
UNIVERSIDADE FEDERAL DO PARANÁ

SAIRO RAONÍ DOS SANTOS

ENABLING MULTI-THREADED EXECUTION AND IMPROVED MEMORY ACCESS IN

FINE-GRAIN NEAR-DATA PROCESSING SYSTEMS

CURITIBA/PR

2022

SAIRO RAONÍ DOS SANTOS

ENABLING MULTI-THREADED EXECUTION AND IMPROVED MEMORY ACCESS IN

FINE-GRAIN NEAR-DATA PROCESSING SYSTEMS

Tese apresentada como requisito parcial à obtenção do grau

de Doutor em Ciência da Computação no Programa de

Pós-Graduação em Informática, Setor de Ciências Exatas,

da Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Marco Antonio Zanata Alves.

CURITIBA/PR

2022

MINISTÉRIO DA EDUCAÇÃO
SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -
40001016034P5

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação INFORMÁTICA da Universidade

Federal do Paraná foram convocados para realizar a arguição da tese de Doutorado de SAIRO RAONÍ DOS SANTOS intitulada:

ENABLING MULTI-THREADED EXECUTION AND IMPROVED MEMORY ACCESS IN FINE-GRAIN NEAR-DATA PROCESSING

SYSTEMS, sob orientação do Prof. Dr. MARCO ANTONIO ZANATA ALVES, que após terem inquirido o aluno e realizada a

avaliação do trabalho, são de parecer pela sua APROVAÇÃO no rito de defesa.

A outorga do título de doutor está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 08 de Julho de 2022.

Assinatura Eletrônica
11/07/2022 20:06:06.0

MARCO ANTONIO ZANATA ALVES
 Presidente da Banca Examinadora

Assinatura Eletrônica
11/07/2022 19:10:12.0

MÔNICA MAGALHÃES PEREIRA
 Avaliador Externo (UNIVERSIDADE FEDERAL DO RIO GRANDE DO

NORTE)

Assinatura Eletrônica
11/07/2022 19:25:55.0

EDUARDO CUNHA DE ALMEIDA
 Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Assinatura Eletrônica
20/07/2022 09:10:15.0

MARCIO SEIJI OYAMADA
 Avaliador Externo (UNIVERSIDADE ESTADUAL DO OESTE DO

PARANÁ)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

Documento assinado eletronicamente de acordo com o disposto na legislação federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificação única: 205373

Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 205373

RESUMO

Aplicações que lidam com grandes quantidades de dados são cada vez mais populares. No

entanto, as arquiteturas tradicionais centradas em computação estão mal equipadas para lidar

com essas aplicatções, pois elas causam muito movimento de dados no sistema devido aos

acessos de dados quase constantes. Isso leva a um processamento ineficiente, com longos

tempos de execução e alto consumo de energia. Os problemas causados por essa disparidade

são amplamente conhecidos como memory wall. A partir do final da década de 1990, a ideia de

mover parte da computação para perto da memória, quando benéfico, começou a ser considerada.

Este conceito tornou-se conhecido como processamento próximo à memória e ganhou mais

atenção no início da década de 2010 com o advento da tecnologia de Through-Silicon Via (TSV),

que permitiu a integração direta das lógicas de processamento e armazenamento de dados no

mesmo chip. Memórias 3D, que integram verticalmente armazenamento e lógica, tornaram-se

comercialmente disponíveis desde então e pesquisadores da área de arquitetura de computadores

reagiram propondo muitos projetos que colocam elementos de processamento na camada lógica

normalmente encontrada nesses dispositivos. Esta tese propõe a Vector-In-Memory Architecture

(VIMA), uma arquitetura de processamento próximo à memória baseada em memória 3D que

implementa o processamento na memória colocando unidades funcionais na camada lógica

desses dispositivos. Nosso projeto usa unidades funcionais vetoriais e uma memória cache

para armazenamento dedicado e avança o estado da arte implementando exceções precisas e

permitindo multi-threading próximo aos dadosna memória. Simulamos a execução de várias

aplicações orientadas a dados em nossa arquitetura e, nossos resultados mostram que o design

proposto, que utiliza 1 core e a VIMA, é capaz de superar uma arquitetura tradicional moderna de

16 cores em pelo menos 2× ao lidar com grandes tamanhos de conjuntos de dados. Além disso,

essa aceleração no tempo de execução é alcançada enquanto se reduz o consumo de energia em

pelo menos 75% de acordo com nossas estimativas. Em comparação com um trabalho similar

do estado da arte, a VIMA é capaz de reduzir o tempo de execução de aplicações que fazem

streaming de dados em pelo menos 32%.

Palavras-chave: processamento próximo à memória. memórias 3D. exceções precisas.

ABSTRACT

Applications that deal with large amounts of data are increasingly popular. However, traditional

computation-centric architectures are ill-equipped to handle such applications as they cause

much data movement across the system due to their near-constant data accesses. This leads

to inefficient processing, with long execution times and high energy consumption. Issues

caused by this disparity are widely known as the memory wall. Starting in the late 1990s,

the idea of moving portions of the computations close to the memory when beneficial began

to be considered. This concept has now become known as Near-Data Processing (NDP) and

gained more attention in the early 2010s with the advent of TSV technology, which enabled

straight-forward integration of processing logic and data storage in the same chip. 3D-stacked

memories, which vertically integrate storage and logic, have become commercially available ever

since and computer architecture researchers have reacted by proposing many designs that place

processing elements on the logic layer typically found in those devices. This thesis proposes

VIMA, a 3D-stacked memory-based NDP architecture that implements processing in the memory

by placing Functional Units (FUs) on the logic layer of those devices. Our design uses a vector

functional units and a cache memory for dedicated storage and advances the state-of-the-art by

implementing near-data precise exceptions and enabling near-data multi-threading. We simulate

execution of several common data-driven applications on our architecture and, out results show

that the proposed design, with only a single processing core and VIMA, is able to outperform a

modern 16-thread by at least 2× when dealing with large dataset sizes. Moreover, such a speedup

in performance is achieved while reducing energy consumption by at least 75% according to

our estimates. In comparison to its most closely related state-of-the-art work, VIMA is able to

reduce the execution time of data-streaming applications by at least 32%.

Keywords: near-data processing. 3d-stacked memories. precise exceptions.

LIST OF FIGURES

1.1 Block diagram of a 3D-stacked memory. 14

2.1 The most common types of NDP architectures. 20

2.2 Hybrid Memory Cube Block Diagram Example Implementation (Hybrid Memory

Cube Consortium, 2012). 26

2.3 High Bandwidth Memory scheme. (AMD, 2015). 26

3.1 NDP performance compared to traditional x86. 28

4.1 3D-stacked memory module with our mechanism architecture. 36

4.2 Execution time results with VIMA running a memory copy application with

varying approaches to cache coherence. 42

4.3 Position of the VIMA device relative to the 3D-stacked memory. 43

4.4 Execution time results with VIMA running a vector sum application with varying

vector operand widths. 44

4.5 Execution time results with VIMA running bloom filter application with varying
data storage. 45

4.6 NDP instruction is offloaded to device and x86 instruction raises exception. . . . 46

4.7 NDP instruction is offloaded to device once it becomes the head of the re-order

buffer. 47

4.8 VIMA-specific instruction buffer stores multiple instructions at once.. 47

4.9 Exception is raised and VIMA instructions are flushed. 48

4.10 Experiment results with VIMA running amemory set application with and without

the load-ahead mechanism. 49

4.11 Exception is raised and VIMA instructions from the core that raised the exception

are flushed. 51

5.1 Example of x86 assembly replacement . 54

5.2 Execution time results of VIMA executing all workloads with perfect access to

3D-stacked memory row buffers. 57

5.3 Execution time results of VIMA executing all workloads with maximum request

size supported by each 3D-memory device. 59

5.4 Execution time results of VIMA executing all workloads with 64 B request size. . 60

5.5 Energy savings results of VIMA executing all workloads with maximum request

size supported by each 3D-memory device. 62

5.6 Data throughput results of VIMA executing all data streaming applications. . . . 62

5.7 Execution time results of VIMA executing selection database query and projection
database query with a varying number of processing threads and vector operand
widths.. 63

5.8 Data throughput results of VIMA executing selection database query and pro-
jection database query with a varying number of processing threads and vector
operand widths. 64

5.9 Execution time results of of VIMA and HIVE running (a) memory set application,
(b) memory copy application and (c) vector sum application. 65

B.1 Execution time results of VIMA executing memory copy application in a perfect
interconnection and request size scenario. 84

B.2 Execution time results of VIMA executing vector sum application in a perfect
interconnection and request size scenario. 84

B.3 Execution time results of VIMA executing selection database query in a perfect
interconnection and request size scenario. 84

B.4 Execution time results of VIMA executing projection database query in a perfect
interconnection and request size scenario. 85

B.5 Execution time results of VIMA executing stencil application in a perfect

interconnection and request size scenario. 85

B.6 Execution time results of VIMA executing bloom filter application in a perfect
interconnection and request size scenario. 85

B.7 Execution time results of VIMAexecutingmemory set application in themaximum
specified request and interconnection size scenario. 86

B.8 Execution time results of VIMA executing memory copy application in the

maximum specified request and interconnection size scenario. 86

B.9 Execution time results of VIMA executing vector sum application in the maximum
specified request and interconnection size scenario. 86

B.10 Execution time results of VIMA executing selection database query in the

maximum specified request and interconnection size scenario. 87

B.11 Execution time results of VIMA executing projection database query in the

maximum specified request and interconnection size scenario. 87

B.12 Execution time results of VIMA executing stencil application in the maximum
specified request and interconnection size scenario. 87

B.13 Execution time results ofVIMAexecuting bloom filter application in themaximum
specified request and interconnection size scenario. 88

B.14 Execution time results of VIMA executing memory set application in a 64 B

interconnection and request size scenario. 88

B.15 Execution time results of VIMA executing memory copy application in a 64 B
interconnection and request size scenario. 88

B.16 Execution time results of VIMA executing vector sum application in a 64 B

interconnection and request size scenario. 89

B.17 Execution time results of VIMA executing selection database query in a 64 B
interconnection and request size scenario. 89

B.18 Execution time results of VIMA executing projection database query in a 64 B
interconnection and request size scenario. 89

B.19 Execution time results of VIMA executing stencil application in a 64 B intercon-

nection and request size scenario.. 90

B.20 Execution time results of VIMA executing bloom filter application in a 64 B

interconnection and request size scenario. 90

B.21 Energy savings of VIMA over baseline running memory set application under
varying data access conditions. 90

B.22 Energy savings of VIMA over baseline running memory copy application under
varying data access conditions. 91

B.23 Energy savings of VIMA over baseline running vector sum application under

varying data access conditions. 91

B.24 Energy savings of VIMA over baseline running selection database query for (a)
Perfect access, (b) Access considering the maximum request size supported by

each 3D-stacked memory and (c) Access in 64 B requests. Values higher than 1

indicate improvement in performance over the baseline. 91

B.25 Energy savings of VIMA over baseline running projection database query for (a)
Perfect access, (b) Access considering the maximum request size supported by

each 3D-stacked memory and (c) Access in 64 B requests. Values higher than 1

indicate improvement in performance over the baseline. 92

B.26 Energy savings of VIMA over baseline running stencil application for (a) Perfect
access, (b) Access considering the maximum request size supported by each

3D-stacked memory and (c) Access in 64 B requests. Values higher than 1 indicate

improvement in performance over the baseline. 92

B.27 Energy consumption results of VIMA executing bloom filter application under
varying data access conditions. 92

B.28 Execution time results of VIMA executing all workloads with perfect access to

3D-stacked memory row buffers, x86 baseline running with a HBM3 memory. . . 93

B.29 Execution time results of VIMA executing all workloads with maximum request

size, x86 baseline running with a HBM3 memory. 93

B.30 Execution time results of VIMA executing all workloads with 64B request size,

x86 baseline running with a HBM3 memory.. 93

LIST OF TABLES

2.1 DRAM architectures’ performance comparison. 19

4.1 VIMA’s proposed instruction set. 39

4.2 VIMA instruction format. 39

5.1 Baseline system configuration. 52

5.2 VIMA system configuration. 53

5.3 NDP vector size recommended for different 3D memory architectures. 55

A.1 Table of Intrinsics-VIMA instructions . 79

LIST OF ACRONYMS

ASIC Application-Specific Integrated Circuit

ALU Arithmetic Logic Unit

AMC Active Memory Cube

API Application Programming Interface

AVX Advanced Vector Extensions

BCDA Bandwidth-Critical Data Analysis

C-RAM Computational-RAM

CFD Computational Fluid Dynamics

CGRA Coarse-Grain Reconfigurable Array

CNN Convolutional Neural Network

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DCNN Deep Convolutional Neural Network

DDR Double Data Rate

DMA Direct Memory Access

DNN Deep Neural Network

DRAM Dynamic Random Access Memory

FP Floating-point

FPGA Field-Programmable Gate Array

FU Functional Unit

GPP General Purpose Processor

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HIVE HMC Instruction Vector Extensions

HIPE HMC Instruction Prediction Extensions

HMC Hybrid Memory Cube

IDE Integrated Development Environment

ILP Instruction Level Parallelism

ISA Instruction Set Architecture

JEDEC Joint Electron Device Engineering Council

KNN K-Nearest Neighbors

LLC Last-Level Cache

LRU Least Recently Used

McPAT Multi-core Power, Area, and Timing

MCN Memory Channel Network

MMU Memory Management Unit

MVX Memory Vector eXtension

MR MapReduce

NDP Near-Data Processing

NN Neural Network

NoC Network-on-Chip

NUMA Non-Uniform Memory Access

OoO Out-of-Order

OpenMP Open Multi-Processing

PE Processing Element

PHY Physical Layer

PRIMO Processing-In-Memory cOmpiler

ReRAM Resistive random-access memory

ROB Reorder Buffer

RVU Reconfigurable Vector Unit

SDR Single Data Rate

SIMD Single Instruction Multiple Data

SiNUCA Simulator of Non-Uniform Cache Architectures

SSD Solid-State Drive

SRAM Static Random Access Memory

STT-RAM Spin-Transfer Torque Random-Access Memory

TLB Translation Look-aside Buffer

TOM Transparent Offloading and Mapping

TSV Through-Silicon Via

VIMA Vector-In-Memory Architecture

CONTENTS

1 INTRODUCTION . 13
1.1 HYPOTHESIS . 14

1.2 CONTRIBUTIONS . 14

1.3 THESIS OVERVIEW. 16

2 BACKGROUND . 17
2.1 MEMORY CELLS AND ARCHITECTURES 17

2.2 DISTANCE FROM THE DATA . 19

2.3 PROCESSING MODEL . 21

2.3.1 Full-Stack Processor . 21

2.3.2 Functional Units. 21

2.3.3 Computing in Memory Cells . 22

2.3.4 FPGA/CGRA . 22

2.3.5 Specialized Accelerators . 23

2.4 PROGRAMMING MODEL . 23

2.4.1 Host Triggers Instructions. 23

2.4.2 Function or Binary Migration. 24

2.4.3 Hardware Driven . 25

2.5 3D-STACKED MEMORY DEVICES . 25

2.6 SUMMARY. 25

3 RELATED WORK . 28
3.1 NEURAL NETWORKS . 29

3.2 GRAPH TRAVERSING / POINTER CHASING 31

3.3 GENOME SEQUENCING/PATTERN MATCHING 32

3.4 COMPUTATIONAL FLUID DYNAMICS. 32

3.5 DATABASE APPLICATIONS . 33

3.6 MAPREDUCE . 33

3.7 MULTIPLE DOMAINS . 34

3.8 SUMMARY. 34

4 VECTOR-IN-MEMORY ARCHITECTURE 36
4.1 PROGRAMMABILITY AND INSTRUCTION OFFLOADING 37

4.2 INSTRUCTION SET EXTENSIONS . 38

4.2.1 VIMA Instruction Format. 39

4.3 ADDRESS TRANSLATION . 40

4.4 DATA COHERENCE. 40

4.5 PLACEMENT IN THE SYSTEM . 42

4.6 VECTOR SIZE . 43

4.7 DATA STORAGE. 44

4.8 PRECISE EXCEPTIONS . 45

4.9 THE LOAD-AHEAD MECHANISM . 48

4.10 INSTRUCTION EXECUTION. 49

4.11 MULTITHREADING. 50

4.12 REACTING TO X86 EXCEPTIONS. 50

4.13 SUMMARY. 51

5 EVALUATION . 52
5.1 ORDINARY COMPUTING SIMULATOR . 53

5.2 MEMORY DEVICES. 54

5.3 EXPERIMENT CHARACTERIZATION . 55

5.4 EXECUTION TIME RESULTS . 56

5.4.1 Perfect interconnection and request size scenario 56

5.4.2 Maximum specified request and interconnection size scenario. 58

5.4.3 64 B interconnection and request size scenario. 60

5.5 ENERGY CONSUMPTION RESULTS . 61

5.6 DATA THROUGHPUT RESULTS. 61

5.7 MULTITHREADING RESULTS. 63

5.8 STATE-OF-THE-ART COMPARISON . 64

5.9 SUMMARY. 65

6 CONCLUSIONS AND FUTURE WORK . 67
6.1 FUTURE WORK . 67

6.2 LIST OF PUBLICATIONS . 68

REFERENCES . 69
APPENDIX A – TABLE OF INTRINSICS-VIMA INSTRUCTIONS 79
APPENDIX B – DETAILED EXPERIMENT RESULTS 84
APPENDIX C – APPLICATION CODE WITH INTRINSICS-VIMA . . . 94

13

1 INTRODUCTION

Advances in processor technology, with vector processing, a nearly constant increase in number

of transistors, out-or-order execution and instruction-level parallelism, have translated directly

into faster processing for several decades. However, the technology used for the main memory

of most computer systems has not keep up with such advances (Chang, 2017), causing a gap

between processing and memory access latency. In the age of big-data, as applications move

toward a more data-centric behavior, as opposed to a computation-centric one, the issue of the

performance gap between processor and memory worsens. The relatively low data transfer

throughput between memory and processor makes it difficult for the processor to fully utilize its

processing capabilities. Thus, emerges the problem widely known as the memory wall (Wulf and

McKee, 1995).

Since all modern computers are based on the von Neumann architecture (von Neumann,

1945), the memory wall poses a serious issue: the von Neumann architecture requires that any

instruction and data necessary for computation be moved from the memory and placed within the

processor before it can be processed. To avoid moving massive amounts of data from memory to

the processor, researchers started proposing placing processing elements as close as possible

to the memory (Balasubramonian et al., 2014). This approach has two highly desirable results:

i) reduced energy consumption by reducing the amount and distance of data movement, which

accounts for up to 62.7% of total energy expenditure of a system (Boroumand et al., 2018); and

ii) faster execution of data-centric applications, as the processor can offload a large chunk of its

operations for this additional processing element to perform in parallel.

The idea of moving computation close to the memory was initially proposed back

in the late 1990s (Patterson et al., 1997; Elliott et al., 1999) but failed to gain traction at the

time. It required integrating processing and data storage elements on the same chip, which was

considered too challenging. By the early 2010s, however, it started to reemerge as a viable

option with the advent of Through-Silicon Via (TSV) technology (Olmen et al., 2008) and

subsequent commercial release of 3D-stacked memories (Hybrid Memory Cube Consortium,

2012; Association, 2013).

3D-stacked memories are a recent main memory design that stacks multiple layers

of Dynamic Random Access Memories (DRAMs) on top of a layer that features processing

capabilities (Hybrid Memory Cube Consortium, 2014; Hrusca, 2015). Due to the 3D layout

and logical division in several individual vaults (similar to memory channels), as depicted in

Figure 1.1, these memory chips offer high parallelism and low-latency access to the stored data.

Some 3D-stacked memories are Near-Data Processing (NDP)-capable due to the inclusion of

data processing elements to their logic layer. Moreover, these devices enable researchers to

explore new possibilities for NDP, as they allow for the inclusion of logical elements near-data,

such as registers, Functional Units (FUs) or accelerators.

A NDP design can still follow the von Neumann model by placing entire processors

near the data. This approach, however, may increase complexity and may present area, power

and thermal issues (Eckert et al., 2014). Another possible approach is to extend the architectural

model by placing FUs near-data, which avoids some of these issues and allows processors

to continue handling tasks they excel at, such as fetching and decoding complex instructions,

predicting the outcome of branches, among other functions. While an FU-based approach curbs

complexity and requirements of area and energy consumption, it is still able to provide adequate

power to process large volumes of data.

14

Several proposals have used this approach and achieved significant results regarding

execution time (Alves et al., 2016; Tomé et al., 2018), energy efficiency and data throughput

performance. Nonetheless, most of them still implement designs that both pose barriers for

adoption as they fail to maintain a sequentially consistent model.

Figure 1.1: Block diagram of a 3D-stacked memory.

1.1 HYPOTHESIS

We pose the following hypothesis: it is possible to provide precise exceptions, improved
memory access and multi-threading with fine-grain NDP to speedup data streaming
applications.

1.2 CONTRIBUTIONS

Our main goal with this work is to contribute to the field of Near-Data Processing (NDP) with an

optimization over existing state-of-the-art Single Instruction Multiple Data (SIMD)-based designs

by guaranteeing precise exceptions while improving data throughput and enabling multithreading

support. With our contributions, such architectures should be able to further speedup processing

of data-streaming applications with low data reuse and a coalescent data access pattern.

To achieve this, in this thesis we propose Vector-In-Memory Architecture (VIMA).

VIMA is an architecture that proposes adding vector units (i.e. SIMD) and a small cache memory

to the logic layer of 3D-stacked memory chips. This architecture uses large data vectors to benefit

from the data access parallelism that is intrinsic to the 3D configuration of the memory chip and

offers (analogous to DDR channels). Along with its cache memory, we enable the short term

data reuse, out-of-order instruction operand loading and near-data multithreading.

Our design includes contributions that advance fine-grain offloading NDP architectures

by allowing them to efficiently extract data throughput from a 3D-stacked memory, which

translates directly into improved performance for data streaming applications. Our simulation

results indicate significant improvements in execution time and energy consumption when

executing simple benchmarks such as memory set and copy operations and ubiquitous database

queries.

We investigate a number of research questions and list our contributions as follows.

15

1. Can we design a NDP architecture that does not require coding in assembly and can be

programmed without a specific compiler?

• We propose VIMA, a SIMD-based near-data processing architecture that is placed

on the logic layer of a 3D-stacked memory (Chapter 4).

• We provide Intrinsics-VIMA, an intrinsics library that allows programmers to code

and debug applications for VIMA on any system that supports C/C++ programming

(Section 4.1).

This work was completed and published on Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing (PDP 2021) (Cordeiro et al., 2021)

and arXiv.org (Alves et al., 2022).

2. Is it possible to accelerate the execution of common machine learning algorithms with

near-data execution?

• We design, implement and simulate vectorized near-data versions of the k-Nearest

Neighbors (kNN) and Multi-layer Perceptron (MLP) algorithms (Cordeiro et al.,

2021).

• We implement a vectorized version the stencil algorithm for simulated near-data

execution and discuss our experimental findings (Chapter 5).

This work was completed and published on Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing (PDP 2021) (Cordeiro et al., 2021).

3. What are the application domains best suited and most commonly migrated to near-data

processing solutions?

• We study the existing literature on near-data processing research and discuss themain

aspects that impact the design of near-data processing architectures (Chapter 2).

• We study the existing literature on near-data processing research and identify the

most common application domains addressed in the field (Chapter 3).

This work was completed and published on Journal of Integrated Circuits and Sys-

tems (Santos et al., 2021b).

4. Is it possible to accelerate the execution of common database query operators with

near-data execution?

• Wedesign, implement and simulate the selection, projection and bloom join database

query operators (Chapter 5).

• We discuss our experimental findings of the simulated execution of our implemen-

tations (Chapter 5).

This work was completed and published on Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing (PDP 2022) (Santos et al., 2022b).

5. Can we provide a near-data implementation of precise exceptions while optimizing

utilization of memory resources and improving overall performance of data-streaming

applications?

16

• We use VIMA to implement precise exceptions near the data while optimizing data

throughput usage of the 3D-stacked memory (Chapter 4).

• We discuss various approaches to maintaining cache coherence in a NDP-enabled

system, going over the overhead of each strategy.

• We present a comprehensive performance analysis of data-driven applications

running on our architecture, comparing it to a 16-thread x86 baseline and an

existing state-of-the-art NDP architecture (Chapter 5).

Partial results have been published at International Symposium on Performance Analysis

of Systems and Software (ISPASS 2022) (Santos et al., 2022a), Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP 2022) (Santos

et al., 2022b), and XXII Escola Regional de Alto Desempenho da Região Sul (Santos

and Alves, 2022).

According to our experiments, VIMA is able to efficiently leverage the internal data

throughput of 3D-stacked memories to provide improvements in overall system performance.

When compared to a 16-thread x86 baseline, a single-thread system using our architecture

proposal is able to provide better execution time performance with a speedup at least 2×, while

consuming only a small fraction of the energy, across several data-driven applications simulated.

Our results improve upon the most closely related state-of-the-art work by at least 32%.

1.3 THESIS OVERVIEW

The remainder of this text is structured as follows. Chapter 2 discusses background information on

NDP research, going over the many possible technologies, architectures and programming models

that have been used to implement NDP. Chapter 3 gives an overview of the related work available

in the literature and also discusses the main domains most commonly targeted by NDP proposals.

Chapter 4 describes our proposal, VIMA, in detail. Chapter 5 discusses the experimental results

we have been able to achieve with VIMA, evaluating it against the performance of a 16-thread

traditional architecture and an existing state-of-the-art NDP architecture. Chapter 6 concludes

the text and mentions a number of possibilities for future work.

17

2 BACKGROUND

Near-Data Processing (NDP) is an approach to computation that moves processing close to the

data, thus reducing data access times and energy consumption when processing data-intensive

tasks. The concept of NDP extends the von Neumann architecture model by adding processing

capabilities outside of the processor and near the memory, thus eliminating the need for some

of the data movement between memory and processor that is required by the traditional model.

Instead of moving massive amounts of data from the memory to the processor for processing, an

NDP architecture can move only a few bits of data from the memory containing an instruction

that will be then offloaded for near-data execution. When considering data-centric applications

that constantly access data, using such an approach significantly reduces execution time and

energy consumption at the same time as it exploits the parallelism and internal bandwidth of the

main memory in systems.

Although the idea was originally proposed back in the late 1990s (Patterson et al., 1997;

Elliott et al., 1999), it was considered impractical at the time since it required integrating data

storage and logic cells on the same die: while Static Random Access Memory (SRAM) storage

uses the same fabrication process as processors and can thus be easily integrated onto processing

elements, Dynamic Random Access Memory (DRAM) storage, which is the technology most

commonly used for main memory, is manufactured through a process that is sub-optimal for logic

circuits (Jacob et al., 2010). With the advent of Through-Silicon Via (TSV) technology, which

allowed for practical bundling of logic and DRAM layers, 3D-stacked memories caused interest

in NDP to surge again. Designs such as the Hybrid Memory Cube (HMC) (Hybrid Memory

Cube Consortium, 2014) and the High Bandwidth Memory (HBM) (Jun et al., 2017) have since

become commercially available and been used as a basis for several NDP architectural proposals.

