
Advancing Near-Data Processing with Precise
Exceptions and Efficient Data Fetching

Sairo Santos†‡ Tiago R. Kepe† Francis B. Moreira§ Paulo C. Santos§ Marco A. Z. Alves†
†Department of Informatics – Federal University of Paraná – Curitiba, Brazil

‡Department of Exact Sciences and Information Technology – Federal Rural University of the Semi-arid – Angicos, Brazil
§Informatics Institute – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

Email:†{trkepe, fbm, mazalves}@inf.ufpr.br ‡{sairo.santos@ufersa.edu.br} §{pcssjunior@inf.ufrgs.br}

Abstract—Near-Data Processing (NDP) modifies the traditional
computer system design by placing logic near the memory,
bringing computation to the data. One NDP approach places
such elements on the logic layer of 3D-stacked memories to
quickly access data while avoiding reliance on narrow buses
and better accessing the parallelism these devices offer. However,
NDP architectures often fail to fully leverage available memory
resources. In this work, we propose adding an instruction buffer
to a common NDP design with large vector instructions. This
modification allows the NDP to fetch instruction operands out
of program order and delegates some responsibility regarding
precise exceptions to the near-data device. Our results show our
modifications cause a reduction in execution time of up to 28%
while consuming up to 25% less energy.

Index Terms—near-data processing, 3d-stacked memory, com-
puter architecture

I. INTRODUCTION

Big Data applications behave in a data-centric fashion that
evades cache memory logic, presenting extensive data stream-
ing and little data reuse [1]–[5]. Thus, most data accesses by
such applications require fetching data from the main memory,
which consumes excessive time and energy [6]–[8]. The issues
caused by this are widely referred to as the memory wall [6].

Near-Data Processing (NDP) is a research field that ad-
dresses the memory wall issue by adding processing elements
close to the data storage elements of computer systems, thus
making them more data-centric, as opposed to traditional
computation-centric architectures [7]. One issue NDP faces
is the added complexity of maintaining overall system con-
sistency when a processing element separate from the host
processor is added to the architecture. This is often achieved
by only offloading one instructions per time to the NDP
device and handling instructions strictly in order, especially
in fine-grain NDP architetures [7], [9], [10], which causes
inefficiencies such as forcing the device to be idle between
tasks. In this paper, we extend an existing fine-grain NDP
architecture by adding an instruction buffer to the device
so it is able to fetch data from the main memory more
efficiently by loading instruction operands out of order while
guaranteeing system consistency. In the remainder of this text
we describe how we extend an NDP architecture by adding
precise exceptions support and efficient data fetching, and we

This work was partially supported by the Serrapilheira Institute (grant
number Serra-1709-16621), CAPES and CNPq (Brazilian Government).

simulate and evaluate the performance of common kernels on
this experimental architecture regarding execution time and
energy consumption.

II. PROPOSED MODIFICATIONS

We propose adding two elements to NDP architectures:
(i) an instruction buffer and (ii) a memory disambiguation
mechanism. With an instruction buffer, a NDP architecture
becomes able to pool its specific instructions, which enables
loading the operands of multiple instructions in parallel. This
modification allows the NDP device to utilize even more
of the data throughput the main memory provides, which
may convert into further performance gains. Execution and
committing of instructions is still done in order, and thus data
fetching can safely be performed out of order.

Supporting this ability requires the system to take steps to
guarantee system consistency. First, the system must ensure
that no instructions between NDP instructions in the program
impact the memory hierarchy state, so as to not risk the NDP
device fetching outdated data from memory and subsequently
committing erroneous results to the memory. Second, the NDP
device must be able to maintain the instructions in this buffer,
thus becoming responsible for flushing instructions and data
should exceptions arise.

To ensure precise exceptions, however, we must guarantee
that no data shall be fetched from the memory that will be
modified by an instruction that already exists in the instruction
buffer. A memory disambiguation mechanism is thus added
to keep track of the memory addresses to which instructions
will write their results, which are checked to ensure that data
won’t be fetched out of order if an older near-data instruction
is going to modify them.

III. EVALUATION METHODOLOGY AND RESULTS

We chose to use the Vector-In-Memory Architecture
(VIMA) [11] NDP architecture for this case study, but believe
our results can be replicated on any NDP architecture based
on similar principles, e.g. any architecture that supports fine-
grain offloading to a NDP co-processor. NDP approaches that
consider 3D-stacked memories often vectorize large amounts
of data as operands to exploit the wide internal bandwidth
of these devices, achieving increased throughput as a result.
In this case, we consider that VIMA uses 8 KB vectors

1



as operands in its instructions, as described in its original
reference [11]. Figure 1 illustrates a 3D-memory module with
the VIMA architecture.

Fig. 1. 3D-memory module with VIMA architecture. Adapted from [11] to
include our proposed modifications.

All simulation experiments were done using SiNUCA [12],
an open-source cycle-accurate simulator. We use data stream-
ing kernels Memory Set, Memory Copy and Vector Sum to
assess how efficiently the design can exploit the internal
bandwidth and throughput of a 3D-stacked memory. Since
VIMA has reuse capabilities, we use data reuse kernels Stencil
and Bloom Filter to evaluate the usefulness of this type of
feature. We used datasets of 8MB, 16MB, 32MB, and 64MB
in size for each experiment and the baseline architecture we
considered mirrors Intel’s Skylake microarchitecture.

