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Increase of digital system’s usage

• Data transactions

• Registration, creation, copy, share, download 

• For 2020, Gantz et al expected 40 trilion GB of data

• Doubling every 2 years the digital volume of data until it

• Machine Learning applications to analyze huge amount of data

• High computational performance

• Memory capacity

2Gantz, John, and David Reinsel. "The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in 
the far east." IDC iView: IDC Analyze the future 2007.2012 (2012): 1-16.
Samuel, Arthur L. "Some studies in machine learning using the game of checkers." IBM Journal of research and 
development 3.3 (1959): 210-229.



Memory-Wall

• Not always a x86 Central Process Unit (CPU) 
can handle this

• Low computational performance

• High energy consumption

Von Neumann’s bottleneck

3

DRAM

CPU

62,7% of the total system energy is 
spent on data movement.

BUS 🡪 High data 
transference latency

Boroumand, Amirali, et al. "Google workloads for consumer devices: Mitigating data 
movement bottlenecks." Proceedings of the Twenty-Third International Conference on 
Architectural Support for Programming Languages and Operating Systems. 2018.



Accelerators

• Graphic Processing Unit (GPU)
• rely on the bus

• High energy consumption

• Application Specific Integrated 
Circuit (ASIC)

• Expensive

• Field Programmable Gate Array 
(FPGA)

• Reprogrammable circuit

• Near Data Processing (NDP)
• Processing and memory in the same 

chip
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Near-Data Processing

5

• Emerged in the last few years

• Integration of processing unit and 
memory device in the same chip

• Compared to CPU:

• reduce execution time

• consume low energy

• Up to 8 stacked DRAM layers on a 
logic layer

• Atomic and simple functions



Near-Data Processing

• Divided in 32 independent vaults

• memory controller + up to 16 
memory banks

• Logic layer and DRAM banks 
connected through Through-Silicon 
Vias (TSVs)

• Parallel processing

• Hybrid Memory Cube (HMC) and 
High Bandwidth Memory (HBM2)
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VIMA: Vector-in-Memory Architecture

• Allows vector operations of 256B 
and 8KB

• Focuses on algorithms that 
executes great amount of data 
while reuse data at certain point

• Combines Reduced Instruction Set 
Computer (RISC) with vector 
instructions – NEON Arm
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VIMA: Vector-in-Memory Architecture

• Compound of a 
sequencer, functional 
units and a cache 
memory:

• Data reuse

• On-chip cache

• Parallel execution

• OoO execution
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Development steps
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ML 
application 
code in C++

Intrinsics-V
IMA library

Executable 
binary code

Trace-generator 
execution

Simulation 
traces

Ordinary Computer 
Simulator 

OrCS

Link and 
compile

VIMA-functions 🡪 VIMA instructions



Machine Learning Algoritms kernels

• K-Nearest Neighbors: classification by distance

• MultiLayer Perceptron: Neural Network

• Convolution: image transformation

10



k-Nearest Neighbors algorithm
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VIMA’s implementation
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VIMA’s implementation

• Store the training dataset in an array:

• Read the test instances in a VIMA vector:

The training and test instances are operated in an inner loop 13

Training instance 0 Training instance 1 ... Training instance n

Test instance 0 Test instance 1 Test instance 3 Test instance 4

0 VIMA SIZE

Streaming like



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

VIMA’s implementation

Operate a partial Euclidean Distance between the instances
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MultiLayer Perceptron algorithm
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VIMA’s implementation
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Input Layer Hidden Layer weights connections

Dot of products between input instance 
and set of weights

Hidden Layer

Accumulated sum



VIMA’s implementation
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Input Layer Hidden Layer weights connections Hidden Layer Bias

Sum between partial hidden layer 
activation values and bias



VIMA’s implementation
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Input Layer Hidden Layer weights connections Hidden Layer Bias

Activation function: operated 
with max vector function

ReLU



VIMA’s implementation: Inference Only

• Read the instances:

• Initialize the sets of weights:

The instances and weights are operated in an inner loop
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Instance 0 Instance 1 Instance 2 Instance 3

0 VIMA SIZE

Weights’ set 0 Weights’ set 1 Weights’ set 2 Weights’ set 3

0 VIMA SIZE

Streaming like
Just when there are a lot 

of features



Convolution algorithm
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VIMA’s implementation
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VIMA’s implementation
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VIMA’s implementation
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VIMA’s implementation
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VIMA’s implementation
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VIMA’s implementation
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VIMA’s implementation
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VIMA’s implementation
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VIMA’s implementation
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Benchmarks: 133KB 🡪 512MB