At the same time, development in memristor technologies has created another avenue

for achieving in-memory computation, also yielding several architecture proposals capable of

performing logic and arithmetic operations near the data (Lehtonen and Laiho, 2009; Taha

et al., 2013). Other approaches even achieve a similar effect by modified the behavior of sense

amplifiers in commercially available DRAM devices (et al., 2017).

In this chapter we describe and discuss several aspects that inform and impact near-

data processing devices and architectures, such as the distance between device and data, the

storage technology being used, the supported programming model and the code/task offloading

mechanism.

2.1 MEMORY CELLS AND ARCHITECTURES

Different types of memories will usually lend themselves to different uses in a computer system

so their capabilities can be exploited to their fullest extent. In general, NDP architectures try to

access the data stored in the memory as directly as possible so as to improve bandwidth. By

doing so, they are theoretically able to compute data in large portions without relying on buses

for communication which, in turn, improves performance regarding both execution time and

energy efficiency. Consequently, the memory architecture being used by a storage device directly

impacts the possibilities of a near-data accelerator: the architecture informs how the data is

organized, what data is stored, how the data can be accessed and also what it is used for in the

context of the entire computer system.

18

The layout of memory cells in memory devices is usually designed to offer as much

bandwidth as possible, in order to provide ease and speed of access to the stored data. In DRAM

devices, this layout commonly arranges memory cells in a matrix, which are grouped to form

banks. A device is then composed of a set of banks, from each of which stored data can be

accessed by looking up specific rows in its matrices. Although Figure 2.1 illustrates a modern

3D-stacked design, it still abides by these organization guidelines, as do all modern memories.

Every such device is made up of banks that can be accessed concurrently, which mitigates the

latencies of the memory cells and provides parallelism in the data access. Such parallelism can

be leveraged by clever data access behavior and policies to extract better performance.

SRAM-based NDP proposals, due to what this type of memory is commonly used

for in computer systems, will usually place processing logic on cache hierarchies and memory

controllers (Ando et al., 2017; Eckert et al., 2018; Wang et al., 2019; Yin et al., 2019; Ramanathan

et al., 2020; Long et al., 2020; Aga et al., 2017; Sadredini et al., 2020; Cali et al., 2020; Hashemi

et al., 2016; Awan et al., 2017). This means they will focus mostly on reducing data movement

between the cache hierarchy and the processing core, thus improving execution time performance

by freeing the host processor from a portion of the processing duties.

When considering traditional DRAM-based memories, such as the common 2D Double

Data Rate (DDR) memory, several approaches have also been tried by NDP researchers. While

some integrate full processing cores into the memory devices (Alian et al., 2018; Devaux, 2019),

others implement customized circuitry to add SIMD capabilities to the memory (Alves et al.,

2015b,a; Xi et al., 2015), or exploit internal access patterns to achieve in-memory processing (Li

et al., 2017; Huangfu et al., 2020; et al., 2017; Gao et al., 2019; Xin et al., 2020; Hajinazar et al.,

2021; Seshadri et al., 2018).

3D integration, however, has caused adding processing capabilities to memory devices to

become much more straight-forward than before. 3D-stacked memories vertically connect several

DRAM layers on top of a logic layer where memory controllers are implemented or a Physical

Layer (PHY) that connects external links to the memory cells. All layers can communicate

seamlessly with each other through the Through-Silicon Via (TSV), which is the technology

that allows for vertical connection. They are logically split into up to 32 independent vaults

or channels, which causes them to enable very high levels of data access parallelism. Due

to their improved parallelism, 3D-stacked memories generally provide improved bandwidth.

Table 2.1 shows maximum bandwidth rates for the most common memory devices. However,

utilization of this bandwidth is often limited by the width of the connections between memory

and host processor. By placing processing elements on the logic layer of a 3D-stacked memory,

NDP designs bypass this limitation and are able to use the bandwidth these devices offer more

efficiently and thus improve performance for many data-driven applications. A wealth of NDP

proposals in the literature have targeted 3D-stacked memories (Alves et al., 2016; Tomé et al.,

2018; Liu et al., 2018; Azarkhish et al., 2018; Schuiki et al., 2018; Thottethodi et al., 2018; Gao

et al., 2015, 2017; Min et al., 2019; Oliveira et al., 2017; Cordeiro et al., 2021; Sim et al., 2018;

Deng et al., 2018; Kwon et al., 2021; Lee et al., 2018; Zhu et al., 2013b,a; Nair et al., 2015;

Ahmed et al., 2019; Kepe et al., 2019; Mirzadeh et al., 2015; Santos et al., 2017; Pugsley et al.,

2014; Drumond et al., 2017, 2018; Gao and Kozyrakis, 2016; Boroumand et al., 2018).

Although not DRAM-based, the organization of non-volatile memories still follows

the same principles in an effort to increase bandwidth. Memristors are a type of non-volatile

memory commonly used in NDP research: their connection to a crossbar allows access to entire

rows of memory cells at once, which is desirable for NDP. Thus, in theory, when considering

this type of organization and access, the larger are the rows used in the memory layout, the larger

the NDP capabilities (Chi et al., 2016; Shafiee et al., 2016; Cheng et al., 2017; Song et al., 2017;

19

Haj-Ali et al., 2018; Gupta et al., 2018; Imani et al., 2019; Drebes et al., 2020; Song et al., 2018;

Huang et al., 2020; Angizi et al., 2019; Gupta et al., 2019; Sun et al., 2017; Jain et al., 2018; Xie

et al., 2019)

Regardless of the underlying memory technology being used, NDP endeavours leverage

memory bandwidth to extract performance. Thus, theoretically, the more bandwidth a memory

can provide, the more execution time performance and energy efficiency a NDP architecture can

extract from it. Table 2.1 compares the bandwidth achieved by common DRAM-based memories.

Table 2.1: DRAM architectures’ performance comparison.

Memory Maximum Maximum Energy JEDEC Channels/
Name Bandwidth Speed* Usage Compliant Vaults
DDR 3.2 GB/s 0.4 GT/s 257.13 pJ/b Yes 2

DDR2 6.4 GB/s 0.8 GT/s 121.44 pJ/b Yes 2

DDR3 14.9 GB/s 1.8 GT/s 64.70 pJ/b Yes 3

DDR4 25.6 GB/s 3.2 GT/s 38.67 pJ/b Yes 4

DDR5 41.6 GB/s 5.2 GT/s N.A. Yes 4

HMC 320 GB/s 2.5 GT/s 10.82 pJ/b No 32

HBM 128 GB/s 1.2 GT/s N.A. Yes 8

HBM2 256 GB/s 2.0 GT/s N.A. Yes 8

HBM2e 410 GB/s 3.2 GT/s N.A. Yes 8

HBM3 819 GB/s 6.4 GT/s N.A. Yes 16

* Data rate/pin. ** From 2018.

2.2 DISTANCE FROM THE DATA

In general, near-data architectures look to leverage their advantageous position relative to the data

storage to use the internal bandwidth of the memory device being used for data storage. Since

these circuits and/or devices are placed very close to data storage elements of the system, they are

often able to avoid the limitations of communicating with the memory through a narrow data bus,

which gives them easier access to this available bandwidth. By doing so they also strive to reduce

the costs of moving data between storage device and processing element, as data movement is the

main source of inefficiency in modern systems (Zhang et al., 2013), thus improving performance

regarding execution time and energy efficiency.

The choice of the location at which to implement NDP capabilities in a system has several

consequences, such as how the processing elements access the data, how complex and energy

efficient it can be, what sorts of operations it will be able to implement, etc. Considering distinct

memory technologies and target applications, there are several different possible placements

within a computer system for a near-data architecture. Figure 2.1 displays the three placements

that are most common for near-data processing capabilities according to distance between

processing element and stored data.

Near-cell accelerators implement logic within the memory cells that store the data,

either by modifying their circuitry or the behavior of the memory device during data transferring

between cells and row buffers (sense amplifiers), basically using analog signals. This is often

done with DRAM-based memories (Li et al., 2017; Sim et al., 2018; Deng et al., 2018, 2019;

Angizi et al., 2020; Huangfu et al., 2020; et al., 2017), but also with memristors, which are

inherently capable of processing data (Chi et al., 2016; Shafiee et al., 2016; Cheng et al., 2017;

20

. . .

Host Processor

Near-Memory
Accelerator

(a) Near-Memory Accelerators

In-Memory
Accelerator

. . .

Host Processor

(b) In-Memory Accelerators

Near-Cell
Accelerator

. . .

Host Processor

(c) Near-Cell Accelerators

Figure 2.1: The most common types of NDP architectures. The blue blocks represent storage cells, green blocks

represent logic layer (for 3D designs) or the sense amplifier (for 2D designs) and the arrows are the interconnection

to outside the memory chip.

Song et al., 2017; Haj-Ali et al., 2018; Imani et al., 2019; Song et al., 2018; Huang et al., 2020;

Angizi et al., 2019; Gupta et al., 2019; Sun et al., 2017; Jain et al., 2018; Xie et al., 2019).

Figure 2.1(c) illustrates the placement of this class of accelerator relative to the data. Accelerators

that apply this approach drastically reduce data movement, as processing is done as close as

possible to the memory cells that store the data themselves. They can thus explore as much

internal bandwidth as is possible, being almost optimally energy-efficient. The main drawback of

this strategy is that, since it is implemented so close to the actual memory cells, it is limited to

simple bit-wise logic operations (Gao et al., 2019; Seshadri et al., 2018), requiring additional

hardware or modified storage layouts to support more complex operations (Eckert et al., 2018;

Gao et al., 2019; Ali et al., 2020).

In-memory accelerators place processing logic within the memory device, but not

directly on memory cells, as depicted on Figure 2.1(b). These devices commonly use 3D-stacked

memories, implementing processing logic on the logic layer of the device. 3D-stacked memories

are composed of several DRAM layers vertically connected through TSV and logically divided

into up to 32 independent vaults, allowing for very high internal bandwidth. They also include a

bottom layer that can implement simple logic, thus avoiding the issue of efficiently integrating

logic and storage on the save device and enabling 3D-memories to perform processing tasks

near-data, bypassing the need for off-chip data movement between memory and processor for

such tasks.

Although some proposals use Single Data Rate (SDR) and DDR memories to achieve

the same effect by placing logic alongside DRAM buffers, this is considered a very challenging

task because logic- and storage-optimized technologies have opposing requirements, meaning

integrating the two on the same circuit is likely to yield inefficient designs (Jacob et al., 2010). It

is therefore more common for researchers to choose to use 3D-stacked memories for this type of

NDP approach as such devices are able to integrate processing elements and storage circuitry but

on separate layers of the device.

This type of approach efficiently leverages internal memory bandwidth by accessing data

as closely as possible to the DRAM row buffers, thus avoiding any off-chip transferring of data

and achieving high parallelism. When considering 3D-stacked memories, these proposals rely

largely on the wider data buses of TSVs to move data between the memory and the processing

elements (Wei et al., 2005; Farmahini-Farahani et al., 2014). Many in-memory accelerators

implement full processing cores near the data (Azarkhish et al., 2018; Liu et al., 2018; Schuiki

et al., 2018; Thottethodi et al., 2018; Gao et al., 2015; Cadambi et al., 2010; Lee et al., 2018;

Ahn et al., 2015a; Nair et al., 2015; Pugsley et al., 2014; Alian et al., 2018; Devaux, 2019;

Zhang et al., 2014), while others choose to employ only a set of functional units for SIMD-based

processing (Alves et al., 2015b, 2016; Tomé et al., 2018; Oliveira et al., 2017; Cordeiro et al.,

2021; Hsieh et al., 2016b; Ahmed et al., 2019; Kepe et al., 2019; Santos et al., 2017; Drumond

21

et al., 2017, 2018), or Application-Specific Integrated Circuits (ASICs) that can only accelerate

applications pertaining to a specific domain (Liu et al., 2018; Azarkhish et al., 2018; Schuiki

et al., 2018; Gao et al., 2017; Min et al., 2019; Kwon et al., 2021; Zhu et al., 2013b,a; Mirzadeh

et al., 2015). The main drawbacks of this approach are that, since designs are confined to a logic

layer, they are limited in terms of power consumption heat dissipation and available area, all

of which are significant restrictions especially when a proposal wishes to implement complex

structures near the data, such as a full processing core or a cache hierarchy. This is the approach

we will be pursuing with the architecture we are proposing in this thesis.

Near-memory accelerators are implemented on a separate circuit than the memory

device and placed either next to it (inside the same module) using an interposer or outside the

memory module, connected to the memory through an off-chip interconnection (Hsieh et al.,

2016b; Nai et al., 2017; Xi et al., 2015; Pugsley et al., 2014, 2015; Farmahini-Farahani et al.,

2015; Drumond et al., 2017, 2018; Alian et al., 2018; Zhang et al., 2014; Kocberber et al., 2013;

Hashemi et al., 2016; Awan et al., 2016). Figure 2.1(b) illustrates this placement. This approach

is subject to fewer restrictions regarding area or energy consumption and is aimed mainly at

reducing memory access latency. However, since it relies on off-chip communication, it may still

suffer from higher latency and energy consumption.

2.3 PROCESSING MODEL

Although all NDP solutions aim to mitigate the memory wall and thus share the same objective,

the most common approaches to it differ fundamentally (Loh et al., 2013). The decision on what

kind of processing element to employ to achieve the actual near-data computation is one of the

most consequential when designing a NDP architecture, as this choice will impact many details

regarding integration of the near-data accelerator with the rest of the system.

2.3.1 Full-Stack Processor

One common approach to NDP is to integrate a full processing core to the memory device.

Doing so partially avoids two large issues NDP adoption faces: (i) how accessible devices are to

program and (ii) how data coherence is maintained. However, this approach is heavily limited by

power and area constraints in the memory chips (Lima et al., 2018). Many solutions found in the

literature propose this approach nonetheless (Liu et al., 2018; Ahn et al., 2015a; Drumond et al.,

2017; Devaux, 2019; Zhang et al., 2014; Boroumand et al., 2018), adding full general-purpose

cores to the logic layer of 3D-stacked memories.

Although traditional solutions function when considering a near-data core in isolation,

challenges such as programming model and cache coherence still apply. With another full core

in the architecture, the system must now be able to handle data coherence with an off-chip cache

hierarchy, determine how programs being executed in the near-data core and programs running

in the host processor can coexist, among other issues. Moreover, power and area requirements

severely limit feasibility (Santos et al., 2019b,a, 2021a).

2.3.2 Functional Units

One of the very first attempts at NDP employed a different strategy: implementing Functional

Units (FUs) within memory modules, thus having easy access to the internal bandwidth of a

memory. Back in the 1990s, Computational-RAM (C-RAM) (Elliott et al., 1999) proposed

adding functional units alongside DRAM row buffers, allowing for bitwise computation. The idea

was considered impractical at the time as it had significant energy consumption and complexity

22

requirements: (i) it added a large number of functional units to the design (one vector of FUs

per memory array), (ii) it required the operating system to maintain application-specific data

mappings and (iii) it assumed an efficient integration of logic and storage elements on the same

die.

With the development of TSV technology and subsequent 3D-stacking integration, the

approach started to see a resurgence in the 2010s with many NDP proposals choosing to employ it.

The FU-based approach benefits from being much simpler than integrating a full-stack processor

and offering good execution time performance while being very energy efficient. However, it

suffers from all aforementioned integration challenges and requires specific solutions regarding

programming models, cache coherence and support for virtual addressing (Santos et al., 2019b,a,

2021a). These issues are so severe that many of the existing research proposals bypass or

neglect some of them completely by, for instance, reserving exclusive memory space for NDP

operations, changing logical memory types or simply not providing virtual memory or cache

coherence solutions (Drumond et al., 2017; Devaux, 2019). Although it could be argued that

cache coherence is not necessarily to be solved by hardware and that such checks could be left

to the programmer, most related work does not discuss this. Nonetheless, it is a very popular

approach in NDP research, with many proposals using FU-based devices to exploit memory

bandwidth (Alves et al., 2015b, 2016; Tomé et al., 2018; Oliveira et al., 2017; Hsieh et al., 2016b;

Alves et al., 2015a; Ahmed et al., 2019; Kepe et al., 2019; Xi et al., 2015; Santos et al., 2017;

Drumond et al., 2017, 2018). A current challenge and significant limitation that all these ideas

face is that all of them require extensively modifying host processors to support their NDP logic,

as no existing systems offer native support.

2.3.3 Computing in Memory Cells

Another approach is to exploit the analog circuitry of memory devices to process data, thus

effectively considering the memory a processing device itself. This is achieved by modifying

memory circuits to allow for processing while transferring data between the memory cells and

the row buffers (i.e. sense amplifiers) of the device. In DRAM-based designs, for instance,

this can be accomplished by sharing capacitor charges (Deng et al., 2018; et al., 2017; Gao

et al., 2019; Hajinazar et al., 2021; Seshadri et al., 2018). Similarly, newer technologies such as

Resistive random-access memory (ReRAM) and Spin-Transfer Torque Random-Access Memory

(STT-RAM) exploit Kirchoff’s Law and use electrical resistance to compute on store data (Eckert

et al., 2018; Aga et al., 2017; Li et al., 2017; Chi et al., 2016; Shafiee et al., 2016; Song et al.,

2017; Drebes et al., 2020; Song et al., 2018; Xin et al., 2020; Jain et al., 2018; Xie et al., 2019).

This approach faces many of the same issues as FU-based solutions in that is also

requires significant modifications to hosts. It is also limited strictly to bitwise operations, which

poses a significant challenge to implementing complex instructions. Since most of these proposals

rely on technology that is not yet commercially available, availability is also limited for solutions

regarding cache coherence, programming model and virtual addressing that consider this type of

approach. (Gao et al., 2019; Hajinazar et al., 2021; Santos et al., 2019b).

2.3.4 FPGA/CGRA

A fourth approach to NDP is to place Field-Programmable Gate Array (FPGA) or Coarse-

Grain Reconfigurable Array (CGRA) in the memory (Farmahini-Farahani et al., 2015; Gao

and Kozyrakis, 2016; Kara et al., 2017; Singh et al., 2021). Although the high area and power

requirements may be difficult to reconcile with the limitations of NDP designs, they can allow

23

for near-optimal hardware-software integration as they provide the possibility of on-demand

implementation of functional units.

Most issues faced so far also apply to this approach: they require cache coherence and

virtual memory solutions. They also create the additional requirement of bitstream emission,

which describes the hardware configuration they must implement and for which a solution must

also be provided.

2.3.5 Specialized Accelerators

Lastly, specialized Accelerators or ASIC, are designed to provide acceleration to a specific class

of application, such as neural networks or network intrusion detection systems. Many specialized

NDP accelerators can be found in the literature and, although some of them may use similar

approaches to ones already discussed, they are usually designed in a way that avoids issues

and requirements that apply to general-purpose proposals (Ando et al., 2017; Liu et al., 2018;

Azarkhish et al., 2018; Schuiki et al., 2018; Gao et al., 2017; Min et al., 2019; Kwon et al., 2021;

Nai et al., 2017; Cali et al., 2020; Zhu et al., 2013b,a; Mirzadeh et al., 2015; Pugsley et al.,

2015). The application-specific nature of these devices will usually allow for workarounds to

maintain data coherence and support virtual addressing without requiring modifications to the

host processor.

2.4 PROGRAMMING MODEL

Every NDP architecture must provide a way for the host processor of the system to offload tasks

and/or instructions to be executed near data. Many different strategies can be used to achieve this

and in this section we discuss such strategies and how they are influenced by other aspects of the

design of a NDP device.

2.4.1 Host Triggers Instructions

FU-based and in-memory approaches to NDP exploit features that are inherent to memory

devices, with little room for complex structures. While simple elements such as functional units

can feasibly be implemented, complex mechanisms such as instruction fetching and decoding

cannot be reasonably expected from such types of devices. It is therefore common for proposals

that fall under those categories to rely on the host processor of the system to trigger instructions

to the NDP device.

By adopting this strategy, tasks like instruction fetching and decoding are kept in the host

processor. Since instructions are already found in the L1 cache most of the time and decoding is a

complex operation, keeping such functions in the processor tends to be much more efficient than

moving them to the memory. Naturally, this requires the processor to support the NDP Instruction

Set Architecture (ISA), one of the aforementioned necessary host modifications. Moreover, this

also means that binary code for applications that wish to utilize NDP capabilities will feature a

mix of both traditional instructions from the host ISA and accelerator-specific instructions.

There are two main strategies to achieving such an effect, one of which is manual code
generation, when code is written by the user, possibly with an Intrinsics library (Cordeiro et al.,
2017). This approach assumes a compiler that is NDP-aware in that its generated binary will

include the appropriate NDP instructions in place of the corresponding Intrinsics functions calls

in the code. Code can be finely controlled by the programmer. NDP proposals that use this

approach for programming assume the host processor will stay in charge of fetching and decoding

instructions that will be then offloaded for near-data execution. Other than a modification

24

to the host processor ISA to support such instructions, this also requires the behavior of the

cache hierarchy and Memory Management Unit (MMU) to be able to react to such additional

instructions to maintain cache coherence.

A second strategy is automatic code generation, which relies on compiler support to
generate NDP code automatically. This strategy assumes a compiler that is able to optimize code

for NDP execution on a specific architecture, identifying opportunities for NDP offloading by

itself. The compiler must be aware of all ISA options supported by the system and how they

interact with one another in order to provide appropriate instruction sequences. An adequate

NDP-aware compiler can, for instance, identify possible data coherence conflicts and either

adjust or re-order instructions to alleviate coherence issues at compilation time.

One such compiler is Compiler-Assisted InstRuction-level Offloading (CAIRO) (Hadidi

et al., 2017), which supports the native instructions in the Hybrid Memory Cube (HMC)

ISA (Hybrid Memory Cube Consortium, 2014). CAIRO decides whether to include HMC

instructions in the binary code by analyzing a number of information regarding the profile of

an application. Such decisions are thus made with the aid of a cache profiling tool that records

traces of past executions and provides information such as cache miss rate and bandwidth savings.

Applications are compiled, profiled and analyzed by CAIRO, which then adds HMC to the

binary code if deemed advantageous. CAIRO reportedly improves execution time performance

significantly for selec applications but is limited to the atomic HMC instructions and does not

consider SIMD instructions that may be supported by the processor.

Processing-In-Memory cOmpiler (PRIMO) (Ahmed et al., 2019; Santos et al., 2019a) is

another compiler with full NDP support, with both offloading and optimization features. All

NDP offloading and SIMD are considered at compile time as it is designed to take advantage of

all hardware capabilities without programmer input with pragmas or directives.

2.4.2 Function or Binary Migration

For proposals that implement full processing cores near the memory, we expect such cores

to handle traditional programming models (Liu et al., 2018; Ahn et al., 2015a; Drumond

et al., 2017; Devaux, 2019; Zhang et al., 2014; Boroumand et al., 2018). These designs will

usually be programmed with annotated code, relying on libraries to handle task offloading and

communication with the host processor.

For instance, the Asynchronous Memory Compiler (AMC) (Nair et al., 2015) takes a

directive-based approach to programming for NDP-enabled systems. It takes code written for

OpenMP and analyses it to determine which portions of it can be offloaded to be executed by

the AMC. Authors report an improvement of up to 70% better utilization of hardware resources

when running specific scientific applications, such as matrix multiplication.

In a similar vein, Transparent Offloading and Mapping (TOM) (Hsieh et al., 2016a)

takes a compiler-based approach to instruction offloading considering a Graphics Processing Unit

(GPU)-based system with multiple 3D-stacked memories. It observes runtime conditions of the

systems to determine when instructions blocks can be offloaded for execution on the 3D-stacked

memories if doing so would yield enough memory savings to justify this decision. This solution

relies on Compute Unified Device Architecture (CUDA) annotated code.

Another strategy that can be found in the literature is Bandwidth-Critical Data Analysis

(BCDA) (Khaldi and Chapman, 2016), which presents itself as an extra step during the compiling

stage in which the compiler identifies opportunities to transform regular memory allocation into

HBM-specific allocation commands when beneficial. Although mostly automatic, the process

still requires some attention from the programmer, as it relies on special functions. The authors

25

of BCDA report an improvement in performance of up to 2.33× in execution time with their

approach when running a Conjugate Gradient benchmark.

The HBM-PIM (Kwon et al., 2021) also relies on a function offloading model, using

annotated code and requiring a specific Application Programming Interface (API). The host is

tasked with either transmitting a code snippet describing the operation and the memory addresses

over which the code must be computed.

2.4.3 Hardware Driven

Yet another approach relies on in-flight instruction offloading, by monitoring hardware metrics

and behavior to determine when instructions or tasks must be offloaded for NDP execution.

For example, one proposal uses metrics monitoring and an ISA extension to perform near-data

acceleration at the memory controller by executing operations over data as soon as it arrives from

the main memory (Hashemi et al., 2016). The authors report a 20% reduction in latency from

dependent cache misses by using their approach.

2.5 3D-STACKED MEMORY DEVICES

Since the early 2010s, two 3D-stacked memories have become commercially available, HMC and

High Bandwidth Memory (HBM). The Hybrid Memory Cube was first announced in 2011 by

Micron, followed by a full specification and release in 2012 (Hybrid Memory Cube Consortium,

2012). It was described as "a single package containing multiple memory die and one logic

die, all stacked together using Through-Silicon Via (TSV) technology" (Hybrid Memory Cube

Consortium, 2012). It was logically split into 16 independent vaults, each with its own exclusive

memory controller and banks, and supported memory requests of up to 128 bytes of data. The

device was revised in 2014, seeing an increase in maximum number of logical vaults (from 16 to

32) and support for 256-byte requests (Hybrid Memory Cube Consortium, 2014). Figure 2.2

shows a block diagram of the device (Hybrid Memory Cube Consortium, 2012). As shown, the

Hybrid Memory Cube connects to the system through a crossbar switch.

In August 2018, Micron announced it was moving away from the HMC and focusing on

other high-performance memory technologies such as GDDR6 and HBM, following a decision

by the Joint Electron Device Engineering Council (JEDEC) to make HBM an industry standard.

The HBM was released in 2013 by AMD and Hynix, becoming the JEDEC standard by October

of the same year. It started being produced en masse in 2015. The first specification (Association,
2013) described it as a 3D-stacked die composed of 8 independent vaults with 8 or 16 banks

per independent vault. Its first major revisions were the HBM2 and HBM2E, in November

2018, when the maximum number of banks per vault was increased to 32 while row buffer

size was reduced from 2 KB to 1 KB. In January 2022, the HBM3 was accepted as a JEDEC

standard, further modifying the device to allow up to 16 independent vaults, each containing up

to 64 banks (Association, 2022). Figure 2.3 shows a diagram of the High Bandwidth Memory,

lifted from the manufacturer’s website. Unlike the Hybrid Memory Cube, the HBM assumes a

interposer-based connection.

