
UNIVERSIDADE FEDERAL DO PARANÁ

MARIANA CARMIN

DYCA: MULTI-CORE DYNAMICALLY ADAPTABLE

CACHE BYPASSING MECHANISM

CURITIBA PR

2022

MARIANA CARMIN

DYCA: MULTI-CORE DYNAMICALLY ADAPTABLE

CACHE BYPASSING MECHANISM

Dissertação apresentada como requisito parcial à obtenção

do grau de Mestre em Informática no Programa de Pós-

Graduação em Informática, Setor de Ciências Exatas, da

Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Marco Antonio Zanata Alves.

CURITIBA PR

2022

MINISTÉRIO DA EDUCAÇÃO
SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -
40001016034P5

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação INFORMÁTICA da Universidade

Federal do Paraná foram convocados para realizar a arguição da dissertação de Mestrado de MARIANA CARMIN intitulada:

DYCA: Multi-core Dynamically Adaptable Cache Bypassing Mechanism, sob orientação do Prof. Dr. MARCO ANTONIO

ZANATA ALVES, que após terem inquirido a aluna e realizada a avaliação do trabalho, são de parecer pela sua APROVAÇÃO no

rito de defesa.

A outorga do título de mestra está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 17 de Outubro de 2022.

Assinatura Eletrônica

18/10/2022 08:53:15.0

MARCO ANTONIO ZANATA ALVES

Presidente da Banca Examinadora

Assinatura Eletrônica

18/10/2022 14:23:54.0

ARTHUR FRANCISCO LORENZON

Avaliador Externo (UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL)

Assinatura Eletrônica

20/10/2022 08:29:59.0

DANIEL ALFONSO GONCALVES DE OLIVEIRA

Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

Documento assinado eletronicamente de acordo com o disposto na legislação federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificação única: 227874

Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 227874

"What do you mean, why’s it got to
be built? It’s a bypass. You got to
build bypasses." - Douglas Adams,
Hitchhiker’s Guide to the Galaxy,
1979.

ACKNOWLEDGEMENTS

I will always be grateful for all the blessings received from heaven and for the people I met on

this journey. First and foremost I am extremely thankful to my supervisor, Prof. Marco Zanata

who guided me in the development of this research. I would also like to thank my loving husband

Lucas who has constantly encouraged me throughout this process. Finally, I would like to express

my gratitude to my family and friends for their encouragement and support all through my studies.

RESUMO

A maioria dos processadores modernos possuem uma hierarquia de cache formada de múltiplos

níveis para mitigar a latência de acesso a memória principal. Além disso, estes processadores

também possuem um número cada vez maior de núcleos, a medida que o número de núcleos

aumenta, mais núcleos e threads compartilham o último nível de cache (LLC - Last Level

Cache), que consome grande parte da energia e área do chip. Portanto, enquanto o tamanho

e o número de núcleos aumentam, novas soluções devem garantir o melhor uso de recursos

reduzindo os conflitos de cache e problemas de poluição de cache. Esta dissertação explora

o conhecimento de que algumas aplicações apresentam baixa localidade temporal e espacial

durante os acessos aos dados. Para esses casos, o LLC impõe uma barreira de latência extra para

acessar os dados na memória principal além de um desperdício de energia durante a instalação

das linhas de cache. Assim, o desvio (bypass) de um ou mais níveis de cache pode beneficiar tais

aplicativos, melhorando o desempenho geral do sistema e diminuindo o consumo de energia.

Nesta dissertação, propomos um preditor online para contornar a adaptação dinâmica do uso

da LLC. Nosso mecanismo avalia cada fase de execução das aplicações coletando contadores

de hardware habilitados por mecanismos de amostragem e usando um modelo de regressão

linear capaz de identificar se o LLC beneficia o desempenho do aplicativo, adaptando o uso

da LLC para cada aplicação sendo executada. Desta forma, diminuindo o tempo de execução

em uma execução singular, além de aumentando o desempenho geral do sistema. Esse desvio

de cache também cria desafios quanto ao protocolo de coerência em execuções de múltiplos

aplicativos. Contudo, nosso mecanismo é capaz de garantido esta coerência. Nossos resultados

para execuções singulares mostram um possível aumento no tempo de execução de até 22%. Já

para execuções de múltiplos programas, mostram que ganhos de até 21% no tempo de execução

podem ser alcançados e também a redução da taxa de faltas na LLC, oriundos da diminuição da

poluição e conflitos na cache.

Palavras-chave: Cache de último nível; Regressão linear; Predição de desempenho;

ABSTRACT

Most modern processors have a multilevel cache hierarchy to mitigate main memory access

latency. In addition, these processors also have an increasing number of cores, as the number of

cores increases, more cores and threads share the Last Level Cache (LLC), which consumes a lot

of energy and area of the chip. Therefore, while the size and number of cores increases, new

solutions should ensure the best use of resources by reducing cache conflicts and cache pollution

issues. This dissertation explores the knowledge that some applications have low temporal and

spatial locality during data accesses. For these cases, LLC imposes an extra latency barrier

to accessing the data in main memory as well as a waste of energy when installing the cache

lines. Thus, bypassing one or more cache levels can benefit such applications, improving overall

system performance and lowering power consumption. In this dissertation, we propose an online

predictor to dynamic adapt the use of LLC. Our mechanism evaluates each execution phase by

collecting hardware counters enabled by sampling mechanisms and using a linear regression

model capable of identifying whether LLC benefits application performance or not, adapting

LLC usage for each running application. In this way, decreasing the execution time in a single

execution, in addition to increasing the overall performance of the system. This cache bypass

also creates protocol coherence challenges in multi-application runs. However, our mechanism is

capable of guaranteeing this coherence. Our results for single program executions show possible

performance gains of up to 22%. As for the execution of multiple programs, they show that gains

of up to 21% in execution time can be achieved and also a reduction in the miss rate in the LLC,

resulting from the reduction of pollution and conflicts in the cache.

Keywords: Last-level cache; Linear regression; Performance prediction;

LIST OF FIGURES

1.1 Main function idea . 18

2.1 Different cache geometries . 21

2.2 Example of sequential interleaving addressing in four cache banks. 23

2.3 Execution of access sequence in a fully associative cache 23

2.4 Linear relation between two variables. 25

2.5 Polynomial relation between two variables. 25

2.6 Example of a nonlinear correlation function of two variables (Apple content and

Cider PH) fitted by a spline model. 26

4.1 General view of DYCA operation. 35

4.2 Execution window approach used in DYCA . 36

4.3 Correlation between the absolute number of misses in LLC and the observed IPC. 37

4.4 Correlation between the absolute number of misses in the L2 and the observed IPC 38

4.5 Correlation between miss rate in L2 and IPC. 38

4.6 Correlation between MPKI in LLC and IPC. 38

4.7 Mapping of leader sets. 40

4.8 Mapping of leader sets when there are more K sets than N/K regions. 40

4.9 Average accuracy and standard deviation for different sampling caches sizes . . . 41

4.10 Architecture configurations for DYCA . 41

4.11 Example of the resulting file used for the training phase. 43

4.12 Process to select the features and build the linear regression model. 44

4.13 Correlation of hardware counters for wLLC model. 44

4.14 Correlation of hardware counters for woLLC model. 45

4.15 Control-flow graph of our proposal mechanism 47

5.1 Possible performance gains executing SPEC-CPU 2006. 49

5.2 Possible performance gains executing SPEC-CPU 2017. 49

5.3 Example of an oracle execution for application lbm in SPEC CPU 2006. 50

5.4 Example of an oracle execution for mixed configurations during gcc execution. . 50

5.5 Oracle results for SPEC-CPU 2006. 51

5.6 Oracle results for SPEC-CPU 2017. 51

5.7 DYCA results in a single program execution of SPEC-CPU 2017. 52

5.8 LLC miss rate for SPEC-CPU 2017 applications. 52

5.9 LLC MPKI for SPEC-CPU 2017 applications. 53

5.10 DYCA results for SPEC-CPU 2017 with bundles of four applications. 54

5.11 Static performance results for SPEC-CPU 2017 54

5.12 Average miss rate for SPEC-CPU 2017 with bundles of four application 56

LIST OF TABLES

3.1 Search strings used in each search base. 28

3.2 Number of papers per database . 28

3.3 Inclusion and exclusion criteria . 29

3.4 Summary of most relevant papers. 33

4.1 Summary of features (i.e., the hardware counters) selected to be used in the linear

regression model. 37

4.2 Summary of training and testing bases parameters. 42

4.3 Summary of features used in the linear regression model. 43

4.4 Hardware overhead for different sampling cache sizes.. 46

5.1 Simulation parameters . 48

5.2 IPC for each execution window in roms application. 55

5.3 IPC for each execution window in wrf application. 55

A.1 Accuracy of different sampling cache sizes for SPEC CPU 2017. 63

B.1 Predicted IPC for each execution window in roms application. 64

B.2 Predicted IPC for each execution window in wrf application. 64

Acronyms

ATD Auxiliar Tag Directory. 30

CAT Cache Allocation Technology. 32

CMP Chip Multiprocessor. 31

CPU Central Process Unit. 24

DRAM Dynamic Random Access Memory. 15, 16, 24, 30

DVFS Dynamic Voltage and Frequency Scaling. 17

DYCA Multi-core Dynamically Adaptable Cache Bypassing Mechanism. vii, viii, xiv, 18, 19,

32, 35, 36, 39–42, 46, 48, 49, 51–58, 64

FIFO Fist In, First Out. 20

GAM Generalized Additive Models. 26, 39, 42, 57

GPU Graphics Processing Unit. 24

HPKI Hits per Kilo Instructions. 30, 37, 43

IPC Instructions per Cycle. ix, 18, 31, 36–39, 42–44, 46, 50, 55, 64

LFU Least Frequently Used. 20

LLC Last-Level Cache. vii, 15–19, 21, 24, 29–33, 35–37, 39–43, 46, 48–58, 64

LRU Least Recently Used. 20, 22, 23, 30

MOESI Modified, Owned, Exclusive, Shared, Invalida. 24

MPB Message Passing Buffers. 30

MPKI Misses per Kilo Instructions. 30, 37, 38, 43, 52, 53, 56

MSE Mean Squared Error. 43–45

MSR Model-Specific Register. 31

NASA National Aeronautics and Space Administration. 15

NN Neural Network. 32

OrCS Ordinary Computer Simulator. 48

OS Operating System. 36

PC Program Counter. 31

PH Potential Hydrogen. 25

SRAM Static Random Access Memory. 15

TLB Translation Look-aside Buffer. 24, 41

Glossary

R-sq Coefficient of determination . 43

CONTENTS

1 INTRODUCTION . 15
1.1 PROBLEM . 16

1.2 MOTIVATION . 16

1.3 PROPOSAL AND OBJECTIVES . 17

1.4 DOCUMENT ORGANIZATION. 19

2 BACKGROUND . 20
2.1 CACHE MEMORIES. 20

2.1.1 Address mappings. 20

2.1.2 Replacement policies . 20

2.1.3 Cache hierarchy . 21

2.1.4 Inclusiveness policies . 21

2.1.5 Non-blocking cache memories . 22

2.1.6 Multi-bank cache memories . 22

2.2 BYPASS IN CACHE MEMORIES . 22

2.3 REGRESSION . 24

2.3.1 Linear regression . 24

2.3.2 Polynomial Regression . 25

2.3.3 Generalized Additive Models . 26

3 RELATED WORK USING SYSTEMATIC MAPPING 27
3.1 SYSTEMATIC MAPPING MYTHOLOGY . 27

3.2 STATE-OF-THE-ART . 29

3.2.1 Bypass techniques. 29

3.2.2 Reconfigure and adaptable cache . 30

3.2.3 Statistics and Machine Learning Approaches. 31

3.3 OVERALL COMPARISON . 32

3.4 CONCLUSION . 32

4 DYCA . 35
4.0.1 Metrics collection via execution window . 36

4.0.2 Hardware counters and feature selection . 36

4.0.3 Sampling cache . 39

4.0.4 Architecture configuration . 41

4.0.5 Linear regression model . 42

4.0.6 wLLC model . 43

4.0.7 woLLC model . 45

4.0.8 Performance and hardware overhead . 45

4.0.9 General flow of DYCA . 46

5 EXPERIMENTAL EVALUATION AND RESULTS 48
5.0.1 Simulation setup . 48

5.0.2 First validation . 48

5.0.3 Oracle performance . 49

5.0.4 Single application . 51

5.0.5 Multiple applications . 53

6 CONCLUSION . 57
6.1 LIMITATIONS AND FUTURE WORKS . 57

REFERENCES . 59
APPENDIX A – DETAILED ACCURACY FOR THE SAMPLING CACHE 63
APPENDIX B – DETAILED PREDICTIONS FOR MULTIPLE SYSTEMS 64

15

1 INTRODUCTION

The architectural model proposed by John von Neumann (49) defines processing and storage

units as separate components. In this model, instruction and data must travel from memory

to the processor to be computed. Given this scenario, we face a problem inherent to this type

of architecture: a performance limitation caused by the time consumption associated with

transferring data between the processor and the memory (49). It is worth mentioning that the von

Neumann architecture continues to be used in modern processors, which means this bottleneck

remains a problem to be mitigated.

In 1991, the problem known as memory wall was formally described by National

Aeronautics and Space Administration (NASA) scientists. Experiments were carried out to

understand the behavior of a scientific application on Intel’s iPSC/860. With these experiments,

it was possible to notice the disparity between the latency of memory access and the speed at

which the processor computed the operations (32).

This problem has intensified over the years, as memories have not advanced as quickly as

processors. For example, when we analyze a historical clipping from 2004 to 2011, it is possible

to notice a performance increase of 4.6× in processors, while for memories, the reduction in

access latency is only 1.3× (8).

This way is possible to notice the importance of using a cache memory hierarchy to

mitigate this latency difference since it brings the data with more potential to be used by the

processor closer, decreasing its access latency.

When comparing Static Random Access Memory (SRAM) cache memories to Dynamic

Random Access Memory (DRAM) main memories, we can observe that despite having lower

latency, SRAM technology uses a more significant area per bit and, therefore, a higher monetary

cost (20).