• kNN

• # training instances: 4096, 8192, 16384, 32768, and 65536

• # test instances: 256

• # features: 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096

• # neighbors: 9 

• MLP

• # instances: 4096, 8192, 16384, 32768, and 65536

• # features: 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096

• Convolution

• Matrix dimensions: 512x512, 724x724, 1024x1024, 1448x1448, 2048x2048, 2896x2896, 
4096x4096, 5792x5792, 8192x8192, and 11648x11648

30



System configuration

• Intel Sandy Bridge processor 2.0GHz – x86 architecture

• L1 Cache 32KB

• L2 Cache 256KB

• LLC Cache 16MB
• 3D-Stacked Memory as main memory

• VIMA module

31

VIMA is expected to achieve better 
performance when the application memory 

footprint exceeds the LLC size
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Memory Footprint higher than LLC size =16MB

64MB 128MB 256MB 512MB 1024MB32MB
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64MB

128MB

256MB

512MB
1024MB

Memory 
Footprint 

higher than 
LLC size 

=
16MB

Energy from: Host processor + memory hierarchy + VIMA + VIMA’s Cache



kNN conclusion

• The more instances and 
features, the higher the 
memory footprint

• Quadratic complexity

• Training dataset with 4096 
instances and 1024 features 
already exceeds cache memory 
size

34
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kNN conclusion
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kNN conclusion

• The more instances and 
features, the higher the 
memory footprint

• Quadratic complexity

• Training dataset with 4096 
instances and 1024 features 
already exceeds cache memory 
size
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kNN conclusion

• The more instances and 
features, the higher the 
memory footprint

• Quadratic complexity

• Training dataset with 4096 
instances and 1024 features 
already exceeds cache memory 
size
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Memory 
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16MB

Energy from: Host processor + memory hierarchy + VIMA + VIMA’s 
Cache



MLP conclusion

► Just the number of features 
influences in memory footprint

► Better performance compared 
to x86 just with greater sizes of 
features

► Fair data reuse in cache 
memory for smaller sizes

42

Set of instances

...

Set of weights

...
4096

The less features, the 
less weights' sets

allows fair usage of 
cache memory

The more features, the 
more weights’ sets

Behave as streaming
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Convolution conclusion

• Slightly gains over x86

• Fair data reuse in cache 
memory

• VIMA would achieve better 
performance if just a matrix 
line occupies 16MB (Cache 
memory size)

• But a line in the greatest matrix 
occupies 44.2KB

45
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Conclusion

• VIMA is an accelerator

• It does not achieve high performance for every application

• VIMA achieves higher performance when executing a huge 
amount of data

• If data fits in cache memory and makes fair data re-usage, x86 achieves 
good performance compared to VIMA

• The algorithm’s complexity and data reuse does influence the 
results 

48
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Benchmarks

• All the algorithms were implemented with 256B and 8KB VIMA 
vectors and AVX 512
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Benchmarks

• All the algorithms were implemented with 256B and 8KB VIMA 
vectors and AVX 512
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It does not use all the 
memory throughput



Estimate of the number of instructions

Implementation # instructions

Scalar 6084

AVX 512 ~378

VIMA 78

52

Considering a matrix of 28x28 and a filter of 3x3 sliding with a stride 
of 1:  



Estimate of the number of instructions

Implementation # instructions

Scalar 1084

AVX 512 ~68

VIMA 13

53

Considering the inference of one instance of 32 features:



Estimate of the number of instructions

Implementation # instructions

Scalar 385

AVX 512 ~24

VIMA 6

54

Considering the Euclidean Distance calculation between one 
training and test instances with 128 features:  



Intrinsics-VIMA

• Based on Intel intrinsics

• A library written in C/C++ language

• Reproduce VIMA Instruction Set Architecture (ISA)

• Vector instructions (256B and 8KB)

• Data representation

• 32 and 64-bits

• Integer and floating-point

• Data type standardized

55
Lomont, Chris. "Introduction to intel advanced vector extensions." Intel white paper 23 (2011).



MLP conclusion

► Just the number of features 
influences in memory footprint

► Better performance compared 
to x86 just with greater sizes of 
features

► Fair data reuse in cache 
memory for smaller sizes
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MLP conclusion
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MLP conclusion

