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Abstract

Due to the world’s demand for security systems, biomet-
rics can be seen as an important topic of research in com-
puter vision. One of the biometric forms that has been gain-
ing attention is the recognition based on sclera. The initial
and paramount step for performing this type of recognition
is the segmentation of the region of interest, i.e. the sclera.
In this context, two approaches for such task based on the
Fully Convolutional Network (FCN) and on Generative Ad-
versarial Network (GAN) are introduced in this work. FCN
is similar to a common convolution neural network, how-
ever the fully connected layers (i.e., the classification lay-
ers) are removed from the end of the network and the output
is generated by combining the output of pooling layers from
different convolutional ones. The GAN is based on the game
theory, where we have two networks competing with each
other to generate the best segmentation. In order to per-
form fair comparison with baselines and quantitative and
objective evaluations of the proposed approaches, we pro-
vide to the scientific community new 1,300 manually seg-
mented images from two databases1. The experiments are
performed on the UBIRIS.v2 and MICHE databases and the
best performing configurations of our propositions achieved
F -score′s measures of 87.48% and 88.32%, respectively.

1. Introduction
In recent years, the interest in using biometrics to au-

tomatically identify and/or verify a person’s identity has
greatly increased. Many characteristics can be used to
identify a person, such as physical, biological and behav-
ioral traits [7, 32]. Biometrics are especially important as
they can not be changed, forgotten, lost or stolen, providing
an unquestionable connection between the individual and

1The new sclera segmentation annotations are publicly available to
the research community at https://web.inf.ufpr.br/vri/
databases/sclera-segmentation-annotations/.
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the application that makes use of it [4].
Several characteristics of the human body can be used

as biometrics, such as fingerprint, face, iris, retina and
voice, each one with its advantages and disadvantages. The
iris and retina are among the most accurate biometrics [7].
However, biometric systems based on iris and retina having
high degree of reliability require, respectively, user collab-
oration and an intrusive image acquisition scheme [8]. In
addition to the iris and retina biometric traits, the eye has
also a white region around the eyeball known as sclera that
contains a pattern of blood vessels that can be used for per-
sonal identification [6, 9, 11].

Typically, segmentation is the first step in which efforts
should be applied in a reliable sclera-based recognition sys-
tem. Incorrect segmentation can either reduce the region of
blood vessels or introduce new patterns such as eyelashes
and eyelids, impairing the system effectiveness.

In order to avoid the above mentioned problems and to
encourage the creation of new sclera segmentation tech-
niques, some competitions were performed [6, 8, 9]. The
state of the art method in these competitions was obtained
using a neural network technique named autoencoder in the
Multi-Angle Sclera Dataset.v1 (MASD.v1) database. When
images of a single sensor were used, the best attained recall
and precision rates were 96.65% and 95.64%, respectively.

In this work, we proposed two new approaches to
sclera segmentation based on Convolutional Neural Net-
works (CNNs), one based on Fully Convolutional Network
(FCN) [31] and another one based on Generative Adver-
sarial Network (GAN) [16]. To the best of our knowl-
edge, both kinds of networks have never been studied in
the sclera segmentation scenario. FCN is used for seg-
mentation in a large range of applications, from medical to
satellite image analysis [14, 29], while GAN is a new ap-
proach to semantic segmentation, which has outperformed
the state of the art [21]. The results yielded by the pro-
posed approaches outperform the ones of previous works
on a subject of UBIRIS.v2 database [25]. This subject con-
tains 201 images kindly provided by the authors of [12] and



more 300 ones manually labeled by us. We also present
promising results for sclera segmentation on a subset (1000
images) of the Mobile Iris Challenge Evaluation I (MICHE-
I) database [22], which was never been used in this context
and initially proposed for iris segmentation and recognition
from mobile images. For producing a fair and quantitative
comparison among proposed approaches and a baseline one
(SegNet [3]), we manually labeled 1,300 images from those
databases, making the masks publicly available for research
purposes. Regarding the MASD.v1 database which was the
focus of the previous mentioned competitions for sclera seg-
mentation, we do not have yet implementations on Matlab
as required by the organizers of those competitions.