These cache memories, proposed in 1965 (50), use the temporal and spatial locality

principles to create the illusion of a larger and faster memory despite its small storage area. The

temporal locality principle is based on the fact that referenced addresses tend to be referenced

again shortly. In contrast, the spatial locality principle relies on the observation that data with

addresses close to the referenced data tend to be referenced soon also (20).

Considering their small storage capacity, when compared to main memory (i.e., DRAM),

the data stored in caches must be chosen wisely. Otherwise, the effect is a polluted cache where

data that will be shortly referenced is evicted, giving place for new data that will not be reused

soon by the processor. Thus, polluted cache memories can increase data access latency as

processor requests must fetch several levels of cache before being sent to main memory (20).

Possible solutions to reduce data conflict and pollution of caches were the creation of

larger caches formed by bigger associative sets and better replacement policies to reduce the

conflict of addresses. In addition, data prefetching techniques could also reduce the cache miss

ratios (20).

Modern processors have several levels of cache memory. The adoption of this type

of cache hierarchy aims to increase the possibility of the searched address being present at a

level closer to the processor. Generally, the cache memory hierarchy has per-core private and

shared levels. In most commercial solutions, we observe two private levels (L1 and L2) for each

processing core, with an increasing latency and size. It also has a shared last level (Last-Level

Cache (LLC)), closer to DRAM, that presents higher latency and size compared to the upper

levels (i.e., L1 and L2) (20).

16

In general, a data request is performed sequentially in this memory hierarchy. For

instance, if requested data is present in the first cache level, it will have the lowest possible access

latency. Nevertheless, suppose the cache memory is not used efficiently. In that case, many cache

misses may occur, and the data requests to DRAM will have higher latency due to lookup on all

cache levels from the hierarchy.

Observing the cache hierarchies, we can observe a symmetrical and homogeneous

structure between the different cache levels. In this way, each processing core within the same

chip has an identical cache memory structure as the other cores.

Also, cache memories take up a large portion of space on the chip. For instance, in a

microarchitecture such as Intel’s Sandy Bridge, with eight cores and a LLC of 20 MB, 29% of

the chip area is occupied only by LLC (42).

Besides, as the number of cores on the same chip increased, the pressure on the LLC

also increased. Thus, we can observe a trend in modern processors, where the industry adopts

larger shared LLCs formed by multiple independent and non-blocking banks.

1.1 PROBLEM

When considering a scenario formed by multiple processing cores and a cache memory hierarchy,

we can see applications with poor cache usage can be negatively impacted by the latency of

searching the data throughout the cache hierarchy before the request arrives in the main memory.

A fact to be highlighted is that applications that do not efficiently use the cache hierarchy

present an additional latency in each access arising from multi-level searches and data insertion

into the cache hierarchy. This additional latency worsens the overall performance of such

applications (20).

According to Santos et al. (42), several benchmark applications improve performance

when removing the LLC. Therefore the authors noticed that within this set of applications, some

presented a data-streaming behavior where the memory cache was not very useful.

Furthermore, we can conjecture that scenarios with different applications competing

for the cache memory could have a higher performance impact. For example, consider two

applications 𝐴 and 𝐵. Application 𝐴 performs data streaming and presents low data reuse. On

the other hand, application 𝐵 presents temporal and spatial locality in the memory accesses.

In this scenario, we can assume that application 𝐴 will be slowed by the cache hierarchy, as

presented earlier. In addition, this application will pollute the cache harming the application 𝐵.
Thus, there is a clear need for studies evaluating the use of adaptable cache memories

in conjunction with a decision-making algorithm to extract the best performance from each

application considering their access pattern.

1.2 MOTIVATION

Thinking about processing requirement changes over time, we recall the asymmetric multi-core

architectures. These architectures are also known as single-ISA heterogeneous multi-cores, which

are a solution that allows adaptation between high-performance or reduced power consumption

cores (39). An example of this type of architecture is the ARM big.LITTLE (12).

The ARM "big.LITTLE" architecture has two types of processing cores. The big cores

have higher processing power and energy consumption. On the other hand, the LITTLE cores

present lower processing power and energy consumption (39). This architecture focuses on

the smartphones and tablet market. It can map the application with intensive computation, as

17

observed in mobile games, and low computation, with tasks like emails or standby cell to different

cores(6).

The correct mapping of applications between these heterogeneous cores is crucial for

these architectures. The first techniques developed mapped high-memory applications to smaller

cores and compute-intensive applications to larger (39) cores. However, some research shows that

this type of mapping does not lead to the optimal solution and proposes more advanced techniques

performed during execution that allow the dynamic migration of applications. Van Craeynest

et al. (48) proposes a mechanism that, while executing the application in a specific core, collects

indicators that allow simulating the execution in the other type of core, migrating the applications

to the cores that best adapt to the observed and simulated profile.

These heterogeneous architectures amplify their asymmetry with techniques such

as Dynamic Voltage and Frequency Scaling (DVFS) to reduce energy consumption. DVFS

dynamically adjusts the processor voltage and frequency to the needs required by the application.

Like this idea, adaptable caches can improve performance and reduce energy consumption

by adapting the cache hierarchy based on the application’s behavior, finding the correct cache

configuration to improve performance avoiding any degradation (31).

It is important to note that even if the cache layer is shared between the different cores,

each running application may present a different behavior that needs to be considered while

adapting the use of the LLC. Adapting the use of a cache layer can be accomplished in several

ways, such as gated-Vdd, which adds sleep transistors to cut down leakage power but loses data

stored in SRAM cells (37). Another way is bypassing, with can be done in a complete cache

layer, bypassing all the accesses on this layer.

Thereby, two possible improvements can be reached by developing an approach to adapt

the use of the shared cache layer using the bypass. First, when a single application runs, the

leakage energy consumption can be reduced by turning off the cache layer. More than that, when

multiple applications execute together, bypassing the ones that present poor temporal and spatial

locality behavior can improve the average system performance as the cache conflicts and pollution

problems are mitigated. For instance, Figure1.1 illustrates two applications: App 𝐴 running in

Core 0 and App 𝐵 running in Core 1. While App 𝐴 has performance benefits when using the

LLC, App 𝐵 do not show benefits from using the LLC. In this scenario, if App 𝐵 bypass the LLC,

both App 𝐴 and App 𝐵 may improve the performance since, App 𝐵 will not bring non-reusable

data into the LLC.

The central point of this proposal is developing an adaptable LLC, based on the

observation that different applications have different preferences for caches. Even the same

application can show a different behavior between running phases. Bypass is a well-explored

technique to adapt the cache use. Most works use it in a fine-grained (e.g., instruction-grained)

and do not adapt the use of LLC for each application. Together with the rise of heterogeneous

architectures, such as big.LITTLE, in each, the application matches the best architecture for it.
We claim that such heterogeneity can be extended for cache memories using an adaptable cache

mechanism, leading to an improvement in average system performance.

1.3 PROPOSAL AND OBJECTIVES

In this work, based on the assumption that some applications benefit from systems without LLC,

we intend to answer the following research question: Can we improve the execution time of
computer systems using a dynamically adaptable LLC memory?

Thus, this dissertation initially aims to evaluate the influence of the cache memory

system on isolated applications and in groups of applications sharing the LLC. At this point, we

18

Figure 1.1: Main function idea applied in two cores (0 and 1) while core 0, running application A, is using the LLC

the core 1, running App B, is bypassing the LLC.

Source: Modified from Hennessy and Patterson (20).

propose using a dynamically adaptable cache capable of adapting the cache according to the

application behavior.

Thus we present Multi-core Dynamically Adaptable Cache Bypassing Mechanism

(DYCA) a dynamic adaptive cache, supporting the dynamic adaptation of LLC usage through

a decision-making mechanism capable of making adaptations considering the dynamically

harvested memory access behavior of applications and different program phases. Our mechanism

relies on the fact that applications tend to change between phases slowly. Therefore we analyze

the past observed window to predict the next execution window.

In a second moment, we intend to increase the complexity of the mechanism and add

support for multi-program to make decisions about the cache memory system, considering the

pattern of all programs running.

As a result of the dynamically adaptable cache memory development, this dissertation

has the main contributions:

1. To create a linear regression model : capable of predicting the future Instructions per
Cycle (IPC) based in hardware counters from the past;

2. To produce a single program bypass mechanism: identifying program phases and

adapting the use of cache according to the application behavior;

3. To develop a multi-program bypass mechanism: in an application granularity,

adapting the cache hierarchy according to each application individually, proving benefits

to all applications running;

As a result, it was possible to conclude that a dynamic adaptable LLC may bring more

opportunities to adapt the architecture to the real application needs. This leads to an increase in

the overall efficiency of the system.

19

Another problem that could be mitigated with DYCA is the cache pollution or cache

noise, observed when there are lines in the cache that are not going to be reused shortly, which

can cause premature evictions in other useful lines. With DYCA, we could observe gains up to

21% on average system performance in a multi-program execution, reducing cache pollution and

conflicts. Additionally, in single executions, we also observed performance gains reaching 22%.

Not only improving performance but also a reduced number of misses was observed.

Besides, DYCA solution gets close to the best possible LLC use configuration, even

considering the performance overhead inherent in a dynamic mechanism. Also, the additional

hardware is negligible compared to other state-of-art solutions.

1.4 DOCUMENT ORGANIZATION

The rest of this dissertation is organized as follows: Section 2 deals with the fundamentals

necessary for a complete understanding of the text, namely, the concept of memories cache, the

concept of adaptable cache architectures, the cache bypass concept, and a section about the linear

regression model. In Section 3, a review of the available bibliography for the topic is carried out.

In contrast, in Section 4, the proposal mechanism, named DYCA is described, and in Section 5,

all experiments and validations are discussed. Finally, Section bring the final discussion and

conclusion provided by the development of this work.

20

2 BACKGROUND

This chapter discusses the fundamental concepts necessary to understand this proposal fully. The

first section deals with cache memories, the second with bypassing requests in cache memory,

the third with adaptable cache architectures, and the fourth with linear regression models.

2.1 CACHE MEMORIES

Cache memories introduced in the 1960s are small memories closer to the processor. This type

of memory uses the principle of spatial and temporal locality, existing in most applications.

Due to their reduced storage space, mapping techniques are used, efficiently allowing

many blocks in the main memory to be mapped to a reduced set of blocks (cache lines) in cache

memory (20).

2.1.1 Address mappings

The cache memory mapping defines how to install and look for each specific address. Directly

mapped caches (Figure 2.1 (a)) present a unique location where each memory address should be

mapped. The fully associative cache (Figure 2.1 (b)) has a mapping where each location can store

any memory address. There are downsides related to the techniques listed above. Direct mapping

usually has a simple implementation and a higher address conflict ratio due to its restriction on

address installation. While fully associative mapping presents lower cache conflicts and higher

hardware costs associated with the number of comparators used to verify if the block is present

or not, in addition to increasing the complexity during data replacement (20).

The technique that strikes a better balance between the direct and fully associative

mapping technique is the set-associative mapping design (Figure 2.1 (c)). In this model, each

address is mapped to a set of cache lines, and each set has 𝑛 ways (this 𝑛 has a bottom limit of

two). This mapping strategy is called 𝑛 ways set associative cache (20). This type of mapping
presents associative ways which reduce the address conflict, considering that 𝑛 addresses mapped
to the same set can be stored simultaneously. In addition, in the set-associative mapping, the

hardware overhead is reduced, as only 𝑛 address must be compared per access, presenting low
complexity cache line replacements (20).

2.1.2 Replacement policies

In addition to the mapping technique, another important aspect that contributes to the performance

of the cache memory architecture is the line replacement policy used. During a cache miss, this

policy is responsible for choosing which block will be replaced by the new address to be stored

(7).

Some of the best-known policies are: Least Frequently Used (LFU), Fist In, First Out

(FIFO), and Least Recently Used (LRU). The most commonly used technique is LRU, where the

block replaced is the one with the longest time interval between the last reference and the current

time (20). The removal is done based on the least recently used cache line.

Nevertheless, perfect LRU policies are challenging to implement for memories with

large associative sets. Often, such a policy leads to approximate implementations, which bring

a balance between accuracy and implementation cost (25). These policies usually follow the

principle of temporal locality, which says that data tends to be reused in a short time.

21

Figure 2.1: Different cache geometries (a) Direct mapped, (b) Set associative and (c) Fully associative

Source: Modified from Hennessy and Patterson (20).

2.1.3 Cache hierarchy

Modern processors tend to adopt a multi-level cache architecture. For example, the most common

architecture nowadays for desktop and server processors consists of two private levels to the core

(L1 and L2) and a shared level between the different cores (Last-Level Cache (LLC)).

When a read or write is performed, data is fetched sequentially in cache memory from

levels close to the processor, which have lower latency, such as L1, to the furthest levels. If the

data is found, there is a cache hit, and the cache sends the data to the processor. Otherwise, the

data must be fetched at more distant levels, with higher access latency, such as LLC. Finally,

if there are no cache hits at any level of the cache hierarchy, the data is fetched from the main

memory or disk. This hierarchical architecture works as an access filter since a percentage of

the accesses will be answered by L1, another sub-percent by L2 and only a smaller portion of

requests will be sent to the LLC (20). After a cache miss, the address is installed in all cache

levels closer to the processor, following the temporal principle.

By observing the pattern of access to addresses by several applications, we can observe

that most applications have a well-behaved data access pattern. Using the spatial locality pattern,

for instance, during linear accesses to a vector, and the temporal locality during the access

of the control variable inside a loop. Nevertheless, some programs do not benefit from these

concepts. For instance, some graph applications use large amounts of data in a non-linear way

(presenting low spatial locality) and do not reuse most of them (20), presenting low temporal

locality. Therefore, they do not benefit from cache memories. We could also cite data streaming

applications with low or no temporal locality, making the cache usage less fruitful.