► Just the number of features 
influences in memory footprint

► Better performance compared 
to x86 just with greater sizes of 
features

► Fair data reuse in cache 
memory for smaller sizes
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Ordinary Computing Simulator (OrCS)

• Developed in HiPES

• Trace driven simulation

• Cycle accurate

• Based on x86 architecture

• Interprets simulation traces to evaluate application behavior

• Simulates x86 ISA for 32 and 64-bits and VIMA

63



Benchmarks

• All the algorithms were implemented with 256B and 8KB VIMA 
vectors and AVX 512
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It does!



Algorithm for VIMA

1. Store the training dataset in an array:

2. Read the test instances in a VIMA vector:

65

Training instance 0 Training instance 1 ... Training instance n

Test instance 0 Test instance 1 ... Test instance n

0 VIMA SIZE



Algorithm for VIMA

3. Apply the mask for both instances:

66

Training instance 0 Training instance 1 ... Training instance n

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 VIMA SIZE

Test instance 0 Test instance 1 Test instance 2 Test instance 3

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

For each iteration, a unique mask 
is applied for both instances

=
BETTER USAGE OF VIMA’s CACHE



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Algorithm for VIMA

4. Operate a partial Euclidean Distance between the instances
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Algorithm for VIMA

5. Finalize the operation with x86 routines
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x86’s implementation
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Processor-Memory performance gap: Speed

70Efnusheva, Danijela, Ana Cholakoska, and Aristotel Tentov. "A survey of different approaches for 
overcoming the processor-memory bottleneck." International Journal of Computer Science and 
Information Technology 9.2 (2017): 151-163.
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Alpha21164 50%



Over the years, different solutions arised
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Trace generation
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Trace generation

There is no processor with VIMA 
instructions so a synthetic VIMA instruction, 
that is understood by a simulator, is added.
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vim64_operation  %regs



Over the years, different solutions arised
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Most of these improvements were 
implemented on the processor...
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Trace Generator

• Instrumentation tool

• It executes and analyze the binary code at the same time and 
generate simulation traces

75

Executable 
Binary code Trace 

Generator

Simulation 
traces



VIMA execution process
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Memory improvement

77Chang, Kevin K. "Understanding and improving the latency of DRAM-based memory systems." arXiv 
preprint arXiv:1712.08304 (2017).



Memory improvement

78Chang, Kevin K. "Understanding and improving the latency of DRAM-based memory systems." arXiv 
preprint arXiv:1712.08304 (2017).

But the relative 
latency remained 
almost the same



MultiLayer Perceptron
x86 x VIMA
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x86’s implementation
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Algorithm for VIMA: Inference Only

1. Read the instances:

2. Initialize the sets of weights:
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Instance 0 Instance 1 Instance 2 Instance 3

0 VIMA SIZE

Weights’ set 0 Weights’ set 1 Weights’ set 2 Weights’ set 3

0 VIMA SIZE



Algorithm for VIMA: Inference Only

3. Apply the mask for both instances and sets of weights:

82

Instance 0 Instance 1 Instance 2 Instance 3

0 VIMA SIZE

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Weights’ set 0 Weights’ set 1 Weights’ set 2 Weights’ set 3

0 VIMA SIZE

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

For each iteration, a unique mask is applied for both instance and weights
=

BETTER USAGE OF VIMA’s CACHE



1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 VIMA SIZE

Algorithm for VIMA: Inference Only

4. Operate the instances and sets of weights
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Algorithm for VIMA: Inference Only

5. Hidden layer partial activation values added to the bias
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Algorithm for VIMA: Inference Only

6. The same process is executed to calculate the output layer 
activation values, the differences are:

• The mask size;

• The activation function applied at the final of the operation

7. With the activation values of the output layer, each instance is 
classified with x86 instructions

85



Convolution
x86 x VIMA
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x86’s implementation
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VIMA’s implementation
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Algorithm for VIMA
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Benchmarks
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Speedup and Energy consumption

Results
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And contributions

Conclusion
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GPU comparison

• Considering papers that evaluate the same applications used 
here on GPUs

• GPUs can be 30x faster than VIMA

• But they consume 66x more energy!

