
Machine Learning Migration for
Efficient Near-Data Processing

Authors: Aline Cordeiro

Sairo Santos

Francis B. Moreira

Paulo C. Santos

Luigi Carro

Marco Zanata Alves

Increase of digital system’s usage

• Data transactions

• Registration, creation, copy, share, download

• For 2020, Gantz et al expected 40 trilion GB of data

• Doubling every 2 years the digital volume of data until it

• Machine Learning applications to analyze huge amount of data

• High computational performance

• Memory capacity

2Gantz, John, and David Reinsel. "The digital universe in 2020: Big data, bigger digital shadows, and biggest growth in
the far east." IDC iView: IDC Analyze the future 2007.2012 (2012): 1-16.
Samuel, Arthur L. "Some studies in machine learning using the game of checkers." IBM Journal of research and
development 3.3 (1959): 210-229.

Memory-Wall

• Not always a x86 Central Process Unit (CPU)
can handle this

• Low computational performance

• High energy consumption

Von Neumann’s bottleneck

3

DRAM

CPU

62,7% of the total system energy is
spent on data movement.

BUS 🡪 High data
transference latency

Boroumand, Amirali, et al. "Google workloads for consumer devices: Mitigating data
movement bottlenecks." Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems. 2018.

Accelerators

• Graphic Processing Unit (GPU)
• rely on the bus

• High energy consumption

• Application Specific Integrated
Circuit (ASIC)

• Expensive

• Field Programmable Gate Array
(FPGA)

• Reprogrammable circuit

• Near Data Processing (NDP)
• Processing and memory in the same

chip

4

DRAMGPU North-bridge

South-bridge FPGA

CPU

ASIC

NDP

Near-Data Processing

5

• Emerged in the last few years

• Integration of processing unit and
memory device in the same chip

• Compared to CPU:

• reduce execution time

• consume low energy

• Up to 8 stacked DRAM layers on a
logic layer

• Atomic and simple functions

Near-Data Processing

• Divided in 32 independent vaults

• memory controller + up to 16
memory banks

• Logic layer and DRAM banks
connected through Through-Silicon
Vias (TSVs)

• Parallel processing

• Hybrid Memory Cube (HMC) and
High Bandwidth Memory (HBM2)

6

Serial
Links

Serial
Links

Serial
Links

Serial
Links

Vault 0
Logic

Vault 1
Logic

Vault 31
Logic

...

T
S
V

B15B14

B3B2

B1B0

......

Cross-bar switch

T
S
V

B15B14

B3B2

B1B0

...... T
S
V

B15B14

B3B2

B1B0
......

DRAM Layers

Logic Layers

Pawlowski, J. Thomas. "Hybrid memory cube (HMC)." 2011 IEEE Hot chips 23 symposium (HCS). IEEE, 2011.
Jun, Hongshin, et al. "Hbm (high bandwidth memory) dram technology and architecture." 2017 IEEE
International Memory Workshop (IMW). IEEE, 2017.

VIMA: Vector-in-Memory Architecture

• Allows vector operations of 256B
and 8KB

• Focuses on algorithms that
executes great amount of data
while reuse data at certain point

• Combines Reduced Instruction Set
Computer (RISC) with vector
instructions – NEON Arm

7

Vault 0
Logic

Vault 1
Logic

Vault 31
Logic

...

T
S
V

B15B14

B3B2

B1B0

......

Cross-bar switch

T
S
V

B15B14

B3B2

B1B0

...... T
S
V

B15B14

B3B2

B1B0
......

VIMA

Serial
Links

Serial
Links

Serial
Links

Serial
Links

VIMA: Vector-in-Memory Architecture

• Compound of a
sequencer, functional
units and a cache
memory:

• Data reuse

• On-chip cache

• Parallel execution

• OoO execution

8

Vault 0
Logic

Vault 1
Logic

Vault 31
Logic

...

T
S
V

B15B14

B3B2

B1B0

......

T
S
V

B15B14

B3B2

B1B0

......

T
S
V

B15B14

B3B2

B1B0

......

Cross-bar switch

VIMA

Stat/Rqst

VIMA
sequencer

Functional
Units

Cache
Memory

data

VIMA instr.

Stat Instr.

Serial
Links

Serial
Links

Serial
Links

Serial
Links

Development steps

9

ML
application
code in C++

Intrinsics-V
IMA library

Executable
binary code

Trace-generator
execution

Simulation
traces

Ordinary Computer
Simulator

OrCS

Link and
compile

VIMA-functions 🡪 VIMA instructions

Machine Learning Algoritms kernels

• K-Nearest Neighbors: classification by distance

• MultiLayer Perceptron: Neural Network

• Convolution: image transformation

10

k-Nearest Neighbors algorithm

11

x
0

x
1

x
2

x
3

... x
127

x
0

x
1

x
2

x
3

... x
127

x
0

x
1

x
2

x
3

... x
127

y
0

y
1

y
2

y
3

... y
127

Training Dataset Test Dataset

in
st

an
ce

s

d
0

d
1

...

d
n

Euclidean Distances

Classification

d

VIMA’s implementation

12

x
0

... x
n

x
n+1

... x
m

x
0

... x
n

x
n+1

... x
m

x
0

... x
n

x
n+1

... x
m

Training Dataset Test Dataset

in
st

an
ce

s

y
0

... y
n

y
n+1

... y
m

Vector operations between one
test instance and the training

dataset

d

VIMA’s implementation

• Store the training dataset in an array:

• Read the test instances in a VIMA vector:

The training and test instances are operated in an inner loop 13

Training instance 0 Training instance 1 ... Training instance n

Test instance 0 Test instance 1 Test instance 3 Test instance 4

0 VIMA SIZE

Streaming like

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

VIMA’s implementation

Operate a partial Euclidean Distance between the instances

14

Test instance 0

0 VIMA SIZE

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0Training instance 0

d'
0

d'
1

d'
2

d'
3

d'
4

d'
5

d'
6

d'
7

d'
8

...

d'
n

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Partial Euclidean

Distance

A
cc

u
m

u
la

te
d

 s
u

m

d

MultiLayer Perceptron algorithm

15

i
0

i
1

i
2

h
0

h
1

h
2

o
0

o
1

Input
Layer

Hidden
Layer

Output
Layer

i
3

i
4

i
5

w'
00

w
10

w
20

w
30

w
40

w
50

w’
10

w’
20

bias

bias

w
00

VIMA’s implementation

16

Input Layer Hidden Layer weights connections

Dot of products between input instance
and set of weights

Hidden Layer

Accumulated sum

VIMA’s implementation

17

Input Layer Hidden Layer weights connections Hidden Layer Bias

Sum between partial hidden layer
activation values and bias

VIMA’s implementation

18

Input Layer Hidden Layer weights connections Hidden Layer Bias

Activation function: operated
with max vector function

ReLU

VIMA’s implementation: Inference Only

• Read the instances:

• Initialize the sets of weights:

The instances and weights are operated in an inner loop

19

Instance 0 Instance 1 Instance 2 Instance 3

0 VIMA SIZE

Weights’ set 0 Weights’ set 1 Weights’ set 2 Weights’ set 3

0 VIMA SIZE

Streaming like
Just when there are a lot

of features

Convolution algorithm

20

Image

Activation map

filter

VIMA’s implementation

21

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

VIMA’s implementation

22

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

VIMA’s implementation

23

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

VIMA’s implementation

24

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

VIMA’s implementation

25

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

VIMA’s implementation

26

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

VIMA’s implementation

27

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

VIMA’s implementation

28

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

VIMA’s implementation

29

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

Factor

Benchmarks: 133KB 🡪 512MB

• kNN

• # training instances: 4096, 8192, 16384, 32768, and 65536

• # test instances: 256

• # features: 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096

• # neighbors: 9

• MLP

• # instances: 4096, 8192, 16384, 32768, and 65536

• # features: 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096

• Convolution

• Matrix dimensions: 512x512, 724x724, 1024x1024, 1448x1448, 2048x2048, 2896x2896,
4096x4096, 5792x5792, 8192x8192, and 11648x11648

30

System configuration

• Intel Sandy Bridge processor 2.0GHz – x86 architecture

• L1 Cache 32KB

• L2 Cache 256KB

• LLC Cache 16MB
• 3D-Stacked Memory as main memory

• VIMA module

31

VIMA is expected to achieve better
performance when the application memory

footprint exceeds the LLC size

32

Memory Footprint higher than LLC size =16MB

64MB 128MB 256MB 512MB 1024MB32MB

33

64MB

128MB

256MB

512MB
1024MB

Memory
Footprint

higher than
LLC size

=
16MB

Energy from: Host processor + memory hierarchy + VIMA + VIMA’s Cache

kNN conclusion

• The more instances and
features, the higher the
memory footprint

• Quadratic complexity

• Training dataset with 4096
instances and 1024 features
already exceeds cache memory
size

34

Training set

...

Test instance

65k instances

d

kNN conclusion

• The more instances and
features, the higher the
memory footprint

• Quadratic complexity

• Training dataset with 4096
instances and 1024 features
already exceeds cache memory
size

35

Training set

...

Test instance

65k instances

d

kNN conclusion

• The more instances and
features, the higher the
memory footprint

• Quadratic complexity

• Training dataset with 4096
instances and 1024 features
already exceeds cache memory
size

36

Training set

...

Test instance

65k instances

d

kNN conclusion

• The more instances and
features, the higher the
memory footprint

• Quadratic complexity

• Training dataset with 4096
instances and 1024 features
already exceeds cache memory
size

37

Training set

...

Test instance

65k instances

d

kNN conclusion

• The more instances and
features, the higher the
memory footprint

• Quadratic complexity

• Training dataset with 4096
instances and 1024 features
already exceeds cache memory
size

38

Training set

...

Test instance

65k instances

d

kNN conclusion

• The more instances and
features, the higher the
memory footprint

• Quadratic complexity

• Training dataset with 4096
instances and 1024 features
already exceeds cache memory
size

39

Training set

...

Test instance

65k instances

Streaming like

256 instances

d

40

8.5MB
18MB

40MB

96MB

Memory
Footprint

higher than
LLC size

=
16MB

41

8.5MB

18MB 40MB

96MB

Memory
Footprint

higher than
LLC size

=
16MB

Energy from: Host processor + memory hierarchy + VIMA + VIMA’s
Cache

MLP conclusion

► Just the number of features
influences in memory footprint

► Better performance compared
to x86 just with greater sizes of
features

► Fair data reuse in cache
memory for smaller sizes

42

Set of instances

...

