-22811-y

www.nature.com/scientificreports/

the closed-world protocol evaluating the performance for identification and verification. We also evaluated the 
results achieved by all models in each task.

According to Table 8, the Multi-task network without the prediction of the mobile device model was the 
most penalized for the identification task, followed by the network variations without age, gender, and eye side 
estimation, respectively. All models handled the gender and eye side classification tasks well, while the device 

Table 7.   Benchmark results in the open-world protocol for the verification task. Significant values are given in 
bold.

Model Validation

Verification (1:1)

AUC (%) EER (%) Decidability

VGG16 Closed-World 97.38± 0.53 8.52± 0.92 2.9599± 0.1572

VGG16-Face Closed-World 97.70± 0.42 7.78± 0.75 3.0327± 0.1428

ResNet50 Closed-World 98.60± 0.28 5.98± 0.67 3.3702± 0.1413

ResNet50V2 Closed-World 98.73± 0.28 5.69± 0.64 3.4312± 0.1459

Xception Closed-World 98.93± 0.16 5.23± 0.42 3.3493± 0.0712

InceptionResNet Closed-World 99.10± 0.24 4.61± 0.65 3.4982± 0.1208

ResNet50-Face Closed-World 99.18± 0.16 4.38± 0.47 3.8319± 0.1239

DenseNet121 Closed-World 99.51± 0.12 3.39± 0.46 3.8646± 0.1215

MobileNet Closed-World 99.56± 0.08 3.17± 0.33 3.9868± 0.1067

Multi-task Closed-World 99.67 ± 0.08 2.81± 0.39 3.9263± 0.0921

Visob 2.0 Winner6,101 - 99.65± 0.09 2.96± 0.26 4.3666± 0.1453

Siamese Closed-World 97.27± 0.64 8.10± 1.01 2.6678± 0.2433

Pairwise Closed-World 98.62± 0.72 5.77± 1.57 4.4404 ± 0.5834

Siamese Open-World 96.85± 0.70 8.87± 1.14 2.6218± 0.1514

Pairwise Open-World 97.80± 2.03 7.11± 3.66 4.1977± 1.0663

Figure 9.   Receiver operating characteristic curve to compare methods in the open-world protocol.

Table 8.   Results (%) from several multi-task models trained to predict different tasks. The device model 
concerns the task of identifying the smartphone model with which the image was taken. The age, gender, and 
eye side regard the tasks of classifying the input image into age ranges, gender (male or female), and eye side 
(left or right), respectively. Significant values are given in bold.

Model Rank 1 Rank 5 Device model Age Gender Eye side

Multi-task (no model) 80.76± 0.94 91.96± 0.51 – 82.14± 0.83 97.72± 0.17 99.99± 0.01

Multi-task (no age) 81.93± 0.99 93.51± 0.69 87.20± 0.63 – 97.65± 0.20 99.99± 0.01

Multi-task (no gender) 82.48± 0.64 93.55± 0.52 86.71± 0.54 83.17± 0.54 – 99.99± 0.01

Multi-task (no side) 83.72± 0.61 94.07± 0.54 87.22± 0.79 83.75± 0.53 97.70± 0.20 –

Multi-task 84.32± 0.71 94.55± 0.58 87.42± 0.65 84.34 ± 0.71 97.80± 0.21 99.98± 0.02
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model and age range classification tasks proved to be more challenging. One problem in the device model and 
age range classification is the unbalanced number of samples per class. Such bias probably contributed to the 
lower results being achieved in these two tasks.

Note that we only employed the class prediction for the matching in both closed-world and open-world 
protocols. However, as shown in Table 8, the multi-task architecture also achieved promising results in the other 
tasks. In this sense, it may be possible to further improve the recognition results by adopting heuristic rules based 
on the scores of the other tasks.

Subjective evaluation.  In this section, we perform a subjective evaluation through visual inspection on the pairs 
of images erroneously classified by the Multi-task model, which achieved the best result in the verification task in 
the closed-world protocol. The best impostors (impostors classified as genuine) and the worst genuines (genuine 
classified as impostors) pairs are presented in Fig. 10.