95

A Dawwd, Shefa, and Noor M AL Layla. "Training Acceleration of Multi-Layer Perceptron using Multicore CPU and GPU 
under MATLAB Environment." AL-Rafdain Engineering Journal (AREJ) 23.3 (2015): 136-148.

Skryjomski, Przemysław, Bartosz Krawczyk, and Alberto Cano. "Speeding up k-nearest neighbors classifier for large-scale 
multi-label learning on GPUs." Neurocomputing 354 (2019): 10-19.

Siklosi, Balint, Istvan Z. Reguly, and Gihan R. Mudalige. "Heterogeneous cpu-gpu execution of stencil applications." 2018 
IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC). IEEE, 2018.



Contributions

96

• Simulator: Refactored cache memory hierarchy

• Simulator: Implemented a first version of configuration files

• Participation in VIMA’s idealization and implementation

• Participation in Trace-Generator implementation

• Intrinsics-VIMA development

• Portability of ML applications

• Participation in writing of 2 papers

• One rejected by DATE

• One submitted in PDP and waiting



k-Nearest Neighbors
x86 x VIMA
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Machine Learning applications in x86 CPU

• Memory and computationally 
expensive algorithms

• Multiple memory requests

• High data transference rate

• Massive amount of executed data

• High energy consumption

• High execution latency 
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DRAM

CPU

Cache Memory



What Machine Learning is?

• Allow a computer with no prior knowledge to make correct decisions:

• Progressive learning

• Adapting itself to environment changes

• Generalize learning

• Complex algorithms:

• High computational performance

• Memory capacity

• Analyze a huge amount of data

99Samuel, Arthur L. "Some studies in machine learning using the game of checkers." IBM Journal of 
research and development 3.3 (1959): 210-229.



CPU optimizations: Pipeline

• 1 instruction/cycle

• Instruction-Level Parallelism (ILP)
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IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

Shen, John Paul, and Mikko H. Lipasti. Modern processor design: fundamentals of superscalar processors. 
Waveland Press, 2013.

1970 1980 1990 2000



CPU

Data transference latency optimization: 
Cache Memory
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DRAM

Lower data 
transference 

latency

• A Cache memory installed 
between CPU and memory.

• Level latencies:

• L1 🡪 2 ns

• L2 🡪 10 ns

• LLC 🡪 22 ns

• RAM 🡪 100 ns

Smith, Alan Jay. "Cache memories." ACM Computing Surveys (CSUR) 14.3 (1982): 473-530.

Cache Memory

1970 1980 1990 2000



CPU optimizations: Superscalar

• >1 instruction/cycle

• Only one functional unit (FU) in 
the pipeline
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IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

Shen, John Paul, and Mikko H. Lipasti. Modern processor design: fundamentals of superscalar processors. 
Waveland Press, 2013.

1970 1980 1990 2000



CPU optimizations: Superscalar Out-of-Order

• >1 instruction/cycle

• More than one FU in the 
pipeline
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IF

ALU

MEM WB

ALU

IF

ALU

MEM WB

ALU

..
.

ID

ID

ALU

ALU

Shen, John Paul, and Mikko H. Lipasti. Modern processor design: fundamentals of superscalar processors. 
Waveland Press, 2013.

1970 1980 1990 2000



CPU optimizations: Multithreading and 
Multiprocessing

• Multiple concurrent threads and multiple cores

• Shared memory

• High memory throughput

• High energy consumption

104Shen, John Paul, and Mikko H. Lipasti. Modern processor design: fundamentals of superscalar processors. 
Waveland Press, 2013.

1970 1980 1990 2000



CPU optimization: Data vectorization

• Intel Intrinsics:

• MMX, SSE, AVX, 
AVX2, AVX-512

• Code optimization

• executes up to 16 
operands in an 
instruction
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µop-Cache

• Specialized cache

• Stores small sequences of micro-operations of decoded 
instructions

• Avoids fetching data from memory and decode it again

106Solomon, Baruch, et al. "Micro-operation cache: A power aware frontend for variable instruction length 
isa." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 11.5 (2003): 801-811.

1970 1980 1990 2000



3D-Stacked Memory

• Integrates processing in the 
same chip as memory

• Avoids data transference

• Reduce execution time

• Reduce energy consumption

107Pawlowski, J. Thomas. "Hybrid memory cube (HMC)." 2011 IEEE Hot chips 23 symposium (HCS). IEEE, 2011.
Jun, Hongshin, et al. "Hbm (high bandwidth memory) dram technology and architecture." 2017 IEEE 
International Memory Workshop (IMW). IEEE, 2017.