2.6 SUMMARY

In this chapter we discussed many aspects that pertain to the design of NDP architectures. As

we have seen, the placement of the near-data solution relative to the stored data greatly informs

several aspects the design of an architecture, impacting what performance can be expected of

26

Figure 2.2: Hybrid Memory Cube Block Diagram Example Implementation (Hybrid Memory Cube Consortium,

2012).

Figure 2.3: High Bandwidth Memory scheme. (AMD, 2015).

a NDP device, especially regarding data bandwidth. We also discussed how different types of

memory influence its utilization in the context of a computer system, which informs what kind of

data it stores, what it is used for and what benefits an NDP can derive from them. Next, we spoke

of the several ways in which the actual processing of operations can be implemented near the

data and of the benefits and limitations of each approach. Our discussion of NDP programming

models went over different strategies of communication between host processor and NDP, which

27

directly informs how such accelerators can be programmed. Lastly, we discussed the most

common 3D-stacked memory designs.

This discussion informed many aspects of our proposal. VIMA assumes its placement

on the logic layer of a 3D-stacked memory, thus positioning itself as a DRAM-based in-memory

accelerator. This placement choice avoids both the limitations in possible types of operations

faced by near-cell designs and the higher latency and energy consumption of near-memory

accelerators. Although all NDP processing models must address integration issues, we chose to

use an FU-based model. We find that this choice of processing element combines low energy

consumption, area and complexity requirements with high processing power and will discuss it

further in Section 4.10. Lastly, as a consequence of our FU-based approach to processing, our

programming model is based on instructions that are added to the processor ISA and offloaded to

VIMA after the fetch and decode stages of the processor pipeline. Further discussion on this can

be found on Sections 4.1 and 4.2. The work presented on this chapter has been published on the

Journal of Integrated Circuits and Systems (Santos et al., 2021b).

28

3 RELATED WORK

In this chapter we discuss some existing work in NDP research in order to grasp the state-of-the-art

in the area. NDP can be used to run any number of algorithms, but it is most suited to those that

present two specific characteristics: (i) a data streaming behavior, causing a near constant flow
of data either to or from the memory; and/or (ii) a possibility for coalescent data access, meaning
the application would allow for a large number of contiguous data elements to be processed at

once, which would lead to increased opportunities for exploitation of increased available data

bandwidth.

Figure 3.1 (Santos et al., 2021b) displays results of an experiment designed to illustrate

this point. The experiment models a multi-core processor with a 16 MB Last-Level Cache (LLC)

and executes a simple application that consists in comparing elements in an array of integers.

Results in the illustration regard how an NDP architecture performs against such a traditional

system, with values greater than 1 meaning it achieved superior execution time performance. The

application iterates over the array several times to illustrate how the size of the cache memory in

the traditional system affects the final results. Moreover, the number of threads in the baseline

also varies to simulate increased pressure being applied to the main memory.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1x 2x 4x 8x 16
x 1x 2x 4x 8x 16
x 1x 2x 4x 8x 16
x 1x 2x 4x 8x 16
x 1x 2x 4x 8x 16
x

Data Reuse

1 Thread

Data Reuse

2 Threads

Data Reuse

4 Threads

Data Reuse

8 Threads

Data Reuse

16 Threads

Sp
ee

du
p

1MB 4MB 16MB 64MB

0

1

2

3

1x 2x 4x 8x 16x
Data Reuse

8 Threads

Figure 3.1: NDP performance compared to traditional x86.

As can be seen in Figure 3.1, applications for which the memory footprint is smaller

than the size of the LLC or that present clear data reuse behaviors benefit greatly from the cache

hierarchy in the traditional baseline system. Meanwhile, whenever memory footprint is larger

than LLC or there are no data reuse opportunities for the cache memory, migrating the application

to NDP execution becomes advantageous. This insight gives us some guidance as to what types

of applications may be most suitable for NDP, and proposals in the literature have mainly sought

29

to accelerate application domains with such patterns. In the next sections, we discuss several

NDP works found in the literature, according the application domains they claim to support.

3.1 NEURAL NETWORKS

Neural networks are used to recognize patterns in data and classify data points into categories,

relying on analysis of vast amounts of data to do so. Algorithms are commonly split into (i) a

training phase, in which a dataset is used to train model parameters; that are then used in (ii) the

classification phase, where a much larger dataset is then classified according to the parameters

and categories that were set in the previous phase. Neural networks are composed of layers

of neurons, each of which has a set of activation values and connections weights that inform

how layers relate to each other. The most common operation in neural network algorithms is

the product of these values, which happens repeatedly from input to output layer in a behavior

known as forward-propagation. The opposite operation, backward-propagation, happens when

the weight of connections between layers is updates from output layer to input layer. Both

operations happen several times during the training phase of the network and, depending on

the size of the data set being used for training, these algorithms can present a data streaming

behavior. As a result, it is common for traditional systems to offer long execution times and poor

energy efficiency when running such algorithms.

Many proposals that aim to accelerate neural networks with NDP have focused on

SRAM, mainly addressing binary and ternary networks, as SRAM usually has lower storage

capacity. For instance, Neural Cache (Eckert et al., 2018) adds processing capabilities to

bit-line peripherals in the LLC, thus providing bit-serial FUs that can be used for neural network

computation. Neural Cache has been extended or improved upon several times. One such

extension by Wang et al. (2019) adds many optimization features to the original design, which

uses sparsity-awareness and Neural Network (NN) redundancy to improve performance while

also applying more efficient computing techniques to binary and ternary neural networks. (Yin

et al., 2019) (2019) takes the same approach as Neural Cache but modifies it to improve scalability.

To do so, it enables activation of multiple SRAM rows with XNOR-Accumulate operations, hides

in-memory reprogramming latencies with double buffers and adds peripheral logic to allow for

multi-bit activation.

Other researchers apply a different idea. For instance, Ando et al. (2017) and Takamaeda-

Yamazaki et al. (2017) split SRAM memories into regions in which distinct elements of binary

and ternary NNs are stored, which allows for more efficient processing. BFree (Ramanathan et al.,

2020) is a LUT-based NDP proposal that places processing elements on SRAM subarrays and

allows for adaptable NN layouts and precision. The work of Long et al. (2020) uses well-known

convolutional NNs such as LeNet, AlexNet, VGGNet and ResNet to demonstrate how their

optimization further optimizes SRAM-based NDP architectures for this application domain.

Lastly, Compute Cache (Aga et al., 2017) modifies cache memories by adding vector operation

support to them, allowing for computation of large data operands.

While SRAM-based NDP systems perform adequately, DRAM-based proposals have

largely been more popular for large-scale neural network near-data acceleration. Many of these

works implement full-cores close to the memory, as is the case with the Convolutional Neural

Network (CNN) accelerators proposed by Liu et al. (2018), Azarkhish et al. (2018), Schuiki

et al. (2018), and Thottethodi et al. (2018). The work of Liu et al. (2018), for instance, implements

ARM-based cores on the logic layer of a 3D-stacked memory. The cores are fully programmable

and a handle a number of function that can be offloaded to them by the host processor. Gao

et al. (2015) also employ ARM cores and use a number of mechanisms such as a Translation

30

Look-aside Buffer (TLB) and virtual memory scheme to enable inter-vault communication in the

memory through a vault router. In similar efforts, Azarkhish et al. (2018) and Schuiki et al. (2018)

implement RISC-V cores modules equipped with cache memories and Direct Memory Access

(DMA) that control smaller processing elements near-data. This work features a set of multiple

instances of the HMC that communicate with each other. Thottethodi et al. (2018) also accelerate

neural networks by implementing full processing cores on the memory layer of a 3D-stacked

memory, each with its own pipeline register files and prefetching capabilities. Meanwhile, Gao

et al. (2017) implement simple cores composed of Arithmetic Logic Units (ALUs) and a register

file. Each vault in a 3D-stacker memory has its own core and they all share a dedicated network

and global buffer to enable parallel processing. The work of Min et al. (2019) focuses on

communication and implements a Network-on-Chip (NoC) to enable communication between

the vaults of a 3D-stacked memory and extract performance through higher parallelism. It is

used to accelerate a Deep Neural Network (DNN) by splitting and scheduling computation across

the various vaults of the memory device.

With a FU-based approach, Oliveira et al. (2017) implement NIM, which places a

processing module near the DRAM. Each module features a set of FUs, a register bank and a

sequencer and is attached to an individual vault of a 3D-stacked memory. It is used to simulate

biologically meaningful NNs.

Works such as the proposals of Li et al. (2017), Deng et al. (2019), Sim et al. (2018),

Deng et al. 2018), and Cadambi et al. (2010) take yet another approach and add logic ports and

bitwise operations to conventional DRAM, which are then used to accelerate convolutional and

binary neural networks near the data. While Sim et al. (2018) and Cadambi et al. (2010) use these

added circuits to partially calculate NN layer propagation values and thus speedup computation,

Li et al. (2017), Deng et al. (2018), and Deng et al. (2019) implement reconfigurable circuits

inside the memory.

With the advent of efficient implementation of the memristor, many researchers have

proposed ReRAM-based approaches to near-data acceleration of neural networks. Because of

the crossbar array organization of memristors, a dot product operation can be implemented

very efficiently with this type of memory. PRIME (Chi et al., 2016) is one such proposal, in

which a ReRAM main memory has subset of memory arrays that can be configured to be used

exclusively for neural network inference acceleration. The TIME architecture, proposed by Cheng

et al. (2017), improved upon PRIME by adding circuitry to the design to support weight updates

and optimizations to mitigate the impact of writing operations to the memristors. ISAAC (Shafiee

et al., 2016) is another such proposal. It implements a efficient dot product operation that is then

used to accelerate DNN inference. PipeLayer (Song et al., 2017) extends ISAAC to support the

training phase of a DNN. It optimizes the original design to simplify its pipeline, reducing the

impact of bubbles and eliminating signal conversions. Haj-Ali et al. (2018) take the existing

MAGIC architecture (Kvatinsky et al., 2014) and extend it to add support to complex operations,

thus enabling image-processing tasks. FELIX (Gupta et al., 2018) is an in-cell 1-cycle logic

implementation aimed at enabling complex operations used to classify images using neural

networks. FloatPIM (Imani et al., 2019) is a mechanism that uses NOR memristor applications to

implement floating-point representations and operations. This directly impacts the performance

of PipeLayer (Song et al., 2017) and ISAAC (Shafiee et al., 2016) by improving execution time

and inference accuracy. FIMDRAM (Kwon et al., 2021) adds SIMD processing capabilities to

the HBM in an effort to take advantage of the bank-level parallelism present in the device and

achieves a 4× speedup in comparison to an off-chip device according to the authors. SSAM (Lee

et al., 2018) is an similarity search accelerator for kNN, which reportedly outperforms both GPU-

and FPGA-based alternatives regarding throughput and energy efficiency. PIMS (Li et al., 2019)

31

is also built into the HMC and adds an accelerator per vault. Instead of adding new processing

elements to the device, this proposal uses the device’s processing capabilities. It simply adds

new logic that implements a specific request/response dispatcher. The architecture aims at

improving the processing of 3D stencil algorithms and reports a 72% reduction in redundant

memory accesses for workloads larger than the host’s LLC. Lastly, TC-CIM (Drebes et al., 2020)

is an end-to-end compilation framework aimed at enabling high throughput for NDP machine

learning inference accelerators. It uses tensor comprehensions and loop tactics to exploit NDP

capabilities automatically, thus providing an interface for NN acceleration using different memory

technologies.

3.2 GRAPH TRAVERSING / POINTER CHASING

Graphs are data structures that store data elements and also represent relationships between data

points. The main issues faced by architectures when dealing with graph processing applications

is that they will usually have a random behavior regarding data access, which leads to poor

locality of reference. This severely hinders cache memory performance and causes workload

imbalances when considering multiple processing units because depending on the behavior of

the traversing algorithm being used, applications that deal with graphs can have very irregular

memory access patterns, which degrades bandwidth usage between the memory and the CPU

and causes inefficiencies in cache memory use. Such applications often require accessing data to

determine the address of the next data element that shall be accessed, resulting in a situation

known as pointer chasing. Also, since graphs are intrinsically irregular, graph processing

applications are likely to suffer from unbalanced workloads and race conditions when running in

a multithreaded environment.

Many authors have proposed using NDP to accelerate pointer chasing applications, most

of them using DRAM technology. Tesseract (Ahn et al., 2015a), for instance, adds one full

in-order core to the logic layer per vault of a 3D-stacked memory device. Each core accesses

only its respective vault and a memory region that is marked non-cacheable, thus avoiding any

possible coherence issues. The authors evaluate their performance using real-world graphs and

report results 10× faster than the considered baseline while reducing energy consumption by

87%. Each memory vault has its own ARM processor, 512 in total, and they are all used to

exploit the internal bandwidth of the 3D-stacked memory chips. IMPICA (Hsieh et al., 2016b)

is another mechanism used for pointer chasing applications, aimed specifically at improving

the performance of linked lists and B-trees by avoiding cache pollution when sparse memory

access patterns are detected. It also used 3D-stacked memories, implementing several different

engines in memory vaults. GraphPIM (Nai et al., 2017) is a full-stack solution for near-data graph

traversing applications. In an effort to improve performance of graph computing frameworks,

which usually perform poorly on modern computers due to their irregular memory access patterns

and repetitious atomic operations, this work leverages the near-data atomic instructions offered by

Micron’s HMC (Hybrid Memory Cube Consortium, 2013). GraphPIM requires implementing an

offloading unit in the processor and defining a non-cacheable region in the virtual memory space.

This memory region is used to store the data most responsible for onerous atomic instructions:

operations detected to be accessing an address within the bounds of the region are automatically

offloaded to be executed near data in the HMC, avoiding costly cache coherence operations.

Since this is done through setting a automatically detectable non-cacheable memory area, the

solution does not impact programmability, as no code needs to be rewritten by final users. The

authors report a speedup of 2.4× across a wide range of graph computing benchmarks while

consuming 37% less energy on average. Hong et al. (2016) propose another mechanism that

32

uses NDP to accelerate linked lists. They use the HMC and their approach is to batch operations

according to the location of the data to be processed in the memory. This approach argues that

simply offloading tasks to be processed near the data may be disadvantageous if data locality is

poor. By batching operations, they attempt to better utilize the internal bandwidth of the memory.

Finally, proposals such as GraphR (Song et al., 2018) and Hetraph (Huang et al., 2020)

are based on ReRAM. GraphR uses a streaming-apply model and functions as an out-of-core

pre-processing tool for graph processing while Hetraph is a hybrid architecture that uses ReRAM,

traditional logic and software functions to fully exploit NDP capabilities.

3.3 GENOME SEQUENCING/PATTERN MATCHING

Widely used in bioinformatics, genome sequencing involves several tasks related to identifying

DNA sequences in samples, including counting, alignment and sequence assembly. However,

these tasks are non-trivial due to the size of the datasets involved and the characteristics of the

application. For example, a single DNA sample generates tens of millions of sequences that

must then be mapped to known datasets with billions of sequences. Thus, genome sequencing

tasks suffer from memory-wall bottlenecks due to the massive amount of data access required.

The same issue occurs with other big-data applications that similarly rely on pattern matching

tasks, such as network security and data mining, increasing the interest for NDP to improve this

application domain.

Two proposals use SRAM technology to execute efficient matching algorithms. The

work of Sadredini et al. (2020) discusses how existing NDP pattern matching accelerators fail to

use resources to their fullest extent. The authors propose a general-purpose pattern matching

architecture called Impala that implements efficient multi-stride near-data processing automata

by addressing these issues. GenASM (Cali et al., 2020), is a framework for approximate string

matching designed for genome sequence analysis and used to accelerate various steps in the

sequencing process. We also found two related works that explore DRAM technology. Angizi

et al. (2019) propose AlignS (Angizi et al., 2019), which uses Spin-Orbit Torque Magnetoresistive

Random-Access Memory (SOT-MRAM) and an assembler (Angizi et al., 2020) using DRAM-

based NDP accelerators to aid DNA sequence alignment and assembly, respectively. Huangfu

et al. (2020) created NEST, a NDP architecture that accelerates k-mer counting, which is another

important task in DNA sequencing processes. RAPID (Gupta et al., 2019), on the other hand, is

an memristor-based architecture that also supports DNA alignment tasks considering a parallel

version of the state-of-the-art algorithm. Lastly, GenStore (Ghiasi et al., 2022) places accelerators

inside a NAND flash-based Solid-State Drive (SSD) to achieve in-storage processing of genome

sequence analysis tasks, reporting improvements in execution time between 2× and 19× against

the state-of-the-art depending on patterns in the data.

3.4 COMPUTATIONAL FLUID DYNAMICS

Computational Fluid Dynamics (CFD) are used by applications in many scientific domains. CFD

algorithms often apply similar kernels, such as matrix convolutions and multiplications, thus

being prime candidates for vectorization with SIMD-based processing.

Zhu et al. (2013b) place existing custom cores (Zhu et al., 2013a) on the logic layer

of a HMC to aid in sparse matrix multiplication operations, which are commonly used by

graph applications and to compute the Fast Fourier Transform. Also based on the HMC, the

AMC architecture (Nair et al., 2015) places vector registers on the logic layer of the device and

implement a number of mechanisms near the data. It includes a vector instruction set, predicated

33

execution, virtual addressing and gather-scatter operations that are applied directly to the store

data. Memory Vector eXtension (MVX) (Alves et al., 2015b,a) implements a set of FUs inside

the DRAM to perform a number of operations near-data, allowing for data to be accessed directly

on the DRAM row buffers and processed by SIMD functional units.

3.5 DATABASE APPLICATIONS

Analytical database applications are prime examples of workloads that can benefit from NDP

offloading. They commonly move vast amounts of data from the memory to the processor in

large workloads that attempt to identify relationships and patterns in data. Such applications

will often pollute cache hierarchies due to their data streaming behavior and, consequently, low

locality of reference. Analytical database queries usually consist of a chain of database operations

ordered in a way that extracts a specific result from the stored data. The most common operations

are selection, projection, join and aggregation, all of which account for a combined 90% of the

execution time and memory usage of the TPC-H set of analytical database benchmarks (Kepe

et al., 2019). Such operators are commonly targeted by NDP proposals that aim to accelerate

database applications.

One such proposal is brought forward by Kim et al. (2011), which modified the memory

controllers of an SSD storage device to enable it to execute the selection operatior. et al. (2017)

propose Ambit, which implements in-cell bit-wise operations on DRAM memories requiring

only minor changes. HIPE (Tomé et al., 2018) places processing elements on the logic layer of a

3D-stacked memory to implement near-data filters using predicated instructions. RVU (Santos

et al., 2017) enables reconfigurable in-memory vector processing by placing processing units

on the memory vaults of a HMC device. JAFAR (Xi et al., 2015) also focuses on the selection

operator, connecting a dedicated off-chip circuit to the memory I/O which works as a near-data

filtering device. Sun et al. (2017) leverage memristor crossbar access patterns to implement

several operators with an in-cell NDP strategy using ReRAM. Lastly, Kepe et al. (2019) analyze

the performance of database operators being executed on a NDP-enabled 3D-stacked memory and

a traditional x86 system to investigate situations in which each architecture is most advantageous

for operations to use.

3.6 MAPREDUCE

The MapReduce model is widely used to automatically distribute the process of extracting

information from large datasets among several parallel threads. It follows the Map and Reduce

primitives: the map phase is used to classify data, producing an intermediate result that is then

distributed among processing nodes, at which point the reduce function is used to group elements

with similar features. The process may require several MapReduce instances working in parallel

and usually requires moving large amounts of data between the memory and the processing cores.

NDCores (Pugsley et al., 2014) is an NDP architecture that supports MapReduce

workloads and add 512 complete cores to the logic layer of a HMC device. By leveraging the

superior parallelism 3D-stacked memory devices offer, they aim to speed up the execution of

MapReduce applications, which are naturally parallel. They consider a chain of 3D-stacked

memory devices and report reductions of up to 15× in execution time and 18× in energy

consumption when comparing their NDP proposal to an optimized traditional MapReduce

execution. Farmahini-Farahani et al. (2015) proposes attaching FU-based accelerators to

commodity DRAM chips through TSV to improve performance by leveraging the high parallelism

of MapReduce memory accesses, reportedly outperforming a traditional x86 architecture by

34

67%. The Mondrian data engine (Drumond et al., 2017, 2018) takes a hybrid approach that

combines software and hardware using 3D-stacked memory-based NDP to implement data

analytics operators that are used during the partitioning and shuffling steps of MapReduce.

Meanwhile, Memory Channel Network (MCN) (Alian et al., 2018) proposes using NDP to

directly support MapReduce frameworks Hadoop and Spark from the perspective of a server

cluster.

3.7 MULTIPLE DOMAINS

Lastly, several proposals attempt to use NDP to accelerate applications in multiple domains,

including those already discussed in this chapter.

The UPMEM PIM architecture (Gómez-Luna et al., 2021) integrates general-purpose

in-order cores with DRAM chips, coexisting with a regular main memory. Each NDP chip

has its own 64 MB DRAM bank, an instruction memory and a small scratchpad memory.

Communication with the host consists in copying data to and from the main memory, and

near-data processing units do not communicate directly, meaning the architecture is geared

towards tasks with no global communication. Authors report the architecture outperforms

state-of-the-art GPUs by an average of 2.54× in 10 out of the 16 benchmarks analyzed, showing

superior performance whenever workloads do not require communication between near-data

processing elements and do not use complex instructions such as multiplications, divisions and

floating point operations in general. Chopim (Cho et al., 2020) is a near-data accelerator that

focuses on the issue of managing concurrent memory accesses from the near-data device and

the host. It implements near-data processing by integrating a logic die into DRAM chips and

making modifications to memory controllers and data layout to allow host and accelerator to

process data collaboratively. These modifications ensure data in the memory is aligned such that

near-data operations over large arrays offer advantageous performance regarding execution time

and energy consumption. The authors report a 2× speedup of a common Machine Learning

(ML) algorithm using their approach of collaborative action between accelerator and host at

separate stages of the processing. Gao et al. take a different approach by modifying the operation

timings of standard DRAM memory controllers to allow for parallel computation. ELP2IM (Xin

et al., 2020) also uses DRAM circuitry. It implements operations by modifying row buffer states,

reducing data movement and achieving high performance regarding execution time and energy

efficiency. SIMDRAM (Hajinazar et al., 2021) is a general-purpose framework for implementing

complex operations in DRAM-based devices. STT-CiM (Jain et al., 2018) is an in-cell design that

explores the possibility of enabling multiple word lines concurrently and executing operations

directly in the memory, providing superior energy efficiency. HMC Instruction Vector Extensions

(HIVE) (Alves et al., 2016) integrates vector units on the logic layer of the HMC device, enabling

operations over very large vectors and taking advantage of the vault parallelism offered by the

device. It adds a set of vector FUs and a register bank to the logic layer of the 3D-stacked memory.

Lastly, Xie et al. (2019) use ReRAM to implement logical and arithmetic instructions that can

be used to implement a novel multiplication algorithm reportedly 46% more efficient than the

state-of-the-art ReRAM alternative.

3.8 SUMMARY

In this chapter, we went over a wealth of existing NDP proposals found in the literature. By

identifying the behaviors for which near-data processing can be most beneficial, we were able to

point out a number of application domains that benefit this type of approach. This informed our

35

research for related work and allowed us to categorize most of the proposals we were able to find.

The work presented on this chapter has been published on the Journal of Integrated Circuits and

Systems (Santos et al., 2021b).

The related work also serves to help us place our own proposal within the existing

literature and identify challenges, shortcomings and opportunities we may be able to address with

our architecture. More specifically, through our research of the existing literature we are able

to spot a few opportunities regarding the way existing fine-grain FU-based NDP architectures

function and how they can be modified and extended to achieve better performance through

improved utilization of hardware resources. In the next chapter we describe VIMA, our NDP

architecture proposal.

36

4 VECTOR-IN-MEMORY ARCHITECTURE

In Chapter 3, we discussed a number of NDP approaches and solutions, many of which

report significant performance improvements regarding execution time, energy efficiency and

data throughput. However, such related work fails to discuss an important aspect of modern

architectures: providing precise exceptions. It can be argued that such architectures have

"imprecise" exceptions, which helps them achieve significant results as they are unencumbered by

the limitations providing precise exceptions would require. They are able to, for instance, issue an

unlimited number of instructions to be executed near-data in parallel with no regard for possible

exceptions that could arise. Should adequate handling of exceptions be considered a priority and

a requirement, these architectures would likely be unable to report such large improvements.

We argue that NDP architectures can not only guarantee precise exceptions, but also

that such architectures can continue to provide all overall performance improvements commonly

achieved by NDP proposals while doing so. We pose the following hypothesis: it is possible to
provide precise exceptions, improved memory access and multithreading with fine-grain
NDP to speedup data streaming applications.

This thesis proposes VIMA, a general-purpose NDP architecture that takes advantage

of the internal data bandwidth of 3D-stacked memories to provide maximum performance,

efficiency and flexibility. VIMA can be used to improve performance of applications that stream

through data in a coalescent access pattern, presenting low data reuse – or that reuse a dataset

of a size that exceeds the capacity of the LLC of the system. The proposed design implements

precise exceptions near the data, while also optimizing memory bandwidth usage and enabling

multithreading capabilities.

Figure 4.1 illustrates the VIMA architecture. VIMA extends the host processor ISA

with its own specific instructions, which are fetched and decoded as any memory instruction by

the host processor, but offloaded to be executed by the near-data device at the execution stage

of the processor pipeline. It adds a number of control elements to the memory controller of

the system: this placement choice makes the architecture able to function with either HMC

and HBM memories, which are the two most common 3D-stacked memory products available

commercially. Dedicated data storage and actual processing are implemented on the logic layer

of the 3D-stacked memory device.

Figure 4.1: 3D-stacked memory module with our mechanism architecture.

VIMA has the following main features:

37

• Near-data SIMD processing: VIMA operates over large vectors inside the memory

with each instruction.

• ISA extension: VIMA extends the host processor ISA, adding large vector instructions

that can be used to implement any vectorizable algorithm to run efficiently within the

memory.

• Improved programmability: the VIMA-Intrinsics library allows for easy development

and deployment of applications near-data.

• Retrocompatibilty: the SRAM-based internal storage design and FU-based processing

model of VIMA causes it to be fully compatible with further versions of VIMA without

requiring existing code to be modified or recompiled.

• Load-ahead: our implementation of instruction pooling and guarantee of precise

exception enables VIMA to safely load instruction operands out-of-order, allowing it to

better exploit the internal bandwidth of the 3D-stacked device.

• Reduced number of cores: with a single core, VIMA matches and surpasses the

execution time of a 16-thread traditional system, thus greatly reducing overall energy

consumption.

• Increased processor cache efficiency: by performing vector operations inside the

memory, VIMA avoids loading data that will not be reused into the cache hierarchy,

thus reducing cache pollution.

• Multithreading capabilities: the flexibility features offered by the VIMA design enable

near-data processing by multi-core systems.

• Compatibility: VIMA is compatible with both of the most common 3D-stackedmemory

products, HMC and HBM.

In the remainder of this chapter, we discuss our proposal in detail. Over the next several

sections, we describe our contributions and address matters of programmability, data coherence,

operand sizes, host system integration and processing model.