Set of weights

...
4096

The less features, the
less weights' sets

allows fair usage of
cache memory

The more features, the
more weights’ sets

Behave as streaming

43

32MB

64MB

256MB
512MB

1024MB

128MB

Memory
Footprint

higher than
LLC size

=
16MB

44

32MB 64MB 256MB 512MB 1024MB128MB

Memory
Footprint

higher than
LLC size

=
16MB

Energy from: Host processor + memory hierarchy + VIMA + VIMA’s Cache

Convolution conclusion

• Slightly gains over x86

• Fair data reuse in cache
memory

• VIMA would achieve better
performance if just a matrix
line occupies 16MB (Cache
memory size)

• But a line in the greatest matrix
occupies 44.2KB

45

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

44 KB

Convolution conclusion

• Slightly gains over x86

• Fair data reuse in cache
memory

• VIMA would achieve better
performance if just a matrix
line occupies 16MB (Cache
memory size)

• But a line in the greatest matrix
occupies 44.2KB

46

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

44 KB

Convolution conclusion

• Slightly gains over x86

• Fair data reuse in cache
memory

• VIMA would achieve better
performance if just a matrix
line occupies 16MB (Cache
memory size)

• But a line in the greatest matrix
occupies 44.2KB

47

MISS HIT HIT HIT HIT HIT

HIT HIT HIT HIT HIT HIT

HIT HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

MISS HIT HIT HIT HIT HIT

44 KB

Conclusion

• VIMA is an accelerator

• It does not achieve high performance for every application

• VIMA achieves higher performance when executing a huge
amount of data

• If data fits in cache memory and makes fair data re-usage, x86 achieves
good performance compared to VIMA

• The algorithm’s complexity and data reuse does influence the
results

48

Thank you!
alinesantanacordeiro@gmail.com

Authors: Aline Cordeiro

Sairo Santos

Francis B. Moreira

Paulo C. Santos

Luigi Carro

Marco Zanata Alves

Machine Learning Migration for
Efficient Near-Data Processing

Benchmarks

• All the algorithms were implemented with 256B and 8KB VIMA
vectors and AVX 512

50

Benchmarks

• All the algorithms were implemented with 256B and 8KB VIMA
vectors and AVX 512

51

It does not use all the
memory throughput

Estimate of the number of instructions

Implementation # instructions

Scalar 6084

AVX 512 ~378

VIMA 78

52

Considering a matrix of 28x28 and a filter of 3x3 sliding with a stride
of 1:

Estimate of the number of instructions

Implementation # instructions

Scalar 1084

AVX 512 ~68

VIMA 13

53

Considering the inference of one instance of 32 features:

Estimate of the number of instructions

Implementation # instructions

Scalar 385

AVX 512 ~24

VIMA 6

54

Considering the Euclidean Distance calculation between one
training and test instances with 128 features:

Intrinsics-VIMA

• Based on Intel intrinsics

• A library written in C/C++ language

• Reproduce VIMA Instruction Set Architecture (ISA)

• Vector instructions (256B and 8KB)

• Data representation

• 32 and 64-bits

• Integer and floating-point

• Data type standardized

55
Lomont, Chris. "Introduction to intel advanced vector extensions." Intel white paper 23 (2011).

MLP conclusion

► Just the number of features
influences in memory footprint

► Better performance compared
to x86 just with greater sizes of
features

► Fair data reuse in cache
memory for smaller sizes

56

Set of instances

...

Set of weights

...
4096

MLP conclusion

► Just the number of features
influences in memory footprint

► Better performance compared
to x86 just with greater sizes of
features

► Fair data reuse in cache
memory for smaller sizes

57

Set of instances

...

Set of weights

...
4096

MLP conclusion

► Just the number of features
influences in memory footprint

► Better performance compared
to x86 just with greater sizes of
features

► Fair data reuse in cache
memory for smaller sizes

58

Set of instances

...

Set of weights

...
4096

MLP conclusion

► Just the number of features
influences in memory footprint

► Better performance compared
to x86 just with greater sizes of
features

► Fair data reuse in cache
memory for smaller sizes

59

Set of instances

...

Set of weights

...
4096

MLP conclusion

► Just the number of features
influences in memory footprint

► Better performance compared
to x86 just with greater sizes of
features

► Fair data reuse in cache
memory for smaller sizes

60

Set of instances

...

Set of weights

...
4096

MLP conclusion

► Just the number of features
influences in memory footprint

► Better performance compared
to x86 just with greater sizes of
features

► Fair data reuse in cache
memory for smaller sizes

61

Set of instances

...

Set of weights

...
4096

MLP conclusion

► Just the number of features
influences in memory footprint

► Better performance compared
to x86 just with greater sizes of
features

► Fair data reuse in cache
memory for smaller sizes

62

Set of instances

...

Set of weights

...
4096

Ordinary Computing Simulator (OrCS)

• Developed in HiPES

• Trace driven simulation

• Cycle accurate

• Based on x86 architecture

• Interprets simulation traces to evaluate application behavior

• Simulates x86 ISA for 32 and 64-bits and VIMA

63

Benchmarks

• All the algorithms were implemented with 256B and 8KB VIMA
vectors and AVX 512

64

It does!

Algorithm for VIMA

1. Store the training dataset in an array:

2. Read the test instances in a VIMA vector:

65

Training instance 0 Training instance 1 ... Training instance n

Test instance 0 Test instance 1 ... Test instance n

0 VIMA SIZE

Algorithm for VIMA

3. Apply the mask for both instances:

66

Training instance 0 Training instance 1 ... Training instance n

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 VIMA SIZE

Test instance 0 Test instance 1 Test instance 2 Test instance 3

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

For each iteration, a unique mask
is applied for both instances

=
BETTER USAGE OF VIMA’s CACHE

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Algorithm for VIMA

4. Operate a partial Euclidean Distance between the instances

67

Test instance 0

0 VIMA SIZE

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0Training instance 0

d

Algorithm for VIMA

5. Finalize the operation with x86 routines

68

d'
0

d'
1

d'
2

d'
3

d'
4

d'
5

d'
6

d'
7

d'
8

d'
9

d'
10

d'
11

d'
12

d'
13

... d'
n

Square root and classification with x86

x86’s implementation

69

x
0

x
1

x
2

x
3

... x
127

x
0

x
1

x
2

x
3

... x
127

x
0

x
1

x
2

x
3

... x
127

y
0

y
1

y
2

y
3

... y
127

Training Dataset Test Dataset

in
st

an
ce

s

Scalar operations between one
test instance and the training

dataset

d

Processor-Memory performance gap: Speed

70Efnusheva, Danijela, Ana Cholakoska, and Aristotel Tentov. "A survey of different approaches for
overcoming the processor-memory bottleneck." International Journal of Computer Science and
Information Technology 9.2 (2017): 151-163.