1970 1980 1990 2000



Since 1970 researchers studied advances in processor to mitigate 
data transfer latency:

• Pipelining

• Cache levels

• Superscalar processing

• Out-of-order execution

• Vectorization

• Multithreading and Multiprocessing

• µop Cache

• 3D-Stacked Memory
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But the relative 
latency remains 

almost the same!



Is it possible to achieve high performance 
with a Near-Data Processing accelerator for 

Machine Learning applications?

Research Question

109
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Challenges
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1. Methodology

• Intrinsics-VIMA library

• Trace-Generator

• Simulator

2. Migration of Machine Learning 
applications



Methodology

Challenge 1
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Intrinsics-VIMA
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#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}



Intrinsics-VIMA
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#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}



Intrinsics-VIMA
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#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}



Intrinsics-VIMA
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#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}



Intrinsics-VIMA
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#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}



Port the algorithms to VIMA

Challenge 2
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GPU comparison
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VIMA execution process
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Processor Core

DispatchFetch Decode Rename Commit

Memory 
Order-Buffer

Execution

 NDP Memory

VIMA
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Vault 0 
Logic
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Logic

Vault 31 
Logic

.

.

.

Cross-bar switch
VIMA
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sequencer

Functional 
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Cache 
Memory



for (i = dim_size; i + dim_size + VSIZE < v_size; i+=VSIZE){

_vim2K_fadds(&B[i], &A[i-dim_size-1], &B[i]); // 1º line

_vim2K_fadds(&B[i], &A[i-dim_size], &B[i]);

_vim2K_fadds(&B[i], &A[i-dim_size+1], &B[i]);

_vim2K_fadds(&B[i], &A[i-1], &B[i]); // 2º line

_vim2K_fadds(&B[i], &A[i], &B[i]);

_vim2K_fadds(&B[i], &A[i+1], &B[i]);

_vim2K_fadds(&B[i], &A[i+dim_size-1], &B[i]); // 3º line

_vim2K_fadds(&B[i], &A[i+dim_size], &B[i]);

_vim2K_fadds(&B[i], &A[i+dim_size+1], &B[i]);

_vim2K_fmuls(&B[i], &mul[i], &B[i]);
}
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HIVE: Integrating vectorization and NDP

• HMC Instruction Vector 
Extensions

• A proposal to allow executing 
vector instructions inside a NDP 
module

• HIVE is a module attached in 
logic layer

• Ideal to streaming algorithms
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Compared to 
HMC+SSE, 
HIVE+HMC 
gains up to 
17.3x for 

Vector sum, 
5.4x for Stencil 

and 4.1x for 
Matrix 

Multiplication. 
(Alves et al., 

2016)
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HIVE: HMC Instruction Vector Extensions
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The requests sent by the 
CPU are sequenced and 

executed in FUs in vector 
instructions of 8kB size.

Implements HIVE lock and 
unlock instructions to 

execute a process, to avoid 
overwrite registers



VIMA: Vector-in-Memory Architecture
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Evaluation steps
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while (x < 100){
…
…
…

} do

Intrinsics

VIMA
000111010101
100111010010
101010100011
110101010001
111000100010

Traditional machines
Test

Intrinsics-VIMA: a library that 
emulates VIMA and allows 

programmers to write high level 
code, compile, execute and 

debug it

PIM code

kNN
MLP
Convolução



Evaluation steps
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while (x < 100){
…
…
…

} do

Intrinsics

VIMA

000111010101
100111010010
101010100011
110101010001
111000100010

Traditional machines
Test

Trace-generat
or

000111010101100
000110101001000
100010000100111

PIM code



Evaluation steps
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000111010101
100111010010
101010100011
110101010001
111000100010

0001110101
1001110100
1010101001
1101010101

0001110101
1001110100
1010101001
1101010101VIMA

x86

PIM code
Simulated 
machines

Evaluate

Simulation: Use Ordinary Computer Simulator (OrCS) to 
evaluate simulation traces

000111010101100
000110101001000
100010000100111

Trace-generat
or



ML algorithms to port to VIMA

• K-Nearest Neighbors: Searches in Euclidean Space the k 
nearest neighbors to classify an instance