2.1.4 Inclusiveness policies

When dealing with multiple cache levels, we need to decide which storage policy to adopt between

the different levels. There are generally three policies: exclusive, inclusive, and non-inclusive. In

the exclusive storage policy, data is present in only one cache level. For this, during insertion,

the data are initially on the first level (L1), and as they are replaced, they move towards LLC.

The inclusive storage policy replicates the data in all cache levels farthest from the processor.

Therefore, any address in a cache level closer to the processor must be at all levels further from

22

the processor (e.g., any address present in L1 must be in L2 and LLC). For addresses removed

from L1, they stay in L2 and LLC. For this to occur, when inserting data, insertion is done at all

cache levels. Finally, in this technique, when removing data from the last level, an invalidation of

the higher levels (i.e., closer to the processor) must be performed (47).

We notice that inclusive policy waste storage space in cache memory, but maintaining

coherence is more convenient in this model. On the other hand, the exclusive policy allows full

use of space but makes maintaining coherence a more tricky task.

Finally, in the non-inclusive policy, the address installation follows the inclusive policy.

However, removing an address from a certain level does not imply removing it from other levels.

Thus, the inclusion of addresses is not guaranteed (47).

Some commercial examples use different policies within the same processor. For

example, Intel Sandy Bridge has a non-inclusive L2 cache and an inclusive LLC (23). In another

commercial example, the ARM Cortex-A15 (5), the L2 cache is inclusive, and the LLC is

exclusive, whether it is present or not. The AMD Ryzen 9 5950X-A has an inclusive L2 and a

non-inclusive LLC.

2.1.5 Non-blocking cache memories

In order to increase performance, non-blocking caches are a way to increase the bandwidth of a

cache. Non-blocking caches are a natural feature for out-of-order execution processors. These

caches allow cache hits to be responded to even while a cache miss is pending (19).

This type of optimization, called "hit under miss", reduces the miss penalty, considering

that other requests from the processor are not delayed when a miss occurs (19). In addition to this

optimization, there are two more complex optimizations: "hit under multiple misses" and "miss

under miss." In these two, there is the transposition of multiple misses. In the second scenario,

"miss under miss," the memory system must be able to respond to multiple misses. Commercial

examples are present in processors such as the Intel Core i7 and the ARM A8 (19).

2.1.6 Multi-bank cache memories

Another architecture used in modern chips like the Cortex-A8 and Intel Core i7 is the multi-banked

caches. This architecture divides the address space into multiple banks, which can be accessed

individually in parallel. The efficiency of this technique is linked to the type of mapping

performed. The intention is to guarantee that the cache accesses are equally distributed among the

multiple banks; otherwise, there will be a problem of bank conflict, multiple addresses mapped

to the same bank, causing a higher contention. (19).

Sequential interleaving is a form of addressing that guarantees good performance,

consisting of assigning the addresses of the blocks sequentially between the banks, as shown in

Figure 2.2. In an example with four banks, two bits from the memory address indicate which

bank stores each specific address.

2.2 BYPASS IN CACHE MEMORIES

We commonly consider that bringing data to the cache typically results in a performance gain

(11). Despite this, it is trivial to present cases where the execution time is worse using cache

memories than without them.

For example, we can assume a fully associative cache composed by two lines only, with

a line size of one byte and a LRU replacement policy. Then, consider the accesses to blocks

23

Figure 2.2: Four cache banks that feature sequential interleaving block addressing. Bank 0 presents the block

addresses whose module 4 result is 0 (0, 4, 8, and 12), bank 1 contains the block addresses with result 1 when done

modulo 4 (1, 5, 9, and 13), bank 2 the block addresses with result 2 (2, 6, 10 and 14) and bank 3 the block addresses

whose module 4 has result 3 (3, 7, 11 and 15).

Source: Modified from Hennessy and Patterson (19).

(1,2,3,1,2,3) commonly observed in applications with loops. The representation of this execution

is in Figure 2.3.

Figure 2.3: Execution of access sequence for blocks (1,2,3,1,2,3) in a fully associative cache of size 2 and substitution

policy LRU, initially empty. In (a) the empty cache, in (b) the first access to "1", in (c) the first access to "2", in (d)

the first access to "3", in (e) the second access to "1", in (f) the second access to "2" and in (g) the second access to

"3".

Source: Translated and modified from Chi and Dietz (11).

After accessing the blocks (1, 2, 3, 1, 2, 3), the result is six cache misses, the worst

case scenario (11). Considering that misses generated extra costs associated with the tasks of

1) fetching data from main memory, 2) saving to cache, and; 3) selecting which data should be

removed in cases where the cache is full.

In the presented scenario, there is no possibility of not inserting data into the cache.

Considering the possibility of bypassing the cache memory, a scenario where the access to

block 3, was sent directly to the main memory would result in four misses and two hits (11).

We can argue that such a scenario is unrealistic because it uses a small cache. However,

we must remember that when scaling the size of the cache, we can also scale the size of the

problem to be solved, reaching the same scenario on a larger scale.

A second argument we can think of is the efficiency of the cache’s line replacement

policy. In this sense, a different policy could lead to a better cache hit ratio. In the example of

Figure 2.3, for instance, using a Most Recently Used (MRU) policy could decrease the number of

misses to four.

24

The technique of bypassing cache memory during requests consists of bypassing

addresses with low reuse probability from certain levels of cache memory. In this way, the cache

theoretically has a lower amount of pollution. In other words, it presents a smaller amount of

addresses that will not be reused (27). Also, reducing the overhead associated with fetching and

storing data in the cache memory as the latency of cache memory levels is removed.

This bypass strategy can be performed at all cache levels, directly accessing main

memory (11). Alternatively, it can be performed at specific levels (27).

This bypass can be executed statically, before the application execution (11), or

dynamically, during the execution of the workloads (27). Some related work (9; 14; 27) use

metrics to define when an address shall bypass. Some examples are: building an execution flow

and, calculating the cost to insert or remap data into the cache, using an extra bit to signal when

an address should be installed in the cache memory hierarchy. Another technique used is the

reuse counter, incremented when an address provides a hit in LLC. The counter value defines

when a request should bypass the LLC (27).

Besides the use in Central Process Unit (CPU), the technique of bypassing has been

used in other architectures, for example, in Graphics Processing Unit (GPU) (51).

Other proposals in the literature present bypassing techniques from LLC (29), (27).

In the work of Köhler and Alves (29), the data request identified as possible misses in LLC is

bypassed. In parallel, it sends a request to the main memory system, thus reducing data fetching

costs. However, this proposal does not consider multi-threading systems or a layer cache bypass.

One of the challenges in the use of bypassing techniques is the control of the cache

memory coherence protocol. Since, change cache accesses can lead to a non coherence stage

of the cache. The protocol can be simplified using the inclusive policy, although bypass is also

applied to exclusive caches, using for instance a coherence directory array disconnect from the

cache (16). Changing the coherence protocol is not trivial, because of that works have different

approaches, adapting the mechanism in a way where there is no need to change the protocol (52),

using the Modified, Owned, Exclusive, Shared, Invalida (MOESI) protocol writing back dirty

cache lines when they are invalidated (21).

Modern processors provide non-temporal load and store memory instructions. In this

type of instruction, the access is done to a uncacheable region at the L1 level for address translation

by Translation Look-aside Buffer (TLB). After the address translation, they are sent to the main

memory Dynamic Random Access Memory (DRAM), thus saving access latency. (22).

2.3 REGRESSION

Regression models are statistical techniques that enable us to assess the impact of explanatory

variables over response variables by estimating quantities that measure this effect. If these

quantities are significantly different from 0, there is evidence of a significant effect of the

explanatory variable over the response. This impact evaluation uses hypothesis tests considering

the probability distribution of the estimates. Using these estimates in a regression model, it is

also possible to make predictions of the response based on the observed values of the explanatory

variable.

2.3.1 Linear regression

The commonly used model assumes that a linear relation exists between the explanatory variables

and the outcome - the variable to be predicted by the model. With this linear model it is also

possible to measure the strength of the relation between these two variables, named 𝑅2.

25

In Figure 2.4, we can see one example of a linear regression between the cider Potential

Hydrogen (PH) and the apple content in kilogram. In this example is possible to model the

relation with a straight line, as illustrated in Figure 2.4(b), in a satisfactory nevertheless not

optimal way.

Figure 2.4: Linear relation between the pH of cider and the apple content (Kg).

Source: Rhys (41).

A limitation present in this model arises from the assumption of a linear relationship

between the observations and also the use of a normal distribution(Clark).

2.3.2 Polynomial Regression

A common model used when the variables of study do not show a linear relation is the use of a

polynomial regression model (Clark). In Figure 2.5, the same example of Figure 2.4 is illustrated.

However, a quadratic term is added to the function, shown in blue, better capturing the relation

between the variables.

Figure 2.5: Polynomial quadratic relation between two variables.

Source: Rhys (41).

Although, with complex relations, it is difficult to fit the data with a quadratic, cubic, or

higher level polynomial function.

26

2.3.3 Generalized Additive Models

Assuming that most real-world problems do not show a linear correlation between the variables

analyses and the ones where the relationship is too complex to be represented with a polynomial

equation, Generalized Additive Models (GAM) is an option to represent these relations.

GAM is a model capable of approximating a polynomial equation, using linear relation,

from the predictor variables and the outcome (41).

In order to fit complicated relations between variables, use a higher degree of a

polynomial. The higher the degree, the higher flexibility it will get, adapting better to the data. It

can be a trick since better adaptation can lead to a overfit model (41).

Another way of adapting to a non-linear relation is using splines. Splines are piecewise

polynomial functions, meaning each region is learned as a different polynomial function. The

limitation for each region is known as knots, as shown in Figure 2.6.

Figure 2.6: Example of a nonlinear correlation function of two variables (Apple content and Cider PH) fitted by a

spline model.

Source:Rhys (41).

Although splines fit well in complicated relation, it has some limitation, seeing that

all the knots and the degrees of each spline need to be chosen manually. GAMs models are

more flexible, using a function for each predictor variable, most of the cases represented by a

smoothing function or a combination of multiple splines (41).

27

3 RELATED WORK USING SYSTEMATIC MAPPING

In order to assess the main contributions present in this dissertation, it is necessary to observe

the related work in the area, thereby making it possible to understand the current state-of-the-art

and evaluate our work with the comparable ones available in the literature.

We used the Systematic Mapping methodology proposed by Petersen et al. (38) to find

the most relevant related work. This methodology guides us while searching the correlated work

by defining metrics and steps to make the process more accurate and ensuring that all essential

work for this dissertation was considered without a personal author bias. The following sections

discuss all the developed steps. In Section 3.1, we describe the research question, also the

scientific databases and search strings used. In addition, the inclusion and exclusion criteria are

also discussed. Section 3.2 describes in detail the selected papers from Section 3.1. Furthermore,

Section 3.3 makes a comparison between the most related papers, and Section 3.4 provide the

main similarity and differences between the papers analyzed with the presented dissertation.

3.1 SYSTEMATIC MAPPING MYTHOLOGY

According to the systematic mapping of Petersen et al. (38) one of the first steps is to describe a

group of analysis questions.

Considering the goal of this dissertation, we developed the eight questions below to

understand the area of reconfiguring cache memories and how to create a new dynamic and

efficient tool for this task. The questions are the following:

1. RQ1: What is the primary objective of using a tool to reconfigure the cache architecture?

2. RQ2: How is the cache architecture, and what level is used?

3. RQ3: What technique is used to perform the reconfiguration?

4. RQ4: Which hardware components are added?

5. RQ5: What is the granularity of the change?

6. RQ6: Is it a dynamic tool?

7. RQ7: Does the research improve performance?

8. RQ8: Is hardware implemented?

These questions aims to extract the acknowledgment and the main objective of the tools

analyzed. Gathering information about which cache level is used is the study, if is a dynamic and

online tool, as well as the granularity of the change. Also, identifying how this tool is made:

what components are added and if these components are hardware implemented. Moreover, also

evaluates the improvement in performance or energy consumption. Mapping the related works

leaded us to understand how we can improve the state-of-the-art in this topic, and improve the

performance gains compared to similar tools already reported in the literature.

We execute the search for correlated works on three distinguished bases: IEEE Xplore,

ACM Digital Library, and Springer Link. All of these research bases provide search mechanisms

that support a range of dates, and we have searched these bases using a range of 2016 until now.

28

We took this decision based on the survey of Mittal (33), with brings with all the most relevant

work in the bypassing area. Therefore, all papers cited by Mittal (33) were merged with the result

obtained by the search on all bases.

About the strings used, we search for "adaptable cache hierarchy", "cache hierarchy

reconfiguration," and "heterogeneous cache hierarchy" combined with "performance prediction",

"cache bypass", "linear regression," and "machine learning". These combined strings are shown

in Table 3.1.

Table 3.1: Search strings used in each search base

Search base Date Search string
IEEE Xplore 10/02/2022 (("heterogeneous cache" OR "cache heterogeneous"

OR "adaptable cache" OR "cache adaptable" OR

"cache reconfiguration" OR "reconfiguration cache"

OR "re-configurable cache" OR "selective cache" OR

"exclusion cache") AND ("performance prediction"

OR "bypass" OR "bypassing" OR "linear regression"

OR "machine learning"))

ACM Digital Library 10/02/2022 (("heterogeneous cache" OR "cache heterogeneous"

OR "adaptable cache" OR "cache adaptable" OR

"cache reconfiguration" OR "reconfiguration cache"

OR "re-configurable cache" OR "selective cache" OR

"exclusion cache") AND ("performance prediction"

OR "bypass" OR "bypassing" OR "linear regression"

OR "machine learning"))

Springer Link 10/02/2022 (("heterogeneous cache" OR "cache heterogeneous"

OR "adaptable cache" OR "cache adaptable" OR

"cache reconfiguration" OR "reconfiguration cache"

OR "re-configurable cache" OR "selective cache" OR

"exclusion cache") AND ("performance prediction"

OR "bypass" OR "bypassing" OR "linear regression"

OR "machine learning"))

Gathering the papers from IEEE Xplore, ACM Digital Library, Springer Link, and the

papers cited by Mittal (33) we found a total of 231, 71 from IEEE Xplore, 48 from ACM Digital

Library, 22 from Springer Link, and 90 from Mittal (33), described in Table 3.2.

