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Problem Definition

The periocular region as input for the iris biometric system;
Iris, pupil, sclera, reflections, eyelids, eyelashes, etc;

It is necessary to remove them, as they interfere in the system
performance;

(a) (b) (c) (d)

Figure: Font: (Marsico et al., 2015).
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Motivation & Contributions

Convolutional Neural Networks (CNNs) learn representations
from training;
Achieve the state-of-the-art in several computer vision problems;

Segmentation, detection, medical images, security systems, etc;

We propose the use of Fully Convolutional Network (FCN) and
Generative Adversarial Networks (GAN);

More than 2,000 manually labeled images for iris segmentation.
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Architecture FCN - MultiNet (Shelhamer, Long, and Darrell,
2015)
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Figure: FCN architecture for iris segmentation. Font: adapted
from (Simonyan and Zisserman, 2014).
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Architecture GAN - Conditional GAN (Isola et al., 2016)

Figure: GAN architecture for iris segmentation.
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Preprocessing - Periocular Region Detection

Table: Fast-YOLO network used for iris detection (Severo et al., 2018).

Layer Filters Size Input Output

0 conv 16 3×3/1 416×416×1/3 416×416×16
1 max 2×2/2 416×416×16 208×208×16
2 conv 32 3×3/1 208×208×16 208×208×32
3 max 2×2/2 208×208×32 104×104×32
4 conv 64 3×3/1 104×104×32 104×104×64
5 max 2×2/2 104×104×64 52×52×64
6 conv 128 3×3/1 52×52×64 52×52×128
7 max 2×2/2 52×52×128 26×26×128
8 conv 256 3×3/1 26×26×128 26×26×256
9 max 2×2/2 26×26×256 13×13×256
10 conv 512 3×3/1 13×13×256 13×13×512
11 max 2×2/1 13×13×512 13×13×512
12 conv 1024 3×3/1 13×13×512 13×13×1024
13 conv 1024 3×3/1 13×13×1024 13×13×1024
14 conv 30 1×1/1 13×13×1024 13×13×30
15 detection
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Architecture - Details

The detected iris input image is padded/expanded to a power
of 2;

FCN - no fully connected layers, losses spatial information

GAN - able to capture the statistical distribution of training data
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Datasets

Table: Overview of the iris datasets used in this work, where (*) means that
only part of the dataset was used.

Dataset Images Subjects Resolution Wavelength

BioSec (*) 400 25 640×480 NIR
CasiaI3 2,639 249 320×280 NIR

CasiaT4 (*) 1,000 50 640×480 NIR
IITD-1 2,240 224 320×240 NIR
NICE.I 945 n/a 400×300 VIS

CrEye-Iris (*) 1,000 120 400×300 VIS
MICHE-I (*) 1,000 75 Various VIS

12 / 31



Summary Introduction Proposed Architecture Experiments and Protocols Results Conclusions and Future Works References

Protocols

3 Benchmarks/baselines:
OSIRISv4.1 - Open Source Iris ...
IRISSEG - Iris Seg Master (in the literature)
Haindl & Krupička (Haindl and Krupic̆ka, 2015);

80% train and 20% test;

Train and test on each specific dataset;

Merge datasets in the Near Infra-red (NIR) spectrum;

Merge datasets in the Visible (VIS) spectrum;

Merge all datasets (both NIR and VIS);

5-folds;

32,000 iterations.
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Results NICE.I contest.

Table: Iris segmentation results using the NICE.I contest protocol.

Dataset Method F1 % E %

NICE.I
(VIS)

OSIRISv4.1 30.70±32.00 08.67±06.29
IRISSEG 21.76±32.13 14.03±12.33

Haindl & Krupička 75.54±22.93 03.27±04.29
FCN Proposed 88.20±13.73 01.05±00.86
GAN Proposed 91.42±03.81 03.09±01.76
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Our protocol

Table: Iris segmentation results using the proposed protocol.

Dataset Method F1 % E %

BioSec
(NIR)

OSIRISv4.1 92.62±03.19 01.21±00.47
IRISSEG 93.94±05.88 01.06±01.20

FCN Proposed 97.46±00.74 00.44±00.12
GAN Proposed 96.82±02.83 00.74±01.40

CasiaI3
(NIR)

OSIRISv4.1 89.49±05.78 05.35±02.40
IRISSEG 94.61±03.28 02.85±01.62

FCN Proposed 97.90±00.68 01.15±00.37
GAN Proposed 96.13±05.35 01.45±03.71

CasiaT4
(NIR)

OSIRISv4.1 87.76±08.01 01.34±00.64
IRISSEG 91.39±08.13 00.95±00.54

FCN Proposed 94.42±07.54 00.61±00.58
GAN Proposed 95.38±03.72 01.40±00.93

IITD-1
(NIR)

OSIRISv4.1 92.20±06.07 04.37±02.69
IRISSEG 94.25±03.89 03.39±02.16

FCN Proposed 97.44±01.78 01.48±01.01
GAN Proposed 95.84±04.13 01.33±02.65
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Results VIS datasets

Table: Iris segmentation results using the proposed protocol.

Dataset Method F1 % E %

NICE.I
(VIS)

OSIRISv4.1 38.15±33.61 07.92±06.20
IRISSEG 28.64±35.14 13.48±12.36

Haindl & Krupička 70.59±26.11 04.72±05.87
FCN Proposed 89.54±13.79 01.00±00.70
GAN Proposed 91.12±05.08 03.34±02.31

CrEye-Iris
(VIS)

OSIRISv4.1 46.53±29.25 13.22±06.33
IRISSEG 61.72±33.55 10.58±10.38

Haindl & Krupička 76.81±23.73 05.69±04.58
FCN Proposed 97.04±01.21 00.96±00.36
GAN Proposed 92.61±05.86 03.02±03.22

MICHE-I
(VIS)

OSIRISv4.1 33.85±35.86 01.99±02.90
IRISSEG 19.34±33.03 01.90±03.37

Haindl & Krupička 63.12±33.30 01.32±02.10
FCN Proposed 83.01±19.47 00.37±00.43
GAN Proposed 87.42±13.08 03.27±03.13
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Suitability NIR training

Table: Suitability (bold lines) for NIR environments.