Figure 2 shows speedup results of the original VIMA design
against a 16-thread x86 baseline for all the benchmarks and
input sizes. These experiment results showcase the expected
benefits of a NDP architecture when compared with a tradi-
tional computation-centric system when tasked with running
a data-centric application. With data-streaming kernels such
as MemSet, MemCopy and VecSum, the parallelism intrinsic
to NDP is largely leveraged to achieve superior performance.
The data reuse kernels, Stencil and Bloom Filter, see improved
performance from the combination of extensive data-streaming
and some reuse of data fetched from the memory. Namely,
Bloom presents superior behavior to the data-streaming ker-
nel benchmarks since the kernel repeatedly accesses several
auxiliary data structures, thus making extensive use of the
dedicated cache memory, achieving a speedup of over 9×
when considering the 16 MB dataset.

Figure 3 shows results of our modified design under the
same comparison. While results for MemCopy, VecSum and
Stencil stay largely the same regarding both execution time and
energy consumption, the MemSet and Bloom kernels display
significant improvement on both fronts. Regarding MemSet,
this happens mainly due to improved usage of the data
throughput offered by the memory device, as hypothesized.
The kernel is based on single operand instructions and thus
greatly benefits from the ability to load operands of multiple
instructions in parallel, accessing more of the throughput

MemSet MemCopy VecSum BloomStencil
0
1
2
3
4
5
6
7
8
9

10

0

−
5
9
%

−
3
6
%

−
1
9
%

−
8
4
%

−
3
7
%

−
3
1
%

−
2
1
%

−
8
%

−
8
4
%

−
5
4
%

3
% −
1
4
%

−
4
%

−
7
7
%

−
5
4
%

3
3
%

−
1
0
%

−
1
%

−
8
3
%

−
4
9
%Sp

ee
du

p

8MB 16MB 32MB 64MB

Fig. 2. Speedup of VIMA over baseline x86 with 16 threads (higher is better).
Figures over 1 indicate improvement regarding execution time. Numbers over
bars refer to energy consumption relative to baseline (lower is better).

capabilities of the memory device. Execution time is reduced
by 28% for the largest dataset considered, while energy
consumption is reduced by 25% compared to the original NDP
design. Meanwhile, the Bloom kernel benefits from improved
usage of the architecture’s data reuse capabilities through
the pooling of instructions, which in turn allows it to use
the memory throughput more efficiently. Execution time is
reduced by 11% compared to the original NDP design while
energy consumption is reduced by about 10% compared to the
original NDP design.

MemSet MemCopy VecSum BloomStencil
0
1
2
3
4
5
6
7
8
9

10

0

−
7
0
%

−
3
7
%

−
1
8
%

−
8
5
%

−
3
7
%

−
4
9
%

−
2
2
%

−
1
0
%

−
8
6
%

−
5
4
%

−
2
3
%

−
1
4
%

−
5
%

−
8
1
%

−
5
4
%

−
1
%

−
1
0
%

−
4
%

−
8
5
%

−
4
9
%Sp

ee
du

p

8MB 16MB 32MB 64MB

Fig. 3. Speedup of VIMA with proposed modifications normalized to baseline
x86 with 16 threads (higher is better). Figures over 1 indicate performance
improvement regarding execution time. Numbers over bars refer to energy
consumption relative to baseline (lower is better).

IV. CONCLUSIONS AND FUTURE WORK

In this work, we modify an existing 3D-stacked memory-
based NDP architecture [11], to advance discussion within
this class of NDP device. We analyze its performance by
simulating kernels that highlight features of the architecture
and the possibilities our modifications enable, which yielded
significant execution time and energy consumption improve-
ments.

As future work we plan to explore further possibilities
enabled by these modifications. Namely, out-of-order data
fetching may benefit near-data multi-threaded processing and
also improved performance with smaller vector widths than
the one considered in our experiments.

2



REFERENCES

[1] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions with
big data analytics,” interactions, vol. 19, no. 3, pp. 50–59, 2012.

[2] P. Xie, G. Sun, F. Wang, and G. Luo, “V-pim: An analytical overhead
model for processing-in-memory architectures,” in 2018 IEEE 7th Non-
Volatile Memory Systems and Applications Symposium (NVMSA). IEEE,
2018, pp. 107–108.

[3] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adap-
tive insertion policies for high performance caching,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, pp. 381–391, 2007.

[4] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line distillation:
Increasing cache capacity by filtering unused words in cache lines,”
in 2007 IEEE 13th International Symposium on High Performance
Computer Architecture. IEEE, 2007, pp. 250–259.

[5] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan et al., “Google
workloads for consumer devices: Mitigating data movement bottle-
necks,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 316–331.

[6] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH Computer Architecture News, vol. 23,
1995.

[7] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-data processing: Insights from a micro-
46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, 2014.

[8] M. Hashemi, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Accelerating
dependent cache misses with an enhanced memory controller,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2016, pp. 444–455.

[9] M. A. Alves, M. Diener, P. C. Santos, and L. Carro, “Large vector
extensions inside the hmc,” in 2016 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2016, pp. 1249–1254.

[10] P. C. Santos, G. F. Oliveira, D. G. Tomé, M. A. Alves, E. C. Almeida,
and L. Carro, “Operand size reconfiguration for big data processing
in memory,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. IEEE, 2017, pp. 710–715.

[11] A. S. Cordeiro, S. R. dos Santos, F. B. Moreira, P. C. Santos, L. Carro,
and M. A. Alves, “Machine learning migration for efficient near-
data processing,” in 2021 29th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP). IEEE,
2021, pp. 212–219.

[12] M. A. Z. Alves, C. Villavieja, M. Diener, F. B. Moreira, and P. O. A.
Navaux, “Sinuca: A validated micro-architecture simulator,” in 2015
IEEE 17th International Conference on High Performance Computing
and Communications, 2015 IEEE 7th International Symposium on
Cyberspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems. IEEE, 2015, pp. 605–
610.

3