• MultiLayer Perceptron: Neural Network

• Convolution: image transformation

130



Why simulating kNN, MLP and convolution?

kNN has a quadratic complexity and low data reuse 
in conventional architectures for higher amount of 

data

MLP has a linear complexity and low data reuse in 
conventional architectures for higher amount of data

Convolution has a linear complexity and fair data 
reuse in conventional architectures
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Convolutional Layer:
How it can be implemented in VIMA?
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We can change the filters configuration:
Each filter have 9 elements, so we can create 64 

different filters in 9 VIMA vectors of 256B



Convolutional Layer:
How it can be implemented in VIMA?
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Convolutional Layer:
Comparison

Pros

► In VIMA the image is iterated 
only once compared to the 
64 iterations on CPU

► It executes Dot Product 64 
times less

Cons

► The activation maps storage 
is sparse, resulting in low 
computational performance
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Activation Layer:
How it can be implemented in VIMA?
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Apply non-linearity to the 
activation maps, so it zeroes 

every negative value

In the CPU the instructions 
execute scalar values 



Pooling Layer:
Why it can not be implemented in VIMA?

• Applies MaxPooling of 2x2 window

• Data can be reconfigured in vectors to apply Map Reduce 
operation

• However, it is not a Reduced Instruction Set Computer (RISC) instruction, 
so it is not implemented
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Reduces the dimension while 
keeps important information 
linked to the activation map, 
and controll overfitting and



Back Propagation

Forward Propagation

Fully Connected Layer

• Forward Propagation: 

• Calculates the neurons activation 
values

• Error calculation

• Back Propagation:

• Updates connection weights 🡪 first 
and second derivatives
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Forward Propagation
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Forward Propagation:
How it can be implemented in VIMA?
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Error calculation
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Back Propagation

141

i
1

i
2

i
3

h
1

h
2

h
3

h
4

o
1

o
2

bias

bias

bias

bias

Input
Layer

Hidden
Layer

Output
Layer

w
11

w
12

Update weights using the 
MSE result.

w
11

w
12

w
13

w
14

First 
Derivative

Second 
Derivative

Except for the output layer, the rest 
of the Back Propagation can be 
vectorized with VIMA vectors



Main contributions

1. Intrinsics-VIMA: a library that allows programmers to write code in 
high level language and evaluate it 

2. Tracer-generator: a tool to port code to VIMA in easy way

3. VIMA in OrCS: the implementation of VIMA in OrCS to evaluate 
simulation traces

4. Migration of ML code to VIMA: an implementation specific to VIMA
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Schedule
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2019 2020

Activities AGO SEP OCT NOV DEC JAN FEV

Trace-generator

Dynamic cache

VIMA in OrCS

Adjustments in kNN and CNN

Algorithms tests

SImulate traces with VIMA in OrCS

Analyze the results

Write and submit a paper

Write dissertation and presentation
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Memory bandwidth and latency

Architecture Bandwidth Latency (cycles)

L1 Cache L2 Cache Global Memory

CPU – Intel i7 7th 79 GB/s 5 14 70 + 50ns

GPU – GTX 980 112GB/s - - 368

GPU – Volta V100 900 GB/s 28 193 400

HBM2 256 GB/s - - 16
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• Volkov, V. (2016). Understanding latency hiding on gpus. Doctoral dissertation, UC Berkeley.
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Processing-in-Memory

• The main difference between HBM and HMC is the way how it 
communicates with host processor:
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Internet Movie Database (IMDb)

• A benchmark for sentiment 
analysis containing movie 
reviews

• 100,000 movie reviews:

• Each review is a labeled 
instance

• Labels: pos, neg, unsup

• Word2vec 🡪 transforms 
reviews into feature vectors: 

• Vectors with 128 features
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a pure reality bytes film. Fragile, beautiful and 
amazing first film of the director. Represented 
Spain on the Berlinale 2002. Some people has 

compared the grammar of the film with 
Almodovar's films...Well, that shouldn't be a 

problem... || 1 

0.76 0.02 0.12 0.07 0.33 0.11 0.27 0.06 ... 0.04

0 127



MNIST Database

• Handwritten digits:

• 60,000 trainning images

• 10,000 test images

• Images of 28x28 in grayscale
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Fully Connected Layer: Neuron

•  
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Training and test steps
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