

Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines

Gabriel SalomonRayson LarocaDavid MenottiLaboratory of Vision, Robotics and Imaging - UFPR - Brazil

SPONSORS:

Automatic Meter Reading

- Easy/Cheap to deploy
- Enables the possibility of self-reading
- Solution for rural/remote areas
- Reduce the number of errors in readings
- Produces a proof of reading for verification

Source: https://anyline.com/news/customer-meter-reading-app/

Energy Meters

cyclometer display

dial display

electronic display

smart meter

ADMR-UFPR Dataset

ADMR-UFPR Dataset

- 2,000 fully annotated unconstrained real-world dial meter images
- Publicly available (shared only upon request)
- 4 or 5 dials per meter (45% of 4, 55% of 5)

Dataset Digit Distribution

Dataset Challenging Conditions

- Uneven lighting
- Blur
- Distant capture
- Reflections
- Dirt
- Glare
- Broken glass

Proposed Pipeline

We evaluate two detection networks:

- YOLO (v2, v3, Fast-YOLO variants)
- Faster R-CNN (ResNet-50, ResNet-101, ResNeXt-101)

Experimental Protocol

The dataset is divided into three subsets:

- 1200 images for training (60%)
- 400 images for validation (20%)
- 400 images for testing (20%)

Metrics:

- Meter Recognition Rate
- Dial Recognition Rate (Edit distance)
- Mean Absolute Error

Detection Results

Detection Model	Dealthease	(%)		
Detection Model	Backdone	Prec.	Recall	F-score
Hough Circle Transform	-	53.27	55.28	54.25
Fast-YOLOv3	Darknet	99.94	100.0	99.97
YOLOv3	Darknet-53	100.0	100.0	100.0
Faster R-CNN	ResNet-50	100.0	99.94	99.97
Faster R-CNN	ResNet-101	100.0	100.0	100.0
Faster R-CNN	ResNeXt-101	100.0	100.0	100.0

Recognition Results

Method	Input Size	FPS	Recognition (%)		Mean Abs.
			Dial	Meter	Error
Fast-YOLOv2	416×416	244	79.61	42.25	5382.06
Fast-YOLOv2	608×608	145	85.24	51.75	3810.34
Fast-YOLOv3	416×416	220	83.27	47.75	6098.27
Fast-YOLOv3	608×608	120	86.60	54.25	5183.82
YOLOv2	416×416	67	91.42	68.00	2615.23
YOLOv2	608×608	40	92.51	71.25	1924.98
YOLOv3	416×416	35	93.00	73.75	1685.98
YOLOv3	608×608	20	93.38	74.75	1591.16
FR-CNN R-50	800×800	13	92.56	72.25	1451.81
FR-CNN R-101	800×800	11	92.62	71.75	1343.29
FR-CNN X-101	800×800	6	93.60	75.25	1591.77

Error Analysis

The most common errors in the presented approach are caused by:

Type of Fyner	Frequency			
Type of Error	YOLOv3	Faster X-101		
Symmetry	2%	3%		
Neighbor value	82%	85%		
Severe lighting conditions/Dirt	14%	9%		
Rotation	2%	3%		

Error Samples

a) $\frac{4062}{3061}$ (lev=2)

b) 01669 1669 (lev=1)

c) 4395 5495 (lev=2)

d) 2140 3050 (lev=3)

Conclusion and Future Works

- New dataset for the research community
- New approaches towards ADMR
- New well-defined protocol for evaluation of ADMR systems
- Address the neighbor errors issue
- Use confidence to eliminate uncertain predictions
- New loss functions to penalize errors on leftmost dials

Acknowledgements

Thanks to Nvidia for the donation of the Titan Xp used in our experiments.