4MB

256MB
2GBVax-11/780

64KB

MIPS M2000

Pentium III

64-bit Intel Xeon

Alpha21164 50%

Over the years, different solutions arised

71

Pipeline
Cache

memory
Superscalar

Out-of-Orde
r

Multithread
Vector

instructions
µop-Cache

3D-Stacked
Memory

1970 1980 1990 2000

Trace generation

72

Trace generation

There is no processor with VIMA
instructions so a synthetic VIMA instruction,
that is understood by a simulator, is added.

73

vim64_operation %regs

Over the years, different solutions arised

74

Most of these improvements were
implemented on the processor...

Pipeline
Cache

memory
Superscalar

Out-of-Orde
r

Multithread
Vector

instructions
µop-Cache

3D-Stacked
Memory

1970 1980 1990 2000

Trace Generator

• Instrumentation tool

• It executes and analyze the binary code at the same time and
generate simulation traces

75

Executable
Binary code Trace

Generator

Simulation
traces

VIMA execution process

76

Memory improvement

77Chang, Kevin K. "Understanding and improving the latency of DRAM-based memory systems." arXiv
preprint arXiv:1712.08304 (2017).

Memory improvement

78Chang, Kevin K. "Understanding and improving the latency of DRAM-based memory systems." arXiv
preprint arXiv:1712.08304 (2017).

But the relative
latency remained
almost the same

MultiLayer Perceptron
x86 x VIMA

79

x86’s implementation

80

Input Layer Hidden Layer weights connections Hidden Layer

Dot of products: Operation of activation
values of the hidden layer

Bias

Algorithm for VIMA: Inference Only

1. Read the instances:

2. Initialize the sets of weights:

81

Instance 0 Instance 1 Instance 2 Instance 3

0 VIMA SIZE

Weights’ set 0 Weights’ set 1 Weights’ set 2 Weights’ set 3

0 VIMA SIZE

Algorithm for VIMA: Inference Only

3. Apply the mask for both instances and sets of weights:

82

Instance 0 Instance 1 Instance 2 Instance 3

0 VIMA SIZE

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Weights’ set 0 Weights’ set 1 Weights’ set 2 Weights’ set 3

0 VIMA SIZE

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

For each iteration, a unique mask is applied for both instance and weights
=

BETTER USAGE OF VIMA’s CACHE

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 VIMA SIZE

Algorithm for VIMA: Inference Only

4. Operate the instances and sets of weights

83

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0Weights’ set 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0instance 0

h'
0

h'
1

h'
2

h'
3

h'
4

h'
5

h'
6

h'
7

h'
8

...

h'
n

Partial activation values

A
cc

u
m

u
la

te
d

 s
u

m

Algorithm for VIMA: Inference Only

5. Hidden layer partial activation values added to the bias

84

h'
0

h'
1

h'
2

h'
3

h'
4

h'
5

h'
6

h'
7

h'
8

h'
9

h'
10

h'
11

h'
12

h'
13

... h'
n

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ReLU activation function with x86 routines

Algorithm for VIMA: Inference Only

6. The same process is executed to calculate the output layer
activation values, the differences are:

• The mask size;

• The activation function applied at the final of the operation

7. With the activation values of the output layer, each instance is
classified with x86 instructions

85

Convolution
x86 x VIMA

86

x86’s implementation

87

Image

Activation map

filter

VIMA’s implementation

88

Image

Activation map

filter

Algorithm for VIMA

89

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Initialized Matrix Resultant Matrix

Benchmarks

90

Speedup and Energy consumption

Results

91

92

93

And contributions

Conclusion

94

GPU comparison

• Considering papers that evaluate the same applications used
here on GPUs

• GPUs can be 30x faster than VIMA

• But they consume 66x more energy!

95

A Dawwd, Shefa, and Noor M AL Layla. "Training Acceleration of Multi-Layer Perceptron using Multicore CPU and GPU
under MATLAB Environment." AL-Rafdain Engineering Journal (AREJ) 23.3 (2015): 136-148.

Skryjomski, Przemysław, Bartosz Krawczyk, and Alberto Cano. "Speeding up k-nearest neighbors classifier for large-scale
multi-label learning on GPUs." Neurocomputing 354 (2019): 10-19.

Siklosi, Balint, Istvan Z. Reguly, and Gihan R. Mudalige. "Heterogeneous cpu-gpu execution of stencil applications." 2018
IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC). IEEE, 2018.

Contributions

96

• Simulator: Refactored cache memory hierarchy

• Simulator: Implemented a first version of configuration files

• Participation in VIMA’s idealization and implementation

• Participation in Trace-Generator implementation

• Intrinsics-VIMA development

• Portability of ML applications

• Participation in writing of 2 papers

• One rejected by DATE

• One submitted in PDP and waiting

k-Nearest Neighbors
x86 x VIMA

97

Machine Learning applications in x86 CPU

• Memory and computationally
expensive algorithms

• Multiple memory requests

• High data transference rate

• Massive amount of executed data

• High energy consumption

• High execution latency

98

DRAM

CPU

Cache Memory

What Machine Learning is?

• Allow a computer with no prior knowledge to make correct decisions:

• Progressive learning

• Adapting itself to environment changes

• Generalize learning

• Complex algorithms:

• High computational performance

• Memory capacity

• Analyze a huge amount of data

99Samuel, Arthur L. "Some studies in machine learning using the game of checkers." IBM Journal of
research and development 3.3 (1959): 210-229.

