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Big Data
● We must process all the data!

○ Non-structured;

○ Massive;

○ Fast!
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Can we handle it?
3

The von Neumann architecture



Near-Data Processing

● Proposed in the 1990s;
○ Patterson et al., 1997;
○ Elliott et al., 1999;
○ Impractical!

● Resurgence in the early 2010s;
○ TSV technology → 3D-stacked memories;
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● Reduce data movement;
○ Sharply reduces energy consumption;

Near-Data Processing: Goals
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● Improve usage of memory bandwidth;
○ Improve overall performance of 

data-streaming applications;
● Improve overall efficiency in resource 

usage;
○ Less cache hierarchy pollution;
○ Better resource allocation;



● Programming model;
○ How to program for NDP?

● Cache coherence;
○ Collisions;

● Virtual memory support;
○ Virtual address translation;

Near-Data Processing: Challenges
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● Sequential Consistency:
○ Most assumed model;
○ Assumptions:

■ atomic operations;
■ program order maintenance;
■ any load operation returns the value 

from last stored to the location;

Near-Data Processing: Challenges
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● Sequential Consistency:
○ How do existing NDP proposals deal 

with this?
■ Fail to discuss it;
■ The programmer must deal;

○ We propose to provide sequential 
consistency by implementing precise 
exceptions near the data.

Near-Data Processing: Challenges
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It is possible to provide precise exceptions, improved 
memory access and multi-threading with fine-grain 

NDP to speedup data streaming applications.
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Vector-In-Memory
Architecture

(VIMA)



● Common fine-grain NDP architecture features:

VIMA (Vector-In-Memory Architecture)
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○ ISA extensions;



○ Near-data dedicated storage;
● Common fine-grain NDP architecture features:

VIMA (Vector-In-Memory Architecture)
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○ Huge pages in the TLB;
● Common fine-grain NDP architecture features:

VIMA (Vector-In-Memory Architecture)
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○ 3D-stacked memory-based in-memory accelerator;
● Common fine-grain NDP architecture features:

VIMA (Vector-In-Memory Architecture)
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3D-stacked Memories
● Hybrid Memory Cube (HMC);
● High Bandwidth Memory (HBM);
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3D-stacked Memories
● Hybrid Memory Cube (HMC);
● High Bandwidth Memory (HBM);
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VIMA (Vector-In-Memory Architecture)
● HIVE (HMC Instruction Vector Extensions)

○ Alves et al., 2016;
○ Register bank data storage;
○ Hybrid Memory Cube;
○ Large vector instructions;
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VIMA (Vector-In-Memory Architecture)
● HIPE (HMC Instruction Predication Extension)

○ Tomé et al., 2018;
○ Register bank data storage;
○ Hybrid Memory Cube;
○ 256-byte vectors;
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VIMA (Vector-In-Memory Architecture)
● Contributions;

○ 3D-stacked memory-agnostic;
○ Precise exceptions;
○ Multithreading;
○ Maintaining benefits;

■ Reduced execution time;
■ Reduced energy consumption;
■ Increased data throughput;
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● Adding a accelerator to a system causes it to become multi-processed;
● Programmers still assume a sequentially consistent model;
● How to guarantee precise exceptions with NDP?

○ Strict in-order execution → one instruction at a time;
○ Likely poor performance;
○ State-of-the-art doesn’t!

Precise Exceptions

20
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● Providing precise exceptions and good performance;
● Instruction pooling;
● Instruction sequencer and buffer;

Precise Exceptions
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Re-order buffer



● Providing precise exceptions and good performance;
● Instruction pooling;
● Instruction sequencer and buffer;

Precise Exceptions
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Precise Exceptions
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Precise Exceptions
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● Instruction sequencer placement;
● Difference in memory control;

Memory-agnostic
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HBM

HMC



● Dedicated cache memory for operand storage;
● Benefits and drawbacks;
● Transparent allocation of data;

Data Storage
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Register BankCache Memory



● Dedicated cache memory for operand storage;
● Benefits and drawbacks;
● Transparent allocation of data;

Data Storage
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● Dedicated cache memory for operand storage;
● Benefits and drawbacks;
● Transparent allocation of data;

Line 0 Instruction X

Line 1 Instruction X

Line 2 Instruction Y

…

Line 254 Instruction Y

Line 255

Data Storage
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● Further optimizations;
● Buffered instructions + precise exceptions + cache storage;
● Out-of-order operand loading;
● Execution and committing stays in-order;

The Load-Ahead Mechanism
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The Load-Ahead Mechanism
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The Load-Ahead Mechanism
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Memory: HMC 2.1
Application: Memory Set
Baseline: 16-thread x86 Data Throughput

