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Abstract—As applications become more data-intensive, issues
like von Neumann’s bottleneck and the memory wall became
more apparent since data movement is the main source of
inefficiency in computer systems. Looking to mitigate this issue,
Near-Data Processing (NDP) moves computation from the proces-
sor to the memory, thus reducing the data movement required
by many data-intensive workloads. In this paper, we look to
database query operators, common targets of NDP research as
database systems often need to deal with large amounts of data.
We investigate the migration of most time-consuming database
operators to Vector-In-Memory Architecture (VIMA), a novel
3D-stacked memory-based NDP architecture. We consider the
selection, projection, and bloom join database query operators,
commonly used by data analytics applications, comparing VIMA
to a high-performance x86 baseline. Our results show speedups of
up to 8× for selection, 6× for projection, and 16× for join while
consuming up to 99% less energy. To the best of our knowledge,
these results outperform the state-of-the-art for these operators
on NDP platforms.

I. INTRODUCTION

As processor speed advanced tremendously in the last sev-
eral decades, the Dynamic Random Access Memory (DRAM)
technology used for main memory has failed to follow this
trend. DRAM experienced only a 30% improvement in data
access latency between 1997 and 2017 [1], while processor
speed rises 20% per year on average [2]. Since all modern
computer systems follow the von Neumann architecture de-
sign, which requires all data to be moved to the processor
before processing, this discrepancy causes a multitude of
issues commonly known as the memory wall [3].

As big data applications become increasingly common, the
memory wall is even more relevant. These applications require
significant data movement within a computer system, which
is onerous in both time and energy consumption [3]–[5].
Nevertheless, most current computers add a cache hierarchy
close to the processor to mitigate the latency and energy
consumption issues caused by data movement.

When data is fetched from memory for processing, these
cache memories store it in hopes that it will be requested again
soon thereafter. This assumption causes cache hierarchies to
be very beneficial for applications that present data reuse
patterns. Many current applications, however, behave in a more
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data-centric manner, presenting a streaming-like behavior in
their data accesses [6]–[9]. Computer systems present sub-
optimal speed and energy consumption performance for such
applications, meaning the penalty of moving data from main
memory to processor cannot be mitigated.

These modern applications increasingly rely on analyzing
huge datasets in what has become known as the ”Era of
Big Data”. Fischer et al. [10] point out that the term ’big
data’ implies that traditional computer systems are unable to
deal with such volume of data in a practical fashion, which
often forces researchers to consider unorthodox methods. One
emerging method relies on moving computation closer to
the main memory, thus disrupting the traditional logic of a
computation-centric system and causing it to become data-
centric [4]. This field of research is widely referred to as NDP.

Since Big Data is at the forefront of the memory wall
issue, research in NDP often targets applications under the Big
Data umbrella to showcase advancements. Thus, several works
can be found in the literature that apply different NDP con-
cepts and architectures to fields such as artificial intelligence,
genome sequencing and computational fluid dynamics [11].

Naturally, analytical database workloads also present com-
pelling opportunities for NDP and have also been addressed as
such. Much work is found in the literature describing efforts
to filter data near the memory [12], implement major database
query operators for NDP hardware [13], and provide frame-
works for processing database applications near-data [14].

Previous work has analyzed the performance of database
operators with a data streaming behavior, which suits NDP
due of its coalescing access pattern and lack of data locality.
However, operators with data reuse behavior, that benefit from
data caching, have been pointed out as critical for NDP [13].

In this paper, we migrate common database query operators
to run on VIMA, a novel NDP architecture [15]. We analyze
how such operators perform regarding execution time and
energy consumption compared to implementations for a x86
system with AVX-512 extensions. Our main contributions are:

• We simulate and evaluate the performance of database
operators on a NDP architecture with very large vectors.

• We migrate the bloom join database operator to an
advanced NDP architecture.

• We discuss how a NDP architecture can benefit analytical



workloads dealing with large volumes of data by compar-
ing its performance with a traditional x86 architecture.

To the best of our knowledge, this work is the first to
implement and evaluate database operators on an architecture
featuring very large vectors and also the first to migrate the
bloom join operator to any NDP architecture.

Our simulation results show that VIMA outperforms the
baseline for all database query operators we considered, with
a speedup of up to 16× at the join operator used while also
reducing energy consumption by up to 99%. Regarding related
work, our results are superior in both reduction in execution
time and energy savings when considering large input sizes.

Outline: In Section 2, we describe the NDP architecture
used for our experiments, pointing out how it enables faster
processing near the memory for applications dealing with
large data sets and certain behaviors. In Section 3 we detail
our implementations of the NDP database query operators. In
Section 4, we present and discuss our results. In Section 5,
we present related work, describing other NDP work aimed at
database processing. Section 6 describes our conclusions.

II. BACKGROUND ON NEAR-DATA PROCESSING

The origins of Near-Data Processing (NDP) can be traced
back to the 1990s, when the first few proposals of the idea
surfaced [16], [17]. However, coupling processing and storage
elements on the same die was considered impractical at the
time, and systems still had much performance to be gained
from simply allowing Moore’s Law to play out. Hence, the
field saw little to no advancement for several years. With
the end of Dennard scaling [18] and the advent of 3D chips
enabled by TSV technology [19], NDP has made a resurgence.

As dataset sizes grow and modern applications become
more data-intensive [20], von Neumann’s bottleneck and the
memory wall become more significant issues, as data move-
ment is the main source of inefficiency in current computer
systems [21]. Hoping to improve both speed and energy effi-
ciency, NDP proposes placing logic elements near or coupled
with memory cells, thereby reducing the costs of moving data
between storage and processing elements.