4.1 PROGRAMMABILITY AND INSTRUCTION OFFLOADING

VIMA is controlled by instructions that are added to program code and then offloaded to the

near-data device at execution time. By choosing to implement this instruction offloading strategy,

we avoid moving instruction fetching and decoding tasks to the memory. Instead, instruction

decoding continues to be performed by the host processor, which keeps complexity of the

near-data device low, and also avoids movement of instruction data between the processor and the

memory, since most instructions tend to be found in the L1 cache. Depending on the size of the

data operands involved in each instruction, which will be discussed on Section 4.6, such a NDP

design trades moving a large amount of data from the memory to the processor for processing for

only a few bytes of instruction data that will then be offloaded to be processed near the memory.

The VIMA ISA considers a subset of arithmetic and bitwise instructions commonly

available in commercial SIMD extensions such as SSE, Advanced Vector Extensions (AVX) and

NEON. Every instruction must stipulate the memory addresses of at least one read vector and

one write vector. In case the operation the instruction refers to uses two input memory operands,

38

the instruction includes addresses for two read vectors and one write vector. After execution, the

result of the operation is written to the write vector, which is then back to the memory when

evicted from the VIMA dedicated storage.

To facilitate coding for VIMA, we provide Intrinsics-VIMA, a library in the C/C++

language that allows development using any commercial Integrated Development Environment

(IDE). The library functions similarly to other existing vector instructions libraries, such as

ARM NEON Intrinsics and Intel Intrinsics, and works by embedding its assembly code during

compilation to optimize execution (Coorporation, 2009). Each function of the library maps

directly to a specific VIMA instruction and any code written can be debugged and run on any

architecture that supports C/C++ programming. This library is particularly important for this

work as it enabled us to faster codify applications in high level (in contrast to assembly code) and

simulate NDP that integrates FUs near data.

Code 4.1 presents the implementation of a vector sum example using Intrinsics-VIMA.

Code 4.1: Intrinsics-VIMA routine call for vector sum.

1 uint32_t vima_size = 2048;
2

3 // Allocate the vectors A, B (sources) and C (result)
4 __v32f *A = (__v32f*)malloc(sizeof(__v32f) * vima_size * x);
5 __v32f *B = (__v32f*)malloc(sizeof(__v32f) * vima_size * x);
6 __v32f *C = (__v32f*)malloc(sizeof(__v32f) * vima_size * x);
7

8 // Initialize the memory location
9 <...>
10

11 // Perform the vector sum: C[i] = A[i] + B[i]
12 for (int i = 0; i < vima_size * x; i += vima_size) {
13 _vim2K_fadds(&A[i], &B[i], &C[i]);
14 }

4.2 INSTRUCTION SET EXTENSIONS

In order to use VIMA, the host processor must be aware of the VIMA instruction set. Similar to

proposals mentioned in Subsection 2.4.1, our architecture relies on the host to trigger instructions

which then traverse the processor pipeline and are offloaded to the NDP device as needed.

Table 4.1 lists all the operations supported by VIMA and

Code 4.2: Intrinsics-VIMA routine example.

1 // This routine is fully executed in any architecture
2 // Our simulator replaces this with a VIMA instruction
3 void *_vim2K_fadds(__v32f *a, __v32f *b, __v32f *c) {
4 for (int i = 0; i < vima_size; ++i) {
5 c[i] = a[i] + b[i];
6 }
7 return EXIT_SUCCESS;
8 }

The ISA was defined to implement the operations necessary to run a number of common

big-data kernels, specifically those we used for evaluation of the architecture, as will be seen on

Chapter 5, and also considering operations that are commonly implemented in existing SIMD

extensions such as Intel AVX and ARM NEON. Code 4.2 shows the implementation of one of

the Intrinsics-VIMA routines that associate with the ISA instructions. With this library we are

able to code and debug VIMA in a real machine with traditional x86 system. Nevertheless, such

library will also be useful for VIMA simulations as explained in Section 4.1.

39

Table 4.1: VIMA’s proposed instruction set.

NAME MNEMONIC OPERATION
Addition add c[i] = a[i] + b[i];

Subtract sub c[i] = a[i] - b[i];

Absolute Value abs mask = a[i] >> shift; b[i] = ((a[i] + mask) ˆ mask);

Maximum max if (a[i] > b[i]) {c[i] = a[i];} else {c[i] = b[i];}

Minimum min if (a[i] < b[i]) {c[i] = a[i];} else {c[i] = b[i];}

Copy cpy b[i] = a[i];

And and c[i] = a[i] b[i];

Or or c[i] = a[i] | b[i];

Exclusive Or xor c[i] = ~(a[i] & b[i]) & ~(~a[i] & ~b[i]);

Not not b[i] = ~a[i];

Set If Lower Than slt if (a[i] < b[i]) {c[i] = 1;} else {c[i] = 0;}

Compare If Equal cmq if (a[i] == b[i]) {c[i] = 1;} else {c[i] = 0;}

Shift Left sll c[i] = a[i] « b[i];

Shift Right slr c[i] = a[i] » b[i];

Divide div c[i] = a[i] / b[i];

Multiply mul c[i] = a[i] * b[i];

Cumulative Sum cum *b += a[i];

Move mov b[i] = a;

Load with Mask lmk if (b[i] == 1) c[i] = a[i];

Reset with Mask rmk if (b[i] == 1) {c[i] = 0;} else {c[i] = a[i];}

4.2.1 VIMA Instruction Format

Each individual VIMA instruction contains the following information: a prefix that informs

the decoder the instruction is a VIMA instruction; an opcode that indicates a specific VIMA

instruction; a field that identifies which core in the architecture issued the instruction; one read

address field; one store address field; and one field that can store either a second read address or

an immediate value. Table 4.2 shows the format of the instruction.

PREFIX OPCODE CORE ADDR1 ADDR2 ADDR3/IMM.

Table 4.2: VIMA instruction format.

Each VIMA instruction is composed as follows:

• Prefix (1 byte): size in accordance to x86 decoder style, informs the decoder the

instruction is a VIMA instruction.

• Opcode (1 byte): instruction identifier; used to determine one instruction implemented
in the VIMA ISA.

• Core (1 byte): core identifier; used by VIMA to indicate which core should be notified

of the instruction status upon completion or exception.

• Address 1 (8 bytes): memory address from which the first read vector operand will be

loaded.

• Address 2 (8 bytes): memory address to which the write vector operand will be stored.

40

• Address 3/Immediate Value (8 bytes): memory address from which the second read

vector operand will be loaded, or immediate value.

4.3 ADDRESS TRANSLATION

As discussed previously, VIMA instructions cause at least 1 load operation and 1 store, each being

the size of the operand width being implemented. The memory addresses must be translated

by the MMU, which means in our system the TLB, and be applied every check as any regular

memory operation. Due to the size of the vectors, this requires the TLB to support very large

pages, which it does for most modern systems (Kwon et al., 2016).

4.4 DATA COHERENCE

As a VIMA instruction makes it way through the processor pipeline and reaches the execution

stage (as pictured on Figure 4.1), it is ready to be offloaded for near-data execution. However,

when considering a near-data processing architecture, one must manage how near-data instructions

and tasks potentially interact with the rest of the system, since the NDP accelerator and the host

processor share the same memory space. This means addressing, when designing a near-data

processing device that shall act as a co-processor, how the system will react regarding its memory

subsystem when tasks and/or instructions are delegated to the co-processor, so data coherence is

maintained.

One way to manage this issue is to guarantee that there is no intersection between the

data stored in the host processor cache hierarchy and the data being operated on by the near-data

processing device at any time. This can be achieved by observing the memory address ranges

that shall be accessed by a near-data instruction or task and assuring that no system element

risks accessing obsolete data. In practice, this means going through the entire cache hierarchy,

invalidating all lines containing data the near-data instruction will touch and writing back to

memory all data modified by the host processor. Thus, it is enough for the programmer to

guarantee that the host will not attempt to access data in the same address range the near-data

processing element is operating on before its results are written back to the memory, data

consistency can be guaranteed and race conditions avoided.

This large amount of cache line invalidation, however, severely hinders the ability

of architecture to provide a performance improvement, as is the case with any NDP effort.

Guaranteeing cache coherence is largely regarded as one of the main issues near-data architecture

designs face (Ahn et al., 2015b; Boroumand et al., 2019, 2016).

One feasible, less onerous alternative to guaranteeing cache coherence is to use flush

instructions, which are present in most host processor ISA and can be used by applications (Drebes

et al., 2020; Santos et al., 2021a). Thus, were a host to modify a memory address that gets

subsequently accessed by a VIMA instruction, a flush instruction could be emitted to make sure

the modified data gets written back to the main memory to ensure a near-data operation will not

attempt to operate over obsolete data.

Of course, should this operation apply over the entire cache, it could remove data outside

the scope of operation of the VIMA instruction, causing cold cache effects. However, by utilizing

data access patterns indicated by the compiler/programmer, a selective flushing behavior can

be achieved. Flush instructions can be added to be automatically generated by the compiler,

avoiding burdening the programmer with this task: should a VIMA instruction access a specific

data element that has been recently accessed by the host and is stored in the cache, the compiler

ensures coherence by including flushing instructions in the program code to flush all related

41

cache lines. Nevertheless, this approach is considered non-coherent, as the hardware does not

provide transparent coherence (i.e. the coherence is maintained by the software). Moreover,

there can be no guarantee that the programmer will be careful enough to avoid all data collisions

or race conditions the compiler is not able to detect.

Another possible strategy is to determine, within some specific range address of the

systems’ memory space, that any data placed in it shall be ignored by the cache memory subsystem.

Thus, whenever any reads from or writes to an address within that specific range, the data is

not moved to the cache memory, forcing a direct load or store to the main memory. Should the

near-data portions of an application restrict themselves to dealing only with data within that space,

cache coherence issues would be avoided by default. Such approach could be easily constructed

using techniques similar to non-cacheable instructions already present on modern processors.

To illustrate the impacts of different approaches to cache coherence, we ran an experiment.

It simulated running the same algorithm over the same input dataset on VIMA, considering

different cache coherence strategies. The algorithm is a simple memory copy application, which
copies the contents of one position in the memory to another. The strategies we simulated are as

follows:

• Coherent with forced flush: in the first strategy, the cache hierarchy is checked for all

operands in a VIMA instruction before it can be processed near-data, writing back all

modified lines and invalidating all hits.

• Non-Coherent NDP: the second strategy assumes a compiler-aided situation in which

the compiler, leveraging data access pattern information, generates flush instructions for

around 11.2% of all the data being referred to by VIMA instructions. This collision rate

was chosen according to related work (Boroumand et al., 2019) that has looked into

average data collision rates between CPU threads and NDP accelerators. All flushing

happens before the instruction is offloaded for near-data processing.

• Coherent with non-cacheable region: lastly, the third strategy considers all data handled

by VIMA is kept within a non-cacheable region of the memory (Ahn et al., 2015a), thus

causing VIMA instructions to completely bypass the cache hierarchy.

We assume 8192 B vector operands for all VIMA instructions and used input sizes

ranging from 8 MB to 64 MB. Figure 4.2 plots the results of this experiment. Results are

normalized to a 16-thread x86 baseline, meaning results over 1 indicate an advantage over the

baseline. Details regarding the simulated systems are detailed in Chapter 5.

With the coherent with forced flush strategy, considering a 64 B cache line in the cache

hierarchy, a single VIMA 8192 B vector requires checking for 128 cache lines. In a worst case

scenario, the system would be forced to withstand the latency of accessing and writing back all

128 lines to the memory per vector operand (i.e. 8,192B / 64B) before issuing each instruction.

The latency caused by this comprehensive checking and writing back of cache lines becomes

overwhelming and negates any performance that can be gained from near-data execution. We can

expect to avoid a large portion of this latency by using the non-coherent strategy, but would be
relying on the programmer to write code that avoids most collisions and on compiler analysis

to be able to detect when collisions happen. In the worst case scenario, the system would be

forced to withstand the latency of accessing and writing back the entirety of the vectors to the

main memory. Meanwhile, considering an architecture that completely bypasses the cache

hierarchy, improvement in performance for the workload used in the experiment, a memory

copy operation, yields a 6× reduction in execution time when looking at the largest input size

considered. When considering the strategy based on flush operations, the reduction in execution

42

8MB 16MB 32MB 64MB
0

1

2

3

4

5

6

7

S
p
ee
d
u
p

Coherent with forced flush Non-coherent NDP Coherent with non-cacheable region

Figure 4.2: Execution time speedup results executing memory copy application comparing VIMA with several

approaches to cache coherence. Results are normalized to a 16-thread x86 baseline.

time is slightly smaller, at just over 5×. Naturally, our choice to consider that only 11% of all data

is accessed by both host and VIMA during the simulation is based on an average (Boroumand

et al., 2019) and the performance of any NDP architecture will suffer when using this strategy if

this collision rate is high. We thus choose to consider that the memory area that VIMA accesses

is deemed non-cacheable (Ahn et al., 2015a) for all subsequent experiments. It should be noted,

however, that VIMA is orthogonal and fully compatible with recent near-data architecture cache

coherence proposals, such as CoNDA (Boroumand et al., 2019), which reports positive results.

Implementing their cache coherence scheme for VIMA is one avenue for future work.

4.5 PLACEMENT IN THE SYSTEM

DRAM is the memory technology most commonly used for main memory in traditional computer

systems. As applications start to require access to larger and larger amounts of data and the

number of processing cores in traditional systems increase, DRAM technology had to follow suit

to handle the increased pressure to which the main memory of most systems was subjected. This

response came in the form of an increase in the number of channels, memory controllers and

parallelism in the data access to ensure memories were able to deliver data at adequate rates.

However, as modern memories evolve and provide ever higher bandwidths, new issues emerge

regarding the ability of systems to take advantage of such bandwidths these memory chips are

now equipped to provide (i.e. the logic division into memory vaults). Although it can be argued

that wider data buses and larger cache hierarchies could be used to do so, these are not sustainable

solutions as their area and power requirements also increase with size, especially with the end of

Moore’s Law and Dennard scaling.

DRAM-based NDP systems then take an approach that attempts to bypass most of the

limitations that hinder memory bandwidth. To avoid barriers such as narrow buses or off-chip

communication latencies, these systems try to access data as close as possible to where it is

stored in the system. As mentioned in Chapter 3, several existing proposals do so by modifying

the circuitry and/or behavior of the very memory cells that store the data to perform computation,

thus working as physically close as possible to the data. This is, although energy efficient and fast,

very limiting in terms of the types of operations that can be performed over such data. Therefore,

several NDP proposals turn then to the next best thing: accessing data in the DRAM row buffers.

43

In the case of the 3D-stacked memory technology devices, having close access to the

DRAM row buffers yields a benefit that is even more pronounced due to the significant increase in

bandwidth offered by the hardware under these conditions, allowing for superior data throughput

rates in comparison to traditional memories. The HMC 3D-stacked memories are split into

up to 32 independent vaults, each of which has its own row buffer, supplying up to 256 B per

access (Hybrid Memory Cube Consortium, 2014), meaning up to 8192 B can potentially be

accessed in parallel per cycle, considering a sustained pipelined scheme of accesses. HBM

memories, on the other hand, have up to 16 independent vaults, wider row buffers and support

128 B requests, meaning different memory architectures will enable different possibilities.

To take advantage of such possibilities, VIMA is placed on the logic layer of a 3D-stacked

memory device, a placement that allows it to both read and write quickly from and to DRAM

banks. Figure 4.3 illustrates the position of the VIMA device relative to the memory device. In

the case of the HMC, it could be placed coupled to the cross-bar switch. For the HBM, it would

be placed in the interposer. In both situations it would have access to all the vaults, in order to

access any operand independently of its allocation.

3D Stacked Memory

B0 B1

B2 B3

B4 B5

B6 B7
T
S
V

B0 B1

B2 B3

B4 B5

B6 B7
T
S
V

B0 B1

B2 B3

B4 B5

B6 B7
T
S
V

...

VIMA

DRAM
Layers

Logic
Layer

Figure 4.3: Position of the VIMA device relative to the 3D-stacked memory.

4.6 VECTOR SIZE

Multithreaded systems traditionally benefit greatly from their ability to fetch and process data

in parallel. Since each core is equipped with its own set of functional units and register banks,

such systems are able to issue a large number of memory requests in parallel, applying increased

pressure to the main memory and using much of its bandwidth. On the other hand, the functional

units-based near-data architecture like VIMA, in order to favor simplicity and energy efficiency,

is unable to behave like a superscalar processor. Therefore, to provide an execution time

performance improvement over such systems, the vector size used by the device must be large

enough to match or surpass such levels of parallelism by leveraging as much of the memory

bandwidth as possible. Nevertheless, the vector size also impacts on the amount of VIMA

instructions the processor needs to trigger to our architecture, which also impacts energy and

time. The smaller the operand size, the more instructions the processor must trigger to fully

process a given dataset.

44

8MB 16MB 32MB 64MB
0

0.5

1

1.5

2

2.5

3

S
p
ee
d
u
p

256B 512B 1K 2K 4K 8K

Figure 4.4: Execution time results executing vector sum application comparing VIMA with various vector widths

normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in performance over the baseline.

To leverage the parallelism of the 3D-stacked memory chips, VIMA instructions must

operate over adequately sized operands. Figure 4.4 shows the results of a simple experiment that

illustrates this point. For this, we assume the underlying 3D-memory stacked device used by

VIMA is the HMC 2.1, which has 32 independent memory vaults and a row buffer size of 256 B.

Considering a simple vector sum application, we ran simulations with several different vector

sizes, ranging from 256 B (accessing one memory vault per vector operand) to 8192 B (accessing

all 32 memory vaults in parallel per vector operand), operating over datasets ranging from 4 to

64 MB in size. The results on the figure refer to relative performance compared to a 16-thread

x86 baseline, meaning values over 1 imply an improvement in performance and values under

1 imply performance degradation. As the difference in performance is reduced as the dataset

grows, likely due to less multithreading overhead in the baseline, it is clear that the near-data

architecture only provides an improvement over the 16-core x86 baseline at large dataset sizes

if the width of its vector operands is sufficiently large. In our experiments we consider that

VIMA implements only one specific vector width, but exploring the possibility of supporting

configurable vector widths to provide a choice of width and optimize benefits according to the

application is one avenue for future work.

4.7 DATA STORAGE

After a VIMA instruction arrives at the memory controller, its operands must be fetched from the

memory and placed in VIMA’s dedicated cache memory before the operation is applied to them.

This cache is fully associative following a Least Recently Used (LRU) replacement policy: if

there are no empty spaces available in the cache, the least recently used vector currently in it gets

evicted to clear up space for a new one. In case it has been modified, it is written back to the

memory. Although we consider a fixed capacity for the dedicated cache for our experiments,

the memory space can be expanded in further versions of this architecture as needed. In fact,

this expansibility is one of the reasons why we chose to use a cache memory as opposed to a

scratchpad memory or register bank.

When choosing which type of memory to use in such a design, one must consider the

benefits and drawbacks of their choice. For instance, if we chose to use a register bank for storage

in our VIMA architecture like is done in a number of similar designs (Alves et al., 2016; Santos

et al., 2017; Tomé et al., 2018), this would have several consequences. Especially in comparison

45

to a cache memory, using a register bank has lower area and energy consumption requirements,

while providing faster access to the stored data. On the other hand, it also invites a number of

limitations. For instance, if memory capacity is increased in the architecture, using a register

bank would require all VIMA code to be recompiled in order to access the new space, as the

compiler would have originally considered only the existing registers at compilation time. With

a cache memory, any improvement in capacity would translate into improved performance for

data reuse applications transparently. Another issue that pops up with register banks is how to

manage processing when multithreaded applications are considered. Using a register bank as

memory would require a locking/unlocking mechanism to avoid race conditions between threads

trying to use the same register within the near-data device, which a cache memory avoids.

8MB 16MB 32MB 64MB
0

2

4

6

8

10

S
p
ee
d
u
p

No Cache 64KB 128KB 256KB 512KB

Figure 4.5: Execution time results with VIMA running bloom filter application with varying data storage, 8192 B
vector operands and a HMC 2.1 memory chip. Values higher than 1 indicate improvement in performance over the

baseline.

Naturally, using a cache memory also makes data reuse much simpler. Figure 4.5

compares VIMA with its data reuse capabilities and a version that is unable to reuse data and

loads data from the memory for every instruction. The application used for this experiment is a

bloom filter computation. The bloom filter is a data structure commonly used for pattern matching

and it is accessed very often as the nature of it functions, thus causing lots of opportunities for

data reuse. As can be seen in Figure 4.5, performance improves significantly when a cache

memory as used.

Performance also improved significantly as the size of the cache storage increases. When

comparing results of the experiment with no cache and the one with a 64 KB cache, execution

time is reduced by 80%, which shows that the application uses the cache very efficiently and

therefore greatly benefits from it. Between the 64 KB and 256 KB sizes, execution time is further

reduced by about 30% with each increase. Starting at 512 KB, however, the improvement on

execution time is less than 9%, suggesting there will be diminishing returns from increasing

storage space any further. For the experiments found on Chapter 5 we consider VIMA with a

256 KB cache, meaning that when considering a VIMA operand vector of 8,192B, this cache

provides 32 different cache lines.

4.8 PRECISE EXCEPTIONS

Upon adding NDP capabilities to a system, we need to consider that, even if its host processor

has a single processing core, the system becomes multiprocessed, with two separate processing

46

elements (the traditional core and our proposal) sharing the same memory space. As VIMA must

also change the architectural state of the system, we must carefully design its function to avoid

consistency issues.

Even with multiple processors in a system, programmers will assume a sequentially

consistent memory model. This assumption comes with three main expectations: (i) that memory

operations are executed one at a time in atomic fashion; (ii) that each processor respects program

order when issuing memory requests, which then also affect the memory state in the same order;

and (iii) that, for every memory location, any load operation will return the value from the

last store operation done to that location. Although architectures do not necessarily adhere

strictly to such orderings during actual processing, which allows them to optimize performance,

execution results must appear to the programmer as if they did. This consistency requirement is

expected of any system with multiple separate processing elements, regardless of the position of

such elements in the system. Consequently, providing precise exceptions is important to enable

adoption of an NDP architecture as it guarantees the sequential consistency memory model users

expect.

Figure 4.6: NDP instruction is offloaded to device and x86 instruction raises exception.

Current state-of-the-art NDP architecture proposals such as HIVE (Alves et al., 2016)

do not guarantee precise exceptions, leaving the task of maintaining sequential consistency up to

the programmer writing the application that accesses the NDP resources. By doing so, these

systems would risk producing an inconsistent state in the system in situations such as the one

illustrated in Figure 4.6. Should an NDP instruction be offloaded for near-data execution and

then an exception be raised by an older traditional instruction in the host processor’s re-order

buffer, such an architecture would have no way to guarantee that no modifications were made to

the memory before this exception was handled. Although the NDP-specific instruction would be

flushed out of the re-order buffer as the system reacted to the raising of an exception, it still may

have modified the architectural state of the system, causing an inconsistent memory state, for

instance.

A simple way to guarantee precise exceptions and maintain system consistency is to

only allow the NDP device to handle one instruction or task at a time, when that instruction

becomes the oldest in the host processor’s re-order buffer (i.e. head of the ROB), as can be seen

in Figure 4.7. By making sure only one instruction or task is executing in a separate processing

element, the host processor can wait for its execution and status report before committing its

results to the architectural state. Should an exception arise during the execution of the NDP

instruction, the processor treats it like any other exception, with a new exception code and

entry in the Interrupt Descriptor Table (IDT) (Ahmed et al., 2013) for NDP exceptions. While

this approach guarantees precise exceptions, it also requires the NDP to be idle for some time.

Between the moment the NDP reports the instruction status and the moment another NDP

47

Figure 4.7: NDP instruction is offloaded to device once it becomes the head of the re-order buffer.

instruction moves forward in the host processor pipeline and reaches the memory device, the NDP

will stay idle as it awaits further tasks. Were our proposal to follow this approach, VIMA would

likely fail to achieve performance improvements that are comparable to state-of-the-art related

work (Alves et al., 2016; Tomé et al., 2018). Since they do not guarantee precise exceptions, they

are able to issue multiple instructions for near-data execution at once.

To avoid this issue, and thus better exploit the capabilities of the underlying main

memory while still being mindful of precise exceptions, we propose devising a system that allows

buffering of multiple instructions on the device. Were the device able to pool instructions, it

could avoid most idle time, as it could move on to the execution of the next instruction as soon as

the previous one finishes. Figure 4.8 illustrates the idea.

Figure 4.8: VIMA-specific instruction buffer stores multiple instructions at once.

However, should an exception arise during near-data execution of an instruction, it

would have to be able to take steps to react to this (i.e. squashing all the instructions in both

the processor’s re-order buffer and its own buffer that are newer than the instruction that raised

the exception). Thus, the responsibility of maintaining precise exceptions whenever near-data

processing takes place is shared between the host processor to the NDP device. Figure 4.9

illustrates this situation.

Enabling instruction pooling requires making a few modifications to the architecture.

First, to guarantee overall data coherence in the system, it must ensure that no instructions

between NDP instructions in the program change the memory hierarchy state. Were this not

observed, the NDP device would risk fetching outdated data from memory and subsequently

writing erroneous results to the memory.

Second, the NDP device would have to maintain its own instruction buffer of its specific

instructions, which would require adding circuitry to the device. The device would also be

responsible for flushing its own instruction buffer and any associated stored data in case of an

48

Figure 4.9: Exception is raised and VIMA instructions in the specific buffer are flushed along with all instructions in

the host processor’s re-order buffer.

exception. To achieve instructions pooling with VIMA while maintaining precise exceptions, we

add two elements to the memory controller of the system: (i) an instruction sequencer, which

controls instruction order and (ii) an instruction buffer, which stores VIMA-specific instructions.

VIMA instructions are stored in the instruction buffer and handled by the instruction sequencer,

who controls which instructions are ready to be executed next.

Should an instruction arrive when the instruction buffer is empty and, therefore, the

device is at an idle state, it starts being processed right away by issuing requests to the memory

for its operands. The instruction sequencer observes the memory addresses for the operands

required by the instruction and communicates with the dedicated cache memory to check for

whether the required data is present. It is thus able to inform the memory controller what data

addresses to request from the main memory. As memory requests made by VIMA are fulfilled,

the data is stored in the dedicated cache in vectorized fashion. These requests are labeled as

VIMA requests and its data are stored in the near-data dedicated cache instead of being returned

to the host processor.

Once all operands of an instruction are successfully loaded and placed in the cache

memory, an instruction is deemed ready for execution, which happens immediately thereafter

if the instruction is the oldest in the instruction buffer. Results are written to the store operand

specified in the instruction, also in the cache memory.

4.9 THE LOAD-AHEAD MECHANISM

The ability to pool instructions and also guarantee precise exceptions allows VIMA to further

optimize its usage of its underlying memory architecture. While it is no longer forced to be idle

between instructions, its knowledge of buffered instructions can be leveraged to exploit data

throughput available in the memory even more efficiently. Considering its cache-based storage,

VIMA can safely prefetch operands of instructions in its buffer even if the instruction is not

currently the oldest in store. Although the actual execution and committing of VIMA instruction

results to the memory happens strictly in order, whenever the operands of multiple instructions

do not overlap, data fetching for operands of distinct instructions can happen out-of-order. We

call this the load-ahead mechanism.