The main contributions of this paper can be summa-
rized as follows: 1) Two new approaches for sclera seg-
mentation; 2) A comparative evaluation of the proposed ap-
proaches with a baseline one; 3) Two datasets composed of
1,300 sclera images manually labeled, being 1,000 from the
MICHE-I database and 300 from the UBIRIS.v2 database.

The remainder of this paper is organized as follows: we
briefly review the related work in Section 2. In Section 3,
the proposed segmentation approach is described. Section
4 and 5 present the experiments and the results obtained,
respectively. Finally, conclusions and future work are dis-
cussed in Section 6.

2. Related Work
In this section, we present a review of the most rele-

vant studies in the sclera segmentation context. We start
by presenting some relevant sclera recognition methods in
which different sclera segmentation techniques were pro-
posed. Finally, we describe some important works specially
dedicated to sclera segmentation techniques.

2.1. Sclera-based Recognition Methods

The works presented in this subsection employed sclera
segmentation as preprocessing for sclera-based recognition.
Note that, in such cases, the authors did not report the [pre-
cision, recall, F-score] achieved in the segmentation stage.

Zhou et al. [32] proposed a new concept for human iden-
tification based on the pattern of sclera vessels. In their
work, they presented a fully automated sclera segmentation
approach for both color and grayscale images. In color im-
ages, the sclera region is estimated using the best represen-
tation between two color-based techniques. On the other
hand, the Otsu’s thresholding method is applied to find the
sclera region in grayscale images. The UBIRIS.v1 [24] and
IUPUI [32] databases were used in the experiments.

Das et al. [7] presented a methodology where the right
and left sclera are segmented separately. The time adaptive
active contour-based region growing segmentation tech-
nique proposed by Chan & Vese [5] was employed. The
authors applied the Daugman’s integro-differential operator

to find the seed point required in the region growing-based
segmentation [10]. The UBIRIS.v1 database was used in
the experiments.

Delna et al. [11] presented a sclera identification based
on a single-board computer. The sclera region is segmented
as a rectangle from the Hough circular transform applied
for iris location. All images used in the experiments were
obtained from a webcam connected to a Raspberry Pi.

2.2. Sclera Segmentation Techniques

Das et al. [8] presented a benchmark for sclera seg-
mentation where four research groups proposed their solu-
tions for this task. All approaches were evaluated in the
MASD.v1 database, proposed in the competition. The best
results were obtained by Team 4 [27], where the authors
presented a novel sclera segmentation algorithm for color
images which operates at pixel-level. Exploring various
color spaces, the proposed approach is robust to image noise
and different gaze directions. The algorithm’s robustness is
enhanced by a two-stage classifier. At the first stage, a set of
simple classifiers is employed, while at the second stage, a
neural network classifier operates on the probabilities space
generated by the classifier at the first stage. The reported
precision and recall rates were 95.05% and 94.56%, respec-
tively, on the MASD.v1 database.

Das et al. [9] proposed a new benchmark, which ad-
dresses sclera segmentation and recognition. The best seg-
mentation results reached 85.21% precision and 80.21%
recall. This result is achieved using a method based on
Fuzzy C Means, which considers spatial information and
uses Gaussian kernel function to calculate the distance be-
tween the center of the cluster and the data points.

Alkassar et al. [1] proposed a segmentation algorithm
which fuses multiple color space skin classifiers to over-
come noise introduced by sclera acquisition, such as mo-
tion, blur, gaze and rotation. This approach was evaluated
using the UBIRIS.v1, UBIRIS.v2 [25] and UTIRIS [15]
databases.

Das et al. [6] presented a new sclera segmentation bench-
mark where seven research groups proposed their solutions
for this task. The best results attained precision and recall
rates of 95.34% and 96.65%, respectively. These results
were obtained by using a neural network architecture based
on the encoder-decoder approach called SegNet [3].

2.3. Final Remarks

As one may see, the use of CNNs was not much explored
in the challenging sclera segmentation task. Thus, one of
the contributions of this paper is to explore this aspect in
the attempt of obtaining improvements in terms of sclera
segmentation accuracy.



3. Proposed Approach
Some images might present specular highlights in re-

gions of the subject’s face. In our preliminary tests, many of
these regions were erroneously classified as sclera. There-
fore, we propose to first locate the periocular region and
then perform the sclera segmentation in the detected patch.