Table 3.2: Number of papers per database

Database Search Results
IEEE 71

Springer Link 22

ACM 48

Mittal (33) 90

In the next step discussed in Petersen et al. (38), some selection is necessary to make the

number of papers smaller and select the ones with higher relevance to our proposal. To do this,

we define the inclusion and exclusion criteria, listed in Table 3.3, to guide the selection process.

Papers that use GPU and those that improve the replacement policy were excluded.

Other exclusion criteria consider papers that only show the software specifications or perform

29

reuse distance prediction to indicate dead blocks or to predict the load and store latency. In

addition, we included papers focusing on CPU cache (any level) and bypass techniques.

Table 3.3: Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria
1. CPU cache 1. GPU cache

2. Use bypass technique to make the cache

reconfigurable or adaptable

2. Paper developed to improve replacement

policy

3. Reduce energy consumption or improve

performance

3. If only software specifications are de-

scribed

4. Prediction of reuse, dead blocks or load,

and stores latency

5. Papers that focus on security solutions

6. Papers related to network solutions

3.2 STATE-OF-THE-ART

This section discusses this proposal’s state-of-the-art in detail. However, first, we separate these

papers into three categories: bypassing techniques, described in Section 3.2.1, Reconfigure and

adaptable caches in Section 3.2.2, and Statistical and Machine Learning approach reported in

Section 3.2.3.

3.2.1 Bypass techniques

Bypass is a well-established technique used as an approach for different types of problems. In

the paper using bypass to adapt the use of the LLC we focus on the ones with a coarse-grained

adaptation, such as adapting an entire cache level, the cache size, or the associativity. Rather

than a mechanism with a fine-grained bypass, such as an instruction-grained mechanism.

The Kharbutli et al. (27) work uses cache block granularity, presuming that there

is a large set of blocks that are not reused. These blocks can be classified according to the

re-access range they have. Blocks with short re-access (i.e., frequently re-accessed) can be

easily accommodated in the L1 and L2 cache levels. In addition to the short frequency, there

are moderate and long frequencies. Long frequencies cannot be accommodated even by the

larger LLC. However, blocks with moderate frequency can be allocated in the last level, not being

successful if allocated in higher levels of smaller sizes. Therefore, moderate frequency blocks

should be kept in LLC.

In order to perform the bypass, a method capable of detecting the re-access range of the

block is therefore required. Therefore, a table of tags is implemented, containing a miss counter,

incremented every time a miss of the block occurs. While this counter is smaller than 3, the block

undergoes bypass; when the corresponding block counter reaches 3, the block is inserted into

the LLC (27). The mechanism could detect the reuse behavior of the blocks at run-time. The

result is 75% speedup in the best case (SPEC-CPU 2006 mcf application) and 18% of speedup

on average, considering SPEC-CPU 2006. The authors also show that between 82% to 95% of

the blocks were bypassed using this mechanism. Their algorithm implementation shows that it

can eliminate up to 28% of cache misses in a non-inclusive LLC.

Gupta et al. (17) also proposes a solution to perform bypass although in inclusive caches.

In this work, a buffer is used to store the tags of the cache lines that undergo bypass in the LLC.

30

When a tag is replaced in this buffer, the upper levels are invalidated, keeping the inclusion

principle. This work demonstrated that for a relatively small buffer, with 512 entries in the largest

test, it was possible to obtain the benefits of performing bypass on inclusive LLCs.

In the work of Köhler and Alves (29), the bypass of data requests identified as possible

misses in the LLC is performed through a predictor of misses. For these accesses identified

as possible misses, the DRAM and the LLC request is performed in parallel, thus decreasing

latency cycles. Multi-threading was not considered to perform the bypass.

The work of Egawa et al. (14) uses the value of Hits per Kilo Instructions (HPKI)

and miss penalty associated with the energy consumption of each cache layer in the system to

decide if there is any layer that can be disabled without hurting the performance, using bypass

and Gated-vdd techniques. However, in this related work, this decision is not adaptable during

execution time.

After Liu et al. (31) used the mechanism proposed by Egawa et al. (14), thus adding

an adaptable system to identify the better capacity and associativity to the LLC without losing

performance or increasing LLC misses. The decision is made using the Misses per Kilo

Instructions (MPKI) metric. The proposal reached an improvement of 10% on average in

energy-efficient, although this is a static mechanism.

To finish, bypass can also be used to increase the replacement policy efficiency, Khan

and Jimenez (26) uses a sampling cache and a decision tree to improve the efficiency of LRU

policy in the LLC. They consider that L1 and L2 already filter part of the temporal locality

accesses, so they aim to predict which block in LLC can be replaced and which one could

be bypassed in the LLC. As a result, they show 5.2% better performance when compared to

execution with only the LRU policy itself.

3.2.2 Reconfigure and adaptable cache

Partial shutdown techniques or reconfiguration of adaptable caches are used for various functions,

such as reducing energy consumption when resources are not being used.

In cache reconfiguration techniques, caches are divided into several smaller sub-ways,

and these sub-ways are activated or deactivated, according to the pattern found in the application,

to obtain a better performance or reduce energy consumption.

Mittal et al. (34) focus on reducing energy consumption. Different sizes of LLC are

tested and evaluated according to energy consumption metrics. The smallest possible size is

selected for the LLC, considering an acceptable threshold of performance loss. The work showed

a maximum energy saving of 15%.

Another work by Mittal et al. (35) also aims to minimize energy consumption. In this

work, energy savings reached 26.2%. The technique used for the profiling of applications has
a Auxiliar Tag Directory (ATD) to identify the general cache pattern, turning off associative

paths from LLC that are being representative used and also not represent a huge improvement

in application performance. This technique has little overhead, as ATD adds only a little extra

storage space.

In addition, in reconfiguration mechanisms where the cache memory geometry is

changed or some part disabled, some proposals allocate the unused cache space, during execution,

to another purpose, as Lai et al. (30) and Han et al. (18).

Lai et al. (30) presents a hybrid model of the cache storing data and traces. The authors

assume that for specific applications, not all the cache storage capacity is used. Cache ways

from the associative set are reconfigured as trace buffers. On the other hand, Han et al. (18)

proposes a reconfigurable cache, where the cache lines are reconfigured to Message Passing

Bufferss (MPBs) according to need and usage. Promoting better use of storage within the chip.

31

El-Sayed et al. (15) proposed a reconfigurable partition of the LLC, profiling applications

and making clusters of similar ones that share the same cache partitions, improving throughput by

24% on average. Moreover, the mechanism uses detailed profiling information, gathered offline

or online. The online one uses a sampling technique while the offline executes the application in

all different partition sizes.

Sato et al. (43) developed an associativity-adaptable cache architecture, using hardware-

implemented perceptron. The features used in the perceptron are: Program Counter (PC); tag

upper and lower addresses of the accessed block, and the PCs of the latest three instructions

that cause memory accesses. Using this perceptron to predict dead blocks and prevent them

from being installed by bypassing them, the unused ways from the set-associative can have the

power supply interrupted. For this, sampling is used to maintain the cache metrics. The approach

reaches a 14% of reduction in energy consumption using bypass, although they did not provide

any performance improvement.

Navarro et al. (36) reconfigure three cache parameters: size; line size and associativity.

To reach the ideal combination for the application, they use the program’s frequency of assembly

instructions to train a machine learning model capable of predicting the best combination of

parameters in terms of energy consumption. Although they make this reconfiguration only

once at the beginning of program execution, considering the features extracted offline from the

application, not being able to adapt to program phases.

Commercial solutions support the shutdown of cache hierarchy levels, such as Intel

processors based on the Intel NetBurst architecture, which allows the shutdown of the last cache

level. This change is done by a bit 6 of the 𝐼 𝐴32_𝑀𝐼𝑆𝐶_𝐸𝑁𝐴𝐵𝐿𝐸 Model-Specific Register

(MSR) and before any changes (disable or enable) software should disable and flush all the

processor caches (23).

It is possible to notice that several techniques applied to Chip Multiprocessors (CMPs)

were found in the literature. These solutions aim to reduce the dissipated energy of the cache

memory hierarchies (21) and reduce the energy consumption and the execution time (10). To

reach this, they reconfigure the parameters such as cache line size (10), storage capacity (34) or

change the number of associative ways (35). In this sense, it is possible to notice that changing

the geometry of the cache presents positive results in terms of reducing energy consumption and

reducing execution time. However, our proposal differs from the related work described above by

considering the entire LLC for each running application, dynamically adapting the use of the

LLC on every context switch basis, thus, identifying and adapting for the different application

phase.

3.2.3 Statistics and Machine Learning Approaches

Both bypass and reconfigure techniques can be done using statistics or machine learning

approaches. Teran et al. (46) uses a hardware-implemented perceptron, using tables and reuse

counters to estimate the reuse distance for cache blocks, bypassing and improving the replacement

of the blocks, proving a speedup up to 18.3%. Although the work from Teran et al. (46) is based

on a fine-grained bypass, it differentiates from the others by the hardware implementation of the

machine learning model.

While Jain et al. (24) uses reinforcement learning to perform dynamic cache co-

partitioning. The action space of the model is the possible reconfigurations (i.e., possible ways

allocated for that cache layer). The model decides based on the Instructions per Cycle (IPC)

observed, which is also the reward used, proving a model that tries to maximize the value of IPC.

Kim et al. (28) also use machine learning to dynamically adapt the size of the shared LLC using

32

the Intel Cache Allocation Technology (CAT) by using the Lasso model to predict the IPC across

different sizes of LLC.

And Al-Obaidy et al. (1) uses a neural network algorithm to reconfigure the LLC,

consequently improving system energy efficiency on average 45.2% and performance by 13%.

This paper predicts latency and change between a 16-MB SRAM and a 512-MB STT-RAM. In

this case, LLC are shared between cores, and any change is applied to all cores far from our work

that identifies each core demand.

Al-Obaidy et al. (2) uses a Neural Network (NN) to train a prediction model capable of

predicting the demanded application’s latency. Based on the latency, the authors reconfigure the

LLC using emerging technology such as STT-RAM and determining the space of the LLC used

by the application, not disabling the full use of the LLC.

Although some works do not use the bypass, they present a cache adaptation mechanism.

Zhu and Zeng (52) use hardware counters and a decision tree to predict the best cache associativity.

Adapting the L2 for the associativity find. Nevertheless, this decision is time-consuming since

five execution phases are performed, each trying a different associativity configuration to make a

decision.

3.3 OVERALL COMPARISON

Table 3.4 summarize this proposal’s most relevant related work, comparing these work to each

other and with Multi-core Dynamically Adaptable Cache Bypassing Mechanism (DYCA).

The aspects analyzed are in the first line of Table 3.4. First, we compare the technique

used to adapt the architecture, derived from the research questions we assign six categories for

each work, which can be Gated-vdd, bypass, the use of heterogeneous cores, or the reconfigure

and adaptation of cache layers. We can also have a mixed of these techniques.

The second aspect is the granularity of change, we can see works with fine-grained,

such as request and cache lines. Also, works with an entire cache level, size, or associative path

as the granularity of adaptation.

The third and fourth are binary aspects, considering it is an online mechanism (i.e., if

the changes are defined online during program execution or if they are done offline before the

execution) and if the adaptation is performed and decided during run-time (i.e., if the changes

designated in the previous categories can change during the execution).

The next two columns bring results about the hardware overhead needed and the

performance gains observed. The aspects reported as N/D are not determined in the work. For the

reported speedup it can be either N/D (i.e., the paper does not bring results about performance)

or 0% in the case where performance is not increased or have a negligible reduction.

3.4 CONCLUSION

To conclude, our systematic mapping found many papers related to this dissertation in the three

main areas: machine learning and statistic approaches, adaptable cache, and bypass. However,

the results in the papers selected show possible improvements in performance and energy

consumption reduction, no prior work provides a dynamic adaptable LLC mechanism in an

application granularity.

Although Jain et al. (24); Egawa et al. (14); Sato et al. (43); Al-Obaidy et al. (1); Kim

et al. (28) adapt the LLC configuration, this reconfiguration is applied to the whole system not

aware of each application present in multi-uses systems. In addition, Egawa et al. (14) implements

a not static mechanism, unable to adapt to program phases. Furthermore, the previous techniques

33

Paper Technique Grain Online Run-time Hardware
overhead

Reported
speedup

(26) Bypass Cache line • • N/D 12.0%

(48)
Heterogeneous

cores
Process • • N/D 5.5%

(27) Bypass Cache line • • 32KB 9.0%

(34) Gated-Vdd
Cache

parameters
• • 1000KB −2.0%

(35) Gated-Vdd
LLC

associativity
• • 512KB 0%

(46) Bypass Cache line 10KB 18.3%

(43)
Gated-Vdd

and bypass
Cache line • • 44KB 0%

(14)
Gated-Vdd

and bypass
Cache layer • N/D 0%

(29) Bypass Request • • 96B 13.3%

(1)
Cache

parameters
Cache layer • N/D 13.0%

(31)
Gated-Vdd

and bypass
Cache layer • N/D 0%

(36)
Adaptable

cache

Cache

parameters
N/D N/D

(2)
Adaptable

cache

Cache

parameters
• N/D 25.0%

Ours Bypass Application • • 55KB 22.0%

Table 3.4: Summary of most relevant papers.

34

using bypass techniques commonly do it in a fine-grained (e.g., instruction-grained) (29), in

contrast, our mechanism makes decisions on every context switch basis.

35

4 DYCA

Our proposal is an application-aware dynamic mechanism using cache bypass to adapt the usage

of LLC in the cache hierarchy. Consequently, we need an online mechanism to adjust the cache

during run time.

Multi-core Dynamically Adaptable Cache Bypassing Mechanism (DYCA) principles

depend on a learning phase and identification and run-time phase. First, in the learning phase,

we use metrics from SPEC CPU 2006 (44) to train the models. On the one hand, wLLC, which
stands for With LLC, predicts the IPC when LLC is used. On the other hand, woLLC, which
stands for Without LLC, predicts IPC when the use of LLC is disabled (i.e., bypass is performed).