Figure 4.10 compares a 16-thread x86 baseline to VIMA both with and without our

load-ahead mechanism. For this experiment we use 8192 B vector operands and a HMC 2.1 chip

as underlying 3D-stacked memory. Results refer to the speedup over the baseline achieved at four

distinct dataset sizes when processing a simple application that sets every data point in a large

49

8MB 16MB 32MB 64MB
0

2

4

6

8

10

12

14

S
p
ee
d
u
p

VIMA without load-ahead VIMA with load-ahead

Figure 4.10: Speedup of VIMA over baseline running memory set application with 8192 B vector operands and a

HMC 2.1 memory chip. Values higher than 1 indicate improvement in performance over the baseline.

vector stored in the memory to the same integer value. While VIMA without the load-ahead

mechanism outperforms the 16-thread baseline even at the 64 MB dataset size, the difference

with the load-ahead mechanism is sizeable, reaching a 4× execution time improvement over

the multithreaded baseline even with a 64 MB input dataset size. For this experiment, VIMA

manages to extract an average 267 GB/s data throughput from the memory when considering the

load-ahead mechanism, and only an 129 GB/s average without it.

4.10 INSTRUCTION EXECUTION

Actual execution of VIMA instructions happens as soon as operands are fully available in the

dedicated cache and the instruction is the oldest in the VIMA instruction buffer. Thus, although

operand fetching can be done out-of-order, instruction execution and data committing is kept

strictly in-order.

VIMA uses a set of 64 512-bit vector units to process data, which makes it able to

process up to 2,048 bytes at a time. In case the vector operands used are larger than this size,

they are divided into as many chunks as necessary for execution in a pipelined fashion. Using

such a reduced number of functional units, although it forces us to split the data in several parts

for processing, has straight-forward benefits, like a smaller area requirement and low energy

consumption. A smaller number of functional units also causes the project to be more physically

viable. Since data access for processing will be happening from the dedicated cache memory, the

functional units must connect to it. Were we to use an amount of functional units that is able to

process, for instance, an entire 8192 B vector at once, this would require 65,536 connections

between FUs and cache memory, which seems to be impractical. With a smaller number of

FUs, although we make more accesses to the SRAM chip per vector, we require much fewer

connections. Nonetheless, we consider that further low level integration analysis is out of scope

of this work.

Interestingly, a reduced number of functional units does not impact performance very

much. This happens because of the aforementioned load-ahead mechanism used for fetching of

data, which causes the execution time of VIMA instructions to be masked by the loading of other

instructions’ operands, effectively hiding the added latency of processing each large vector in

chunks. In our simulated experiments, the difference in performance between this and a version

50

of VIMA with enough functional units to process an entire 8192 B vector at once, improvement

in performance regarding execution time was less than 3%.

4.11 MULTITHREADING

The main issue in enabling multithreading for near-data architectures is the matter of making sure

distinct threads do not modify data fetched by other threads when instructions or tasks offloaded

by separate cores co-exist in the near-data device, which is very limited and thus very prone to

collision. Similar architectures to VIMA, such as HIVE (Alves et al., 2016) and HIPE (Tomé

et al., 2018), rely on a register bank for storage, and thus have to control this by implementing a

locking and unlocking mechanism to guarantee only one thread is granted access to the near-data

capabilities at a time, meaning that multiple threads are serialized. By using a cache memory

with a replacement policy that is automatically handled by the device we can guarantee that

multithread execution can happen safely with VIMA. Thus, although at the expense of slightly

longer data access latency, the issue is resolved and a parallel multithread approach to near-data

processing becomes viable. Naturally, this assumes some care from the programmer/application

side, which should be coded to partition its data as safely as possible to avoid multiple threads

accessing the same data portions at the same time. As long as the memory regions accessed by

each core are carefully managed by the application so as to not overlap each other, multithread

execution can take place safely.

As previously discussed, when dealing with data streaming applications, the main

limitation to performance systems face is data throughput and we mentioned in Section 4.6 that

SIMD-based NDP systems achieve high data throughput based on the size of the vector operands

used in its instructions: the larger the operand, the more requests are made to the memory to

fetch them. By utilizing a large enough vector operand width, the architecture is able to sustain

pressure to the memory even with a reducer number of instructions. However, the requirement of

having to split input data into such large vectors to use VIMA can be limiting, impractical or even

unfeasible for some applications. With multithreading, VIMA is able to extract data throughput

and good execution time performance even at reduced vector sizes. The combination of the

load-ahead mechanism with the use of a dedicated cache memory causes VIMA to be uniquely

able to apply adequate pressure to the memory even with a smaller vector operand width.

4.12 REACTING TO X86 EXCEPTIONS

When considering all the novel possibilities VIMA offers, we must be careful when dealing

with any exceptions that should arise in order to avoid creating an inconsistent system state.

At any point when VIMA resources are being used, we must take steps to maintain sequential

consistency should an x86 exception arise. When this happens, the processor core at which the

exception was raised must signal VIMA that the issue has happened. While the processor starts

its default exception handling behavior, VIMA must react by flushing out all instructions in its

instruction buffer that were emitted by the core at which the exception happened. In case any

operand data of the flushed instructions had already been fetched from the memory and placed in

the dedicated near-data cache, all such cache lines must be invalidated.

Since the cache memory can transparently accessed by multiple threads, we must

acknowledge the possibility of data reuse between threads. When accounting for exceptions, one

possible issue is of there being reuse of data that was fetched and modified by an instruction that

could still be flushed because of an exception, which would cause an inconsistency. To avoid this

issue, we establish that data in the dedicated VIMA cache must only become available for reuse

51

by an instruction once the instruction that originally caused the data to be fetched from the main

memory has been successfully committed and removed from both the host processor re-order

buffer and the VIMA instruction buffer.

When a VIMA instruction causes an exception, VIMA must signal the host processor

by reporting the exception through its status. As soon as the VIMA instruction becomes head of

the re-order buffer, the default exception handling behavior of the system must be used to recover

from the exception, including all communication that should happen with NDP device.

Figure 4.11: Exception is raised and VIMA instructions from the core that raised the exception. All related operand

data in the cache memory is invalidated.

Figure 4.11 shows an example of this situation. While two processing cores have both

issued instructions for near-data execution, an exception is raised by an x86 instruction at Core 0.

The processing core signals VIMA that an exception has been raised, which means all instructions

in its re-order buffer will be flushed, including any VIMA instructions that are present in it.

Since each VIMA instruction holds the information of which core issued it, VIMA is able to

react by removing from its instruction buffer all instructions that were issued by Core 0 and also

invalidating all data that have been fetched into the dedicated cache memory to service any such

instructions.

4.13 SUMMARY

In this chapter, we presented VIMA, our NDP architecture proposal. We discussed how VIMA

deals with the several integration challenges faced by NDP solutions and established its placement

in the system. Our design choices regarding operand sizes and dedicated storage were described

and justified with simulation experiments. We also described the main contributions our

design offers compared to prior work: the implementation of precise exceptions, the load-ahead

mechanism and the multithreading capabilities. In the next chapter we evaluate our solution

by simulating execution of several big-data kernels on VIMA under a number of possible

configurations.

Portions of the work presented on this chapter has been published at Euromicro

International Conference on Parallel, Distributed and Network-Based Processing (PDP) (Cordeiro

et al., 2021; Santos et al., 2022b), and International Symposium on Performance Analysis of

Systems and Software (ISPASS) (Santos et al., 2022a). A research paper featuring portions of

this work is currently under review at The Journal of Supercomputing.

52

5 EVALUATION

In this chapter, we describe our methodology and share results for our evaluation of VIMA. The

baseline architecture considered in our experiments mirrors the Intel Skylake microarchitecture

and includes Intel AVX-512 extensions. We henceforth refer to it as x86. Since traditional
systems implement several mechanism that help them better exploit memory resources, such

as multiple superscalar cores, SIMD instructions and out-of-order execution, they are able to

apply a significant amount of pressure to the memory, thus taking advantage of a large portion of

the data throughput these devices are able to provide. For this reason, we consider a 16-thread

system as our baseline, constructing a tough case against our proposal.

We consider for our experiments that VIMA runs on a single-core system (except on

section 5.7 when we evaluate a multithreading system using VIMA) including all necessary

architectural modifications and otherwise mirrors an individual core of the baseline. We

performed all simulation experiments using Ordinary Computer Simulator (OrCS), an open-

source cycle-accurate simulator based on SiNUCA (Alves et al., 2015c). Table 5.1 shows

all simulation parameters for the baseline and VIMA’s host processor. Table 5.2 shows all

VIMA-specific parameters.

Table 5.1: Baseline system configuration.

OoO Execution Cores
16 core @ 2.0 GHz, 32 nm; Power: 6W/core; 6-wide issue;

Buffers: 40-entry fetch, 128-entry decode; 168-entry ROB;

MOB entries: 72-read, 56-write; 2-load, 1-store units (1-1 cycle);

4-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);

2-alu, 2-mul. and 1-div. fp. units (3-5-10 cycle);

Branch predictor: Two-level GAs. 4096 entry BTB; 1 branch per fetch;

L1 Inst. Cache
64 KB, 8-way, 4-cycle; 64 B line; LRU policy;

Dynamic energy: 194pJ per line access; Static power: 30mW;

L1 Data Cache
64 KB, 8-way, 6-cycle; 64 B line; LRU policy;

Dynamic energy: 194pJ per line access; Static power: 30mW;

L2 Cache
1 MB, 16-way, 34-cycle; 64 B line; LRU policy;

Dynamic energy: 340pJ per line access; Static power: 130mW;

LLC Cache
16 MB, 16-way, 52-cycle; 64 B line; LRU policy;

Dynamic energy: 3.01nJ per line access; Static power: 7W;

3D Stacked Mem.
32 vaults, 8 DRAM banks/vault, 256 B row buffer;

4 GB; DRAM@1666 MHz; 4-links@8 GHz; Inst. lat. 1 CPU cy.;

8 B burst width at 2.5:1 core-to-bus freq. ratio; Open-row policy;

DRAM: CAS, RP, RCD, RAS, CWD lat. (9-9-9-24-7 cycles);

Avg. energy per access: x86:10.8pJ/bit; Static power 4W;

53

Table 5.2: VIMA system configuration.

VIMA Processing Logic
Operation frequency: 1 GHz; Power: 3.2W;

32 int. units: alu, mul. and div. (8-12-28 cy. per chunk pipelined);

32 fp. units: alu, mul. and div. (13-13-28 cy. per chunk pipelined);

VIMA cache: 256 KB, fully assoc., 4-cycle per access;

Dynamic energy: 194pJ per line access; Static power: 134mW;

5.1 ORDINARY COMPUTING SIMULATOR

When designing and evaluating new computer architectures, systems are often too complex

for a strictly analytical model. At the same time, it is impractical and expensive to create

physical prototypes for real world validation (Jain, 1990). Thus, in order to evaluate proposals

of new systems, computer architecture researchers turn to simulation environments. Trace-

driven simulators represent a portion of such environments: they focus on the behavior of the

microarchitecture under traced applications while not requiring the actual execution of instructions

to be simulated. They receive as input a description of a single execution of a program, usually

containing the instruction flow that was observed during a real execution of said program. Such

trace-driven simulation is based only on the application behavior, presenting determinism during

execution, avoiding thus multiple executions to mitigate influence of the operating system on

the measures. Such input can be generated automatically by binary instrumentation tools that

are executed alongside a program for which one wishes to generate trace files for simulation, or

manually generated by researchers according to specific needs.

For the simulations needed for this work we used OrCS, an open-source trace-driven

simulator that implements the x86_32 and x86_64 ISA and that we extended to implement the

VIMA ISA. OrCS is based on Simulator of Non-Uniform Cache Architectures (SiNUCA), another

existing open-source and validated simulator (Alves et al., 2015c; Alves, 2014). All input traces

are generated with the OrCS trace generator, which is based on Pin, an instrumentation tool from

Intel (Bach et al., 2010). The trace generator tool uses Pin routines to observe the execution of

applications and generate trace files for simulation with OrCS. When running code that includes

Intrinsics-VIMA routines, the trace generator replaces the description for the x86 assembly

code with corresponding VIMA code for simulation purposes only. Figure 5.1 (Cordeiro, 2020;

Cordeiro et al., 2017, 2021) illustrates one such replacement. With this solution, although our

experiments require simulating an ISA that is not implemented by an existing system, we avoid

the need to write simulation traces by hand. Thus, we avoid bugs while increasing variety of the

migrated applications to NDP.

For our experiments we implemented all workloads for both the 16-thread x86 baseline

and VIMA systems in C++ and generated simulation traces with our Pin-based trace generator.

These traces were then used as input for OrCS, which outputs a comprehensive list of results

regarding the simulation statistics for the system being simulated. For each experiment, we

simulated both the baseline and VIMA versions of each workload and input size, observing the

differences in results. All code we used for our experiments is available on our repositories123.

Here, we focused mainly on the number of cycles each experiment took to finish, from

which we derived the execution time of each experiment. We also paid close attention to the

1https://github.com/mazalves

2https://github.com/ascordeiro

3https://github.com/sairosantos

54

Figure 5.1: Example of x86 assembly replacement (Cordeiro, 2020).

results regarding the memory subsystem, including cache hierarchy hits and misses, and accesses

to DRAM. All such stats were then used to generate our energy consumption estimates. We share

our experiments results later in this chapter.

5.2 MEMORY DEVICES

Theoretically, VIMA is able to function with any version of 3D-stacked memory described on

Section 2.5, observing their features and limitations. We must note, though, that the organization

of the devices directly impacts VIMA performance. Since VIMA is a monolithic device that

moves data out of the vaults of the 3D-memory, we expect performance to be superior on memory

devices that favor vault parallelism, as opposed to bank parallelism. Here we consider that the

memory controller maps the least significant address bits to vaults and most significant bits to

memory banks (similar to what occurs on multi-channel systems with DDR-x devices). NDP

strategies such as RVU (Santos et al., 2017), which place independent processing elements on

each individual vault of a 3D-stacked memory should be able to better extract performance

from both vault and bank parallelism. Nevertheless, such proposals suffer from inter-vault

communication and TSV bandwidth limitation.

The most efficient way to gain performance with NDP when considering DRAM-based

memories is to access data directly on the memory row buffers on each access (considering

that such buffer will be filled by contiguous data). Should we be able to access all such data at

once, we would theoretically able to explore all the internal bandwidth available in the memory.

Thus, in order to offer the best performance possible, an NDP architecture must adjust to the

underlying 3D-stacked memory to use as much of the bandwidth as possible. In considering a

SIMD instruction approach such as VIMA, this means adjusting the width of vector operands

according to the number of independent vaults and the size of their row buffers.

For instance, if we consider the HMC 2.1 (Hybrid Memory Cube Consortium, 2014),

we have 32 independent vaults, each with a 256 B row buffer. Assuming parallel accesses

to all 32 vaults, 8192 B are available on the row buffers per access. Since each vault in this

configuration has 8 banks that can be accessed in a pipeline fashion, the device could possibly

55

Table 5.3: NDP vector size recommended for different 3D memory architectures.

3D-Stacked
Memory

Number
of Vaults

Row Buffer
Size

Max. Number
of Banks

Max. Request
Size

NDP Vector
Size

HMC 1.0 16 256 bytes 8 128 bytes 4096 bytes

HMC 2.1 32 256 bytes 16 256 bytes 8192 bytes

HBM 8 2 KBytes 16 128 bytes 16384 bytes

HBM2E 8 1 KByte 32 128 bytes 8192 bytes

HBM3 16 1 KByte 64 128 bytes 16384 bytes

provide 8192 B per access and thus, a NDP architecture could consider this size for its instruction

operands in order to extract as much performance from the memory as possible. We could also

expect that most of the latency to fetch the next chunk of 8192 B would be hidden by bank

parallelism. It should be noted, however, that this line of thought does not necessarily translate to

actual performance for every device as it ignores constraints such as internal transmission speed,

maximum supported request sizes and the width of the connections between devices, as shall

be discussed later in this chapter. We consider this situation for our experiments merely as a

thought scenario to inform us on what could theoretically be the maximum performance we could

achieve with VIMA when using each 3D-memory configuration if such perfect communication

was feasible. Table 5.3 shows, for each memory configuration we are considering, its features that

affect this aspect of our experiments and the vector size (last column) that would, in theory, most

efficiently leverage both the internal bandwidth of the memory devices and the advantageous

placement of a NDP architecture.

5.3 EXPERIMENT CHARACTERIZATION

For our experiments, we used 7 kernels as workload, each representing an algorithm commonly

present in data-driven applications. Memory Copy, Memory Set and Vector Sum are data-

streaming operations that cause a large portion of the data movement in typical consumer

workloads (Boroumand et al., 2018) and in several Big Data applications (Cordeiro et al., 2021).

Selection and Projection are common analytic database query operations that correspond to

around 70% of the memory usage and processing time of database benchmark TPC-H (Kepe et al.,

2019; Santos et al., 2022b). Lastly, two applications that feature data-reuse opportunities: Stencil
represents a common behavior found in neural networks, image processing and CFD applications,

and Bloom Filter is a ubiquitous data structure in string matching applications (Patgiri et al., 2018;
Nayak and Patgiri, 2019; Sengupta and Rana, 2020). We used datasets of 8 MB, 16 MB, 32 MB

and 64 MB for all workloads considered and obtained the application traces for simulation using

Pin (Bach et al., 2010) tool. The dataset sizes were chosen to observe the impacts of the baseline

cache and DRAM usage. All applications were coded and debugged using our Intrinsics-VIMA

library using a common IDE and compiled using gcc version 7.5.0 with -O3 -static optimization

flags.

Next we describe each application:

MemSet: traverses one vector setting every position to the same value.
MemCopy: copies all elements from vector to another vector starting at a different memory

address.

VecSum: adds the elements of two vectors and stores the result in a third vector.

Selection: compares values in a vector with a filter value, storing a bitmap result.
Projection: loads elements from memory according to a bitmap mask and stores results in a

56

separate vector.

Stencil: computes a 5-point stencil convolution over a matrix and stores the result in an output
matrix.

Bloom Filter: sets a bloom filter data structure with a set of items and uses another set to probe

the structure for item membership.

Our experiments consider three distinct situations with increasing constraints regarding

interconnection between VIMA and the memory:

Perfect: we assume the TSV connections in the 3D-stacked memory is able to provide all the

data from the row buffers at a single cycle, considering a sustained pipeline of memory requests

being issued to the 3D-stacked memory. Each request issued by VIMA is equal to row-buffer

size and VIMA is able to receive this exact amount of data per cycle.

Max. Request Size: the 3D interconnection observes the maximum request size supported by

each 3D-stacked memory design according to its specification. On each request VIMA issues is

of that same size. VIMA issues as many requests as necessary to fetch each the full operand of

an instruction according to this size limitation.

64 B Request Size: we assume the connection between VIMA and the main memory limits

communication to the size of one line of the host processor cache per cycle (64 B). Each data

request issued by VIMA to the memory is of this size (i.e. 64 B) and it issues as many requests

as necessary to fetch each operand according to this limitation.

5.4 EXECUTION TIME RESULTS

We now present the execution time results for VIMA considering all three scenarios we described

regarding the internal interconnection between DRAM row-buffers and VIMA. The width of

the vectors considered by VIMA were adjusted according to each specific device as cited in

Table 5.3. For brevity and clarity, we limit discussion in this section to the results to the memory

configurations of the HMC 2.1 and HBM3. HMC 2.1 was chosen due to its very promising results

in our execution time simulation experiments while HBM3 is considered for being the most

recent JEDEC standard. Appendix B shows results considering all other aforementioned memory

devices. To evaluate VIMA against the strongest possible baseline, all baseline experiments

consider a HMC 2.1 main memory, as that memory organizations yielded the best performance

for the x86 simulations.

5.4.1 Perfect interconnection and request size scenario

Figure 5.2 shows the results for all experiments considering a perfect interconnection and request

size scenario. The memory set application is a clear example of a data streaming application,
being composed of mainly one operation that stores an immediate value in each entry of a vector.

As can be seen on Figure 5.2(a), the advantage VIMA has over the baseline shrinks as the input

size grows. This happens due to the multithreaded nature of the baseline we are considering, as it

suffers from the overhead of splitting the workload at the start of processing and aggregating all

results when processing is finished. As input size grows, this overhead becomes a less significant

portion of the overall execution time and thus the extent of the advantage of the NDP approach

becomes more realistic. This applies to every application with primarily data streaming behavior.

Assuming the optimistic view in which the 3D-stacked memory device to which VIMA

is attached is able to fully fill its row buffers with new data every cycle and a connection between

memory and VIMA that allows for such data to be consumed at the same pace, the width of the

vector considered by VIMA is the main determining factor for execution time performance when

57

HMC 2.1 HBM3
0

3

6

9

12

15

18

21

S
p
ee
d
u
p

(a) MemSet

HMC 2.1 HBM3
0

2

4

6

8

10

S
p
ee
d
u
p

8MB 16MB

32MB 64MB

(b) MemCopy

HMC 2.1 HBM3
0

1

2

3

4

S
p
ee
d
u
p

(c) VecSum

HMC 2.1 HBM3
0

3

6

9

12

15

18

21

24

S
p
ee
d
u
p

(d) Selection

HMC 2.1 HBM3
0

2

4

6

8

10

S
p
ee
d
u
p

(e) Projection

HMC 2.1 HBM3
0

2

4

6

S
p
ee
d
u
p

(f) Stencil

HMC 2.1 HBM3
0

3

6

9

12

15

S
p
ee
d
u
p

(g) Bloom Filter

Figure 5.2: Execution time results of VIMA executing all workloads with perfect access to 3D-stacked memory row

buffers normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in performance over the

baseline.

considering data streaming applications, as data throughput is the main limitation for processing

speed for this class of application.

Thus, the memory configuration that would theoretically be able to offer the most

throughput, HBM3, with which VIMA uses 16384 B vector operands, should see the largest

speedup. In fact, as shown in Figure 5.2(a) in the experiment considering that design VIMA

maintains a speedup of 5.84× over the baseline even at the largest input size considered.

For applications such as memory copy (Figure 5.2(b)) and vector sum (Figure 5.2(c)),

VIMA sees a more modest performance improvement. This happens because these applications

load two operands from the memory per instruction, as opposed to memory set, which only
fetches one. Because of the load-ahead mechanism in VIMA, operands of multiple buffered

VIMA instructions can be loaded in parallel, causing pressure applied to the memory to be kept

high even for an application based on single operand instructions such as memory set application.
However, this means that for applications that load multiple operands per instruction, such as

memory copy and vector sum, although they apply pressure to the memory for a longer period, the
rate at which data is provided does not become higher. As a result, while the baseline is able to

58

apply more pressure to the memory when executing these applications than it does with memory
set, as each instruction causes two memory requests instead of only one, the same is not true for
VIMA. This can be noticed in the experiment results with the less significant speedup. While the

baseline now issues two data requests per instruction, VIMA is unable to apply more pressure to

the memory because each single vector operand already takes up all the available bandwidth.

The selection database query operator and the projection database query operator
results follow a similar pattern since both applications are also mainly based on data streaming

behavior. For these applications VIMA has a slightly larger edge, up to 24× faster with the

HBM-3 for selection and 15× for projection, because both applications are based on more

complex operations than the ones used for the previous workloads. It is likely that this larger

difference is caused by the longer execution latency of the instructions on the baseline and also

by limitations of the simulation environment in simulating such instructions.

With the stencil and bloom filter applications, the cache memories of both the baseline
and VIMA begin to impact results, since both applications have some level of reuse behavior and

benefit from the cache hierarchies. While Stencil is composed of a very simple algorithm with

clear data reuse within its main loop, it still behaves mostly as a data streaming application in

that once its main loop goes past any data element, that element is never accessed again. The

bloom filter application, on the other hand, has a different behavior in that it accesses the same
data structure repeatedly throughout the entire execution and its results on Figure 5.2(g) reflect

this. While the baseline benefits from its cache hierarchy, VIMA benefits as well from the fact

that the data structures used in the application are small enough to fit in its much smaller cache.

Consequently, VIMA achieves a speedup of up to 15× when considering the experiment the

HBM-3 memory. Although stencil also reuses data that is found in the dedicated cache memory,
this data gets reused much fewer times, causing the speedup for that application to be much more

modest than the one achieved for the bloom filter application.
The speedup results we were able to obtain considering this optimistic configuration

display the potential for improvement in execution time performance of a NDP architecture.

We must keep in mind, however, that these experiments significantly relax constraints that are

present even when considering the privileged placement of a NDP architecture relative to the

main memory. While speedups of over 20× against a modern 16-threaded traditional architecture

using a single-core system are enticing, to have a better understanding of the results we may

reasonably expect from this type of approach, we must consider a number of constraints we have

chosen to ignore up until now to investigate what optimal performance could look like.

5.4.2 Maximum specified request and interconnection size scenario

Figure 5.3 shows the results for all experiments considering the maximum specified request and

interconnection size scenario.

The first constraints must be considered to obtain a more realistic estimate of the

performance improvements we can expect from VIMA is the maximum request size each

memory configuration supports. While considering our optimistic experiments, we assumed each

3D-stacked memory device was capable of fully transmit the entire row buffer to the the VIMA

cache within a single cycle, thus also replenishing the entire row buffer of each vault with new

data every cycle, thus also assuming that every request sent to each vault was the same size as the

width of its row buffer. Unfortunately, that seems unfeasible and is reflected in the specification

of the devices regarding the maximum request size they support. This can be viewed as a proxy

for what data transmission rates the TSV interconnections are able to handle. For instance, the

HBM configurations support a maximum request size of 128 B, although their row buffer widths

range from 1 KB to 2 KB. Table 5.3 shows the maximum request size each 3D-stacked memory

59

HMC 2.1 HBM3
0

3

6

9

12

S
p
ee
d
u
p

(a) MemSet

HMC 2.1 HBM3
0

2

4

6

S
p
ee
d
u
p

8MB 16MB

32MB 64MB

(b) MemCopy

HMC 2.1 HBM3
0

1

2

3

S
p
ee
d
u
p

(c) VecSum

HMC 2.1 HBM3
0

3

6

S
p
ee
d
u
p

(d) Selection

HMC 2.1 HBM3
0

2

4

6

8

10

S
p
ee
d
u
p

(e) Projection

HMC 2.1 HBM3
0

1

2

3

4

5

S
p
ee
d
u
p

(f) Stencil

HMC 2.1 HBM3
0

2

4

6

8

10

S
p
ee
d
u
p

(g) Bloom Filter

Figure 5.3: Execution time results of VIMA executing all workloads with maximum request size supported by each

3D-memory device normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

considered in our experiments. Figure 5.3 shows the simulation results for the seven applications

we are using as workload for the two memory configurations considering the maximum request

size of each configuration. Results for all memory configurations cited in Table 5.3 can be found

on Appendix B.

