
Enabling Multi-threaded Execution and 
Improved Memory Access in Fine-Grain 
Near-Data Processing Systems

Sairo Raoní dos Santos
Orientador: Marco Antonio Zanata Alves
Programa de Pós-graduação em Informática - UFPR



Big Data
● We must process all the data!

○ Non-structured;

○ Massive;

○ Fast!

2



Can we handle it?
3

The von Neumann architecture



Near-Data Processing

● Proposed in the 1990s;
○ Patterson et al., 1997;
○ Elliott et al., 1999;
○ Impractical!

● Resurgence in the early 2010s;
○ TSV technology → 3D-stacked memories;

4



● Reduce data movement;
○ Sharply reduces energy consumption;

Near-Data Processing: Goals

5

● Improve usage of memory bandwidth;
○ Improve overall performance of 

data-streaming applications;
● Improve overall efficiency in resource 

usage;
○ Less cache hierarchy pollution;
○ Better resource allocation;



● Programming model;
○ How to program for NDP?

● Cache coherence;
○ Collisions;

● Virtual memory support;
○ Virtual address translation;

Near-Data Processing: Challenges

6



● Sequential Consistency:
○ Most assumed model;
○ Assumptions:

■ atomic operations;
■ program order maintenance;
■ any load operation returns the value 

from last stored to the location;

Near-Data Processing: Challenges

7



● Sequential Consistency:
○ How do existing NDP proposals deal 

with this?
■ Fail to discuss it;
■ The programmer must deal;

○ We propose to provide sequential 
consistency by implementing precise 
exceptions near the data.

Near-Data Processing: Challenges

8



9

It is possible to provide precise exceptions, improved 
memory access and multi-threading with fine-grain 

NDP to speedup data streaming applications.



10

Vector-In-Memory
Architecture

(VIMA)



● Common fine-grain NDP architecture features:

VIMA (Vector-In-Memory Architecture)

11

○ ISA extensions;



○ Near-data dedicated storage;
● Common fine-grain NDP architecture features:

VIMA (Vector-In-Memory Architecture)

12



○ Huge pages in the TLB;
● Common fine-grain NDP architecture features:

VIMA (Vector-In-Memory Architecture)

13



○ 3D-stacked memory-based in-memory accelerator;
● Common fine-grain NDP architecture features:

VIMA (Vector-In-Memory Architecture)

14



3D-stacked Memories
● Hybrid Memory Cube (HMC);
● High Bandwidth Memory (HBM);

15



3D-stacked Memories
● Hybrid Memory Cube (HMC);
● High Bandwidth Memory (HBM);

16



VIMA (Vector-In-Memory Architecture)
● HIVE (HMC Instruction Vector Extensions)

○ Alves et al., 2016;
○ Register bank data storage;
○ Hybrid Memory Cube;
○ Large vector instructions;

17



VIMA (Vector-In-Memory Architecture)
● HIPE (HMC Instruction Predication Extension)

○ Tomé et al., 2018;
○ Register bank data storage;
○ Hybrid Memory Cube;
○ 256-byte vectors;

18



VIMA (Vector-In-Memory Architecture)
● Contributions;

○ 3D-stacked memory-agnostic;
○ Precise exceptions;
○ Multithreading;
○ Maintaining benefits;

■ Reduced execution time;
■ Reduced energy consumption;
■ Increased data throughput;

19



● Adding a accelerator to a system causes it to become multi-processed;
● Programmers still assume a sequentially consistent model;
● How to guarantee precise exceptions with NDP?

○ Strict in-order execution → one instruction at a time;
○ Likely poor performance;
○ State-of-the-art doesn’t!

Precise Exceptions

20

NDP
device

NDP

Re-order buffer

newer older 



● Adding a accelerator to a system causes it to become multi-processed;
● Programmers still assume a sequentially consistent model;
● How to guarantee precise exceptions with NDP?

○ Strict in-order execution → one instruction at a time;
○ Likely poor performance;
○ State-of-the-art doesn’t!

Precise Exceptions

21

NDP
device

NDP !

Re-order buffer

newer older 



● Providing precise exceptions and good performance;
● Instruction pooling;
● Instruction sequencer and buffer;

Precise Exceptions

22

Re-order buffer



● Providing precise exceptions and good performance;
● Instruction pooling;
● Instruction sequencer and buffer;

Precise Exceptions

23
VIMA

VIMA VIMA VIMA

Re-order buffer

Instruction Buffer



Precise Exceptions

24

VIMA

VIMA VIMA VIMA

Re-order buffer

Instruction Buffer

CPU

exception



Precise Exceptions

25
VIMA

VIMA VIMA VIMA !