Both use metrics collected for each execution window.

Second, at the run-time stage, DYCA is performed during program execution, deciding

the best cache configuration for the next application’s execution window based on the IPC

predicted by the functions wLLC and woLLC, using the hardware counter from the last execution

window. This way, we provide an online and dynamic mechanism to adapt to multi-program

workloads and detect the different program phases. This process is illustrated in Figure 4.1.

Figure 4.1: General view of DYCA operation. In (a) the offline training where the metrics of two executions - one

with only L1 and L2 caches and another with all cache levels (L1, L2, and LLC) - are used to train two functions to

predict the application’s IPC with and without the LLC and in (b) the online usage where the metrics from each

window execution are used to predict the IPC of the next window and decide to use or not the LLC because on the

previous calculated IPC.

The following sections will detail the mechanism. We first start describing the process of

collecting the metrics during execution, Section 4.0.1. After, the hardware counters collection and

selecting the most relevant ones in Section 4.0.2. Next, we describe the sampling cache method

used to keep the LLC counters when bypassing the Last-Level Cache (LLC) (40) in Section 4.0.3.

After that, the architecture configuration is described in Section 4.0.4. And the linear regression

model is explained in Section 4.0.5. To conclude, we discuss the performance and hardware

overhead in Section 4.0.8 and the general flow of our mechanism DYCA in Section 4.0.9.

36

4.0.1 Metrics collection via execution window

Since programs present different phases, adjusting the LLC cache usage or not for each phase

is necessary. Therefore, we adopt the execution window approach to make it possible. An

execution window consists of a slice when the program is being scheduled for execution by the

operating system. Our approach defines the execution window as 200 million cycles long for

simulation purposes. This decision is based on the average frequency that a Operating System

(OS) context switch happens (3). The execution window being the OS context switch slot reduces

the performance overhead.

The main idea is to execute DYCA switches between cache and cacheless execution

simultaneously with the context switch. Thus, our mechanism hides most of its required overhead

due to the cache invalidation needed to guarantee the coherence protocol. It happens because,

during a context switch, most of the cached content is likely to be invalidated by the other

applications’ execution.

The metric measurements are performed at the end of each execution window, as

described in Figure 4.2. This approach is used in the offline step to obtain hardware counters to

train the model. Further, it is used during the online step to decide the configuration for the next

execution window and change the cache hierarchy if necessary. It is essential to mention that this

offline training step is executed for a series of applications for our model to infer based on the

hardware counters when it is beneficial or not to use the LLC.

Figure 4.2: Execution window approach used in DYCA where the length of each execution window is equal to the

average time in which an OS context switch happens, at this moment the metrics for these windows are obtained,

and the counters reset to measure the next window.

4.0.2 Hardware counters and feature selection

In order to choose which hardware counters to use, we first consider the papers that use hardware

counters to classify the efficient use of the cache (48; 14; 31; 15; 24; 28). Next, we exploit many

hardware counters to select the ones with a higher correlation with performance. Table 4.1

shows all the hardware counters from the cache hierarchy and each core considered in this first

evaluation step.

Since the state-of-the-art proposals use different hardware counters, we evaluate each

counter fairly to decide whether or not each one will be considered in the regression model. This

model is described in Section 4.0.5.

We use information collected from SPEC-CPU-2006 (44) and SPEC-CPU-2017 (45)

to evaluate these metrics. All the hardware counters were collected in each execution window

of 200 million cycles. We use Pearson correlation to measure the correlation between each

hardware counter and the value of IPC.

37

Component Hardware counters Execution window Full execution

L1, L2, and LLC

Number of misses • •

Number of hits • •

Number of accesses • •

Number of writes • •

Miss rate • •

Hit rate • •

Misses per Kilo Instructions (MPKI) • •

Hits per Kilo Instructions (HPKI) • •

Processing Core

Instructions per Cycle (IPC) using LLC • •

IPC without LLC • •

Number of instructions •

Memory system
Load • •

Store • •

Table 4.1: Summary of features (i.e., the hardware counters) selected to be used in the linear regression model.

To analyze, we use the R and p-value. R indicates the strength and direction of the

correlation, varying from 1 to -1. The closer to zero, the weaker the correlation. Positive R

values indicate positive correlations (i.e., variables tend to grow in a directly proportional way),

and negative values indicate a negative correlation (i.e., values are inversely proportional).

Furthermore, p-value value considers the null hypothesis, which defines that the variables
are uncorrelated, and measures the potential to observe the specific obtained R value considering

the null hypothesis. Most research defines statistically significant as a p-value equal to, or under

0.05 (41).
First, we evaluate the absolute counters, such as the number of accesses, hits, and misses.

Figure 4.3 show the correlation graphics for the absolute number of misses in the LLC, with

R-value equal to −0.21.

Figure 4.3: Correlation between the absolute number of misses in LLC and the observed IPC in SPEC CPU 2006

applications.

Moreover, Figure 4.4 shows the correlation between the absolute number of misses in

the L2 and the IPC, presenting an R-value equal to −0.48.
As described in both figures, the absolute number of hits and misses represents a low

R-value. Additionally, using an unbounded number can lead to an overfitting model, incapable of

predicting data outside the trained base.

Secondly, we analyze the counters commonly used in literature (48; 14; 31; 15; 24; 28).

The metrics of miss and hit rate and HPKI and MPKI. Since miss and hit rate are complementary

metrics, we are only discussing one.

38

Figure 4.4: Correlation between the absolute number of misses in the L2 and the observed IPC in SPEC CPU 2006

applications.

Figure 4.5 shows the correlation between the miss rate observed in L2 and the IPC, with

R equal to −0.60.

Figure 4.5: Correlation between the miss rate in L2 and the observed IPC for SPEC CPU applications.

As we can see, this metric represents a higher correlation to the IPC than the previous

ones (which use absolute values). This fact remains true to the MPKI, illustrated in Figure 4.6.

Because these metrics represent a higher correlation value, they are used in the next step to obtain

a linear regression model.

Figure 4.6: Correlation between MPKI in LLC and the observed IPC for SPEC CPU 2006 applications.

39

Finally, we derive a new metric from the collected ones described in Table 4.1. We

construct the accesses per cycle metric using the absolute number of access per cache level. This

new metric relies on the fact that the number of cache access could be associated with how well

the previous cache layer performs (i.e., the measured access depends on how many accesses are

filtered by the previous layer).

To sum up, our analyses reduce the search space of possible features to create the linear

regression model. Besides, it validates the metric choice in this dissertation. Additionally, it

is essential to note that the presented metrics do not have a strong linear correlation to the IPC

value. Thus, no metric presented an R-value higher than 0.60. However, most of the p values are
lower than 0.05, indicating a static significance in the correlation.

Due to this, we use not only a combination of the various metrics as a way of tracing a

significant relationship with the IPC value but also the Generalized Additive Models (GAM)

model because it has the capacity to smooth the terms, and tracing a non-linear relation.

4.0.3 Sampling cache

The sampling cache is a component used to simulate the hardware counters needed to predict the

performance by the regression model whenever the LLC is not used (i.e., no actual hardware

counter will be available for LLC). This sampling cache also has the benefit of low hardware

overhead. In this section, we explain how it works and assess the accuracy of this cache.

The main idea behind the sampling cache is to simulate the behavior of the LLC in a

small mechanism with just a few sampled sets. We sample the LLC sets to keep track of LLC

usefulness in the execution window where we perform the bypass. The fact found by Qureshi et al.

(40) is that a small among of sets can reproduce the entire cache performance. Similarly, this

mechanism reproduces all the access and changes in the LLC, storing only the tag information.

Thus no data storage is required as we are interested in the hardware counters that can be acquired

only with the tag info.

The sets reproduced in the sampling cache (i.e., the sets direct mapped to the sampling

cache) are named leader sets. The method to select K leader sets assumes N to be the number of

sets in the LLC. Then, we logically divide the LLC into K equally-sized regions, each including

N/K sets. The number of ways per leader set is the same as the associativity in the LLC. For each

K region, one leader set is selected. This selection may vary depending on the selection policy.

The simple-static policy (40) consists of selecting the set 0 from the first region, 1

from the second region, 2 from the third, and so forth. We select the 𝑛𝑡ℎ set from each region.

Considering only cache with the numbers of sets equals to powers of two, there are no remaining

sets in the division process.

This simple policy with a LLC of N sets and a sampling cache of K sets is illustrated in

Figure 4.7.

There is a particular case when the number of K regions is bigger than the N/K region

size. In that case, when the N/K position is reached in the region, we restart from region position

zero. Figure 4.8 shows this case, and we can see a LLC with 8 sets and a sampling cache of 4

sets. In this case, N/K is equal to 2. The mapping starts from the first region, which contains sets

0 and 1, selection of the first set of the region (i.e., set 0 from the LLC). Next, set 1 is selected

from the second region (i.e., set 3 of LLC). Since we reach the maximum number of sets in each

region the next one is the first set, in Figure 4.8 set 4 of the LLC. Worth noting that we pass

through all positions in the N/K regions.

When using a sampling cache, we must decide the number of leader sets. Qureshi et al.

(40) reports that 16 to 32 sets are sufficiently suitable for their application. Nevertheless, we must

evaluate which size is better for DYCA.

40

Figure 4.7: Mapping the K leader sets, of each N/K region in a LLC of size N, into a sampling cache of size K, each

K leader set mapped to a set in the sampling cache.

Figure 4.8: Mapping of leader sets when there are more K sets than N/K regions.

For our proposal, we tested the accuracy of the sampling cache over a few sizes to

choose the best size (i.e., the one with the higher accuracy and low hardware overhead). Based

on Qureshi et al. (40) results, we tested 16 and 32 sets. However, we also tested 64, 128, and 256

sets. The benchmark used for testing was SPEC-CPU 2017(45). The accuracy is measured by

the percentage difference between the miss rate and hit rate observed in the real LLC and the

one provided by the sampling cache. Figure 4.9 show the average accuracy of all application in

SPEC-CPU 2017(45) for all the leader sets sizes experimented (i.e., 16, 32, 64, 128, and 256).

As shown in Figure 4.9, the mechanism’s accuracy increases while the size of the

sampling cache increases. Although it is possible to notice that the difference between 64, 128,

and 256 sets is negligible (i.e., the standard deviation for these three sizes remains similar). On

the other hand, the difference observed in sizes 16, 32, and 64 is very significant, especially the

standard deviation. The meaning of a higher deviation is associated with a wrong prediction for

some of the applications in SPEC-CPU 2017(45). For those reasons listed above, we choose

64 as the number of sets to be used in the following experiments, especially considering the

hardware overhead that a larger sampling cache can cause in DYCA.

A change in hardware counters provided by the sampling cache is also required. The

reason is that the counter dependent on absolute counters, such as MPKI and HPKI, that use

the total number of instructions, would not have the same value as the counter observed at the

real LLC due to the difference in size. Therefore, we assume that the sampling cache represents

only a K percent of the LLC behavior. In this case, we can multiply the observed value by the

41

Figure 4.9: Average accuracy and standard deviation for different sampling caches sizes (16, 32, 64, 128, and 256

sets) in the SPEC CPU 2006, calculated using the difference in the hardware counters observed in the sampling

cache and in the LLC.

N/K factor, obtaining a result as if the sampling cache has the same among sets of LLC. This

adaptation is unnecessary for ratio metrics, such as the hit and miss ratio, since the result is a tax

of the observed values. Even though the among of access, misses, and hits is low, the metric

considers the relation between the values.

4.0.4 Architecture configuration

We develop two possible architectures using the sampling cache. The first one, named SingleSC,
where only one sampling shared cache is accessed by all the cores. The second architecture,

named MultiSC, has a sampling shared cache and a private sampling cache for each core.

Figure 4.10(a) shows SingleSC architecture configuration with only a shared sampling cache

accessed by all cores. Figure 4.10 (b) the MultiSC configuration is shown with four cores, each

with its sampling cache and a shared sampling cache accessed by all cores, all the access comes

from the L2 level.

The key idea behind these two architectures is to evaluate if an individual application

behavior of the LLC better detects its usage. Whereas an exclusive cache for each core can

improve accuracy, it adds extra hardware overhead. Both aspects are evaluated and discussed in

this dissertation, with the aim of finding the one that best fits the mechanism.

Figure 4.10: Architecture configurations for DYCA in four cores (a) with only one shared sampling cache, and (b)

with both one shared and private sampling cache.

Both architecture configurations are tested with the multi-core version. However, only

the first approach was tested for the single core evaluation, since the LLC is used only by this one

core.

Adding an extra bit is enough to store the behavior decided by the mechanism. Since it

is a binary decision, the bit is added to the Translation Look-aside Buffer (TLB).

42

4.0.5 Linear regression model

To create a model capable of generalization, we used regression models in DYCA to predict the

application performance. This section describes the model used and the construction process,

including selecting the features and designing the test and training bases.

The applications of SPEC-CPU-2006 (44) were used to create the training bases, and the

test is performed using the applications of SPEC-CPU 2017(45). This newer SPEC benchmark

suite has new applications and also preserve some of the application from the SPEC-CPU-2006.

Thus, we believe this method simulates a hypothetical scenario where the industry would train its

processors without our mechanism. Later on, the users would keep using the system with newer

applications.

For training bases in the single thread version, 24 applications of SPEC-CPU 2006(44)

were executed. The test is performed in the 17 applications of SPEC-CPU 2017(45). The

summary of the training and testing bases for the single thread version is described in Table 4.2.

Bases type Benchmark Quantity List of applications
Training SPEC-CPU 2006 24 astar, cactus, calculix, dealII, games, gems, gobmk, gromacs,

h264, hmmer, lbm, leslie, libquantum, milc, namd, omnetpp,

perlbench, povray, sjeng, soplex, sphinx3, tonto, xalancbemk and

zeusmp

Testing SPEC-CPU 2017 17 bwaves, cactus, exchange, image, lbm, leela, mcf, nab, omnetpp,

perlbench, roms, wrf and xalancbmk

Table 4.2: Summary of training and testing bases parameters.