It is immediately clear that the results for the HMC 2.1 device are superior for almost

every application and input size simulated. This is because the maximum request size of this

3D-stacked memory, as can be seen on Table 5.3 is equal to the size of its row buffers, which

means it is theoretically able to support functioning even at the optimistic situation we considered

in our previous experiments.

On the other hand, experiments with the HBM designs achieve much more modest

results. Such effect is due to the HBM devices having fewer independent vaults than the Hybrid

Memory Cube and a row buffer width that is much larger than its maximum request size. This

causes VIMA to take 8 to 16 cycles/requests to consume the data in each row buffer, thus

being unable to efficiently utilize the bandwidth of the device as it is more geared toward bank

60

parallelism than vault parallelism. Naturally, in practice, this request size limitation is likely set

considering the data transmission rate the hardware is able to sustain.

5.4.3 64 B interconnection and request size scenario

HMC 2.1 HBM3
0

1

2

3

4

S
p
ee
d
u
p

(a) MemSet

HMC 2.1 HBM3
0

0.5

1

1.5

2

S
p
ee
d
u
p

8MB 16MB

32MB 64MB

(b) MemCopy

HMC 2.1 HBM3
0

0.5

1

1.5

S
p
ee
d
u
p

(c) VecSum

HMC 2.1 HBM3
0

1

2

3

4

S
p
ee
d
u
p

(d) Selection

HMC 2.1 HBM3
0

1

2

3

4
S
p
ee
d
u
p

(e) Projection

HMC 2.1 HBM3
0

1

2

3

S
p
ee
d
u
p

(f) Stencil

HMC 2.1 HBM3
0

2

4

6

8

S
p
ee
d
u
p

(g) Bloom Filter

Figure 5.4: Execution time results of VIMA executing all workloads with with 64 B request size normalized to

16-thread x86 baseline. Values higher than 1 indicate improvement in performance over the baseline.

Figure 5.4 shows the results for all experiments considering a 64 B interconnection and

request size scenario. The second constraint we must consider to obtain a realistic estimate of

the performance we can expect from VIMA regards the number of connections between main

memory and near-data processing device. In our first experiment, we assumed communication

between the main memory and VIMA could handle transferring up to 16384 B per cycle, which

would require 131072 individual connections between the circuits. This is unfeasible and would

have a very high area and energy consumption cost. The conditions we simulated on our second

set of experiments have a much smaller requirement, needing only a fraction of those connections

to handle 128- and 256-byte requests.

Still, a very reasonable assumption is that the connection between the devices is the

same size as the cache line considered by the host processor in its cache hierarchy, since that is

61

likely the size assumed by hardware manufacturers to be most commonly used. This makes for

a much more realistic design and still allows for good near-data performance, even if it limits

significantly the data throughput we can expect to be able to extract from the memory. Figures5.4

shows the simulation results for the seven applications we are using as workload for each of

memory configurations considering the 64 B request size.

As seen in the simulation results, even considering much harsher constraints, VIMA is

still able to either match or outperform a 16-thread x86 baseline in most situations, especially

with the HMC 2.1 memory device. This means, for instance, that VIMA could eliminate the

need for 15 cores, freeing them for other tasks.

5.5 ENERGY CONSUMPTION RESULTS

We now discuss results regarding the energy savings of VIMA in relation to the x86 baseline.

Energy consumption was estimated using CACTI and Multicore Power, Area, and Timing

(McPAT) tools, as is commonly done in related work. Both tools were used to evaluate power,

area, and timing parameters according to circuitry as modeled (Li et al., 2009). Figure 5.5 shows

our experiment results.

We see in our experiment results that VIMA is largely more energy-efficient than the

16-thread baseline for almost all experiments, regardless of application, underlying 3D-stacked

memory configuration or input size. All results here consider the maximum request size supported

by each memory device and show a minimum reduction in energy consumption of 51% across

all applications and input sizes.

The results for the bloom filter application are consistently the most positive across all
input sizes and memory configurations, but they reveal a limitation of our simulation environment.

The algorithm used by that workload includes a number of instructions that would be impractical

to implement on hardware at the vector width required, as they would need a very large number

of multiplexers and connections. This would greatly increase requirements of area, consequently

also significantly increasing energy consumption of the entire design. Our simulation environment

considers an ISA that does not include those highly complex instructions, such as memory gather

and memory scatter. Simulation results for this application would likely differ significantly from

these in a simulation environment that implements these instructions.

The energy efficiency VIMA offers is due mainly because of its usage of a single

processing core as host, coupled with a more efficient use of the main memory. While energy

consumption with processing cores for the baseline ranges from 42% to 81% of the total

consumption, processing core consumption for VIMA never accounts for more than 30% of

total system consumption, regardless of application, underlying memory device, input size or

assumption regarding data access efficiency.

5.6 DATA THROUGHPUT RESULTS

Figure 5.6 shows results for average throughput for our experiments considering all data streaming

kernels.

The graph considers absolute values of average data throughput achieved by VIMA

considering maximum request sizes and also a x86 with a number of cores varying between 1

and 16. All results refer to the largest input size considered in our experiments, 64 MB.

These results show how better usage of available data throughput is the main reason why

VIMA performs better than a traditional architecture when running data streaming applications.

It is also clear that whenever VIMA is unable to surpass the performance of the baseline

62

HMC 2.1 HBM3
0
10
20
30
40
50
60
70
80
90
100

S
av
in
g
s
(%

)

(a) MemSet

HMC 2.1 HBM3
0
10
20
30
40
50
60
70
80
90
100

S
av
in
g
s
(%

)

8MB 16MB

32MB 64MB

(b) MemCopy

HMC 2.1 HBM3
0
10
20
30
40
50
60
70
80
90
100

S
av
in
g
s
(%

)

(c) VecSum

HMC 2.1 HBM3
0
10
20
30
40
50
60
70
80
90
100

S
av
in
g
s
(%

)

(d) Selection

HMC 2.1 HBM3
0
10
20
30
40
50
60
70
80
90
100

S
av
in
g
s
(%

)

(e) Projection

HMC 2.1 HBM3
0
10
20
30
40
50
60
70
80
90
100

S
av
in
g
s
(%

)

(f) Stencil

HMC 2.1 HBM3
0
10
20
30
40
50
60
70
80
90
100

S
av
in
g
s
(%

)

(g) Bloom Filter

Figure 5.5: Energy savings results of VIMA executing all workloads with maximum request size supported by each

3D-memory device normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

MemSet MemCopy VecSum Selection Projection
0

30

60

90

120

150

180

210

240

270

D
at
a
T
h
ro
u
g
h
p
u
t
(G
B
/s
)

x86 16T VIMA (HMC 2.1) VIMA (HBM3)

Figure 5.6: Data throughput results executing all data streaming applications. Absolute values in GB/s.

regarding data throughput, it fails to surpass execution time performance as well, as can be seen

in Figures 5.3(b) and 5.3(c) for the HBM3 results.

63

VIMA achieves a data throughput of 267 GB/s when executing memset application on
the HMC 2.1, which is both very high and well within the theoretical maximum specified in the

specification of the HMC device (Hybrid Memory Cube Consortium, 2014), 320 GB/s. On the

other hand, the best throughput we were able to achieve with VIMA with the HBM3 memory

was 64 GB/s, when running the selection database query, although the theoretical maximum
bandwidth of the HBM3 device is 512 GB/s (Association, 2022).

This discrepancy in results likely happens because of how the two devices are organized.

While the HMC 2.1 has opportunities for vault parallelism, being split in 32 independent vaults,

the HBM3 is split only in 16. The fact that the maximum request size supported by the HMC

is equal to the width of its row buffers also causes VIMA to achieve better performance with

this design, as is it able to better utilize also the bank parallelism available in the device. In

contrast, although the HBM has much larger number of banks per vault, 64 against 8 in each

HMC vault, since its maximum request size is 128 B with a 1 KB-wide row buffer, VIMA takes

much longer to consume the data that is placed on the row buffer. This causes the device to be

unable to efficiently utilize the bank parallelism available as banks in the vaults become ready for

new accesses long before VIMA is ready to access them.

5.7 MULTITHREADING RESULTS

We ran experiments to analyze the performance of a multithreaded system using VIMA and

the speedup and data throughput results can be seen on Figures 5.7 and 5.8. Our experiments

considered the selection and projection database query operators running on a VIMA-enabled

system with increasing vector widths (256 B, 512 B and 1024 B) and number of cores (1, 2, 4

and 8 cores). The underlying memory chip we used was the HMC 2.1, as it has generally shown

the most advantageous results so far, and consider the 64 MB input size for both workloads.

Selection Projection
0

1

2

3

4

5

6

S
p
ee
d
u
p

(a) 256 B Vector

Selection Projection
0

2

4

6

8

10

S
p
ee
d
u
p

VIMA ST VIMA 2T

VIMA 4T VIMA 8T

(b) 512 B Vector

Selection Projection
0

3

6

9

12

15

S
p
ee
d
u
p

(c) 1024 B Vector

Figure 5.7: Speedup of VIMA over baseline running the selection and projection database queries with a varying

number of processing threads and (a) 256 B vector operands, (b) 512 B vector operands and (c) 1024 B vector

operands. Values higher than 1 indicate improvement in performance over the baseline.

The speedup results, which are normalized to a 16-thread x86 system, show that when

using smaller vector operands, VIMA is unable to match the baseline performance when running

on a single-threaded system. However, even with only one additional core, it outperforms the

baseline for the selection workload and matches baseline performance for projection. This

advantage scales with larger vectors and a higher number of threads, achieving a 17× improvement

in execution time over the baseline for the selection database query workload at 8 threads with a

1024 B vector operand width.

64

SelectionProjection
0

25

50

75

100

125

150

175

D
at
a
T
h
ro
u
g
h
p
u
t
(G
B
/s
)

(a) 256 B Vector

SelectionProjection
0

25

50

75

100

125

150

175

D
at
a
T
h
ro
u
g
h
p
u
t
(G
B
/s
)

VIMA ST VIMA 2T

VIMA 4T VIMA 8T

(b) 512 B Vector

SelectionProjection
0

25

50

75

100

125

150

175

D
at
a
T
h
ro
u
g
h
p
u
t
(G
B
/s
)

(c) 1024 B Vector

Figure 5.8: Data throughput of VIMA running the selection and projection database queries with a varying number

of processing threads and (a) 256 B vector operands, (b) 512 B vector operands and (c) 1024 B vector operands.

Values higher than 1 indicate improvement in performance over the baseline.

The data throughput results, as seen in Figure 5.8, showwhy there is such an improvement

in execution time performance with the addition of extra cores. As is immediately clear when

analyzing the results, the single-thread system with the smaller VIMA vectors is unable to apply

enough pressure to the memory, thus failing to achieve very high data throughput. Although

the load-ahead mechanism helps VIMA extract more throughput from the memory, not enough

instructions are ever in the VIMA instruction buffer at the same time to allow it to exploit the

full potential of the vault parallelism present in the HMC 2.1 memory chip. However, with

the addition of extra cores, many more instructions are issued at the same time, which then

enables VIMA, through the load-ahead mechanism, to load the operands of more instructions

out-of-order, thus utilizing much more of the bandwidth the memory device is able to offer.

As a result, even with a 256 B vector, VIMA outperforms the baseline by over 2× even

with only 2 cores at the selection database query. Under the same conditions it at least matches

performance of the baseline for the projection workload, achieving a 2× speedup when using 8

cores. This trend remains true for the results of the experiments with 512 B and 1024 B operands.

5.8 STATE-OF-THE-ART COMPARISON

To compare VIMA with another NDP architecture that falls under the same category, we ran

experiments using HIVE (Alves et al., 2016). HIVE is a similar architecture to VIMA in that it

also leverages the high parallelism of a 3D-stacked memory, namely the HMC 2.0. It also mirrors

VIMA in that its processing is based on FUs and offloading is done through large NDP-specific

SIMD instructions that are added to the processor ISA as extensions.

The two architectures differ in how they store data and handle instructions, which has

significant consequences for the performance they can achieve. For instance, HIVE uses a register

bank for dedicated data storage, which causes it to require a locking and unlocking mechanism to

manage access to its resources. Another important difference is that, in order to preserve precise

exceptions, we assume in our experiments that HIVE only handles one instruction at a time,

meaning all processing and data loading is done strictly in program order. The behavior of its

original design does not maintain precise exceptions and does not include this limitation.

We considered the MemSet, MemCopy and VecSum workloads with 8 MB, 16 MB,

32 MB, 64 MB input dataset sizes on a single-core system. The other workloads we considered

for VIMA were either not available for HIVE or include instructions not implemented in the

HIVE ISA. Thus, operand size for instructions of both architectures was kept the same, as was

65

the underlying 3D-stacked memory. All results are normalized to a 16-thread baseline with

AVX-512 capabilities. Figure 5.9 shows the results of our experiments.

HIVE VIMA
0

3

6

9

12

15

S
p
ee
d
u
p

(a) MemSet

HIVE VIMA
0

1

2

3

4

5

6

S
p
ee
d
u
p

8MB 16MB

32MB 64MB

(b) MemCopy

HIVE VIMA
0

1

2

3

S
p
ee
d
u
p

(c) VecSum

Figure 5.9: Speedup of VIMA and HIVE over 16-thread baseline running (a) memory set application, (b) memory
copy application and (c) vector sum application. Values higher than 1 indicate improvement in performance over the

baseline.

As the results show, VIMA has a distinct advantage over HIVE, mainly because of its

contributions to the state-of-the-art of this class of NDP device. While HIVE still out performs

the 16-thread baseline for all workloads, the execution time performance VIMA is able to provide

is superior. The memory set application results clearly highlight the advantage caused by the

load-ahead mechanism implemented by VIMA: although both devices function with the same

vector operand width and same underlying memory chip, VIMA is able to extract much more

performance, outperforming HIVE by over 2.5× even at the largest input size considered. Results

for memory copy follow a similar trend, with VIMA providing a 2.4× improvement in execution

time performance over HIVE. While improvements for the vector sum application are not as

significant, for the reasons already discussed in Section 5.4, VIMA still outperforms HIVE by at

least 32% at the largest input size.

5.9 SUMMARY

In this chapter, we evaluated the performance of VIMA, our NDP architecture proposal,

under many possible conditions. We simulate several Big Data kernels and several possible

configurations for the underlying main memory architecture.

Our first set of experiments was purely theoretical and assumed an optimistic situation.

In this situation the main memory of the system is capable to transmit its row buffers in a single

cycle to VIMA, thus being able to take advantage of as much data access parallelism as the

memory could provide. Our simulations found that, under such circumstances, VIMA would be

able to outperform a modern 16-thread x86 baseline by up to 10× regarding execution time when

running data streaming applications, while reducing energy consumption by 85%.

On a more realistic set of experiments considering the largest request size supported by

each distinct 3D-stacked memory configuration, results also showed significant improvements.

While the improvement in execution time reached a maximum of 3.96× for large datasets, VIMA

was still able to take advantage of a large portion of the bandwidth available in the HMC 2.1

memory chip, achieving a throughput of up to 267GB/s and a reduction of at least 75% in energy

consumption across all workloads. This set of experiments also revealed a clear advantage of the

HMC memory chip over the HBM design for our VIMA architecture due to the difference in row

buffer size and vault parallelism between the two architectures.

66

Finally, simulating a more limited configuration in which VIMA is only able to receive

64 B per cycle, results were still positive. VIMA provided a 2.12× improvement in execution

time for data streaming applications, achieving a data throughput of 76GB/s and a minimum

reduction in energy consumption of 52%.

When considering multithreading, a feature made possible by the contributions of VIMA

to fine-grain FU-based NDP accelerators, our simulations showed that VIMA was able to deliver

good performance even at smaller vector operand widths. We considered a 256 B vector operand

width with an underlying HMC 2.1 memory and were able to achieve a speedup of up to 5×

when running common database query operators on VIMA with a combination of our load-ahead

mechanism and instructions issued from eight parallel threads.

Lastly, we compared our proposal with HIVE, a state-of-the-art NDP architecture that

follows the same general principles as VIMA. Our results showed that, due to the improved

efficiency of VIMA, it is able to reduce execution time compared to HIVE by over 2× with the

same underlying memory chip and vector length.

Portions of the work presented on this chapter has been published at Euromicro

International Conference on Parallel, Distributed and Network-Based Processing (PDP) (Cordeiro

et al., 2021; Santos et al., 2022b), International Symposium on Performance Analysis of Systems

and Software (ISPASS) (Santos et al., 2022a), and XXII Escola Regional de Alto Desempenho

da Região Sul (ERAD/RS) (Santos and Alves, 2022). A research paper featuring portions of this

work is currently under review at The Journal of Supercomputing.

67

6 CONCLUSIONS AND FUTURE WORK

With the rise of data-driven applications, the memory wall continues to be a significant bottleneck.

Near-Data Processing (NDP) attempts to alleviate this issue by placing processing near the data,

thus avoiding most of the data movement that would be otherwise be necessary as most required

data would be fetched from the main memory, causing high latencies and energy consumption.

With the advent of 3D-stacked memories, NDP research has seen a wealth of new architecture

proposals that take advantage of the efficient logic-storage integration such devices offer to

implement logic processing near the data.

In this thesis we propose Vector-In-Memory Architecture (VIMA), a NDP architecture

that improves on the existing state-of-the-art. By expanding a common Functional Unit (FU)-

based processing model found in fine-grain NDP architecture proposals in the literature, VIMA

implements precise exceptions near the data and enables efficient usage of internal bandwidth in

the memory. Our design also leverages such advancements to enable near-data multithreading.

The experimental results we obtained show that a single-thread VIMA-enabled pro-

cessing can successfully extract enough data throughput from the memory to outperform a

16-thread x86 baseline with traditional Single Instruction Multiple Data (SIMD) extensions.

While providing a speedup of at least 2× when dealing with data-streaming applications, it

also reduces energy consumption by as much as 90%, mostly due to its function with a single

processing core. Against a closely related existing state-of-the-art NDP architecture, VIMA is

able to speed up execution between 32% and 153% due to its improved usage of data throughput.

VIMA is hardware-agnostic and can function with either High Bandwidth Memory (HBM) or

Hybrid Memory Cube (HMC), the two most common 3D-stacked memory products commercially

available. It does, however, achieve its best results with the HMC 2.1 design.

At the beginning of this thesis, we posed the following hypothesis: it is possible to
provide precise exceptions, improved memory access and multithreading with fine-grain
NDP to speedup data streaming applications. As discussed in chapters 4 and 5, our proposal
implements precise exceptions while optimizing usage of the underlying memory. It indeed

achieves improved performance both against a modern multithreaded x86 system and a state-of-

the-art fine-grain NDP system when processing several common data streaming applications,

which confirms our hypothesis.

6.1 FUTURE WORK

Our results with the HMC 2.1 memory chip have been very positive, but the HBM has become

the Joint Electron Device Engineering Council (JEDEC) standard, causing development of the

HMC to be discontinued. One avenue for future work is to explore how we can modify VIMA to

better explore the throughput available in a HBM memory. On the other hand, if we consider the

results of VIMA with a HBM3 against a baseline also using a HBM3 memory, VIMA is still able

to provide a significant execution time improvement. Such results can be seen on Appendix B.

The approach we use to integrate VIMA with the host system requires modifications to

the processor. An interesting opportunity for future work is to explore options to make integration

more seamless so as to facilitate widespread adoption by removing this barrier. Some existing

work in the literature has already proposed a few strategies to achieve this with other NDP

proposals (Santos et al., 2021a).

68

Other avenues for future work include implementing a NDP-aware cache coherence

mechanism such as CoNDA (Boroumand et al., 2019) or LazyPIM (Boroumand et al., 2016);

and exploring the possibility of a system with multiple instances of VIMA in a Non-Uniform

Memory Access (NUMA) architecture.

6.2 LIST OF PUBLICATIONS

The list below presents the published works related to this thesis proposal, ordered by publication

year:

• CORDEIRO, ALINE S.; SANTOS, SAIRO R.; MOREIRA, FRANCIS B.; SANTOS,

PAULO C.; CARRO, LUIGI; ALVES, MARCO A. Z. Machine Learning Migration for

Efficient Near-Data Processing In: 29th Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing (PDP), 2021.

• SANTOS, PAULO C.; MOREIRA, FRANCIS B.; CORDEIRO, ALINE S.; SANTOS,
SAIRO R.; KEPE, TIAGO R.; CARRO, LUIGI; ALVES, MARCO A. Z. Survey on

Near-Data Processing: Applications and Architectures In: Journal of Integrated Circuits

and Systems, 2021.

• CORDEIRO, ALINE S.; SANTOS, SAIRO R.; MOREIRA, FRANCIS B.; SANTOS,

PAULO C.; ALVES, MARCO A. Z. Efficient Machine Learning execution with Near-

Data Processing In: Microprocessors and Microsystems, 2022.

• SANTOS, SAIRO R.; MOREIRA, FRANCIS B.; KEPE, TIAGOR.; SANTOS, PAULO

C.; ALVES, MARCO A. Z. Advancing Database System Operators with Near-Data

Processing In: 2022 30th Euromicro International Conference on Parallel, Distributed

and Network-based Processing (PDP), 2022.

• SANTOS, SAIRO R.; ALVES, MARCO A. Z.; CORDEIRO, ALINE S.; MOREIRA,

FRANCIS B.; SANTOS, PAULO C.; CARRO, LUIGI Vector In Memory Architecture

for simple and high efficiency computing In arXiv preprint arXiv:2203.14882.

• SANTOS, SAIRO R.; ALVES, MARCO A. Z. Impacto da Largura do Vetor de

Instruções SIMD em Arquiteturas de Processamento Próximo à Memória In XXII

Escola Regional de Alto Desempenho da Região Sul (ERAD/RS), 2022.

• SANTOS, SAIRO R.; KEPE, TIAGO R.; MOREIRA, FRANCIS B.; ALVES, MARCO

A. Z. Advancing Near-Data Processing with Precise Exceptions and Efficient Data

Fetching In: 2022 IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS), 2022.

We also have the follow paper under review:

• SANTOS, SAIRO R.; MOREIRA, FRANCIS B.; KEPE, TIAGOR.; SANTOS, PAULO

C.; ALVES, MARCO A. Z. Advancing Database System Operators with Near-Data

Processing In: The Journal of Supercomputing, 2022.

69

REFERENCES

Aga, S., Jeloka, S., Subramaniyan, A., Narayanasamy, S., Blaauw, D., and Das, R. (2017).

Compute caches. In Int. Symp. on High Performance Computer Architecture (HPCA).

Ahmed, H., Santos, P. C., Lima, J. P., Moura, R. F., Alves, M. A., Beck, A. C., and Carro, L.

(2019). A compiler for automatic selection of suitable processing-in-memory instructions. In

Design, Automation & Test in Europe Conference & Exhibition (DATE).

Ahmed, I., Zoranic, A., Javaid, S., Richard, G., and Roussev, V. (2013). Rule-based integrity

checking of interrupt descriptor tables in cloud environments. In IFIP International Conference
on Digital Forensics, pages 305–328. Springer.

Ahn, J. et al. (2015a). A scalable processing-in-memory accelerator for parallel graph processing.

In Int. Symp. on Computer Architecture.

Ahn, J., Yoo, S., Mutlu, O., and Choi, K. (2015b). Pim-enabled instructions: A low-overhead,

locality-aware processing-in-memory architecture. In 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 336–348. IEEE.

Ali, M. F., Jaiswal, A., and Roy, K. (2020). In-memory low-cost bit-serial addition using

commodity dram technology. Trans. on Circuits and Systems (TCS).

Alian, M. et al. (2018). Application-transparent near-memory processing architecture with

memory channel network. In Int. Symp. on Microarchitecture (MICRO).

Alves, M. A., Santos, P. C., Diener, M., and Carro, L. (2015a). Opportunities and challenges of

performing vector operations inside the dram. In Int. Symp. on Memory Systems (MEMSYS).

Alves, M. A., Santos, P. C., Moreira, F. B., Diener, M., and Carro, L. (2015b). Saving memory

movements through vector processing in the dram. In Int. Conf. on Compilers, Architecture
and Synthesis for Embedded Systems (CASES).

Alves, M. A. Z. (2014). Increasing Energy Efficiency of Processor Caches via Line Usage
Predictors. PhD thesis, Universidade Federal do Rio Grande do Sul.

Alves, M. A. Z. et al. (2015c). Sinuca: A validated micro-architecture simulator. In Int. Conf. on
High Performance Computing and Communications.

Alves, M. A. Z. et al. (2016). Large vector extensions inside the hmc. In Design, Automation &
Test in Europe Conf.

Alves, M. A. Z., Santos, S., Cordeiro, A. S., Moreira, F. B., Santos, P. C., and Carro, L. (2022).

Vector in memory architecture for simple and high efficiency computing.

AMD (2015). High bandwidth memory.

Ando, K., Ueyoshi, K., Orimo, K., Yonekawa, H., Sato, S., Nakahara, H., Takamaeda-Yamazaki,

S., Ikebe, M., Asai, T., Kuroda, T., et al. (2017). Brein memory: A single-chip binary/ternary

reconfigurable in-memory deep neural network accelerator achieving 1.4 tops at 0.6 w. Journal
of Solid-State Circuits.

70

Angizi, S. et al. (2020). Pim-assembler: A processing-in-memory platform for genome assembly.

In Design Automation Conf. (DAC).

Angizi, S., Sun, J., Zhang, W., and Fan, D. (2019). Aligns: A processing-in-memory accelerator

for dna short read alignment leveraging sot-mram. In Design Automation Conf. (DAC).

Association, J. S. S. T. (2013). High bandwidth memory (hbm) dram, specification jesd235.

https://www.jedec.org/.

Association, J. S. S. T. (2022). High bandwidth memory (hbm) dram, specification jesd238.

https://www.jedec.org/.

Awan, A. J., Brorsson, M., Vlassov, V., and Ayguade, E. (2016). Micro-architectural characteri-

zation of apache spark on batch and stream processing workloads. In Int. Conf. on Big Data
and Cloud Computing (BDCloud).

Awan, A. J., Ohara, M., Ayguadé, E., Ishizaki, K., Brorsson, M., and Vlassov, V. (2017).

Identifying the potential of near data processing for apache spark. In Int. Symp. on Memory
Systems (MEMSYS).

Azarkhish, E., Rossi, D., Loi, I., and Benini, L. (2018). Neurostream: Scalable and energy

efficient deep learning with smart memory cubes. Trans. on Parallel & Distributed Systems.

Bach, M., Charney, M., Cohn, R., Demikhovsky, E., Devor, T., Hazelwood, K., Jaleel, A., et al.

(2010). Analyzing parallel programs with pin. Computer, 43.

Balasubramonian, R. et al. (2014). Near-data processing: Insights from a micro-46 workshop.

IEEE Micro, 34.

Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu, E., et al. (2018). Google

workloads for consumer devices: Mitigating data movement bottlenecks. In Int. Conf. on
Architectural Support for Programming Languages and Operating Systems.

Boroumand, A., Ghose, S., Patel, M., Hassan, H., Lucia, B., Ausavarungnirun, R., Hsieh, K.,

Hajinazar, N., Malladi, K. T., Zheng, H., et al. (2019). Conda: Efficient cache coherence

support for near-data accelerators. In Proceedings of the 46th International Symposium on
Computer Architecture, pages 629–642.