CPU optimizations: Pipeline

• 1 instruction/cycle

• Instruction-Level Parallelism (ILP)

100

IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

Shen, John Paul, and Mikko H. Lipasti. Modern processor design: fundamentals of superscalar processors.
Waveland Press, 2013.

1970 1980 1990 2000

CPU

Data transference latency optimization:
Cache Memory

101

DRAM

Lower data
transference

latency

• A Cache memory installed
between CPU and memory.

• Level latencies:

• L1 🡪 2 ns

• L2 🡪 10 ns

• LLC 🡪 22 ns

• RAM 🡪 100 ns

Smith, Alan Jay. "Cache memories." ACM Computing Surveys (CSUR) 14.3 (1982): 473-530.

Cache Memory

1970 1980 1990 2000

CPU optimizations: Superscalar

• >1 instruction/cycle

• Only one functional unit (FU) in
the pipeline

102

IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

IF ID ALU MEM WB

Shen, John Paul, and Mikko H. Lipasti. Modern processor design: fundamentals of superscalar processors.
Waveland Press, 2013.

1970 1980 1990 2000

CPU optimizations: Superscalar Out-of-Order

• >1 instruction/cycle

• More than one FU in the
pipeline

103

IF

ALU

MEM WB

ALU

IF

ALU

MEM WB

ALU

..
.

ID

ID

ALU

ALU

Shen, John Paul, and Mikko H. Lipasti. Modern processor design: fundamentals of superscalar processors.
Waveland Press, 2013.

1970 1980 1990 2000

CPU optimizations: Multithreading and
Multiprocessing

• Multiple concurrent threads and multiple cores

• Shared memory

• High memory throughput

• High energy consumption

104Shen, John Paul, and Mikko H. Lipasti. Modern processor design: fundamentals of superscalar processors.
Waveland Press, 2013.

1970 1980 1990 2000

CPU optimization: Data vectorization

• Intel Intrinsics:

• MMX, SSE, AVX,
AVX2, AVX-512

• Code optimization

• executes up to 16
operands in an
instruction

105

Scalar execution a + b = c

a
0

a
1

a
2

a
3

a
4

a
5

a
6

a
7

b
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

c
0

c
1

c
2

c
3

c
4

c
5

c
6

c
7

+

=

Vector execution

Lomont, Chris. "Introduction to intel advanced vector extensions." Intel white paper 23 (2011).

1970 1980 1990 2000

µop-Cache

• Specialized cache

• Stores small sequences of micro-operations of decoded
instructions

• Avoids fetching data from memory and decode it again

106Solomon, Baruch, et al. "Micro-operation cache: A power aware frontend for variable instruction length
isa." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 11.5 (2003): 801-811.

1970 1980 1990 2000

3D-Stacked Memory

• Integrates processing in the
same chip as memory

• Avoids data transference

• Reduce execution time

• Reduce energy consumption

107Pawlowski, J. Thomas. "Hybrid memory cube (HMC)." 2011 IEEE Hot chips 23 symposium (HCS). IEEE, 2011.
Jun, Hongshin, et al. "Hbm (high bandwidth memory) dram technology and architecture." 2017 IEEE
International Memory Workshop (IMW). IEEE, 2017.

1970 1980 1990 2000

Since 1970 researchers studied advances in processor to mitigate
data transfer latency:

• Pipelining

• Cache levels

• Superscalar processing

• Out-of-order execution

• Vectorization

• Multithreading and Multiprocessing

• µop Cache

• 3D-Stacked Memory

108

But the relative
latency remains

almost the same!

Is it possible to achieve high performance
with a Near-Data Processing accelerator for

Machine Learning applications?

Research Question

109

110

DRAMGPU North-bridge

South-bridge FPGA

CPU

ASIC

NDP

Challenges

111

1. Methodology

• Intrinsics-VIMA library

• Trace-Generator

• Simulator

2. Migration of Machine Learning
applications

Methodology

Challenge 1

112

Intrinsics-VIMA

113

#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}

Intrinsics-VIMA

114

#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}

Intrinsics-VIMA

115

#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}

Intrinsics-VIMA

116

#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}

Intrinsics-VIMA

117

#include “../vima.hpp”

int main (int argc, char *argv[]) {
__v32f *v_A, *v_B, *v_C, s_oper;

v_A = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_B = (__v32f*)malloc(sizeof(__v32f) * VM64I);
v_C = (__v32f*)malloc(sizeof(__v32f) * VM64I);

...

_vim64_fmuls(v_A, v_B, v_C);
_vim64_fcums(v_C, s_oper);

}

Port the algorithms to VIMA

Challenge 2

118

GPU comparison

119

120

121

VIMA execution process

122

Processor Core

DispatchFetch Decode Rename Commit

Memory
Order-Buffer

Execution

 NDP Memory

VIMA

VIMA Instructions VIMA Status

Vault 0
Logic

Vault 1
Logic

Vault 31
Logic

.

.

.