For DYCA, two models are required, one model predicts the IPC using LLC (wLLC),
used when bypass is performed. And one model to predict IPC without LLC (woLLC), this one
used when the LLC is enabled.

Both models aim to create equations capable of predicting the application’s IPC in

different scenarios. These equations are based on the features described in Table 4.3 and find the

maximum global combination of features in this scenario, creating the most accurate equation

possible, each feature was combined with IPC value to plot and measure the correlation between

them, consequently, remove the ones with no correlation.

All metrics, even when the model predicts the IPC for a bypassing scenario, are obtained

from an LLC sampling cache. For this reason, we trained the models with information from the

sampling cache.

Since we are using the hardware counters observed in time 𝑡 to predict the future IPC in

time 𝑡 + 1, the training base needs to reflect this behavior. Therefore, we shift the IPCs from
one execution window ahead to match the previous hardware counters observed, as illustrated in

Figure 4.11.

Using metrics from time 𝑡 (i.e., the finished execution window) to predict the behavior
of the following 𝑡 + 1 window is based on the knowledge that programs are well-behaved without

sudden behavior changes. Although a program phase can extend for millions of cycles, there

are changes in the behavior that our mechanism shall detect. Furthermore, using these models

prevents the use of a specific decision threshold, preventing the overfitting and making the model

suitable for diverse programs.

Each model was developed using the R language and the GAM package. The features

used to train the model are described in Table 4.3.

When creating the models, our approach was to create a general equation with all

variables, measure each variable’s correlation, and select the ones more relevant to explain the

43

Figure 4.11: Example of the resulting file used for the training phase.

Component Features Execution window Full execution

L1

Miss rate • •

Hit rate • •

Access rate • •

MPKI • •

HPKI • •

L2

Miss rate • •

Hit rate • •

Access rate • •

MPKI • •

HPKI • •

LLC

Miss rate • •

Hit rate • •

Access rate • •

MPKI • •

HPKI • •

LLC

sampling

cache

Miss rate • •

Hit rate • •

Access rate • •

MPKI • •

HPKI • •

Processing

core

IPC using LLC •

IPC without LLC •

Number of instructions •

Memory

system

Number of loads •

Number of stores •

Table 4.3: Summary of features used in the linear regression model.

IPC. We evaluate the R-sq or 𝑅2 as a metric of the model accuracy and the Mean Squared Error

(MSE).

Then, after making a new equation with the variables, we measure the correlations,

select the more relevant ones so far, and so on. This process stops when the MSE of the model

increases or the 𝑅2 decreases. The process of building the model is described in Figure 4.12.
Therefore, we describe the two models (wLLC and woLLC) separately in the following

subsections.

4.0.6 wLLC model

After analyzing all the steps described in Figure 4.12, the resulting equation to wLLC model is:

𝐼𝑃𝐶 = 𝑠0𝐿1 𝑀𝑃𝐾𝐼+𝑠1𝐿1 ℎ𝑖𝑡 𝑟𝑎𝑡𝑖𝑜+𝑠2𝐿2 𝑀𝑃𝐾𝐼+𝑠4𝐿𝐿𝐶 𝐻𝑃𝐾𝐼+𝑠5𝐿𝐿𝐶 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠+𝑠6𝐿𝑜𝑎𝑑𝑠
(4.1)

As said before, the hardware counters used as features in this model are obtained from

the sampling cache, this way the LLC features used come from the LLC sampling cache.

Figure 4.13 shows the smooth functions observed for the metrics described in equation

4.1.

44

Figure 4.12: Process to select the features and build the linear regression model.

Figure 4.13: Correlation of hardware counters for wLLC model.

Both positive and negative correlations are seen in Figure 4.13. Even though, all features

show a high significance in the equation, 𝐿𝑜𝑎𝑑_𝑅𝑎𝑡𝑒 and 𝐿1_𝐻𝑖𝑡_𝑅𝑎𝑡𝑒 presented a higher
correlation to the IPC values, the observed correlations reflect in the accuracy of the model. For

SPEC-CPU 2006 (i.e. testing base) this equation presents a 𝑅2 of 0.93 and 0.50 for MSE.

45

4.0.7 woLLC model

We evaluate the features of each cache layer separated after merging all features to get the final

equation for this model. The model is the same for single and multi-core approaches. The

resulting equation is:

𝐼𝑃𝐶 = 𝑠0𝐿1 𝑀𝑃𝐾𝐼 + 𝑠1𝐿1 𝑎𝑐𝑒𝑠𝑠𝑒𝑠 + 𝑠2𝐿2 𝐻𝑃𝐾𝐼 + 𝑠3𝐿2 𝐻𝑖𝑡𝑟𝑎𝑡𝑒 + 𝑠4𝐿𝑜𝑎𝑑𝑠 (4.2)

Similar to the previous model, for this one the hardware counters also come from the

sampling cache. Figure 4.14 shows the smooth functions observed for the metrics described in

equation 4.2.

Figure 4.14: Correlation of hardware counters for woLLC model.

In the woLLC model we see a positive correlation in the 𝐿𝑜𝑎𝑑_𝑅𝑎𝑡𝑒 feature, and
a negative one in 𝐿2_𝐻𝑖𝑡_𝑟𝑎𝑡𝑒, in Figure 4.14. Also, is possible to see that 𝐿1_𝑀𝑃𝐾𝐼 and
𝐿1_𝑎𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 show a harder-to-predict behavior than the other features, this is reflected in

the 𝑅2 and MSE of the model, which is lower than model wLLC.
Also for SPEC-CPU 2006 (i.e. testing base), this equation presents a 𝑅2 of 0.70 and

1.19 of MSE.

4.0.8 Performance and hardware overhead

Some overhead performance is added when a behavior change is detected, from using LLC→

bypassing or bypassing→ using LLC. First, it is necessary to empty the pipeline before fetching

another instruction as we change the architecture configuration—secondly, some changes in the

cache hierarchy for correct maintenance of the coherence protocol are needed. We adopted the

worst-case scenario to simulate this overhead by invalidating all cache levels.

Analyzing the hardware overhead caused by adding a sampling cache, most of all, the

total hardware overhead of the approach is not significant, representing less than 0.2% of the area

46

of a 1MB cache(40). The vital aspect is that a sampling cache stores only the tag address and the

replacement policy information. More than that, since our mechanism is not in the critical path,

the latency provided by it is equal to zero, not increasing the total latency of the cache accesses.

In DYCA, the hardware overhead presented by adding a sampling cache is equal to 55 kB,

considering the choice to use 64 sets and the architecture configuration SingleSC, which only
adds a shared sampling cache. For architecture configuration MultiSC, the hardware overhead
will depend on the number of processing cores present. For instance, using 4 cores, the overhead

will be 275 Kb (i.e., 55 kB from the shared sampling and 4𝑥55 for the sampling caches added for
each core). Table 4.4 brings overhead evaluation for several situations.

Number of sets Architecture configuration Number of cores Total hardware overhead
16 SingleSC 1 13kB

16 MultiSC 4 65kB

16 MultiSC 8 117kB

32 SingleSC 1 27kB

32 MultiSC 4 135kB

32 MultiSC 8 243kB

64 SingleSC 1 55kB

64 MultiSC 4 275kB

64 MultiSC 8 495kB

Table 4.4: Hardware overhead for different sampling cache sizes.

4.0.9 General flow of DYCA

To fully understand how DYCA works, Figure 4.15 illustrates the behavior of the mechanism

during program execution in an architecture simulator.

The hardware counters are obtained every 200million instructions execution (Figure 4.15

A). When this window size is reached, the two models are executed using the features (i.e.,

hardware counters) from the sampling cache (Figure 4.15 B).

The first model wLLC, Figure 4.15 C , predicts the application performance using LLC.

The second model woLLC, Figure 4.15 D , predicts the application performance bypassing the

LLC. Note that the hardware counters came from the sampling cache and for that reason, if an

error is observed in the sampling cache, the error could affect the correctness of the model.

After predicting both performances, the next step is to make a decision. This decision

depends on the values predicted and the actual LLC configuration, Figure 4.15 E .

If the previous window bypasses the LLC and the prediction of model wLLC is higher

than the prediction of woLLC, then LLC is adapted for use the LLC, Figure 4.15 F .

On the other hand, if the previous window is using the LLC and the predicted IPC of

model woLLC is higher than the predicted IPC in model wLLC the adaptation is done to bypass

the LLC, Figure 4.15 G .

Some care must be taken to guarantee coherence in the cache layers when a change is

done. In this case, no more instructions are fetched, Figure 4.15 H , and the mechanism waits

until all instructions are committed, Figure 4.15 I . After an empty pipeline is achieved, all LLC
data are written back, and the cache lines are invalidated, Figure 4.15 J . After these steps, the
change can be done, Figure 4.15 K , adapting the LLC. In the last step, fetch is restarted and all

the processes starts again, Figure 4.15 L , until the end of application execution.

DYCA is executed in a simulator, for that reason we did not consider the OS context

switch in this control flow.

47

Figure 4.15: Control-flow graph of our proposal mechanism, illustrating the process, controls, and decisions made

for each execution window.

48

5 EXPERIMENTAL EVALUATION AND RESULTS

This chapter describes the method used for the experiments and the results for the simulation

of Multi-core Dynamically Adaptable Cache Bypassing Mechanism (DYCA) in single and

multi-program approaches.

Section 5.0.1 describes the setup used in the experiments. While Section 5.0.2, 5.0.3,

5.0.4, and 5.0.5 discuss the experiments and results acquired in this dissertation.

In Section 5.0.2 we start to evaluate the existence of applications that not take advantage

of using the Last-Level Cache (LLC) (i.e., do not improve performance using it). After,

Section 5.0.3 describes an oracle mechanism, capable of executing the application in the best

possible LLC usage configuration. Next, Section 5.0.4 presents and discuss the result obtained

for DYCA in a single program workload. To finish, Section 5.0.5 describes the results for a

multi-program workload.

5.0.1 Simulation setup

To develop this proposal, we use an in-house simulator called Ordinary Computer Simulator

(OrCS) which is an evolution of SiNUCA (4). DYCA was implemented inside OrCS with all

the additional hardware: the sampling caches, the equation table, and the decisions and bypass

mechanisms. Table 5.1 present the simulation parameters.

Processor Cores: 8 cores @ 2.0 GHz, 32 nm; 4-wide out-of-order; 16 stages 16 B fetch size;

18-entry fetch buffer, 28-entry decode buffer; 168-entry ROB; MOB entries: 64-read, 36-write;

3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle); 1-alu, 1-mul. and 1-div. fp. units (3-5-10

cycle); 1-load and 1-store units (1-1 cycle); Branch Predictor: 1 branch per fetch; 4 K-entry

4-way set-assoc., LRU policy BTB; 48-entry BOB; Two-Level GAs 2-bits; 16 K-entry PBHT;

256 lines, 2048 sets SPHT;
L1 Data + Inst. Cache: 32 KB, 8-way LRU, 64 B line size; 2-cycle;MSHR: 8-request,

10-write-back, 1-prefetch; Stride prefetch: 1-degree, 16-strides;
L2 Cache: Private 256 KB, 8-way LRU, 64 B line size; 10-cycle;MSHR: 4-request, 6-write-

back, 2-prefetch; Stream prefetch: 2-degree, 256-streams;
L3 Cache: Shared 16 MB (8-banks), 20-way LRU; 64 B line size; 22-cycle; MOESI coherence

protocol; MSHR: 8-request, 12-write-back;
LLC Interconnection: Bi-directional ring;
Private Sampling Cache: 4x 64 KB, 64-sets, 16-way LRU; 64 B line size; 2-cycle; Non-

coherent;
Shared Sampling Cache: 1x 64 KB (8-banks), 64-sets, 16-way LRU; 64 B line size; 2-cycle;

Non-coherent;

Table 5.1: Simulation parameters

5.0.2 First validation

For this first experiment, we investigate if there are applications that gain performance when

executed without the LLC. Therefore we only execute the applications on a system with or

without the LLC, without any particular mechanism.

49

Figure 5.1 shows the relative performance for 24 applications in SPEC-CPU 2006 (44)

when executing without the LLC compared to a baseline with 16 MB of LLC. It is possible to

see three groups of results. The first is composed of applications that gain performance when

the LLC is not present (cactus, lbm, leslie, zeusmp, soplex, milc, gems, and libquantum). The

next group contains some applications that do not change performance using or not the LLC (

games, namd, povray, sjeng). In the last group, we see applications that present performance

degradation caused by the absence of LLC (sphinx3, hmmer, astar, omnetpp, gromacs, h264,

calculix, perlbench, xalancbemk, dealII, gobmk and tonto).

Figure 5.1: Possible performance gains executing SPEC-CPU 2006.

We can observe in Figure 5.2 that we also have these three groups of applications for

SPEC-CPU 2017 (45) benchmark suite.

Figure 5.2: Possible performance gains executing SPEC-CPU 2017.

These experiments show us possible gains when removing the LLC, reaching up to 30%

for some applications. On the other hand, the lack of LLC can hurt performance up to 48% for

some applications. Thus we must emphasize the importance of a precise decision mechanism

that can bypass the LLC in precise situations.

5.0.3 Oracle performance

After knowing that gains are possible, in this section, we present an oracle mechanism to model

the maximum gains for DYCA.

Our oracle mechanism considers two executions of each application, the first with a

16MB LLC and the second without the LLC, exemplified in the first two lines of Figure 5.3.

For each execution window (in our case, 200M of instructions), the oracle chooses the system

50

configuration with the highest Instructions per Cycle (IPC), as shown in the last line of Figure 5.3.

Figure 5.3 show an execution slice of lbm application from SPEC-CPU 2017.

Figure 5.3: Example of an oracle execution for application lbm in SPEC CPU 2006.

This experiment aims to motivate this work about the possible gains in a curated

mechanism to adapt the LLC access in a core granularity, considering the changes from one

execution window to another. As shown in Figure 5.4 the oracle execution is capable of saving

more cycles whereas it executes the application in the best possible configuration.