This section describes the proposed approach and it is
divided into two subsections, one for Periocular Region De-
tection (PRD) and one for sclera segmentation.

3.1. Periocular Region Detection

YOLO [28] is a object detection framework based on
CNN, which regards detection as a regression problem.
As great advances were recently achieved through YOLO-
inspired models [18,23], we decided to fine-tune it for PRD.
However, as we want to detect only one class and the com-
putational cost is one of our main concerns, we chose to use
a smaller model, called Fast-YOLO2 [28], which uses fewer
convolutional layers than YOLO and fewer filters in those
layers. The Fast-YOLO’s architecture is shown in Table 1.

Table 1. Fast-YOLO network used to detect the periocular region.
We reduced the number of filters in the last convolutional layer
from 125 to 30 in order to output 1 class instead of 20.

Layer Filters Size Input Output

0 conv 16 3× 3/1 416× 416× 1/3 416× 416× 16
1 max 2× 2/2 416× 416× 16 208× 208× 16
2 conv 32 3× 3/1 208× 208× 16 208× 208× 32
3 max 2× 2/2 208× 208× 32 104× 104× 32
4 conv 64 3× 3/1 104× 104× 32 104× 104× 64
5 max 2× 2/2 104× 104× 64 52× 52× 64
6 conv 128 3× 3/1 52× 52× 64 52× 52× 128
7 max 2× 2/2 52× 52× 128 26× 26× 128
8 conv 256 3× 3/1 26× 26× 128 26× 26× 256
9 max 2× 2/2 26× 26× 256 13× 13× 256
10 conv 512 3× 3/1 13× 13× 256 13× 13× 512
11 max 2× 2/1 13× 13× 512 13× 13× 512
12 conv 1024 3× 3/1 13× 13× 512 13× 13× 1024
13 conv 1024 3× 3/1 13× 13× 1024 13× 13× 1024
14 conv 30 1× 1/1 13× 13× 1024 13× 13× 30
15 detection

The PRD network is trained using the images, without
any preprocessing, and the coordinates of the Region of In-
terest (ROI) as inputs. As ground truth, we used the anno-
tations provided by Severo et al. [30]. As these annotations
were made for iris location, we applied a padding (chosen
based on the validation set) in the detected patch (i.e., iris),
so that the sclera is entirely within the ROI.

By default, Fast-YOLO only returns objects detected
with a confidence of 0.25 or higher. We consider only the
detection with the largest confidence in cases where more
than one periocular region is detected, since there is always
only one region annotated in the evaluated databases. If no

2For training Fast-YOLO we used the weights pre-trained on ImageNet,
available at https://pjreddie.com/darknet/yolo/

region is detected, the next stage (sclera segmentation) is
performed on the image in its original size.

3.2. Sclera Segmentation

We employ three approaches for sclera segmentation,
since they presented good results in other segmentation ap-
plications. These approaches are: FCN, Encoder-Decoder
(ED) and GAN. Its noteworthy that ED was employed for
sclera segmentation in [6], obtaining state-of-the-art results.
Therefore, we made use of ED in the databases used in this
paper, considering it as the baseline for comparison with the
proposed approach.

3.2.1 Fully Convolutional Network

This segmentation approach was proposed by Long et
al. [20]. The network has only convolutional layers and
the segmentation process can take input images of arbitrary
sizes, producing correspondingly-sized output with efficient
inference and learning.

In this work, we employ the FCN approach presented by
Teichmann et al. [31]. As shown in Figure 1, features are
extracted using a CNN without the fully connected layers
(i.e., VGG-16 without the last 3 layers).

Figure 1. FCN architecture for sclera segmentation.

Next, the extracted features pass through two 1 × 1
convolutional layers, generating an output of dimension
10× 8× 6. The output of these convolutional layers is pro-
cessed by the FCN8 architecture proposed in [20], which
performs the up-sampling combining the last three layers
from the VGG-16.

3.2.2 Encoder-Decoder

A convolutional ED, also called autoencoder, is a neural
network trained in order to copy its input to the output. The



Table 2. SegNet architecture.