Cross-bar switch
VIMA

VIMA
sequencer

Functional
Units

Cache
Memory

for (i = dim_size; i + dim_size + VSIZE < v_size; i+=VSIZE){

_vim2K_fadds(&B[i], &A[i-dim_size-1], &B[i]); // 1º line

_vim2K_fadds(&B[i], &A[i-dim_size], &B[i]);

_vim2K_fadds(&B[i], &A[i-dim_size+1], &B[i]);

_vim2K_fadds(&B[i], &A[i-1], &B[i]); // 2º line

_vim2K_fadds(&B[i], &A[i], &B[i]);

_vim2K_fadds(&B[i], &A[i+1], &B[i]);

_vim2K_fadds(&B[i], &A[i+dim_size-1], &B[i]); // 3º line

_vim2K_fadds(&B[i], &A[i+dim_size], &B[i]);

_vim2K_fadds(&B[i], &A[i+dim_size+1], &B[i]);

_vim2K_fmuls(&B[i], &mul[i], &B[i]);
}

123

HIVE: Integrating vectorization and NDP

• HMC Instruction Vector
Extensions

• A proposal to allow executing
vector instructions inside a NDP
module

• HIVE is a module attached in
logic layer

• Ideal to streaming algorithms

124

Compared to
HMC+SSE,
HIVE+HMC
gains up to
17.3x for

Vector sum,
5.4x for Stencil

and 4.1x for
Matrix

Multiplication.
(Alves et al.,

2016)
Serial
Links

Serial
Links

Serial
Links

Serial
Links

Vault 0
Logic

Vault 1
Logic

Vault 31
Logic

...

T
S
V

B15B14

B3B2

B1B0

......

Cross-bar switch

T
S
V

B15B14

B3B2

B1B0

...... T
S
V

B15B14

B3B2

B1B0
......

HIVE

HIVE: HMC Instruction Vector Extensions

125

Serial
Links

Serial
Links

Serial
Links

Serial
Links

Vault 0
Logic

Vault 1
Logic

Vault 31
Logic

...

T
S
V

B15B14

B3B2

B1B0

......

T
S
V

B15B14

B3B2

B1B0

......

T
S
V

B15B14

B3B2

B1B0

......

Cross-bar switch

HIVE

Stat /Rqst

HIVE
sequencer

Functional
Units

Register
bank

data

HIVE instr.

Stat Instr.

The requests sent by the
CPU are sequenced and

executed in FUs in vector
instructions of 8kB size.

Implements HIVE lock and
unlock instructions to

execute a process, to avoid
overwrite registers

VIMA: Vector-in-Memory Architecture

126

Serial
Links

Serial
Links

Serial
Links

Serial
Links

Vault 0
Logic

Vault 1
Logic

Vault 31
Logic

...

T
S
V

B15B14

B3B2

B1B0

......

T
S
V

B15B14

B3B2

B1B0

......

T
S
V

B15B14

B3B2

B1B0

......

Cross-bar switch

VIMA

Stat /Rqst

VIMA
sequencer

Functional
Units

Cache
Memory

data

HIVE instr.

Stat Instr.

A Cache Memory
replaces the Register
Bank, eliminating the

need in lock and
unlock instructions,
and allowing vector

multithreading
execution

Evaluation steps

127

while (x < 100){
…
…
…

} do

Intrinsics

VIMA
000111010101
100111010010
101010100011
110101010001
111000100010

Traditional machines
Test

Intrinsics-VIMA: a library that
emulates VIMA and allows

programmers to write high level
code, compile, execute and

debug it

PIM code

kNN
MLP
Convolução

Evaluation steps

128

while (x < 100){
…
…
…

} do

Intrinsics

VIMA

000111010101
100111010010
101010100011
110101010001
111000100010

Traditional machines
Test

Trace-generat
or

000111010101100
000110101001000
100010000100111

PIM code

Evaluation steps

129

000111010101
100111010010
101010100011
110101010001
111000100010

0001110101
1001110100
1010101001
1101010101

0001110101
1001110100
1010101001
1101010101VIMA

x86

PIM code
Simulated
machines

Evaluate

Simulation: Use Ordinary Computer Simulator (OrCS) to
evaluate simulation traces

000111010101100
000110101001000
100010000100111

Trace-generat
or

ML algorithms to port to VIMA

• K-Nearest Neighbors: Searches in Euclidean Space the k
nearest neighbors to classify an instance

• MultiLayer Perceptron: Neural Network

• Convolution: image transformation

130

Why simulating kNN, MLP and convolution?

kNN has a quadratic complexity and low data reuse
in conventional architectures for higher amount of

data

MLP has a linear complexity and low data reuse in
conventional architectures for higher amount of data

Convolution has a linear complexity and fair data
reuse in conventional architectures

131

Convolutional Layer:
How it can be implemented in VIMA?

132

a
63

b
63

c
63

d
0

e
0

f
63

g
0

h
0

i
63

a
1

b
1

c
1

d
0

e
0

f
1

g
0

h
0

i
1

a
0

b
0

c
0

d
0

e
0

f
0

g
0

h
0

i
0

a
0

a
1

a
3

a
4

a
5

a
6

... a
63

b
0

b
1

b
3

b
4

b
5

b
6

... b
63

...

i
0

i
1

i
3

i
4

i
5

i
6

... i
63

We can change the filters configuration:
Each filter have 9 elements, so we can create 64

different filters in 9 VIMA vectors of 256B

Convolutional Layer:
How it can be implemented in VIMA?

133

x
00

x
00

x
00

x
00

x
00

x
00

... x
00

y
0

y
1

y
3

y
4

y
5

y
6

... y
63

Dot Product
operation

Broadcasting each
image pixel to a
VIMA vector and

operating with the
filters...

The 64 activation
maps will be formed

by accumulation

Image

a
0

a
1

a
3

a
4

a
5

a
6

... a
63

b
0

b
1

b
3

b
4

b
5

b
6

... b
63

...

i
0

i
1

i
3

i
4

i
5

i
6

... i
63

Convolutional Layer:
Comparison

Pros

► In VIMA the image is iterated
only once compared to the
64 iterations on CPU

► It executes Dot Product 64
times less

Cons

► The activation maps storage
is sparse, resulting in low
computational performance

134

Activation Layer:
How it can be implemented in VIMA?

135

...

...

...

...