Figure 5.4: Example of an oracle execution for mixed configurations during gcc execution.

However, for this oracle, no overhead is considered, meaning that changing between a

system with or without the LLC has no area or time overhead. Nevertheless, we acknowledge

that real systems would suffer from cache coherence protocol issues such as a vast amount of line

invalidations.

Figure 5.5 shows the gains observed for SPEC-CPU2006(44). The first eight applications

(libquantum, gems, soplex, leslie, zeusmp, lbm, and cactus) gain performance when switching

between systems (with and without LLC) during execution. The remaining applications do not

benefit from the LLC adaptation, thus, presenting no performance change (i.e., speedup equal to

one).

Figure5.6 shows performance results for SPEC-CPU 2017 (45) using the oracle mecha-

nism.

When we analyze the applications with performance improvements, the average gain is

24% for SPEC-CPU 2006 and 15% for SPEC-CPU 2017.

Although, some applications from SPEC-CPU 2006 present a similar result with the

static or the oracle approach (e.g., libquantum, gems, milc, soplex, leslie, zeusmp,lbm and

51

Figure 5.5: Oracle results for SPEC-CPU 2006.

Figure 5.6: Oracle results for SPEC-CPU 2017.

cactus). Compared to the static execution (i.e., Figure 5.1 and 5.2) we can notice that our

oracle mechanism could obtain average gains of 8% (against 0, 5%) for SPEC-CPU 2006 and

6% (against 1%) for SPEC-CPU 2017. Such gains are possible due to 2 factors, the dynamic

behavior and the avoidance of performance loss achieved by the oracle.

hmmer and sphinx3 in Figure 5.1. Nevertheless, the oracle mechanism retains the

performance of this application, in this case showing a speedup equal to one as shown in

Figure5.6.

Figure 5.2 shows similar behavior for SPEC-CPU 2017, where oracle reached a better

performance than the static mechanism.

Thus, it is possible to conclude the importance of using a mechanism capable of

identifying the application behavior and dynamically adapting the use of the LLC since this

can lead to a higher performance improvement while preventing a performance loss in some

applications. Still, achieving performance gains similar to the ones observed with the oracle is

challenging due to performance overheads that realistic mechanisms may present. Moreover,

such a mechanism must predict which system would present the best performance during runtime,

possibly requiring training phases and data storage.

5.0.4 Single application

Here, we evaluate DYCA in the single application approach. In this case, we used single

applications from SPEC-CPU 2006(44) to train the model. Later we used applications from

SPEC-CPU 2017(45) to test the mechanism.

52

Figure5.7 presents the results for SPEC-CPU 2017 using ourmechanism. We can observe

a maximum performance degradation of 1% for one application (xalancbmk). Considering

the oracle results (i.e., Figure 5.6), we can observe that this application had no performance

improvement. Thus, we can infer that such degradation is due to our model’s miss-prediction,

causing a wrong adaptation of using LLC.

Figure 5.7: DYCA results in a single program execution of SPEC-CPU 2017.

In addition, some applications (e.g., lbm, cactus, mcf and bwaves) shows improvements
in performance up to 22%. Such applications are the same that present speedup when disabling the

LLC. Meanwhile, the other applications (exchange, gcc, image, leela, nab, omnetpp, perlbench,
roms and wrf) maintain the same performance.

In order to understand the gains obtained by our mechanism, it is essential to observe

two metrics during the execution of these applications, the LLC misses and the Misses per Kilo

Instructions (MPKI). For instance, we expect applications with a high LLC miss rate to gain

performance when we bypass the LLC.

Figure 5.9 shows the LLC miss rate for the applications of SPEC-CPU 2017 (we choose

to keep the application order the same from the performance results).

Figure 5.8: LLC miss rate for SPEC-CPU 2017 applications.

From the four applications that gain performance (i.e., lbm, cactus, mcf and bwaves)
three presented a miss rate as high as 0.99%. However, this metric does not explain the results
alone, as we can observe for mcf that gains performance while having a 0.67% of LLC cache miss,

which is lower than nab (0.95%) that shows no performance difference. The same observation is
applicable for application exchange.

In order to better understand our mechanism’s effect, we must also analyze the pressure

on LLC combined with the miss ratio. Using the MPKI, we can observe how often the LLC is

53

required and fail to provide data hits. Therefore, in a high-pressure scenario (i.e., high MPKI),

the LLC becomes less attractive in terms of performance. Figure 4.6 shows the MPKI for the

same applications of SPEC-CPU 2017.

Figure 5.9: LLC MPKI for SPEC-CPU 2017 applications.

Another important aspect to be considered when changing from one state to another

(i.e., from using LLC to bypass or the other way around), is that for most of the applications, the

number of changes is not superior of 5. For instance, application mcf has 5 changes, while lbm
and cactus have only one. This low number of changes contributes to a low overhead since fewer

cache invalidation are required during the runtime.

The discussed applications (exchange and nab) show a lower MPKI than applications

where a LLC adaptation have a more representative impact, such as lbm application. In this case,

the lbm has the highest speedup, and the higher MPKI observed. On the other hand, we observe

again that a single metric does not fully explain the results.

We can conclude that DYCA correctly identified the applications that should bypass or

not the LLC, achieving thus consistent performance improvements and negligible performance

degradation of 1% at most.

5.0.5 Multiple applications

To evaluate a multi-program scenario, we created bundles of four applications each. The first one

is the Bypass-compatible apps bundle, created with only applications that gain performance
when LLC is disabled (i.e., when bypass is used). The Bypass-compatible apps (a) consist of lbm,
cactus, mcf and bwaves applications and Bypass-compatible apps (b) contain the applications
mcf, bwaves, nab and omnetpp. The second bundle is the Bypass-incompatible apps, including
only applications that lose performance when bypass is applied. In this case, containing wrf,
roms, perlbench and xalancbmk applications.

Besides, we created the Mixed apps bundle with half applications that gain performance
and half that loses it. The first bundle (i.e. Mixed apps (a)) represents the execution of lbm,
cactus, xalancbmk and wrf. The second (i.e. Mixed apps (b)) considered applications mcf,
bwaves. roms and perlbench.

Finally, a Random apps bundle with randomly chosen applications, in our experiment
the chosen ones are lbm, bwaves, image and perlbench.

Figure 5.10 describes the result of DYCA using the different application bundles

identified at the bottom of each column.

We can observe that DYCA gains performance in almost every configuration. Conversely,

for the Random apps bundle, 1% of performance is lost. Such performance degradation is

54

Figure 5.10: DYCA results for SPEC-CPU 2017 with bundles of four applications.

associated with a miss-prediction of the model. Because the model wrongly identifies a behavior

to disable the use of the LLC hurting the performance.

In order to provide us with more comparison basis, figure 5.11 presents the results for a

static approach for the same application bundle. It shows a loss of 26% in the Random bundle.

Figure 5.11: Static performance results for SPEC-CPU 2017 with bundles of four applications comparing a 0MB

and a 16MB LLC.

For the Bypass-compatible bundles (a and b) improvements of 21% and 3% are observed

respectively. The improvement observed is 2% and 1% lower than the static mechanism. This

bundle contains only applications that gain performance when bypassing the LLC. Thus, it

is expected that DYCA presents a lower performance than a static or oracle version, as our

mechanism cannot make predictions for the first execution window.

Also, the improvement observed in the bundle is associated with each application

improvement and behavior individually. On one hand, LLC-compatible (a) contains application

lbm, which presented a performance improvement of 32% in oracle execution (see Figure 5.6).

Also, contain application cactus, mcf and bwaves with a improvement of 20%, 15% and 13%

respectively (see Figure 5.7). For this bundle, a speedup of 1.21 is observed.
On the other hand, LLC-compatible (b), which presented a lower speedup of 1.03, also

contains an application with a lower individual speedup. Applications mcf, bwaves, nab and

omnetpp show a speedup of 1.15, 1.13, 1.08 and 1.05 respectively. Such low gains happen

because of our mechanism overhead. Many cache invalidations are required on every change in

our mechanism’s choice, hurting the performance.

Regarding the results, for both Mixed-apps bundles (a) and (b), we observe gains in

performance that could be associated with a reduction in cache pollution and conflicts when our

55

mechanism was used. Because of this cache-friendly environment, the Mixed apps (b) achieved a

speedup 3% higher than the highest speedup observed in each application of the bundle executed

individually using DYCA (i.e., mcf with 1.05 speedup).
Besides, the bypass-incompatible bundle shows a speedup of 1.02 even containing only

applications that, on average, lose performance when bypassing the LLC. This gain is explained

by the fact that applications have different execution phases, and our mechanism could adapt to

them dynamically. Bypassing the execution windows where some applications did not present a

high IPC using the LLC could improve average system performance by being favorable to the

other applications since there is a reduction in the LLC pressure.

Table B.1 contains the IPC for each execution window of roms application. It is possible
to see two LLC adaptations to disable the use of this cache layer (800M and 1.4B of cycles) 1.

Execution window IPC wLLC IPC woLLC LLC configuration IPC DYCA
400M 1.30 1.21 wLLC 1.30

600M 1.30 1.17 wLLC 1.30

800M 1.07 1.15 woLLC 1.05

1B 0.99 0.88 wLLC 0.97

1.2B 1.34 1.30 wLLC 1.33

1.4B 0.96 1.06 woLLC 0.96

1.6B 0.81 0.76 wLLC 0.81

Table 5.2: IPC for each execution window in roms application.

Also, as discussed, changing between configurations may add some extra latency. For

instance, in execution window 800M from table B.1, the IPC observed is lower than the execution

bypassing the LLC (i.e., 1.05 against the possible 1.15). The same occurs in execution window

1.4B, where the IPC presented by DYCA execution is 0.10 lower than an execution without the

LLC.

When our mechanism performs a change, the next execution window faces the cold

cache effect, reflected in performance. This effect could extend for more than one execution

window, as seen in execution windows 1B and 1.2B in Table B.1. Both windows present low

IPC, showing that a change that occurred on the 1 B window still affected the 1.2 B.

Nevertheless, for such a scenario, since it is a multiple program execution, the other

applications can befit from using the LLC with less competition.

Execution window IPC wLLC IPC woLLC LLC configuration IPC DYCA
400M 1.43 1.25 wLLC 1.43

600M 1.45 1.23 wLLC 1.45

800M 1.37 1.07 wLLC 1.37

1B 0.85 1.17 woLLC 0.77

1.2B 1.10 0.76 wLLC 0.89

1.4B 1.46 1.05 wLLC 1.46

Table 5.3: IPC for each execution window in wrf application.

Furthermore, DYCA also decreases the average system miss rate. Since there is low

cache pollution, the applications can use the cache more profitably. For instance, the cache

miss observed in a base execution with a 16MB LLC and a DYCA execution are described in

Figure 5.12.

1The values correspond to a real scenario, not the one predicted by the model, the aim is to evaluate the possible

gains. However, the values predicted by DYCA presented the same configuration as seen in Appendix B.

56

Figure 5.12: Average miss rate for SPEC-CPU 2017 with bundles of four applications when using 16MB of LLC

(base) and when executing DYCA (DYCA) .

Both bypass-compatible bundles (a) and (b) show a similar miss rate. However, for

bundles where the use of the LLC does not improve performance, the number of accesses is

decreased because most of the execution windows are bypassed. For instance, base execution of

bypass-compatible-apps bundles (b) shows a MPKI of 19.63 while DYCA execution presented a

MPKI of 3.03.

To sum up, DYCA can improve average system performance at the same time as low

the miss rate by dynamically adapting the use of the LLC for each application during run time,

enabling an efficient configuration for LLC.

57

6 CONCLUSION

In this work, we proposed a new model to dynamically bypass the Last Level Cache (LLC) based

on the performance prediction emulating different cache hierarchy conditions, with L1-L2-L3 or

L1-L2 only. Our mechanism presents a low hardware overhead, relying only on a small sampling

cache and simple decision logic.

Multi-core Dynamically Adaptable Cache BypassingMechanism (DYCA) was simulated

in OrCs, using Generalized Additive Models (GAM) linear regression model and a sampling

cache to simulate the Last-Level Cache (LLC) hardware counters regardless of whether the cache

is being used or not. Moreover, a correlation analysis of the hardware counters was performed to

find the best hardware counter combination.

There is a considerable quantity of work using bypass and adaptable caches as a solution

to improve performance and reduce energy consumption. As far as we know, this dissertation

is the first mechanism using linear regression to adapt the entire LLC use for each application,

supporting a multi-program execution, and improving the general system performance.

The results for a single-application execution show performance improvements of up

to 22% collecting as much as 25% of the performance achieved by an oracle mechanism. For

multi-program executions, we observe an average system performance increase reaching 21%.

However, some improvements in the prediction model are needed since the miss prediction

observed decreased performance by 1%. On average, a performance increase of 7% is reached in

different application configurations.

Therefore, we can conclude with this dissertation that a mechanism able to adapt the use

of the LLC can lead to a more efficient system since the application that does not benefit from

the use of the LLC does not need to face the extra latency barrier imposed by the cache hierarchy.

Also, in a multi-program workload, this guide an increase in average system performance due to

the reduction in global pollution and the reduction in cache conflicts and miss rate, especially

seen in a mixed workload. Even considering configurations where non of the applications benefit

on average from bypassing some improvements in general system performance could be observed,

as the model predicts the execution windows where bypass can be performed for each application.

Reducing the pressure in the LLC and favoring the other applications.

6.1 LIMITATIONS AND FUTURE WORKS

Nevertheless, DYCA presents limitations both in implementation and possible performance gains

obtained using the mechanism.

One limitation observed arises from the simplifications done in a real system in order to

be simulated. For instance, the size of each execution window used in DYCA is a fixed number

of cycles, based in the average number of cycles in which the context switch happens on not

simulated processors (3).

In future work, varying the execution windows’ size, other than using the average value,

could be implemented to improve the simulation accuracy when compared to a real processor.