127GB/s vs. 267GB/s



● Keeping multiple threads separate;
● Benefit of a cache-based storage;
● Appropriate pressure at smaller vector widths;

Multithreading
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Evaluation



Evaluation
● Baseline:

○ Intel Skylake, 16 cores @ 2GHz;
○ AVX-512;
○ 64KB L1;
○ 1MB L2;
○ 16MB LLC;
○ Hybrid Memory Cube 2.1;

● VIMA (Vector-In-Memory 
Architecture):
○ Host single core @ 2GHz;
○ VIMA @ 1GHz;
○ 256KB dedicated cache;
○ Varying main memory;

35

● OrCS (Ordinary Computer Simulator);



3D-stacked Memories
● Hybrid Memory Cube 2.1

○ 32 vaults;
○ 8 banks;
○ 256-byte row buffer;

● High Bandwidth Memory 3
○ 16 vaults;
○ 64 banks;
○ 1024-byte row buffer;
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32 x 256 = 8192 bytes 16 x 1024 = 16384 bytes



Workload Characterization
● 8, 16, 32 and 64MB input datasets;

○ Baseline cache;
● Applications:

○ Consumer Workloads
■ Memory Set
■ Memory Copy
■ Vector Sum

○ Database Query Operators
■ Selection
■ Projection
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○ Computational Fluid Dynamics
■ 5-point convolution

○ String Matching
■ Bloom Filter



Results: Execution Time
● Data-streaming applications (Consumer workloads);
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Results: Execution Time
● Data-streaming applications (Database query operators);
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Selection Projection



Results: Execution Time
● Data-reuse applications (CFD and string matching);
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Convolution Bloom Filter



Understanding Execution Time Results
● HMC 2.1;

○ Average speedup: 8.75x;
○ 32 vaults;
○ 256-byte row buffer;
○ 256-byte maximum 

request size;
○ 32 memory controllers;

● HBM3;
○ Average speedup: 4.12x;
○ 16 vaults;
○ 1024-byte row buffer;
○ 128-byte maximum 

request size;
○ Single memory controller;
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Results: Execution Time
● Significant results;
● Superior results with HMC 2.1 memory;

○ Up to 13x with HMC 2.1 memory;
○ Up to 5x with HBM3 memory;

● Memory device organization impacts performance;
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Results: Energy Consumption
● Baseline ● VIMA

43

core core core core

core core core core

corecorecorecore

core core core core

Main Memory

core

Main Memory
VIMA



Results: Energy Consumption
● Estimates based on CACTI and McPAT;
● Data-streaming applications (Consumer workloads);
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Results: Energy Consumption
● Data-streaming applications (Database query operators);
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Selection Projection



Results: Energy Consumption
● Data-reuse applications (CFD and string matching);
● Unrealistic bloom filter results;
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Results: Data Throughput
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Results: Near-Data Multithread
● Database query operators, 64MB input dataset;
● Smaller vector widths;
● 2 to 8 threads;
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Results: Near-Data Multithread
● Improved data throughput with load-ahead mechanism and multiple threads;
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Results: State-of-the-art Comparison
● HIVE (HMC Instruction Vector Extensions)

○ Alves et al., 2016;
○ Similar design;
○ Register bank data storage;
○ Shortcomings:

■ “Imprecise exceptions”;
■ More Limited ISA;
■ HMC dependent;
■ No active multithreading;
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Results: State-of-the-art Comparison
● Only applications available to the two architectures;
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153% 140% 32%
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Conclusions



Conclusions
● The memory wall continues to be a significant bottleneck;

○ NDP systems attempt to alleviate the issue;
● We propose Vector-In-Memory Architecture (VIMA);

○ FU-based;
○ Precise exceptions;
○ Improved performance against modern traditional system;
○ Large reduction in energy consumption;
○ Near-data multithreading;
○ Between 32% and 153% faster than the state-of-the-art;
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Conclusions
● Hypothesis

“It is possible to provide precise exceptions, improved memory access and 
multithreading with fine-grain NDP to speedup data streaming 

applications”
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Activities
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● VIMA: Idealization, initial development and all extensions;
● VIMA: Extension of Intrinsics-VIMA library;
● Porting all applications to VIMA;
● OrCS: DRAM memory modelling;
● OrCS: HMC Instruction Vector Extensions (HIVE) simulation;
● OrCS: Vector-In-Memory Architecture (VIMA) simulation;
● OrCS: Extension of Pin-based trace generator;
● All experiments featured on presentation and text;
● All data analysis features on presentation and text;
● Participation on several collaboration research papers;
● Lead writing of several research paper manuscripts;

●
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Thank you!