0 63 64 127 576 639

64
 a

ct
iv

at
io

n
 m

ap
s

Apply non-linearity to the
activation maps, so it zeroes

every negative value

In the CPU the instructions
execute scalar values

Pooling Layer:
Why it can not be implemented in VIMA?

• Applies MaxPooling of 2x2 window

• Data can be reconfigured in vectors to apply Map Reduce
operation

• However, it is not a Reduced Instruction Set Computer (RISC) instruction,
so it is not implemented

136

8 0 22 3

5 15 9 6

7 14 7 14

2 1 32 5

15 22

14 32

Reduces the dimension while
keeps important information
linked to the activation map,
and controll overfitting and

Back Propagation

Forward Propagation

Fully Connected Layer

• Forward Propagation:

• Calculates the neurons activation
values

• Error calculation

• Back Propagation:

• Updates connection weights 🡪 first
and second derivatives

137

i
1

i
2

i
3

h
1

h
2

h
3

h
4

o
1

o
2

bias

bias

bias

bias

Input
Layer

Hidden
Layer

Output
Layer

w
11

w
12

w
13

w
14

Forward Propagation

138

i
1

i
2

i
3

h
1

h
2

h
3

h
4

o
1

o
2

bias

bias

bias

bias

Input
Layer

Hidden
Layer

Output
Layer

w
11

w
12

w
13

w
14

w
11

w
12Flattened

activation
maps

Calculate the activation values/function from
Hidden and Output layers

Forward Propagation:
How it can be implemented in VIMA?

139

W
0,0

W
0,63

W
0,64

W
0,127

W
0,128

W
0,191

... W
0,n-64

W
0,n

W
1,0

W
1,63

W
1,64

W
1,127

W
1,128

W
1,191

... W
1,n-64

W
1,n

W
2,0

W
2,63

W
2,64

W
2,127

W
2,128

W
2,191

... W
2,n-64

W
2,n

W
k,0

W
k,63

W
k,64

W
k,127

W
k,128

W
k,191

... W
k,n-64

W
k,n

h
0

h
1

h
2

h
k

i
0

i
63

i
64

i
127

i
128

i
191

...

I
n-64

I
n

In
p

u
t

la
ye

r

Hidden layer

Connections weights

Error calculation

140

i
1

i
2

i
3

h
1

h
2

h
3

h
4

o
1

o
2

bias

bias

bias

bias

Input
Layer

Hidden
Layer

Output
Layer

w
11

w
12

w
13

w
14

w
11

w
12

Error calculation: Uses Mean
Squared Error (MSE) to

evaluate the obtained value
compared to the expect one.

We are using MNIST, a dataset
of handwritten digits, and our

output layer has only 10
neurons to allocate in a 256B

VIMA vector

Back Propagation

141

i
1

i
2

i
3

h
1

h
2

h
3

h
4

o
1

o
2

bias

bias

bias

bias

Input
Layer

Hidden
Layer

Output
Layer

w
11

w
12

Update weights using the
MSE result.

w
11

w
12

w
13

w
14

First
Derivative

Second
Derivative

Except for the output layer, the rest
of the Back Propagation can be
vectorized with VIMA vectors

Main contributions

1. Intrinsics-VIMA: a library that allows programmers to write code in
high level language and evaluate it

2. Tracer-generator: a tool to port code to VIMA in easy way

3. VIMA in OrCS: the implementation of VIMA in OrCS to evaluate
simulation traces

4. Migration of ML code to VIMA: an implementation specific to VIMA

142

Schedule

143

2019 2020

Activities AGO SEP OCT NOV DEC JAN FEV

Trace-generator

Dynamic cache

VIMA in OrCS

Adjustments in kNN and CNN

Algorithms tests

SImulate traces with VIMA in OrCS

Analyze the results

Write and submit a paper

Write dissertation and presentation

Paper
General-P

urpose
Vector

execution
PIM Simple FU

Easy to
simulate

Cadambi et al. (2010)

Xu et al. (2015)

Gao et al. (2015)

Ahn et al. (2016)

Li et al. (2017)

Oliveira et al. (2017b)

Gao et al. (2017)

Thottethodi et al. (2018)

Azarkhish et al. (2018)

VIMA

Related Work

144

Related Work

145

Paper
General-P

urpose
Vector

execution
PIM Simple FU

Easy to
simulate

Gao et al. (2018)

Schuiki et al. (2018)

Liu et al. (2018)

Deng et al. (2018)

Ganguly et al. (2018)

Sim et al. (2018)

Min et al. (2019)

de Lima et al. (2019)

Deng et al. (2019)

VIMA

References

• Alves, M. A., Diener, M., Santos, P. C., and Carro, L. (2016). Large vector
extensions inside the hmc. In 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1249–1254. IEEE.

• Boroumand A., Ghose S., Kim Y., Ausavarungnirun R., Shiu E., Thakur R., Kim
D., Kuusela A., Knies A., Ranganathan P., and Mutlu O. (2018). Google
Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks. In
Proceedings of the23rd International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
316-331, ACM.

• Cadambi, S., Majumdar, A., Becchi, M., Chakradhar, S., and Graf, H. P. (2010).
A programmable parallel accelerator for learning and classification. In
Proceedings of the 19th international conference on Parallel architectures
and compilation techniques, pages 273–284. ACM

146

References

• Thottethodi, M., Vijaykumar, T., et al. (2018). Millipede: Die-stacked
memory optimizations for big data machine learning analytics. In 2018
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 160–171. IEEE.

• Li, S., Niu, D., Malladi, K. T., Zheng, H., Brennan, B., and Xie, Y. (2017).
Drisa: A dram-based reconfigurable in-situ accelerator. In Proceedings
of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 288–301. ACM.