Layer Filters Size Input Output Layer Filters Size Input Output

1 enc 64 3× 3 320× 240× 3/1 320× 240× 64 19 up 2× 2 10× 8× 512 20× 15× 512
2 enc 64 3× 3 320× 240× 64 320× 240× 64 20 dec 512 3× 3 20× 15× 512 20× 15× 512
3 max 2× 2 320× 240× 64 160× 120× 64 21 dec 512 3× 3 20× 15× 512 20× 15× 512
4 enc 128 3× 3 160× 120× 64 160× 120× 128 22 dec 512 3× 3 20× 15× 512 20× 15× 512
5 enc 128 3× 3 160× 120× 128 160× 120× 128 23 up 2× 2 20× 15× 512 40× 30× 512
6 max 2× 2 160× 120× 128 80× 60× 128 24 dec 512 3× 3 40× 30× 512 40× 30× 512
7 enc 256 3× 3 80× 60× 128 80× 60× 256 25 dec 512 3× 3 40× 30× 512 40× 30× 512
8 enc 256 3× 3 80× 60× 256 80× 60× 256 26 dec 256 3× 3 40× 30× 512 40× 30× 256
9 enc 256 3× 3 80× 60× 256 80× 60× 256 27 up 2× 2 40× 30× 256 80× 60× 256
10 max 2× 2 80× 60× 256 40× 30× 256 28 dec 256 3× 3 80× 60× 256 80× 60× 256
11 enc 512 3× 3 40× 30× 256 40× 30× 512 29 dec 256 3× 3 80× 60× 256 80× 60× 256
12 enc 512 3× 3 40× 30× 512 40× 30× 512 30 dec 128 3× 3 80× 60× 256 80× 60× 128
13 enc 512 3× 3 40× 30× 512 40× 30× 512 31 up 2× 2 80× 60× 512 160× 120× 128
14 max 2× 2 40× 30× 512 20× 15× 512 32 dec 128 3× 3 160× 120× 128 160× 120× 128
15 enc 512 3× 3 20× 15× 512 20× 15× 512 33 dec 64 3× 3 160× 120× 128 160× 120× 64
16 enc 512 3× 3 20× 15× 512 20× 15× 512 34 up 2× 2 160× 120× 64 320× 240× 64
17 enc 512 3× 3 20× 15× 512 20× 15× 512 35 dec 64 3× 3 320× 240× 64 320× 240× 64
18 max 2× 2 20× 15× 512 10× 8× 512 36 dec 2 3× 3 320× 240× 64 320× 240× 2

purpose is to learn data encoding which can be used for di-
mensionality reduction or even for file compression [2].

The ED (SegNet) used in this work was presented in [3].
SegNet consists of a stack of encoders followed by a cor-
responding stack of decoders which feed a soft-max clas-
sification layer. Decoders map low-resolution features ex-
tracted by encoders to an image with the same dimension as
the input. The architecture used is presented in Table 2.

3.2.3 Generative Adversarial Network

GANs are deep neural networks composed by both genera-
tor and discriminator networks, pitting one against the other.
First, the generator network receives noise as input and gen-
erates samples. Then, the discriminator network receives
samples of training data and those of the generator network,
being able to distinguish between the two sources [13]. A
generic GAN architecture is shown in Figure 2.

Figure 2. GAN architecture for sclera segmentation.

Basically, the generator network learns to produce more
realistic samples throughout each iteration, and the discrim-
inator network learns to better distinguish real and synthetic

datas.
Isola et al. [16] presented the GAN approach used in this

work, which is a conditional GAN able to learn the relation
between a image and its label file, and, from that, generate
a variety of image types, which can be employed in various
tasks such as photo generation and semantic segmentation.

4. Experiments
In this section, we present the databases and the evalua-

tion protocol used in our experiments.

4.1. Databases

The experiments were carried out in two subsets of
well-known iris databases: UBIRIS.v2 and MICHE-I. An
overview of both subsets can be seen in Table 3. Remark
that we do not use the SSBC [8] and SSRBC [9] databases
in our experiments as only the test sets were made available
by the authors.

Table 3. Overview of the databases used in this work. All of these
are a subset of the original database.