Boroumand, A., Ghose, S., Patel, M., Hassan, H., Lucia, B., Hsieh, K., Malladi, K. T.,

Zheng, H., and Mutlu, O. (2016). Lazypim: An efficient cache coherence mechanism for

processing-in-memory. IEEE Computer Architecture Letters, 16(1):46–50.

Cadambi, S., Majumdar, A., Becchi, M., Chakradhar, S., and Graf, H. P. (2010). A programmable

parallel accelerator for learning and classification. In Int. Conf. on Parallel architectures and
Compilation Techniques (PACT).

Cali, D. S., Kalsi, G. S., Bingöl, Z., Firtina, C., Subramanian, L., Kim, J. S., Ausavarungnirun,

R., Alser, M., Gomez-Luna, J., Boroumand, A., et al. (2020). Genasm: A high-performance,

low-power approximate string matching acceleration framework for genome sequence analysis.

In Int. Symp. on Microarchitecture (MICRO).

Chang, K. K. (2017). Understanding and improving the latency of dram-based memory systems.

arXiv preprint arXiv:1712.08304.

71

Cheng, M., Xia, L., Zhu, Z., Cai, Y., Xie, Y., Wang, Y., and Yang, H. (2017). Time: A training-

in-memory architecture for memristor-based deep neural networks. In Design Automation
Conf. (DAC).

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., and Xie, Y. (2016). Prime: A

novel processing-in-memory architecture for neural network computation in reram-based main

memory. ACM SIGARCH Computer Architecture News.

Cho, B. Y., Kwon, Y., Lym, S., and Erez, M. (2020). Near data acceleration with concurrent host

access. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pages 818–831. IEEE.

Coorporation, I. (2009). Intel 64 and ia-32 architectures optimization reference manual.

Cordeiro, A. S. (2020). Porting machine learning algorithms to vector-in-memory architecture.

Master’s thesis, Universidade Federal do Paraná.

Cordeiro, A. S. et al. (2021). Machine learning migration for efficient near-data processing. In

Int. Conf. on Parallel, Distributed and Network-Based Processing (PDP).

Cordeiro, A. S., Kepe, T. R., Tomé, D. G., de Almeida, E. C., andAlves, M. A. Z. (2017). Intrinsics-

hmc: an automatic trace generator for simulations of processing-in-memory instructions. Symp.
Sistemas Computacionais de Alto Desempenho (WSCAD).

Deng, Q., Jiang, L., Zhang, Y., Zhang, M., and Yang, J. (2018). Dracc: a dram based accelerator

for accurate cnn inference. In Design Automation Conf. (DAC).

Deng, Q., Zhang, Y., Zhang, M., and Yang, J. (2019). Lacc: Exploiting lookup table-based fast

and accurate vector multiplication in dram-based cnn accelerator. In Design Automation Conf.
(DAC).

Devaux, F. (2019). The true processing in memory accelerator. In Hot Chips Symp.

Drebes, A., Chelini, L., Zinenko, O., Cohen, A., Corporaal, H., Grosser, T., Vadivel, K., and

Vasilache, N. (2020). Tc-cim: Empowering tensor comprehensions for computing-in-memory.

In Int. Workshop on Polyhedral Compilation Techniques (IMPACT).

Drumond, M., Daglis, A., Mirzadeh, N., Ustiugov, D., Picorel, J., Falsafi, B., Grot, B., and

Pnevmatikatos, D. N. (2017). The mondrian data engine. In Int. Symp. on Computer
Architecture (ISCA).

Drumond, M. et al. (2018). Algorithm/architecture co-design for near-memory processing.

Operating Systems Review.

Eckert, C., Wang, X., Wang, J., Subramaniyan, A., Iyer, R., Sylvester, D., Blaaauw, D., and Das,

R. (2018). Neural cache: Bit-serial in-cache acceleration of deep neural networks. In Int.
Symp. on Computer Architecture (ISCA).

Eckert, Y., Jayasena, N., and Loh, G. H. (2014). Thermal feasibility of die-stacked processing in

memory. In MEMSYS ’16: Proceedings of the Second International Symposium on Memory
Systems. Citeseer.

Elliott, D. G., Stumm, M., Snelgrove, W. M., Cojocaru, C., and McKenzie, R. (1999). Computa-

tional ram: Implementing processors in memory. IEEE Design & Test of Computers.

72

et al., V. S. (2017). Ambit: in-memory accelerator for bulk bitwise operations using commodity

DRAM technology. In Int. Symp. on Microarchitecture (MICRO).

Farmahini-Farahani, A., Ahn, J. H., Morrow, K., and Kim, N. S. (2014). Drama: An architecture

for accelerated processing near memory. Computer Architecture Letters (CAL).

Farmahini-Farahani, A., Ahn, J. H., Morrow, K., and Kim, N. S. (2015). Nda: Near-dram

acceleration architecture leveraging commodity dram devices and standard memory modules.

In Int. Symp. on High Performance Computer Architecture (HPCA).

Gao, F., Tziantzioulis, G., and Wentzlaff, D. (2019). Computedram: In-memory compute using

off-the-shelf drams. In Int. Symp. on Microarchitecture (MICRO).

Gao, M., Ayers, G., and Kozyrakis, C. (2015). Practical near-data processing for in-memory

analytics frameworks. In Parallel Architecture and Compilation (PACT).

Gao, M. and Kozyrakis, C. (2016). Hrl: Efficient and flexible reconfigurable logic for near-data

processing. In Int. Smyp. on High Performance Computer Architecture (HPCA).

Gao, M., Pu, J., Yang, X., Horowitz, M., and Kozyrakis, C. (2017). Tetris: Scalable and efficient

neural network acceleration with 3d memory. ACM SIGOPS Operating Systems Review.

Ghiasi, N. M., Park, J., Mustafa, H., Kim, J., Olgun, A., Gollwitzer, A., Cali, D. S., Firtina, C.,

Mao, H., Alserr, N. A., et al. (2022). Genstore: A high-performance and energy-efficient

in-storage computing system for genome sequence analysis. In Int. Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

Gupta, S. et al. (2019). Rapid: A reram processing in-memory architecture for dna sequence

alignment. In Int. Symp. on Low Power Electronics and Design (ISLPED).

Gupta, S., Imani, M., and Rosing, T. (2018). Felix: Fast and energy-efficient logic in memory. In

Int. Conf. on Computer-Aided Design (ICCAD).

Gómez-Luna, J., Hajj, I. E., Fernandez, I., Giannoula, C., Oliveira, G. F., and Mutlu, O. (2021).

Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory

Architecture.

Hadidi, R., Nai, L., Kim, H., and Kim, H. (2017). Cairo: A compiler-assisted technique for

enabling instruction-level offloading of processing-in-memory. Trans. on Architecture and
Code Optimization (TACO).

Haj-Ali, A., Ben-Hur, R., Wald, N., Ronen, R., and Kvatinsky, S. (2018). Not in name alone: A

memristive memory processing unit for real in-memory processing. IEEE Micro.

Hajinazar, N., Oliveira, G. F., Gregorio, S., Ferreira, J. D., Ghiasi, N. M., Patel, M., Alser, M.,

Ghose, S., Gómez-Luna, J., and Mutlu, O. (2021). Simdram: a framework for bit-serial simd

processing using dram. In Int. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

Hashemi, M., Ebrahimi, E., Mutlu, O., Patt, Y. N., et al. (2016). Accelerating dependent cache

misses with an enhanced memory controller. In Int. Symp. on Computer Architecture (ISCA).

73

Hong, B., Kim, G., Ahn, J. H., Kwon, Y., Kim, H., and Kim, J. (2016). Accelerating linked-list

traversal through near-data processing. In Proceedings of the 2016 International Conference
on Parallel Architectures and Compilation, pages 113–124.

Hrusca, J. (2015). PIM comparison. https://www.extremetech.com/computing/
197720-beyond-ddr4-understand-the-differences-between-wide-
io-hbm-and-hybrid-memory-cube. [01-Jul-2019].

Hsieh, K., Ebrahimi, E., Kim, G., Chatterjee, N., O’Connor, M., Vijaykumar, N., Mutlu, O.,

and Keckler, S. W. (2016a). Transparent offloading and mapping (tom) enabling programmer-

transparent near-data processing in gpu systems. ACM SIGARCH Computer Architecture News,
44(3):204–216.

Hsieh, K., Khan, S., Vijaykumar, N., Chang, K. K., Boroumand, A., Ghose, S., and Mutlu,

O. (2016b). Accelerating pointer chasing in 3d-stacked memory: Challenges, mechanisms,

evaluation. In Int. Conf. on Computer Design (ICCD).

Huang, Y. et al. (2020). A heterogeneous pim hardware-software co-design for energy-efficient

graph processing. In Int. Parallel and Distributed Processing Symp. (IPDPS).

Huangfu, W., Malladi, K. T., Li, S., Gu, P., and Xie, Y. (2020). Nest: Dimm based near-

data-processing accelerator for k-mer counting. In Int. Conf. On Computer Aided Design
(ICCAD).

Hybrid Memory Cube Consortium (2012). Hybrid memory cube specification rev. 2.0. http:
//www.hybridmemorycube.org/.

Hybrid Memory Cube Consortium (2013). Hybrid memory cube specification rev. 2.0. http:
//www.hybridmemorycube.org/.

Hybrid Memory Cube Consortium (2014). Hybrid memory cube specification 2.1.

http://www.hybridmemorycube.org/.

Imani, M., Gupta, S., Kim, Y., and Rosing, T. (2019). Floatpim: In-memory acceleration of deep

neural network training with high precision. In Int. Symp. on Computer Architecture (ISCA).

Jacob, B., Wang, D., and Ng, S. (2010). Memory systems: cache, DRAM, disk. Morgan

Kaufmann.

Jain, R. (1990). The art of computer systems performance analysis: techniques for experimental
design, measurement, simulation, and modeling. John Wiley & Sons.

Jain, S., Ranjan, A., Roy, K., and Raghunathan, A. (2018). Computing in memory with

spin-transfer torque magnetic ram. Trans. on Very Large Scale Integration (VLSI) Systems
(TVLSI).

Jun, H., Nam, S., Jin, H., Lee, J.-C., Park, Y. J., and Lee, J. J. (2017). High-bandwidth memory

(hbm) test challenges and solutions. IEEE Design & Test.

Kara, K., Alistarh, D., Alonso, G., Mutlu, O., and Zhang, C. (2017). Fpga-accelerated dense linear

machine learning: A precision-convergence trade-off. In Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM).

74

Kepe, T. R. et al. (2019). Database processing-in-memory: An experimental study. In Proc.
VLDB Endow.

Khaldi, D. and Chapman, B. (2016). Towards automatic hbm allocation using llvm: a case

study with knights landing. In Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC).

Kim, S., Oh, H., Park, C., Cho, S., and Lee, S.-W. (2011). Fast, energy efficient scan inside flash

memory ssds. In Int. Workshop on Accelerating Data Management Systems Using Modern
Processor and Storage Architectures (ADMS VLDB).

Kocberber, O., Grot, B., Picorel, J., Falsafi, B., Lim, K., and Ranganathan, P. (2013). Meet the

walkers accelerating index traversals for in-memory databases. In Int. Symp. on Microarchitec-
ture (MICRO).

Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E. G., Kolodny, A., and

Weiser, U. C. (2014). Magic—memristor-aided logic. Trans. on Circuits and Systems.

Kwon, Y., Yu, H., Peter, S., Rossbach, C. J., and Witchel, E. (2016). Coordinated and efficient

huge page management with ingens. In USENIX Symp. on Operating Systems Design and
Implementation.

Kwon, Y.-C., Lee, S. H., Lee, J., Kwon, S.-H., Ryu, J. M., Son, J.-P., Seongil, O., Yu, H.-S., Lee,

H., Kim, S. Y., Cho, Y., Kim, J. G., Choi, J., Shin, H.-S., Kim, J., Phuah, B., Kim, H., Song,

M. J., Choi, A., Kim, D., Kim, S., Kim, E.-B., Wang, D., Kang, S., Ro, Y., Seo, S., Song,

J., Youn, J., Sohn, K., and Kim, N. S. (2021). 25.4 a 20nm 6gb function-in-memory dram,

based on hbm2 with a 1.2tflops programmable computing unit using bank-level parallelism,

for machine learning applications. In Int. Solid-State Circuits Conf. (ISSCC).

Lee, V. T., Mazumdar, A., del Mundo, C. C., Alaghi, A., Ceze, L., and Oskin, M. (2018).

Application codesign of near-data processing for similarity search. In Int. Parallel and
Distributed Processing Symp. (IPDPS).

Lehtonen, E. and Laiho, M. (2009). Stateful implication logic with memristors. In Int. Symp. on
Nanoscale Architectures (ISNA).

Li, J., Wang, X., Tumeo, A., Williams, B., Leidel, J. D., and Chen, Y. (2019). Pims: a lightweight

processing-in-memory accelerator for stencil computations. In Proceedings of the International
Symposium on Memory Systems, pages 41–52.

Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., and Jouppi, N. P. (2009).

Mcpat: An integrated power, area, and timing modeling framework for multicore and manycore

architectures. In Proceedings of the 42nd annual ieee/acm international symposium on
microarchitecture, pages 469–480.

Li, S., Niu, D., Malladi, K. T., Zheng, H., Brennan, B., and Xie, Y. (2017). Drisa: A dram-based

reconfigurable in-situ accelerator. In Int. Symp. on Microarchitecture (MICRO).

Lima, J. a. P., Santos, P. C., Alves, M. A. Z., Beck, A. C. S., and Carro, L. (2018). Design space

exploration for pim architectures in 3d-stacked memories. In Computing Frontiers (CF).

75

Liu, J., Zhao, H., Ogleari, M. A., Li, D., and Zhao, J. (2018). Processing-in-memory for energy-

efficient neural network training: A heterogeneous approach. In Int. Symp. on Microarchitecture
(MICRO).

Loh, G. H., Jayasena, N., Oskin, M., Nutter, M., Roberts, D., Meswani, M., Zhang, D. P.,

and Ignatowski, M. (2013). A processing in memory taxonomy and a case for studying

fixed-function pim. In Workshop on Near-Data Processing (WoNDP).

Long, Y., Lee, E., Kim, D., and Mukhopadhyay, S. (2020). Q-pim: A genetic algorithm based

flexible dnn quantization method and application to processing-in-memory platform. In Design
Automation Conf. (DAC).

Min, C., Mao, J., Li, H., and Chen, Y. (2019). Neuralhmc: an efficient hmc-based accelerator for

deep neural networks. In Asia and South Pacific Design Automation Conf. (ASPDAC).

Mirzadeh, N., Koçberber, Y. O., Falsafi, B., and Grot, B. (2015). Sort vs. hash join revisited for

near-memory execution. In 5th Workshop on Architectures and Systems for Big Data (ASBD
2015).

Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., and Kim, H. (2017). Graphpim: Enabling

instruction-level pim offloading in graph computing frameworks. In 2017 IEEE International
symposium on high performance computer architecture (HPCA), pages 457–468. IEEE.

Nair, R., Antao, S. F., Bertolli, C., Bose, P., Brunheroto, J. R., Chen, T., Cher, C.-Y., Costa,

C. H., Doi, J., Evangelinos, C., et al. (2015). Active memory cube: A processing-in-memory

architecture for exascale systems. IBM Journal of Research and Development, 59(2/3):17–1.

Nayak, S. and Patgiri, R. (2019). A review on role of bloom filter on dna assembly. IEEE Access,
7:66939–66954.

Oliveira, G. F. et al. (2017). Nim: An hmc-based machine for neuron computation. In Int. Symp.
on Applied Reconfigurable Computing.

Olmen, J. V., Mercha, A., Katti, G., et al. (2008). 3D stacked IC demonstration using a through

silicon via first approach. In Int. Electron Devices Meeting.

Patgiri, R., Nayak, S., and Borgohain, S. K. (2018). Role of bloom filter in big data research: A

survey. International Journal of Advanced Computer Science and Applications.

Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C., Thomas, R.,

and Yelick, K. (1997). A case for intelligent ram. IEEE Micro.

Pugsley, S. H., Deb, A., Balasubramonian, R., and Li, F. (2015). Fixed-function hardware sorting

accelerators for near data mapreduce execution. In Int. Conf. on Computer Design (ICCD).

Pugsley, S. H. et al. (2014). NDC: analyzing the impact of 3d-stacked memory+logic devices

on mapreduce workloads. In Int. Symp. on Performance Analysis of Systems and Software
(ISPASS).

Ramanathan, A. K., Kalsi, G. S., Srinivasa, S., Chandran, T. M., Pillai, K. R., Omer, O. J.,

Narayanan, V., and Subramoney, S. (2020). Look-up table based energy efficient processing in

cache support for neural network acceleration. In Int. Symp. on Microarchitecture (MICRO).

76

Sadredini, E., Rahimi, R., Lenjani, M., Stan, M., and Skadron, K. (2020). Impala: Algorith-

m/architecture co-design for in-memory multi-stride pattern matching. In Int. Symp. on High
Performance Computer Architecture (HPCA).

Santos, P. C., de Lima, J. P. C., de Moura, R. F., Ahmed, H., Alves, M. A., Beck, A. C., and

Carro, L. (2019a). A technologically agnostic framework for cyber-physical and iot processing-

in-memory-based systems simulation. Microprocessors and Microsystems (MICPRO).

Santos, P. C. et al. (2017). Operand size reconfiguration for big data processing in memory. In

Design, Automation & Test in Europe Conf.

Santos, P. C., Forlin, B. E., and Carro, L. (2021a). Providing plug n’play for processing-in-memory

accelerators. In 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 651–656. IEEE.

Santos, P. C., Lima, J. P., Moura, R. F., Alves, M. A., Carro, L., and Beck, A. C. S. (2019b).

Solving datapath issues on near-data accelerators. In Int. Embedded Systems Symp. (IESS),
IESS ’19.

Santos, P. C., Moreira, F. B., Cordeiro, A. S., Santos, S. R., Kepe, T. R., Carro, L., and Alves, M.

A. Z. (2021b). Survey on near-data processing: Applications and architectures. Journal of
Integrated Circuits and Systems, 16(2):1–17.

Santos, S. R. and Alves, M. A. Z. (2022). Impacto da largura do vetor de instruções simd

em arquiteturas de processamento próximo à memória. In XXII Escola Regional de Alto
Desempenho da Região Sul (ERAD/RS).

Santos, S. R. et al. (2022a). Advancing near-data processing with precise exceptions and efficient

data fetching. In International Symposium on Performance Analysis of Systems and Software
(ISPASS).

Santos, S. R., Moreira, F. B., Kepe, T. R., and Alves, M. A. Z. (2022b). Advancing database system

operators with near-data processing. In Int. Conf. on Parallel, Distributed and Network-Based
Processing (PDP).

Schuiki, F., Schaffner, M., Gürkaynak, F. K., and Benini, L. (2018). A scalable near-memory

architecture for training deep neural networks on large in-memory datasets. IEEE Transactions
on Computers, 68(4):484–497.

Sengupta, S. and Rana, A. (2020). Role of bloom filter in analysis of big data. In 2020 8th
International Conference on Reliability, Infocom Technologies and Optimization (Trends and
Future Directions)(ICRITO), pages 6–9. IEEE.

Seshadri, V., Kim, Y., Fallin, C., Lee, D., Ausavarungnirun, R., Pekhimenko, G., Luo, Y., Mutlu,

O., Gibbons, P. B., Kozuch, M. A., et al. (2018). Rowclone: Accelerating data movement and

initialization using dram. arXiv preprint arXiv:1805.03502.

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu, M., Williams,

R. S., and Srikumar, V. (2016). Isaac: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars. ACM SIGARCH Computer Architecture News.

Sim, J., Seol, H., and Kim, L.-S. (2018). Nid: processing binary convolutional neural network in

commodity dram. In Int. Conf. on Computer-Aided Design (ICCAD).

77

Singh, G., Alser, M., Cali, D. S., Diamantopoulos, D., Gomez-Luna, J., Corporaal, H., and Mutlu,

O. (2021). Fpga-based near-memory acceleration of modern data-intensive applications. IEEE
Micro.

Song, L., Qian, X., Li, H., and Chen, Y. (2017). Pipelayer: A pipelined reram-based accelerator

for deep learning. In Int. Symp. on High Performance Computer Architecture (HPCA).

Song, L., Zhuo, Y., Qian, X., Li, H., and Chen, Y. (2018). Graphr: Accelerating graph processing

using reram. In Int. Symp. on High Performance Computer Architecture (HPCA).

Sun, Y., Wang, Y., and Yang, H. (2017). Energy-efficient sql query exploiting rram-based

process-in-memory structure. In Non-Volatile Memory Systems and Applications Symp.
(NVMSA).

Taha, T. M., Hasan, R., Yakopcic, C., and McLean, M. R. (2013). Exploring the design space of

specialized multicore neural processors. In Int. Joint Conference on Neural Networks (IJCNN).

Takamaeda-Yamazaki, S., Ueyoshi, K., Ando, K., Uematsu, R., Hirose, K., Ikebe, M., Asai, T.,

and Motomura, M. (2017). Accelerating deep learning by binarized hardware. In Asia-Pacific
Signal and Information Processing Association Annual Summit and Conf. (APSIPA ASC).

Thottethodi, M., Vijaykumar, T., et al. (2018). Millipede: Die-stacked memory optimizations

for big data machine learning analytics. In Int. Parallel and Distributed Processing Symp.
(IPDPS).

Tomé, D. G. et al. (2018). Hipe: Hmc instruction predication extension applied on database

processing. In Design, Automation & Test in Europe Conf.

von Neumann, J. (1945). First draft of a report on the edvac. contract no. w-670-ord-4926.

The Origins of Digital Computers: Selected Papers, 3rd edn (Berlin/Heidelberg/New York:
Springer-Verlag).

Wang, X., Yu, J., Augustine, C., Iyer, R., and Das, R. (2019). Bit prudent in-cache acceleration of

deep convolutional neural networks. In Int. Symp. on High Performance Computer Architecture
(HPCA).

Wei, M., Snir, M., Torrellas, J., and Tremaine, R. B. (2005). A near-memory processor for vector,

streaming and bit manipulation workloads. Technical report, Dept. of Computer Science,

UIUC.

Wulf, W. A. and McKee, S. A. (1995). Hitting the memory wall: implications of the obvious.

SIGARCH Computer Architecture News.

Xi, S. L., Augusta, A., Athanassoulis, M., and Idreos, S. (2015). Beyond the wall: Near-data

processing for databases. In Int. Workshop on Data Management on New Hardware (DaMoN).

Xie, L., Cai, H., and Yang, J. (2019). Real: Logic and arithmetic operations embedded in rram

for general-purpose computing. In Int. Symp. on Nanoscale Architectures (NANOARCH).

Xin, X., Zhang, Y., and Yang, J. (2020). Elp2im: Efficient and low power bitwise operation

processing in dram. In Int. Symp. on High Performance Computer Architecture (HPCA).

78

Yin, S., Jiang, Z., Kim, M., Gupta, T., Seok, M., and Seo, J.-S. (2019). Vesti: Energy-efficient

in-memory computing accelerator for deep neural networks. Trans. on Very Large Scale
Integration (VLSI) Systems.

Zhang, D., Jayasena, N., Lyashevsky, A., Greathouse, J. L., Xu, L., and Ignatowski, M. (2014).

Top-pim: Throughput-oriented programmable processing in memory. In Int. Symp. on
High-performance Parallel and Distributed Computing (HPDC).

Zhang, D. P., Jayasena, N., Lyashevsky, A., Greathouse, J., Meswani, M., Nutter, M., and

Ignatowski, M. (2013). A new perspective on processing-in-memory architecture design. In

SIGPLAN Workshop on Memory Systems Performance and Correctness.

Zhu, Q., Akin, B., Sumbul, H. E., Sadi, F., Hoe, J. C., Pileggi, L., and Franchetti, F. (2013a). A

3d-stacked logic-in-memory accelerator for application-specific data intensive computing. In

Int. 3D Systems Integration Conf. (3DIC).

Zhu, Q., Graf, T., Sumbul, H. E., Pileggi, L., and Franchetti, F. (2013b). Accelerating sparse

matrix-matrix multiplication with 3d-stacked logic-in-memory hardware. InHigh Performance
Extreme Computing Conf. (HPEC).

79

APPENDIX A – TABLE OF INTRINSICS-VIMA INSTRUCTIONS

Table A.1 describes all instructions implemented in the Intrinsics-VIMA library.

Table A.1: Table of Intrinsics-VIMA instructions.

Start of Table

Function Data type Description

VIMA Arithmetic Instructions - Integer

_vim2K_iadds(*a, *b, *c) __v32s Performs signed addition between 32-bit elements source

vectors A[0:2047] and B[0:2047] and stores the result into

the destination vector C[0:2047].

_vim2K_iaddu(*a, *b, *c) __v32u Performs unsigned addition between 32-bit elements

source vectors A[0:2047] and B[0:2047] and stores the

result into the destination vector C[0:2047].

_vim2K_isubs(*a, *b, *c) __v32s Performs signed subtraction between 32-bit elements

source vectors A[0:2047] and B[0:2047] and stores the

result into the destination vector C[0:2047].

_vim2K_isubu(*a, *b, *c) __v32u Performs unsigned subtraction between 32-bit elements

source vectors A[0:2047] and B[0:2047] and stores the

result into the destination vector C[0:2047].

_vim2K_iabss(*a, *b) __v32s Takes the absolute value of each 32-bit element in a

source vector A[0:2047] and stores it into the destination

vector B[0:2047].

_vim2K_imaxs(*a, *b, *c) __v32s Find the maximal value between each 32-bit element of

source vectors A[0:2047] and B[0:2047] and stores it into

the destination vector C[0:2047].

_vim2K_imins(*a, *b, *c) __v32s Find the minimal value between each 32-bit element of

source vectors A[0:2047] and B[0:2047] and stores it into

the destination vector C[0:2047].

_vim2K_icpys(*a, *b) __v32s Performs signed copy of 32-bit element of source vectors

A[0:2047] and stores it into the destination vector

B[0:2047].

_vim2K_icpyu(*a, *b) __v32u Performs unsigned copy of 32-bit element of source

vectors A[0:2047] and stores it into the destination vector

B[0:2047].

VIMA Arithmetic Instructions - Floating-point Single Precision

_vim2K_fadds(*a, *b, *c) __v32f Performs signed addition between 32-bit elements source

vectors A[0:2047] and B[0:2047] and stores the result into

the destination vector C[0:2047].

_vim2K_fsubs(*a, *b, *c) __v32f Performs signed subtraction between 32-bit elements

source vectors A[0:2047] and B[0:2047] and stores the

result into the destination vector C[0:2047].

_vim2K_fabss(*a, *b) __v32f Takes the absolute value of each 32-bit element in a

source vector A[0:2047] and stores it into the destination

vector B[0:2047].

_vim2K_fmaxs(*a, *b, *c) __v32f Find the maximal value between each 32-bit element of

source vectors A[0:2047] and B[0:2047] and stores it into

the destination vector C[0:2047].