Another aspect that can limit the DYCA performance is the size of the LLC. On one

hand, in architectures with a smaller LLCs, the latency to access this cache level could be smaller

however with a higher number of misses and in this case DYCA could represent a smaller increase

in performance even though it reduces the number of misses.

58

On the other hand, for bigger LLCs this performance gain could be higher since the

latency in this cache is also higher. However the number of misses tends to be smaller and in this

case, it is important to analyze the accuracy of DYCA in different LLC sizes.

As future work, deeper analyses of DYCA results for each application can be done

to better understand and improve mechanism accuracy. Along with using more applications

in training and testing, going beyond applications from SPEC-CPU benchmark, since most

applications do not benefit from DYCA. Another aspect to increase the mechanism understanding

includes varying the LLC configuration, experiments could be performed to measure the impact

of the LLC size on the performance of the mechanism.

The proposed sampling cache architecture could be another topic of future studies.

Where a deeper analysis of the impact of the global and local sampling caches in the decision-

maker mechanism can be performed to find the best configuration and parameters for the

mechanism.

Also, energy consumption analyses could be executed to evaluate the possible energy

saving provided by DYCA, when associated with a mechanism to turn off the LLC when this

level is not being used.

Another future study that can be derivative from this dissertation is the use of different

machine learning models, measuring the impact of using each different model associated with

the hardware overhead of developing it.

59

REFERENCES

[1] Al-Obaidy, F., Asad, A., andMohammadi, F. A. (2020). Learning-based reconfigurable cache

for heterogeneous chip multiprocessors. In 2020 IEEE Canadian Conference on Electrical
and Computer Engineering (CCECE), pages 1–5. IEEE.

[2] Al-Obaidy, F., Asad, A., and Mohammadi, F. A. (2021). Improving power-performance via

hybrid cache for chip many cores based on neural network prediction technique. Microsystem
Technologies, 27(8):2995–3006.

[3] Alves, M. A. Z. (2014). Increasing energy efficiency of processor caches via line usage

predictors.

[4] Alves, M. A. Z., Villavieja, C., Diener, M., Moreira, F. B., and Navaux, P. O. A. (2015).

Sinuca: A validated micro-architecture simulator. In 17th International Conference On High
Performance Computing And Communications (HPCC), pages 605–610. IEEE.

[5] ARM, A. (2011-2013). Arm cortex-a15 mpcore processor. Technical Reference Manual,
1(1):392.

[6] ARM, C.-A. (2012). Series programmer’s guide.

[7] Banday, M. T. and Khan, M. (2014). A study of recent advances in cache memories. In

2014 International Conference on Contemporary Computing and Informatics (IC3I), pages
398–403. IEEE.

[8] Chang, K. K. (2017). Understanding and improving the latency of DRAM-based memory
systems. PhD thesis, Carnegie Mellon University.

[9] Chaudhuri, M., Gaur, J., Bashyam, N., Subramoney, S., and Nuzman, J. (2012). Introducing

hierarchy-awareness in replacement and bypass algorithms for last-level caches. In Proceedings
of the 21st international conference on Parallel architectures and compilation techniques,
pages 293–304.

[10] Chen, L., Zou, X., Lei, J., and Liu, Z. (2007). Dynamically reconfigurable cache for

low-power embedded system. In Third International Conference on Natural Computation
(ICNC 2007), volume 5, pages 180–184. Ieee.

[11] Chi, C.-H. and Dietz, H. (1989). Improving cache performance by selective cache bypass.

In Proceedings of the Twenty-Second Annual Hawaii International Conference on System
Sciences. Volume 1: Architecture Track, volume 1, pages 277–278. IEEE Computer Society.

[12] Chung, H., Kang, M., and Cho, H.-D. (2012). Heterogeneous multi-processing solution of

exynos 5 octa with arm big. little technology. Samsung White Paper.

[Clark] Clark, M. Generalized additive models. https://m-clark.github.io/
generalized-additive-models. Accessed: 2023-01-18.

[14] Egawa, R., Saito, R., Sato, M., and Kobayashi, H. (2019). A layer-adaptable cache hierarchy

by a multiple-layer bypass mechanism. In Proceedings of the 10th International Symposium
on Highly-Efficient Accelerators and Reconfigurable Technologies, pages 1–6.

60

[15] El-Sayed, N., Mukkara, A., Tsai, P.-A., Kasture, H., Ma, X., and Sanchez, D. (2018). Kpart:

A hybrid cache partitioning-sharing technique for commodity multicores. In 2018 IEEE
international symposium on high performance computer architecture (HPCA), pages 104–117.
IEEE.

[16] Gaur, J., Chaudhuri, M., and Subramoney, S. (2011). Bypass and insertion algorithms for

exclusive last-level caches. In Proceedings of the 38th annual international symposium on
Computer architecture, pages 81–92.

[17] Gupta, S., Gao, H., and Zhou, H. (2013). Adaptive cache bypassing for inclusive last level

caches. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing,
pages 1243–1253. IEEE.

[18] Han, X., Fu, Y., and Jiang, J. (2016). Reconfigurable mpb combined with cache coherence

protocol in many-core. In 2016 IEEE Advanced Information Management, Communicates,
Electronic and Automation Control Conference (IMCEC), pages 385–388. IEEE.

[19] Hennessy, J. L. and Patterson, D. A. (2011). Computer architecture: a quantitative approach.
Elsevier.

[20] Hennessy, J. L. and Patterson, D. A. (2017). Organização e Projeto de Computadores: a
interface hardware/software, volume 5. Elsevier Brasil.

[21] Hsu, P.-Y. and Hwang, T. (2013). Thread-criticality aware dynamic cache reconfiguration in

multi-core system. In 2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 413–420. IEEE.

[22] Intel (1998). Write combining memory implementation guidelines. intel white paper.

[23] Intel, I. (64). Intel 64 and ia-32 architectures software developer’s manual. Volume 3A:
System Programming Guide, Part, 1(64):64.

[24] Jain, R., Panda, P. R., and Subramoney, S. (2017). A coordinated multi-agent reinforcement

learning approach to multi-level cache co-partitioning. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, pages 800–805. IEEE.

[25] Jaleel, A., Theobald, K. B., Steely Jr, S. C., and Emer, J. (2010). High performance

cache replacement using re-reference interval prediction (rrip). ACM SIGARCH Computer
Architecture News, 38(3):60–71.

[26] Khan, S. and Jimenez, D. A. (2011). Decoupled cache segmentation: Mutable policy

with automated bypass. In 2011 International Conference on Parallel Architectures and
Compilation Techniques, pages 212–212. IEEE.

[27] Kharbutli, M., Jarrah, M., and Jararweh, Y. (2013). Scip: Selective cache insertion and

bypassing to improve the performance of last-level caches. In 2013 IEEE Jordan Conference
on Applied Electrical Engineering and Computing Technologies (AEECT), pages 1–6. IEEE.

[28] Kim, Y., More, A., Shriver, E., and Rosing, T. (2019). Application performance prediction

and optimization under cache allocation technology. In 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1285–1288. IEEE.

61

[29] Köhler, R. and Alves, M. (2019). Acelerando requisições de prováveis cache misses com

requisições em paralelo cache/dram. In Anais Estendidos do IX Simpósio Brasileiro de
Engenharia de Sistemas Computacionais, pages 101–106. SBC.

[30] Lai, C.-H., Yang, Y.-C., and Huang, J. (2014). A versatile data cache for trace buffer support.

IEEE Transactions on Circuits and Systems I: Regular Papers, 61(11):3145–3154.

[31] Liu, J., Egawa, R., Agung, M., and Takizawa, H. (2020). A conflict-aware capacity control

mechanism for last-level cache. In 2020 Eighth International Symposium on Computing and
Networking Workshops (CANDARW), pages 416–420. IEEE.

[32] McKee, S. A. (2004). Reflections on the memory wall. In Proceedings of the 1st conference
on Computing frontiers, page 162.

[33] Mittal, S. (2016). A survey of cache bypassing techniques. Journal of Low Power Electronics
and Applications, 6(2):5.

[34] Mittal, S., Cao, Y., and Zhang, Z. (2013a). Master: A multicore cache energy-saving

technique using dynamic cache reconfiguration. IEEE Transactions on very large scale
integration (VLSI) systems, 22(8):1653–1665.

[35] Mittal, S., Zhang, Z., and Vetter, J. S. (2013b). Flexiway: A cache energy saving technique

using fine-grained cache reconfiguration. In 2013 IEEE 31st international conference on
computer design (ICCD), pages 100–107. IEEE.

[36] Navarro, O., Yudi, J., Hoffmann, J., Hernandez, H. G. M., and Hübner, M. (2020). A

machine learning methodology for cache memory design based on dynamic instructions. ACM
Transactions on Embedded Computing Systems (TECS), 19(2):1–20.

[37] Park, J., Kim, S., and Hou, J.-U. (2021). An l2 cache architecture supporting bypassing for

low energy and high performance. Electronics, 10(11):1328.

[38] Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting systematic

mapping studies in software engineering: An update. Information and software technology,
64:1–18.

[39] Pricopi, M., Muthukaruppan, T. S., Venkataramani, V., Mitra, T., and Vishin, S. (2013).

Power-performance modeling on asymmetric multi-cores. In 2013 International Conference
on Compilers, Architecture and Synthesis for Embedded Systems (CASES), pages 1–10. IEEE.

[40] Qureshi, M. K., Lynch, D. N., Mutlu, O., and Patt, Y. N. (2006). A case for mlp-aware

cache replacement. In 33rd International Symposium on Computer Architecture (ISCA’06),
pages 167–178. IEEE.

[41] Rhys, H. (2020). Machine Learning with R, the tidyverse, and mlr. Simon and Schuster.

[42] Santos, P. C., Alves, M. A., Diener, M., Carro, L., and Navaux, P. O. (2016). Exploring

cache size and core count tradeoffs in systems with reduced memory access latency. In

2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pages 388–392. IEEE.

[43] Sato, M., Chen, Y., Kikuchi, H., Komatsu, K., and Kobayashi, H. (2019). Perceptron-based

cache bypassing for way-adaptable caches. In 2019 IEEE Symposium in Low-Power and
High-Speed Chips (COOL CHIPS), pages 1–3. IEEE.

62

[44] SPEC (2006). SPEC CPU 2006. https://www.spec.org/cpu2006. Online;

accessed 08 November 2021.

[45] SPEC (2017). SPEC CPU 2017. https://www.spec.org/cpu2017. Online;

accessed 08 November 2021.

[46] Teran, E., Wang, Z., and Jiménez, D. A. (2016). Perceptron learning for reuse prediction.

In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–12. IEEE.

[47] Tian, Y., Khan, S. M., and Jiménez, D. A. (2013). Temporal-based multilevel correlating

inclusive cache replacement. ACM Transactions on Architecture and Code Optimization
(TACO), 10(4):1–24.

[48] Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., and Emer, J. (2012). Scheduling

heterogeneous multi-cores through performance impact estimation (pie). In 39th Annual
International Symposium on Computer Architecture (ISCA), pages 213–224. IEEE.

[49] von Neumann, J. (June 1945). First draft of a report on the edvac. Technical report,

University of Pennsylvania.

[50] Wilkes, M. V. (1965). Slave memories and dynamic storage allocation. IEEE Transactions
on Electronic Computers, 14(2):270–271.

[51] Xie, X., Liang, Y., Sun, G., and Chen, D. (2013). An efficient compiler framework for

cache bypassing on gpus. In 2013 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 516–523. IEEE.

[52] Zhu, W. and Zeng, X. (2021). Decision tree-based adaptive reconfigurable cache scheme.

Algorithms, 14(6):176.

63

APPENDIX A – DETAILED ACCURACY FOR THE SAMPLING CACHE

Detailed accuracy of the experiment described in Section 4.0.3. Table A.1 show the accuracy for

SPEC CPU 2017 applications varying the number of sampling cache sets (16, 32, 64, 128 and

256), together with the mean and standard deviation for each used number.

Table A.1: Accuracy of different sampling cache sizes for SPEC CPU 2017.

Application 16 sets 32 sets 64 sets 128 sets 256 sets

bwaves 0.08 0.08 0.08 0.08 0.08

cactus 0.32 0.33 0.34 0.34 0.34

exchange 0.00 0.00 0.00 0.00 0.00

image 0.00 0.00 0.00 0.00 0.00

lbm 0.02 0.01 0.01 0.01 0.01

leela 1.41 0.15 0.42 0.82 0.74

mcf 3.45 2.60 0.96 0.98 0,69

nab 0.55 0.91 0.83 0.64 0.64

omnetpp 1.89 1.44 1.73 0.67 0.67

perlbench 2.45 3.34 2.64 2.64 2.64

roms 3.35 2.26 2.19 2.19 2.19

wrf 1.96 1.32 0.00 0.00 0.00

xalancbmk 0.00 0.00 0.00 0.00 0.00

MEAN 1.19 0.96 0.71 0.64 0.61

STD 1.26 1.11 0.88 0.83 0.86

64

APPENDIX B – DETAILED PREDICTIONS FOR MULTIPLE SYSTEMS

Detailed of the predicted IPCs for multiple systems using DYCA. Table B.1 show the predicted

IPC values for rom application in each execution window.

Execution window Instructions per Cycle (IPC) wLLC IPC woLLC LLC configuration
400M 1.32 1.22 wLLC

600M 1.34 1.15 wLLC

800M 1.09 1.30 woLLC
1B 0.91 0.85 wLLC

1.2B 1.36 1.35 wLLC

1.4B 0.91 1.07 woLLC
1.6B 0.85 0.74 wLLC

Table B.1: Predicted IPC for each execution window in roms application.

Additionally, Table B.2 show the predicted values for wrf application for each execution
window until the end of application execution.

Execution window IPC wLLC IPC woLLC LLC configuration
400M 1.49 1.22 wLLC

600M 1.48 1.23 wLLC

800M 1.35 1.00 wLLC

1B 0.82 1.18 woLLC
1.2B 1.19 0.75 wLLC

1.4B 1.36 1.05 wLLC

Table B.2: Predicted IPC for each execution window in wrf application.