Database Images Subjects Resolution

UBIRIS.v2 500 261 400× 300
MICHE-I 1,000 92 Various

MICHE-GS4 333 92 Various
MICHE-IP5 323 92 Various
MICHE-GT2 344 92 640× 480

UBIRIS.v2: this database is composed of 11,102 images
collected from both eyes from 261 subjects and have a res-
olution of 400× 300 pixels.
MICHE-I: this database consists of 3,191 images captured
from 92 subjects under uncontrolled settings using three



mobile devices: iPhone 5, Galaxy Samsung IV and Galaxy
Tablet II (1,262, 1,297 and 632 images, respectively), with
many different resolutions [22].

4.2. Preprocessing

As discussed in Section 3.1, it was necessary to first de-
tect the periocular region as some images present specular
highlights, impairing the performance of the system. Af-
ter detecting the periocular region, only the ROI was main-
tained in each image, providing a great improvement over
the results obtained at first. Figure 3 shows an example of
each subset of the original image (without PRD) and the
segmentation mask created by us.

(a) MICHE-IP5 (b) MICHE-GS4

(c) MICHE-GT2 (d) UBIRIS.v2

Figure 3. Four examples of the masks created by us.

Figure 4 shows, instead, four cropped images after PRD
and their respective masks. It is noteworthy that most spec-
ular highlights are removed after PRD.

(a) MICHE-IP5 (b) MICHE-GS4

(c) MICHE-GT2 (d) UBIRIS.v2

Figure 4. Periocular regions detected and replicated to the masks.

At last, the ROI is resized according to each approach
proposed in Section 3. The input sizes were chosen based
on the original architectures of the approaches (see Table 4).

Table 4. Image dimensions used in each approach.

Approach Image - Dimension Mask - Dimension

FCN 320× 240× 3 320× 240× 1
GAN 256× 256× 3 256× 256× 3

SegNet 320× 240× 3 320× 240× 1

4.3. Evaluation Protocol

The performance evaluation of an automatic segmented
mask is performed in a pixel-to-pixel comparison between
the ground truth and the predicted image. Therefore, we use
the following metrics: Precision, Recall and F-score.

To perform a fair evaluation and comparison of the pro-
posed approaches in all databases, we divided each into
three subsets, being 40% of the images for training, 40%
for testing and 20% for validation.

5. Results and Discussions
The experiments were carried out using the protocol pre-

sented in Section 4.3. We also performed some additional
experiments using the cross-sensor methodology.

5.1. Proposed Protocol

The results obtained by both the baseline (SegNet) and
the proposed approaches are shown in Table 5. The base-
line presented considerably worse results. We believe this
is due to the size of the training set, since SegNet was orig-
inally employed in a large dataset [27]. Radu et al. [27]
generated a dataset with 54,000 images using data augmen-
tation. However, we did not have access to the database
used by them, and thus a more direct comparison with their
methodology was not possible to be done.

Table 5. Results achieved using the proposed protocol.

Database Approach Recall % Precision % F-score %

UBIRIS.v2
GAN 87.48 ± 08.19 87.10 ± 08.16 86.82 ± 05.88

SegNet 72.48± 17.15 87.52± 08.53 77.82± 13.08
FCN 87.31 ± 06.68 88.45 ± 06.98 87.48 ± 03.90

MICHE-I
GAN 87.07± 10.81 86.39± 12.02 86.27± 09.97

SegNet 64.59± 24.73 83.39± 18.53 69.87± 22.34
FCN 87.59 ± 11.28 89.90 ± 09.82 88.32 ± 09.80

MICHE-GS4
GAN 85.72± 12.53 86.12± 13.01 85.20± 11.31

SegNet 66.50± 26.34 76.09± 23.80 67.92± 23.87
FCN 88.24 ± 12.03 88.65 ± 10.62 88.12 ± 10.56

MICHE-IP5
GAN 88.11± 07.40 87.71± 07.71 87.42± 05.43

SegNet 31.90± 26.05 79.40± 32.93 40.95± 29.19
FCN 87.51 ± 11.61 89.32 ± 05.22 87.80 ± 08.24

MICHE-GT2
GAN 86.20± 15.02 83.81± 15.73 84.50± 14.28

SegNet 73.77± 21.20 76.46± 18.29 72.33± 18.26
FCN 87.86 ± 12.23 88.50 ± 12.68 87.94 ± 11.59

Better results were obtained using the proposed
approaches. In the UBIRIS.v2 subset, the GAN-
based sclera segmentation attained a F-score value of
86.82% (±5.88), while the approach based on FCN
achieved 87.48% (±3.90). Although there is little differ-
ence between the F-score values obtained by both meth-
ods, the standard deviation presented when using FCN was
slightly lower than when GAN was employed for the seg-
mentation.