_vim2K_fmins(*a, *b, *c) __v32f Find the minimal value between each 32-bit element of

source vectors A[0:2047] and B[0:2047] and stores it into

the destination vector C[0:2047].

_vim2K_fcpys(*a, *b) __v32f Performs signed copy of 32-bit element of source vectors

A[0:2047] and stores it into the destination vector

B[0:2047].

80

Continuation of Table A.1

Function Data type Description

VIMA Arithmetic Instructions - Floating-point Double Precision

_vim1K_dadds(*a, *b, *c) __v64d Performs signed addition between 64-bit elements source

vectors A[0:1023] and B[0:1023] and stores the result into

the destination vector C[0:1023].

_vim1K_dsubs(*a, *b, *c) __v64d Performs signed subtraction between 64-bit elements

source vectors A[0:1023] and B[0:1023] and stores the

result into the destination vector C[0:1023].

_vim1K_dabss(*a, *b) __v64d Takes the absolute value of each 64-bit element in a

source vector A[0:1023] and stores it into the destination

vector B[0:1023].

_vim1K_dmaxs(*a, *b, *c) __v64d Find the maximal value between each 64-bit element of

source vectors A[0:1023] and B[0:1023] and stores it into

the destination vector C[0:1023].

_vim1K_dmins(*a, *b, *c) __v64d Find the minimal value between each 64-bit element of

source vectors A[0:1023] and B[0:1023] and stores it into

the destination vector C[0:1023].

_vim1K_dcpys(*a, *b) __v64d Performs signed copy of 64-bit element of source vectors

A[0:1023] and stores it into the destination vector

B[0:1023].

VIMA Logic Instructions - Integer

_vima2K_iandu(*a, *b, *c) __vm32u Performs AND operation between 32-bit elements source

vectors A[0:2047] and B[0:2047] and stores the result into

the destination vector C[0:2047].

_vim2K_iandu(*a, *b, *c) __v32u Performs AND operation between 32-bit elements source

vectors A[0:2047] and B[0:2047] and stores the result into

the destination vector C[0:2047].

_vim2K_iorun(*a, *b, *c) __v32u Performs OR operation between 32-bit elements of source

vectors A[0:2047] and B[0:2047] and stores the result into

the destination vector C[0:2047].

_vim2K_ixoru(*a, *b, *c) __v32u Performs XOR operation between 32-bit elements source

vectors A[0:2047] and B[0:2047] and stores the result into

the destination vector C[0:2047].

_vim2K_inots(*a, *b) __v32s Performs NOT operation in 32-bit elements source vector

A[0:2047] and stores the result into the destination vector

B[0:2047].

VIMA Comparison Instructions - Integer

_vim2K_islts(*a, *b, *c) __v32s Compare each signed 32-bit elements from source vectors

A[0:2047] and B[0:2047] and if the element of A[0:2047]

is minor, then destination source C[0:2047] stores 1 in the

same position, otherwise, stores 0.

_vim2K_isltu(*a, *b, *c) __v32u Compare each unsigned 32-bit elements from source

vectors A[0:2047] and B[0:2047] and if the element of

A[0:2047] is minor, then destination source C[0:2047]

stores 1 in the same position, otherwise, stores 0.

_vim2K_icmqs(*a, *b, *c) __v32s Compare each signed 32-bit elements from source vectors

A[0:2047] and B[0:2047] and if they are equal, then

destination source C[0:2047] stores 1 in the same position,

otherwise, stores 0.

_vim2K_icmqu(*a, *b, *c) __v32u Compares each unsigned 32-bit elements from source

vectors A[0:2047] and B[0:2047] and if they are equal,

then destination source C[0:2047] stores 1 in the same

position, otherwise, stores 0.

VIMA Comparison Instructions - Floating-point Single Precision

81

Continuation of Table A.1

Function Data type Description

_vim2K_fslts(*a, *b, *c) __v32f Compare each signed 32-bit elements from source vectors

A[0:2047] and B[0:2047] and if the element of A[0:2047]

is minor, then destination source C[0:2047] stores 1 in the

same position, otherwise, stores 0.

_vim2K_fcmqs(*a, *b, *c) __v32f Compare each signed 32-bit elements from source vectors

A[0:2047] and B[0:2047] and if they are equal, then

destination source C[0:2047] stores 1 in the same position,

otherwise, stores 0.

VIMA Comparison Instructions - Floating-point Double Precision

_vim1K_dslts(*a, *b, *c) __v64d Compare each signed 64-bit elements from source vectors

A[0:1023] and B[0:1023] and if the element of A[0:1023]

is minor, then destination source C[0:1023] stores 1 in the

same position, otherwise, stores 0.

_vim1K_dcmqs(*a, *b, *c) __v64d Compare each signed 64-bit elements from source vectors

A[0:1023] and B[0:1023] and if they are equal, then

destination source C[0:1023] stores 1 in the same position,

otherwise, stores 0.

VIMA Shift Instructions - Integer

_vim2K_isllu(*a, *b, *c) __v32u Left shift each 32-bit element in source vector A[0:2047]

the amount specified in source vector B[0:2047] and

stores the result into the destination vector C[0:2047].

This operation does not shift signal.

_vim2K_isrlu(*a, *b, *c) __v32u Right shift each 32-bit element in source vector

A[0:2047] the amount specified in source vector

B[0:2047] and stores the result into the destination vector

C[0:2047]. This operation does not shift signal.

_vim2K_isras(*a, *b, *c) __v32s Right shift each 32-bit element in source vector

A[0:2047] the amount specified in source vector

B[0:2047] and stores the result into the destination vector

C[0:2047]. This operation shifts signal.

VIMA Multiplication/Division Instructions - Integer

_vim2K_idivs(*a, *b, *c) __v32s Performs a signed division between 32-bit elements from

source vectors A[0:2047] and B[0:2047] and stores the

result into the destination vector C[0:2047].

_vim2K_idivu(*a, *b, *c) __v32u Performs an unsigned division between 32-bit elements

from source vectors A[0:2047] and B[0:2047] and stores

the result into the destination vector C[0:2047].

_vim2K_imuls(*a, *b, *c) __v32s Performs signed multiplication between 32-bit elements

from source vectors A[0:2047] and B[0:2047] and stores

the result into the destination vector C[0:2047].

_vim2K_imulu(*a, *b, *c) __v32u Performs unsigned multiplication between 32-bit

elements from source vectors A[0:2047] and B[0:2047]

and stores the result into the destination vector C[0:2047].

_vim1K_imuls(*a, *b, *c) __v64s Performs signed multiplication between 64-bit elements

from source vectors A[0:1023] and B[0:1023] and stores

the result into the destination vector C[0:1023].

_vim1K_imulu(*a, *b, *c) __v64u Performs unsigned multiplication between 64-bit

elements from source vectors A[0:1023] and B[0:1023]

and stores the result into the destination vector C[0:1023].

_vim2K_icums(*a, *b) __v32s Performs signed accumulated sum between 32-bit

elements from source vector A[0:2047] and stores the

result into the destination variable b.

_vim2K_icumu(*a, *b) __v32u Performs unsigned accumulated sum between 32-bit

elements from source vector A[0:2047] and stores the

result into the destination variable b.

82

Continuation of Table A.1

Function Data type Description

VIMA Multiplication/Division Instructions - Floating-point Single Precision

_vim2K_fdivs(*a, *b, *c) __v32f Performs a signed division between 32-bit elements from

source vectors A[0:2047] and B[0:2047] and stores the

result into the destination vector C[0:2047].

_vim2K_fmuls(*a, *b, *c) __v32f Performs signed multiplication between 32-bit elements

from source vectors A[0:2047] and B[0:2047] and stores

the result into the destination vector C[0:2047].

_vim2K_fcums(*a, *b) __v32f Performs signed accumulated sum between 32-bit

elements from source vector A[0:2047] and stores the

result into the destination variable b.

VIMA Multiplication/Division Instructions - Floating-point Double Precision

_vim1K_ddivs(*a, *b, *c) __v64d Performs a signed division between 64-bit elements from

source vectors A[0:1023] and B[0:1023] and stores the

result into the destination vector C[0:1023].

_vim1K_dmuls(*a, *b, *c) __v64d Performs signed multiplication between 64-bit elements

from source vectors A[0:1023] and B[0:1023] and stores

the result into the destination vector C[0:1023].

_vim1K_dcums(*a, *b) __v64d Performs signed accumulated sum between 64-bit

elements from source vector A[0:1023] and stores the

result into the destination variable b.

VIMA Immediate Instructions - Integer

_vim2K_imovs(*a, *b) __v32s Replicate a signed 32-bit immediate b into the vector

A[0:2047].

_vim2K_imovu(*a, *b) __v32u Replicate a unsigned 32-bit immediate b into the vector

A[0:2047].

VIMA Immediate Instructions - Floating-point Single Precision

_vim2K_fmovs(*a, *b) __v32f Replicate a signed 32-bit immediate b into the vector

A[0:2047].

VIMA Immediate Instructions - Floating-point Double Precision

_vim1K_dmovs(*a, *b) __v64d Replicate a signed 64-bit immediate b into the vector

A[0:1023].

VIMA Mask Instructions - Integer

_vim2K_ilmks(*a, *b, *c) __v32s Loads signed 32-bit elements into vector A[0:2047] and

stores values into the destination vector C[0:2047]

according to the mask on vector B[0:2047].

_vim2K_ilmku(*a, *b, *c) __v32u Loads unsigned 32-bit elements into vector A[0:2047]

and stores values into the destination vector C[0:2047]

according to the mask on vector B[0:2047].

_vim2K_irmks(*a, *b, *c) __v32s Loads signed 32-bit elements into vector A[0:2047] and

resets values to zero in the destination vector C[0:2047]

according to the mask on vector B[0:2047]; remaining

elements are copied.

_vim2K_irmku(*a, *b, *c) __v32u Loads unsigned 32-bit elements into vector A[0:2047]

and resets values to zero in the destination vector

C[0:2047] according to the mask on vector B[0:2047];

remaining elements are copied.

VIMA Multiplication/Division Instructions - Floating-point Single Precision

_vim2K_flmks(*a, *b, *c) __v32f Loads signed 32-bit elements into vector A[0:2047] and

stores values into the destination vector C[0:2047]

according to the mask on vector B[0:2047].

_vim2K_frmks(*a, *b, *c) __v32f Loads signed 32-bit elements into vector A[0:2047] and

resets values to zero in the destination vector C[0:2047]

according to the mask on vector B[0:2047]; remaining

elements are copied.

VIMA Multiplication/Division Instructions - Floating-point Double Precision

83

Continuation of Table A.1

Function Data type Description

_vim1K_dlmks(*a, *b, *c) __v64d Loads signed 64-bit elements into vector A[0:1023] and

stores values into the destination vector C[0:1023]

according to the mask on vector B[0:1023].

_vim1K_drmks(*a, *b, *c) __v64d Loads signed 64-bit elements into vector A[0:1023] and

resets values to zero in the destination vector C[0:1023]

according to the mask on vector B[0:1023]; remaining

elements are copied.

End of Table

84

APPENDIX B – DETAILED EXPERIMENT RESULTS

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

3

6

9

12

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.1: Execution time results executing memory copy application with VIMA with perfect interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

1

2

3

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.2: Execution time results executing vector sum application with VIMA with perfect interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

5

10

15

20

25

30

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.3: Execution time results executing selection database query with VIMA with perfect interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

85

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

3

6

9

12

15

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.4: Execution time results executing projection database query with VIMA with perfect interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

2

4

6

8

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.5: Execution time results executing stencil application with VIMA with perfect interconnection and request

size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in performance over

the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

3

6

9

12

15

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.6: Execution time results executing bloom filter application with VIMA with perfect interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

86

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

5

10

15

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.7: Execution time results executing memory set application with VIMA in the maximum specified request

and interconnection size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement

in performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

2

4

6

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.8: Execution time results executing memory copy application with VIMA in the maximum specified

request and interconnection size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate

improvement in performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

1

2

3

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.9: Execution time results executing vector sum application with VIMA in the maximum specified request

and interconnection size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement

in performance over the baseline.

87

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

2

4

6

8

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.10: Execution time results executing selection database query with VIMA in the maximum specified

request and interconnection size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate

improvement in performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

3

6

9

12

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.11: Execution time results executing projection database query with VIMA in the maximum specified

request and interconnection size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate

improvement in performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

1

2

3

4

5

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.12: Execution time results executing stencil application with VIMA in the maximum specified request and

interconnection size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

88

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

2

4

6

8

10

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.13: Execution time results executing bloom filter application with VIMA in the maximum specified request

and interconnection size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement

in performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

1

2

3

4

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.14: Execution time results executing memory set application with VIMA in a 64 B interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

0.5

1

1.5

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.15: Execution time results executing memory copy application with VIMA in a 64 B interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

89

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

0.5

1

1.5

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.16: Execution time results executing vector sum application with VIMA in a 64 B interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

1

2

3

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.17: Execution time results executing selection database query with VIMA in a 64 B interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

1

2

3

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.18: Execution time results executing projection database query with VIMA in a 64 B interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

90

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

0.5

1

1.5

2

2.5

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.19: Execution time results executing stencil application with VIMA in a 64 B interconnection and request

size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in performance over

the baseline.

HMC 1.0 HMC 2.1 HBM HBM2E HBM3
0

3

6

9

12

S
p
ee
d
u
p

Input Size: 8MB 16MB 32MB 64MB

Figure B.20: Execution time results executing bloom filter application with VIMA in a 64 B interconnection

and request size scenario, normalized to 16-thread x86 baseline. Values higher than 1 indicate improvement in

performance over the baseline.

HMC 2.1 HBM3

0

3

6

9

12

15

E
n
er
g
y
S
av
in
g
s

(a) Perfect

HMC 2.1 HBM3

0

3

6

9

12

15

E
n
er
g
y
S
av
in
g
s

Input Size: 8MB 16MB 32MB 64MB

(b) Max. Request Size

HMC 2.1 HBM3

0

1

2

3

4

E
n
er
g
y
S
av
in
g
s

(c) 64 B Request Size

Figure B.21: Energy savings of VIMA baseline running over memory set application for (a) Perfect access, (b)

Access considering the maximum request size supported by each 3D-stacked memory and (c) Access in 64 B

requests. Values higher than 1 indicate improvement in performance over the baseline.

91

HMC 2.1 HBM3

0

3

6

9

12

15

E
n
er
g
y
S
av
in
g
s

(a) Perfect

HMC 2.1 HBM3

0

3

6

9

12

E
n
er
g
y
S
av
in
g
s

Input Size: 8MB 16MB 32MB 64MB

(b) Max. Request Size

HMC 2.1 HBM3

0

1

2

3

4

E
n
er
g
y
S
av
in
g
s

(c) 64 B Request Size

Figure B.22: Energy savings of VIMA over baseline running memory copy application for (a) Perfect access, (b)
Access considering the maximum request size supported by each 3D-stacked memory and (c) Access in 64 B

requests. Values higher than 1 indicate improvement in performance over the baseline.

HMC 2.1 HBM3

0

3

6

9

E
n
er
g
y
S
av
in
g
s

(a) Perfect

HMC 2.1 HBM3

0

3

6

E
n
er
g
y
S
av
in
g
s

Input Size: 8MB 16MB 32MB 64MB

(b) Max. Request Size

HMC 2.1 HBM3

0

1

2

3

4

E
n
er
g
y
S
av
in
g
s

(c) 64 B Request Size

Figure B.23: Energy savings of VIMA running over baseline vector sum application for (a) Perfect access, (b)

Access considering the maximum request size supported by each 3D-stacked memory and (c) Access in 64 B

requests. Values higher than 1 indicate improvement in performance over the baseline.

HMC 2.1 HBM3

0

3

6

9

12

15

18

21

E
n
er
g
y
S
av
in
g
s

(a) Perfect

HMC 2.1 HBM3

0

3

6

9

E
n
er
g
y
S
av
in
g
s

Input Size: 8MB 16MB 32MB 64MB

(b) Max. Request Size

HMC 2.1 HBM3

0

1

2

3

4

5

E
n
er
g
y
S
av
in
g
s

(c) 64 B Request Size

Figure B.24: Energy savings of VIMA over baseline running selection database query for (a) Perfect access, (b)
Access considering the maximum request size supported by each 3D-stacked memory and (c) Access in 64 B

requests. Values higher than 1 indicate improvement in performance over the baseline.

92

HMC 2.1 HBM3

0

3

6

9

12

E
n
er
g
y
S
av
in
g
s

(a) Perfect

HMC 2.1 HBM3

0

3

6

9

12

E
n
er
g
y
S
av
in
g
s

Input Size: 8MB 16MB 32MB 64MB

(b) Max. Request Size

HMC 2.1 HBM3

0

1

2

3

4

5

E
n
er
g
y
S
av
in
g
s

(c) 64 B Request Size

Figure B.25: Energy savings of VIMA over baseline running projection database query for (a) Perfect access,
(b) Access considering the maximum request size supported by each 3D-stacked memory and (c) Access in 64 B

requests. Values higher than 1 indicate improvement in performance over the baseline.

HMC 2.1 HBM3

0

3

6

E
n
er
g
y
S
av
in
g
s

(a) Perfect
HMC 2.1 HBM3

0

2

4

6

E
n
er
g
y
S
av
in
g
s

Input Size: 8MB 16MB 32MB 64MB

(b) Max. Request Size

HMC 2.1 HBM3

0

1

2

3

4

E
n
er
g
y
S
av
in
g
s

(c) 64 B Request Size

Figure B.26: Energy savings of VIMA over baseline running stencil application for (a) Perfect access, (b) Access
considering the maximum request size supported by each 3D-stacked memory and (c) Access in 64 B requests.

Values higher than 1 indicate improvement in performance over the baseline.

HMC 2.1 HBM3

0

5

10

15

20

25

30

35

40

45

50

E
n
er
g
y
S
av
in
g
s

(a) Perfect

HMC 2.1 HBM3

0

3

6

9

12

15

18

21

24

27

30

E
n
er
g
y
S
av
in
g
s

Input Size: 8MB 16MB 32MB 64MB

(b) Max. Request Size

HMC 2.1 HBM3

0

3

6

9

12

15

18

21

24

27

E
n
er
g
y
S
av
in
g
s

(c) 64 B

Figure B.27: Energy savings of VIMA over baseline running bloom filter application for (a) Perfect access, (b)

Access considering the maximum request size supported by each 3D-stacked memory and (c) Access in 64 B

requests. Values higher than 1 indicate improvement in performance over the baseline.

93

MemSet MemCopy VecSum Selection Projection Stencil Bloom
0

10

20

30

40

50

60

S
p
ee
d
u
p

8MB 16MB 32MB 64MB

Figure B.28: Execution time results of VIMA executing all workloads with perfect access to 3D-stacked memory

row buffers normalized to 16-thread x86 baseline running with a HBM3 memory. Values higher than 1 indicate

improvement in performance over the baseline.

MemSet MemCopy VecSum Selection Projection Stencil Bloom
0

2

4

6

8

10

12

S
p
ee
d
u
p

8MB 16MB 32MB 64MB

Figure B.29: Execution time results of VIMA executing all workloads with maximum request size normalized to

16-thread x86 baseline running with a HBM3 memory. Values higher than 1 indicate improvement in performance

over the baseline.

MemSet MemCopy VecSum Selection Projection Stencil Bloom
0

2

4

6

S
p
ee
d
u
p

8MB 16MB 32MB 64MB

Figure B.30: Execution time results of VIMA executing all workloads with 64B request size normalized to 16-thread

x86 baseline running with a HBM3 memory. Values higher than 1 indicate improvement in performance over the

baseline.

94

APPENDIX C – APPLICATION CODE WITH INTRINSICS-VIMA

Code C.1 shows the code using the library Intrinsics-VIMA, which we used to generate the simulation trace used for

our experiments.

Code C.1: Intrinsics-VIMA routine call for memory set.

1 uint32_t vima_size = 2048;
2

3 // Allocate the vector
4 __v32f *vector = (__v32s*)malloc(sizeof(__v32s) * vima_size * x);
5

6 // Initialize the memory locations
7 <...>
8

9 // Perform the memory setting: vector[i] = 1
10 for (int i = 0; i < vima_size * x; i += vima_size) {
11 _vim2K_imovs(1, &vector[i]);
12 }

Code C.2 shows the implementation of the memory copy application and Code C.3 shows the code for the
vector sum application.

Code C.2: Intrinsics-VIMA routine call for memory copy.

1 uint32_t vima_size = 2048;
2

3 // Allocate the vectors A, B (sources) and C (destination)
4 __v32s *A = (__v32s *) malloc (32, sizeof(__v32s) * v_size * x);
5 __v32s *B = (__v32s *) malloc (32, sizeof(__v32s) * v_size * x);
6

7 // Initialize the memory locations
8 <...>
9

10 // Perform the memory copying: B[i] = A[i]
11 for (int i = 0; i < vima_size * x; i += vima_size) {
12 _vim2K_icpys (&A[i], &B[i]);
13 }

Code C.3: Intrinsics-VIMA routine call for vector sum.

1 uint32_t vima_size = 2048;
2

3 // Allocate the vectors A, B (sources) and C (destination)
4 __v32f *A = (__v32f *) malloc (32, sizeof(__v32f) * v_size * x);
5 __v32f *B = (__v32f *) malloc (32, sizeof(__v32f) * v_size * x);
6 __v32f *C = (__v32f *) malloc (32, sizeof(__v32f) * v_size * x);
7

8 // Initialize the memory locations
9 <...>
10

11 // Perform the vector sum: C[i] = A[i] + B[i]
12 for (int i = 0; i < vima_size * x; i += vima_size) {
13 _vim2K_fadds (&A[i], &B[i], &C[i]);
14 }

Codes C.4 and C.5 show the code used to generate the simulation traces used in our experiments.

Code C.4: Intrinsics-VIMA routine call for the selection database query operator.

1 uint32_t vima_size = 2048;
2

3 // Allocate the vectors A, B (sources) and C (destination)
4 __v32f *filter = (__v32f *) malloc (32, sizeof(__v32f) * v_size);
5 __v32f *A = (__v32f *) malloc (32, sizeof(__v32f) * v_size * x);
6 __v32f *bitmap = (__v32f *) malloc (32, sizeof(__v32f) * v_size * x);
7

8 // Initialize the memory locations and filter value

95

9 <...>
10

11 // Perform the selection according to filter value:
12 for (int i = 0; i < vima_size * x; i += vima_size) {
13 _vim2K_isltu (filter, &A[i], &bitmap[i]);
14 }

Code C.5: Intrinsics-VIMA routine call for the projection database query operator.

1 uint32_t vima_size = 2048;
2

3 // Allocate the vectors A, B (sources) and C (destination)
4 __v32f *vector = (__v32f *) malloc (32, sizeof(__v32f) * v_size);
5 __v32f *bitmap = (__v32f *) malloc (32, sizeof(__v32f) * v_size * x);
6 __v32f *result = (__v32f *) malloc (32, sizeof(__v32f) * v_size * x);
7

8 // Initialize the memory locations
9 <...>
10

11 // Perform the loading according to input bitmap:
12 for (int i = 0; i < vima_size * x; i += vima_size) {
13 _vim2K_ilmku (&vector[i], &bitmap[i], &result[i]);
14 }

Code C.6: Intrinsics-VIMA routine for the stencil application.

1 uint32_t vima_size = 2048;
2

3 // Allocate the vectors A, B (sources) and C (destination)
4 __v32f *vector_a = (__v32f *) malloc (32, sizeof(__v32f) * v_size);
5 __v32f *vector_b = (__v32f *) malloc (32, sizeof(__v32f) * v_size * x);
6 __v32f *mul = (__v32f *) malloc (32, sizeof(__v32f) * v_size * x);
7

8 // Initialize the memory locations
9 <...>
10

11 for (int i = elem; i+elem+VECTOR_SIZE < v_size; i += VECTOR_SIZE) {
12 _vim2K_fadds(&vector_b[i], &vector_a[i-elem], &vector_b[i]);
13 _vim2K_fadds(&vector_b[i], &vector_a[i], &vector_b[i]);
14 _vim2K_fadds(&vector_b[i], &vector_a[i-1], &vector_b[i]);
15 _vim2K_fadds(&vector_b[i], &vector_a[i+1], &vector_b[i]);
16 _vim2K_fadds(&vector_b[i], &vector_a[i+elem], &vector_b[i]);
17 _vim2K_fmuls(&vector_b[i], &mul[i], &vector_b[i]);
18 remainder = i;
19 }

96

Code C.7: Intrinsics-VIMA routine for the creation phase of the bloom filter application.

1 _vim2K_ilmku (&entries[i], mask_k, key);
2 _vim2K_ilmku (&entries[i], mask_1, key);
3 _vim2K_irmku (fun, mask_1);
4 for (int j = 0; j < functions; j++){
5 _vim2K_icpyu (key, bit);
6 _vim2K_ipmtu (factors, fun, fac);
7 _vim2K_ipmtu (shift_m, fun, shift_vec);
8 _vim2K_imulu (bit, fac, bit);
9 _vim2K_isllu (bit, shift_vec, bit);
10 _vim2K_imodu (bit, bloom_filter_size, bit);
11 _vim2K_isrlu (bit, shift5_vec, bit_div);
12 _vim2K_iandu (bit, mask_31, bit_mod);
13 _vim2K_isllu (mask_1, bit_mod, bit);
14 _vim2K_iscou (bit, bit_div, bloom_filter);
15 _vim2K_iaddu (fun, mask_1, fun);
16 }

Code C.8: Intrinsics-VIMA routine for the probing phase of the bloom filter application.

1 _vim2K_ilmku (&entries[i], mask_k, key); //load new entries according to the mask.
2 do {
3 i += j;
4 _vim2K_irmku (fun, mask_k);
5 _vim2K_icpyu (key, bit);
6 _vim2K_ipmtu (factors, fun, fac);
7 _vim2K_ipmtu (shift_m, fun, shift_vec);
8 _vim2K_imulu (bit, fac, bit);
9 _vim2K_isllu (bit, shift_vec, bit);
10 _vim2K_imodu (bit, bloom_filter_size, bit);
11 _vim2K_isrlu (bit, shift5_vec, bit_div);
12 _vim2K_iandu (bit, mask_31, bit_mod);
13 _vim2K_isllu (mask_1, bit_mod, bit);
14 _vim2K_igtru (bloom_filter, bit_div, bit_div);
15 _vim2K_iandu (bit, bit_div, bit);
16 _vim2K_icmqu (bit, mask_0, mask_k);
17 _vim2K_icmqu (fun, fun_max, mask_kk);
18

19 _vim2K_idptu (mask_kk, &j);
20 if (j > 0) {
21 _vim2K_ismku (key, mask_kk, &output[*output_count]);
22 *output_count += j;
23 }
24

25 _vim2K_iorun (mask_k, mask_kk, mask_k);
26 _vim2K_idptu (mask_k, &j);
27 _vim2K_iaddu (fun, mask_1, fun);
28 } while (i < VECTOR_SIZE);