Core 0 | Re-order buffer

Instruction Buffer

VIMA VIMA

Core 1 | Re-order buffer

CPU

Instruction Operand Data

Instruction Operand Data

…

Instruction Operand Data

Instruction Operand DataC
ac

he
 M

em
or

y

ex
ce

pt
io

n



● Instruction sequencer placement;
● Difference in memory control;

Memory-agnostic

26

HBM

HMC



● Dedicated cache memory for operand storage;
● Benefits and drawbacks;
● Transparent allocation of data;

Data Storage

27

Register BankCache Memory



● Dedicated cache memory for operand storage;
● Benefits and drawbacks;
● Transparent allocation of data;

Data Storage

28

Register 0

Register 1 taken

Register 2 taken

…

Register 254

Register 255Instruction A Instruction Z Instruction Y Instruction X

Op1: reg1
Op2: reg2

Op1: reg1
Op2: reg2

Instruction A Instruction Z Instruction Y Instruction X

Instruction Buffer

Register Bank



● Dedicated cache memory for operand storage;
● Benefits and drawbacks;
● Transparent allocation of data;

Line 0 Instruction X

Line 1 Instruction X

Line 2 Instruction Y

…

Line 254 Instruction Y

Line 255

Data Storage

29
Instruction A Instruction Z Instruction Y Instruction X

addr addr addr addr

Instruction Buffer

Cache Memory



● Further optimizations;
● Buffered instructions + precise exceptions + cache storage;
● Out-of-order operand loading;
● Execution and committing stays in-order;

The Load-Ahead Mechanism

30



The Load-Ahead Mechanism

3131

Line 0 Instruction X

Line 1 Instruction X

Line 2

…

Line 254

Line 255Instruction X

addr1: 661120
addr2: 669312

addr1: 743040
addr2: 751232

MAIN
MEMORY

Line 0 Instruction X

Line 1 Instruction X

Line 2 Instruction Y

…

Line 254 Instruction Y

Line 255Instruction Y Instruction X

Instruction Buffer

Cache memory



The Load-Ahead Mechanism

32

Memory: HMC 2.1
Application: Memory Set
Baseline: 16-thread x86 Data Throughput

127GB/s vs. 267GB/s



● Keeping multiple threads separate;
● Benefit of a cache-based storage;
● Appropriate pressure at smaller vector widths;

Multithreading

33



34

Evaluation



Evaluation
● Baseline:

○ Intel Skylake, 16 cores @ 2GHz;
○ AVX-512;
○ 64KB L1;
○ 1MB L2;
○ 16MB LLC;
○ Hybrid Memory Cube 2.1;

● VIMA (Vector-In-Memory 
Architecture):
○ Host single core @ 2GHz;
○ VIMA @ 1GHz;
○ 256KB dedicated cache;
○ Varying main memory;

35

● OrCS (Ordinary Computer Simulator);



3D-stacked Memories
● Hybrid Memory Cube 2.1

○ 32 vaults;
○ 8 banks;
○ 256-byte row buffer;

● High Bandwidth Memory 3
○ 16 vaults;
○ 64 banks;
○ 1024-byte row buffer;

36

32 x 256 = 8192 bytes 16 x 1024 = 16384 bytes



Workload Characterization
● 8, 16, 32 and 64MB input datasets;

○ Baseline cache;
● Applications:

○ Consumer Workloads
■ Memory Set
■ Memory Copy
■ Vector Sum

○ Database Query Operators
■ Selection
■ Projection

37

○ Computational Fluid Dynamics
■ 5-point convolution

○ String Matching
■ Bloom Filter



Results: Execution Time
● Data-streaming applications (Consumer workloads);

38

MemSet MemCopy VecSum



Results: Execution Time
● Data-streaming applications (Database query operators);

39

Selection Projection



Results: Execution Time
● Data-reuse applications (CFD and string matching);

40

Convolution Bloom Filter



Understanding Execution Time Results
● HMC 2.1;

○ Average speedup: 8.75x;
○ 32 vaults;
○ 256-byte row buffer;
○ 256-byte maximum 

request size;
○ 32 memory controllers;

● HBM3;
○ Average speedup: 4.12x;
○ 16 vaults;
○ 1024-byte row buffer;
○ 128-byte maximum 

request size;
○ Single memory controller;

41



Results: Execution Time
● Significant results;
● Superior results with HMC 2.1 memory;

○ Up to 13x with HMC 2.1 memory;
○ Up to 5x with HBM3 memory;

● Memory device organization impacts performance;

42



Results: Energy Consumption
● Baseline ● VIMA

43

core core core core

core core core core

corecorecorecore

core core core core

Main Memory

core

Main Memory
VIMA



Results: Energy Consumption
● Estimates based on CACTI and McPAT;
● Data-streaming applications (Consumer workloads);

44
MemSet MemCopy VecSum



Results: Energy Consumption
● Data-streaming applications (Database query operators);