• Ahn, J., Hong, S., Yoo, S., Mutlu, O., and Choi, K. (2016). A scalable
processing-in-memory accelerator for parallel graph processing. ACM
SIGARCH Computer Architecture News, 43(3):105–117.

147

References

• Gao, M., Pu, J., Yang, X., Horowitz, M., and Kozyrakis, C. (2017). Tetris:
Scalable and efficient neural network acceleration with 3d memory. ACM
SIGOPS Operating Systems Review, 51(2):751–764.

• Gao, D., Shen, T., and Zhuo, C. (2018). A design framework for
processing-in-memory accelerator. In 2018 ACM/IEEE International
Workshop on System Level Interconnect Prediction (SLIP), pages 1–6. IEEE

• Schuiki, F., Schaffner, M., Gürkaynak, F. K., and Benini, L. (2018). A scalable
near-memory architecture for training deep neural networks on large
in-memory datasets. arXiv preprint arXiv:1803.04783.

• Xu, L., Zhang, D. P., and Jayasena, N. (2015). Scaling deep learning on
multiple in-memory processors. In Proceedings of the 3rd Workshop on
Near-Data Processing.

148

References

• Gao, M., Ayers, G., and Kozyrakis, C. (2015). Practical near-data processing
for in-memory analytics frameworks. In Parallel Architecture and
Compilation (PACT), 2015 International Conference on, pages 113–124. IEEE.

• Oliveira, G. F., Santos, P. C., Alves, M. A., and Carro, L. (2017b). Nim: An
hmc-based machine for neuron computation. In International Symposium on
Applied Reconfigurable Computing, pages 28–35. Springer.

• Azarkhish, E., Rossi, D., Loi, I., and Benini, L. (2018). Neurostream: Scalable
and energy efficient deep learning with smart memory cubes. IEEE
transactions on Parallel & Distributed Systems, pages 1–1.

• Liu, J., Zhao, H., Ogleari, M. A., Li, D., and Zhao, J. (2018).
Processing-in-memory for energy-efficient neural network training: A
heterogeneous approach. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 655–668. IEEE.

149

References

• Min, C., Mao, J., Li, H., and Chen, Y. (2019). Neuralhmc: an efficient
hmc-based accelerator for deep neural networks. In Proceedings of the 24th
Asia and South Pacific Design Automation Conference, pages 394–399. ACM.

• Deng, Q., Jiang, L., Zhang, Y., Zhang, M., and Yang, J. (2018). Dracc: a dram
based accelerator for accurate cnn inference. In Proceedings of the 55th
Annual Design Automation Conference, page 168. ACM.

• Ganguly, A., Singh, V., Muralidhar, R., and Fujita, M. (2018). Memory-system
requirements for convolutional neural networks. In Proceedings of the
International Symposium on Memory Systems, pages 291–197. ACM.

• Sim, J., Seol, H., and Kim, L.-S. (2018). Nid: processing binary convolutional
neural network in commodity dram. In 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE.

150

References

• de Lima, J. P. C., Santos, P. C., de Moura, R. F., Alves, M. A., Beck,
A. C., and Carro, L. (2019). Exploiting reconfigurable vector
processing for energy-efficient computation in 3d-stacked
memories. In International Symposium on Applied
Reconfigurable Computing, pages 262–276. Springer.

• Deng, Q., Zhang, Y., Zhang, M., and Yang, J. (2019). Lacc:
Exploiting lookup table-based fast and accurate vector
multiplication in dram-based cnn accelerator. In Proceedings of
the 56th Annual Design Automation Conference, page 128. ACM.

151

Porting Machine Learning
Algorithms to

Vector-In-Memory
Architecture

Student: Aline Santana Cordeiro

Advisor: Prof. Marco Zanata Alves

Master Qualification – Federal University of Paraná

Thank you!

Memory bandwidth and latency

Architecture Bandwidth Latency (cycles)

L1 Cache L2 Cache Global Memory

CPU – Intel i7 7th 79 GB/s 5 14 70 + 50ns

GPU – GTX 980 112GB/s - - 368

GPU – Volta V100 900 GB/s 28 193 400

HBM2 256 GB/s - - 16

153

• Volkov, V. (2016). Understanding latency hiding on gpus. Doctoral dissertation, UC Berkeley.
• https://www.renesas.com/us/en/doc/products/memory/r10ds0281ej0001_memory.pdf
• Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. (2018). Dissecting the nvidia volta gpu

architecture via microbenchmarking. arXiv preprint arXiv:1804.06826.

Processing-in-Memory

• The main difference between HBM and HMC is the way how it
communicates with host processor:

154

HMC
module

HOST
(processor)

Serial
Links

Serial
Links

Serial
Links

Serial
Links

HBM
module HOST

(processor)
Interposer

Internet Movie Database (IMDb)

• A benchmark for sentiment
analysis containing movie
reviews

• 100,000 movie reviews:

• Each review is a labeled
instance

• Labels: pos, neg, unsup

• Word2vec 🡪 transforms
reviews into feature vectors:

• Vectors with 128 features

155

a pure reality bytes film. Fragile, beautiful and
amazing first film of the director. Represented
Spain on the Berlinale 2002. Some people has

compared the grammar of the film with
Almodovar's films...Well, that shouldn't be a

problem... || 1

0.76 0.02 0.12 0.07 0.33 0.11 0.27 0.06 ... 0.04

0 127

MNIST Database

• Handwritten digits:

• 60,000 trainning images

• 10,000 test images

• Images of 28x28 in grayscale

156

Fully Connected Layer: Neuron

•

157

x
1

x
2

x
3

w
1

w
2

w
3

y

bias

Training and test steps

158

Training
Samples

Training Step
adjusting parameters

Training Model
Ideal parameters

Test
Samples

Classification

Training epochs