The same happened in all subsets used in our experi-
ments, fact that makes us believe that the FCN approach



is best suited for sclera segmentation. However, the results
obtained with the GAN-based segmentation should not be
diminished, since they were very close to the best results.

Here we perform a visual analysis. For this task, we ran-
domly chose an image from the UBIRIS.v2 subset. Fig-
ures 5a, 5b and 5c demonstrate a very poor outcome in the
segmentation of the sclera. As can be seen, the FCN ap-
proach presented a considerably better segmentation result
when compared to the baseline and GAN. The same occurs
in many other images, but the results are not always so dis-
crepant (see Figures 5d, 5e and 5f). It is noteworthy the
consistency presented with FCN-based segmentation tech-
nique, observed in all sclera images generated in this work.

(a) GAN (b) FCN (c) SegNet

(d) GAN (e) FCN (f) SegNet

Figure 5. Samples of segmented scleras using the ground truth for
highlighting errors: green and red pixels represent the FPs and FNs
respectively.

5.2. Additional Experiments Using Cross-Sensor

In this section, we present the results obtained using
a cross-sensor methodology, where two experiments were
performed. In the first one, we used MICHE-I (see Table 3)
as training set and UBIRIS.v2 as test set. In the second
experiment, we inverted the order and used UBIRIS.v2 as
training set and MICHE-I as test set.

Table 6 presents the results obtained using MICHE-I as
training set and UBIRIS.v2 as test set. As we can see, the
obtained F-score was very close to that obtained when the
training and test sets were from the same database, reaching
a F-score value 1% higher. However, in this case the best
segmentation was achieved with the GAN-based approach.

Table 6. Results obtained using MICHE-I as training set and
UBIRIS.v2 as test set.

Approach Recall % Precision % F-score %

GAN 90.02 ± 05.46 85.96 ± 07.90 87.52 ± 03.74
SegNet 83.98± 08.85 82.64± 08.40 82.58± 05.35
FCN 87.92± 05.28 87.04± 07.11 87.14± 03.53

The same did not happen when we used UBIRIS.v2 as
training set and MICHE-I as test set, as shown in Table 7.
The attained F-score values were much lower than those ob-
tained when MICHE-I was used as training.

Table 7. Results obtained using UBIRIS.v2 as training set and
MICHE-I as test set.

Approach Recall % Precision % F-score %

GAN 68.45± 19.13 71.05± 21.57 67.98± 18.41
SegNet 27.77± 22.43 60.58± 37.42 30.36± 22.79
FCN 74.99 ± 20.14 77.41 ± 16.15 73.40 ± 17.07

This might have occurred because the subset of the
MICHE-I database used in this work has more diversity
and it is larger than the UBIRIS.v2 subset, which allows the
generated model to better discriminate the pixels belonging
to sclera.

6. Conclusions and Future Work
This work introduced two new approaches for sclera seg-

mentation and compared them with a baseline (SegNet)
method chosen in the literature. Both proposed approaches
(FCN and GAN) attained higher precision and recall values
in all evaluated scenarios. Furthermore, these approaches
presented promising results when evaluated in cross-sensor
scenarios.

We also labeled 1, 300 images for sclera segmentation.
These masks (manually labeled) are publicly available to
the research community, assisting in the fair comparison
among published works.

There is still room for improvements in sclera segmen-
tation, so we intend to: 1) design new and better network
architectures; 2) create a unique architecture that integrates
the detection stage of the periocular region; 3) employ a
post-processing stage to refine the segmentation given by
the proposed approaches; 4) design a general and indepen-
dent sensor approach, where firstly the image sensor is clas-
sified and then the sclera is segmented with a specific ap-
proach; 5) compare the proposed approaches with methods
applied in other domains such as iris segmentation [17, 19]
and periocular-based recognition [26].
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