45

Selection Projection



Results: Energy Consumption
● Data-reuse applications (CFD and string matching);
● Unrealistic bloom filter results;

46Convolution Bloom Filter



Results: Data Throughput

47

626% 293%

113%
130%

452%

57% -8% -30% 31% 1%



Results: Near-Data Multithread
● Database query operators, 64MB input dataset;
● Smaller vector widths;
● 2 to 8 threads;

48



Results: Near-Data Multithread
● Improved data throughput with load-ahead mechanism and multiple threads;

49



Results: State-of-the-art Comparison
● HIVE (HMC Instruction Vector Extensions)

○ Alves et al., 2016;
○ Similar design;
○ Register bank data storage;
○ Shortcomings:

■ “Imprecise exceptions”;
■ More Limited ISA;
■ HMC dependent;
■ No active multithreading;

50



Results: State-of-the-art Comparison
● Only applications available to the two architectures;

51

153% 140% 32%

MemSet MemCopy VecSum



52

Conclusions



Conclusions
● The memory wall continues to be a significant bottleneck;

○ NDP systems attempt to alleviate the issue;
● We propose Vector-In-Memory Architecture (VIMA);

○ FU-based;
○ Precise exceptions;
○ Improved performance against modern traditional system;
○ Large reduction in energy consumption;
○ Near-data multithreading;
○ Between 32% and 153% faster than the state-of-the-art;

53



Conclusions
● Hypothesis

“It is possible to provide precise exceptions, improved memory access and 
multithreading with fine-grain NDP to speedup data streaming 

applications”

54



Activities

55

● VIMA: Idealization, initial development and all extensions;
● VIMA: Extension of Intrinsics-VIMA library;
● Porting all applications to VIMA;
● OrCS: DRAM memory modelling;
● OrCS: HMC Instruction Vector Extensions (HIVE) simulation;
● OrCS: Vector-In-Memory Architecture (VIMA) simulation;
● OrCS: Extension of Pin-based trace generator;
● All experiments featured on presentation and text;
● All data analysis features on presentation and text;
● Participation on several collaboration research papers;
● Lead writing of several research paper manuscripts;

●



List of Publications
1. CORDEIRO, ALINE S.; SANTOS, SAIRO R.; MOREIRA, FRANCIS B.; SANTOS, PAULO C.; CARRO, LUIGI; ALVES, 

MARCO A. Z. Machine Learning Migration for Efficient Near-Data Processing In: 29th Euromicro International Conference on 
Parallel, Distributed, and Network-Based Processing (PDP), 2021.

2. SANTOS, PAULO C.; MOREIRA, FRANCIS B.; CORDEIRO, ALINE S.; SANTOS, SAIRO R.; KEPE, TIAGO R.; CARRO, 
LUIGI; ALVES, MARCO A. Z. Survey on Near-Data Processing: Applications and Architectures In: Journal of Integrated 
Circuits and Systems, 2021.

3. CORDEIRO, ALINE S.; SANTOS, SAIRO R.; MOREIRA, FRANCIS B.; SANTOS, PAULO C.; ALVES, MARCO A. Z. 
Efficient Machine Learning execution with Near-Data Processing In: Microprocessors and Microsystems, 2022.

4. SANTOS, SAIRO R.; MOREIRA, FRANCIS B.; KEPE, TIAGO R.; SANTOS, PAULO C.; ALVES, MARCO A. Z. Advancing 
Database System Operators with Near-Data Processing In: 2022 30th Euromicro International Conference on Parallel, 
Distributed and Network-based Processing (PDP), 2022.

5. ALVES, MARCO A. Z.; SANTOS, SAIRO R.; CORDEIRO, ALINE S.; MOREIRA, FRANCIS B.; SANTOS, PAULO C.; 
CARRO, LUIGI Vector In Memory Architecture for simple and high efficiency computing In arXiv preprint arXiv:2203.14882.

6. SANTOS, SAIRO R.; ALVES, MARCO A. Z. Impacto da Largura do Vetor de Instruções SIMD em Arquiteturas de 
Processamento Próximo à Memória In XXII Escola Regional de Alto Desempenho da Região Sul (ERAD/RS), 2022.

7. SANTOS, SAIRO R.; KEPE, TIAGO R.; MOREIRA, FRANCIS B.; ALVES, MARCO A. Z. Advancing Near-Data Processing 
with Precise Exceptions and Efficient Data Fetching In: 2022 IEEE International Symposium on Performance Analysis of 
Systems and Software (ISPASS), 2022.

8. SANTOS, SAIRO R.; MOREIRA, FRANCIS B.; KEPE, TIAGO R.; SANTOS, PAULO C.; ALVES, MARCO A. Z. Improved 
Computation of Database Operators via Vector Processing Near-Data In: The Journal of Supercomputing, 2022. (pending 
confirmation)

56



57

Thank you!