Performing a visual analysis of all pairwise errors, it is clear that hair occlusion, age, eyeglasses, and eye 
shape were the most influential factors that led the model to the wrong classification of genuine pairs (intra-
class comparison). In pairs wrongly classified as impostors (inter-class comparison), we saw that lighting, blur, 
eyeglasses, off-angle, eye-gaze, reflection, and facial expression caused the main difference between the images. 
We hypothesize that some errors caused by lightning, blur, reflection, and occlusion can be reduced by employing 
some data augmentation techniques in the training stage. Attribute normalization5 can also reduce the errors 
caused by attributes present in the periocular region such as eyeglasses, eye gaze, makeup, and some types of 
occlusion. Although some methods can be applied to reduce the matching errors, there are still several char-
acteristics in these images that make the mobile periocular recognition a challenging task, mainly to the high 
intra-class variations.

Wrong Genuines (Best Impostors)
0. 089 . 069 . 059 .95

0. 059 . 059 . 049 .94

0. 049 . 049 . 039 .93

Wrong Impostors (Worst Genuines)
0. 066 . 086 . 096 .69

0. 096 . 007 . 007 .70

0. 007 . 017 . 027 .73

Figure 10.   Pairwise images wrongly classified by the model that obtained the best result in the verification task 
in the open-world protocol. Higher scores mean that the pair of periocular images is more likely to be genuine.
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Conclusion
This article introduces a new periocular dataset that contains images captured in unconstrained environments 
on different sessions using several mobile device models. The main idea was to create a dataset with real-world 
images regarding lighting, noises, and attributes in the periocular region. To the best of our knowledge, in the 
literature, this is the first periocular dataset with more than 1, 000 subject samples and the largest one in the 
number of different sensors (196).

We presented an extensive benchmark with several CNN models and architectures employed in recent works 
for periocular recognition. These architectures consist of models for multi-class classification and multi-task 
learning, in addition to Siamese and pairwise filters networks. We evaluated the methods in the closed-world and 
open-world protocols, as well as for the identification and verification tasks. For both protocols and tasks, the 
multi-task model achieved the best results. Thus, we conducted an ablation study on this model to understand 
which tasks significantly influenced the results. We stated that the mobile device model identification task was 
the most important, followed by age range, gender, and eye side classification. Note that we did not conduct 
experiments employing only left or right eye sides or images separated by gender. The model trained using all 
these tasks reported the best result for the identification and verification in the closed- and open-world protocols.

In a complementary way, we performed a subjective analysis of the best/worst false genuine and true impos-
tors image pairwise comparisons using the Multi-task model, which achieved the best performance for the 
verification task. We observed that lighting, occlusion, and image resolution were the most critical factors that 
led the model to wrong verification.

We believe that the UFPR-Periocular dataset will be of great relevance to assist in evolving periocular bio-
metric systems using images obtained by mobile devices in unconstrained scenarios. This dataset is the most 
extensive in terms of the number of subjects in the literature and has natural within-class variability due to 
samples captured in different sessions.

The Multi-task network using MobileNetV2 as baseline model achieved the best benchmark results for the 
identification and verification tasks, reaching a rank 1 of 84, 32% and an EER of 0.81% in the closed-world pro-
tocol, and an EER of 2.81% in the open-world protocol with thresholds of 0.80 and 0.78, respectively. Therefore, 
there is still room for improvement in both identification and verification tasks.

Data availability
The UFPR-Periocular dataset is publicly available for the research community (upon request) at https://​web.​inf.​
ufpr.​br/​vri/​datab​ases/​ufpr-​perio​cular/. The dataset contains all the original and cropped periocular images, along 
with the eye corner annotations we made manually. The files determining all splits and setups for training, valida-
tion, and testing employed in our experiments are also part of the dataset as well as information about age, gender, 
and device model for each image. We recognize the importance of also providing mask labels for sclera and iris 
segmentation; however, this is left for future work as making such annotations is very time-consuming29,30. The 
UFPR-Periocular dataset is released only to academic researchers from educational or research institutes for 
non-commercial purposes. To be able to download the dataset, please read carefully the license agreement avail-
able at https://​web.​inf.​ufpr.​br/​vri/​wp-​conte​nt/​uploa​ds/​sites/7/​2020/​11/​UFPR-​Perio​cular-​Licen​se-​Agree​ment.​
pdf, fill it out, and send it back to Professor David Menotti (menotti@inf.ufpr.br). The license agreement must be 
reviewed and signed by the individual or entity authorized to make legal commitments on behalf of the institu-
tion or corporation (e.g., Department/Administrative Head, or similar).
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