Dataset Method F1 % E %

BioSec
FCN 97.24±00.81 00.58±00.30
GAN 90.19±05.52 02.22±01.39

CasiaI3
FCN 97.43±00.74 00.55±00.29
GAN 97.10±01.83 00.75±01.10

CasiaT4
FCN 95.87±02.66 01.25±00.67
GAN 82.65±13.98 05.52±04.15

IITD-1
FCN 96.47±01.56 00.72±00.59
GAN 96.18±02.52 01.09±01.80

NIR
FCN 96.69±01.43 00.78±00.63
GAN 94.04±07.93 01.72±02.69
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Suitability VIS training

Table: Suitability (bold lines) for VIS environments.

Dataset Method F1 % E %

NICE.I
FCN 90.68±14.01 02.67±02.04
GAN 91.40±05.18 01.22±00.71

CrEye-Iris
FCN 96.71±01.11 01.12±00.80
GAN 93.21±02.30 01.88±00.53

MICHE-I
FCN 88.36±11.88 01.90±02.20
GAN 89.49±06.76 03.11±02.24

VIS
FCN 89.56±12.36 02.40±02.21
GAN 92.58±04.89 02.80±02.05
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Robustness of the iris segmentation approaches

Table: Robustness (bold lines) of the iris segmentation approaches.

Dataset Method F1 % E %

BioSec
FCN 96.57±01.14 00.70±00.24
GAN 85.48±07.63 03.45±01.97

CasiaI3
FCN 97.69±00.82 00.50±00.33
GAN 93.33±01.98 00.87±00.92

CasiaT4
FCN 95.39±03.20 01.46±01.12
GAN 85.68±12.92 03.98±02.80

IITD-1
FCN 97.11±01.70 00.61±00.67
GAN 94.99±03.88 01.28±01.73

NIR
FCN 96.89±06,60 00.82±00.59
GAN 89.87±07.93 02.39±01.78
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Robustness of the iris segmentation approaches

Dataset Method F1 % E %

NICE.I
FCN 89.25±14.06 03.31±02.77
GAN 65.56±23.32 11.53±05.87

CrEye-Iris
FCN 96.15±01.90 01.38±01.16
GAN 88.96±08.98 04.57±04.63

MICHE-I
FCN 80.49±20.65 02.73±02.76
GAN 61.93±24.97 10.95±06.22

VIS
FCN 88.63±09.15 02.47±02.23
GAN 72.15±19.03 09.01±05.54

All
FCN 94.36±09.90 01.26±01.73
GAN 86.62±17.71 04.03±05.28

Table: Robustness (bold lines) of the iris segmentation approaches.
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Qualitative Results NIR datasets

(a) BioSec: FCN 00.31% — 00.85% (b) BioSec: GAN 00.27% — 12.61%

(c) CasiaI3: FCN 00.91% — 05.93% (d) CasiaI3: GAN 00.43% — 01.51%

Figure: FCN and GAN qualitative results: good (left) and bad (right) results
based on the error E . Green and red pixels represent the FP and FN,
respectively.
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Qualitative Results NIR datasets

(a) CasiaT4: FCN 00.52% — 04.57%(b) CasiaT4: GAN 00.84% — 06.30%

(c) IITD-1: FCN 01.17% — 19.37% (d) IITD-1: GAN 00.56% — 06.60%

Figure: FCN and GAN qualitative results: good (left) and bad (right) results
based on the error E . Green and red pixels represent the FP and FN,
respectively.
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Qualitative Results VIS datasets

(a) NICE.I: FCN 00.95% — 08.28% (b) NICE.I: GAN 01.27% — 02.43%

(c) CrEye-Iris: FCN 00.74% —
02.88%

(d) CrEye-Iris: GAN 00.72% —
03.61%

Figure: FCN and GAN qualitative results: good (left) and bad (right) results
based on the error E . Green and red pixels represent the FP and FN,
respectively.
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Qualitative Results VIS datasets

(a) MICHE-I: FCN 00.42% — 01.82%(b) MICHE-I: GAN 00.57% — 00.96%

Figure: FCN and GAN qualitative results: good (left) and bad (right) results
based on the error E . Green and red pixels represent the FP and FN,
respectively.
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OSIRISv4.1 IrisSeg FCN GAN

OSIRISv4.1 IrisSeg Haindl &
Krupička

FCN GAN

Figure: Qualitative results achieved by the FCN, GAN and baselines. Green
and red pixels represent the FP and FN, respectively. The first and second
rows correspond, respectively, to CasiaI3 and CrEye-Iris datasets.
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Conclusions

Two approaches (FCN and GAN) for robust iris segmentation;

Compared with three baselines methods;

The transfer learning for each domain was essential to achieve
outstanding results;

Pre-trained models from other datasets brings excellent benefits
in learning deep networks;

We labeled more than 2,000 images for iris segmentation
(https://web.inf.ufpr.br/vri/databases/
iris-segmentation-annotations/).
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Future Works

As future work we intend to:
Evaluate the impact of performing the segmentation in two steps
(first detection);

Create a post-processing stage to refine the prediction;
Classify the sensor or image type and then segment each image
with a specific model;
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