NDP works particularly well when applications access large
amounts of data in a coalescent pattern. In this scenario,
traditional cache memory hierarchies present low performance,
thus increasing time and energy usage due to data movement.
Meanwhile, such a coalescent access pattern also presents a
high potential for memory bandwidth usage by NDP.

Figure 1 illustrates an experiment that showcases the effects
of migrating an application from a traditional x86 architecture
to NDP. The application performed a simple integer compar-
ison over an array and was executed on both a traditional
architecture with a 16 MB Last Level Cache (LLC) and a
NDP-enabled system. Values greater than 1 indicate improve-
ment over the baseline. The experiment varied input array
size (memory footprint), iterations (repetitions over the same
array), and threads used for the baseline x86 execution.

As expected, whenever the memory footprint of the appli-
cation is smaller than the LLC size and iterated over the data
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Fig. 1: NDP performance compared to traditional x86.

multiple times, the cache hierarchy of a traditional system is
highly beneficial and thus preferable. However, as input dataset
size grows and data-reuse opportunities become scarce, the
NDP approach achieves superior performance. This can be
observed in the 64 MB results, for which the speedup of the
NDP increases sensibly with data reuse, as opposed to the
memory footprint sizes that fit in the LLC.

Several approaches to NDP have achieved significant re-
sults. Some of the most popular are: (i) in-cell accelerators,
which modify memory cells or their behavior to allow for
computation [22]–[24]; (ii) in-memory accelerators, which
place their logic on the same device as the memory, often
using the logic layer of 3D-stacked memories to accommodate
it [13], [15], [25]–[29], and; (iii) near-memory accelerators,
which are devices placed in separate silicon die connected to
the memory using off-chip connections [30]–[32].

Figure 2 shows a diagram of a 3D-stacked memory.
These devices are composed of several Dynamic Random
Access Memory (DRAM) layers vertically connected through
Through-Silicon Via (TSV) and logically divided in up to 32
independent vaults, allowing for very high internal bandwidth.
They also include a base layer that implements simple logic,
thus enabling them to perform near-data instructions, bypass-
ing the need for movement between memory and processor.

DRAM layers

LOGIC layer

Vault

Fig. 2: Block diagram of a 3D-stacked memory.

Our target architecture is HMC Instruction Vector Exten-
sions (HIVE) [26], a general-purpose 3D-stacked memory-
based NDP architecture. This choice was motivated by the



amount of existing work in the literature that considers and ex-
tends HIVE [13], [15], [26] and its readily available simulation
infrastructure. HIVE offers vector instructions that make use of
the massive parallelism inside the 3D-stacked memory to fetch
large vectors of data. It extends the processor Instruction Set
Architecture (ISA) to add such instructions and control vector
functional units near the memory, effectively delegating all
front-end instruction handling to the processor.

In this paper, we consider Vector-In-Memory Architecture
(VIMA) [15], an architecture that modifies HIVE by swapping
its register bank with a 256 KB cache memory used to store
vectorized data and provide programmers more flexibility.
VIMA consists of an instruction sequencer that communicates
with the host processor, a 256 KB cache memory used to store
vectorized data, and a set of ARM NEON functional units used
to fetch data and operate over 8 KB vectors. Figure 3 shows
the architecture. The compiler inserts VIMA instructions into
the application, much like happens with other vector ISA
extensions, such as Advanced Vector Extensions (AVX) and
NEON. VIMA instructions are handled by the processor like
regular memory instructions up to the execution stage in the
pipeline, at which point they are sent to the memory for near-
data execution. Each instruction handles up to three 8 KB
vectors, causing up to two reads and one write operation of
this size. This vector size was chosen to make good use of the
parallelism that is possible due to the number of independent
vaults in an Hybrid Memory Cube (HMC) device.

VIMA fetches data in parallel from the several independent
memory vaults of the memory, a common feature in 3D-
stacked memory-based NDP solutions. The dedicated cache
is checked for the data required by each instruction; execution
starts immediately in case of a cache hit. Otherwise, it starts
once data is successfully loaded from the memory vaults into
cache. Instruction statuses are updated regarding completion
or exception (similar to x86 AVX instructions) as available.
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Fig. 3: 3D-memory module with VIMA architecture.

A. Intrinsics-VIMA

Intrinsics-VIMA [33] is a library used to facilitate devel-
opment of programs using VIMA instructions using C/C++.
Code 1 shows an example of an Intrinsics-VIMA routine.

Code 1: Intrinsics-VIMA routine example.
void *_vim2K_fadds(__v32f *a, __v32f *b, __v32f *c) {

for (int i = 0; i < vima_size; ++i) {
c[i] = a[i] + b[i];

}
return EXIT_SUCCESS;

}

Much like Intel or ARM intrinsics libraries for their respec-
tive Single Instruction Multiple Data (SIMD) extensions, it
facilitates development, allowing for debugging and execution
of its code on any architecture. For simulation purposes, upon
trace generation each function of the library is substituted with
a corresponding VIMA instruction supported by the simulation
environment used for this work.

III. NEAR-DATA DATABASE OPERATORS

This section describes the implementation details of the
selection, projection, and join database operators. These opera-
tors are ubiquitous on analytic queries and correspond to about
70% of the execution time and memory usage of a standard
database benchmark, i.e., TPC-H [13]. They represent two
distinct behaviors: 1) data streaming, with the selection and
projection operators, and 2) data reuse, e.g., the join operator.

A. Data Streaming

A data streaming application loads, processes, and stores
each data point only once per execution. Such applications
do not reuse data and thus do not benefit from the cache
subsystem. Even worse, they may pollute the cache memories,
degrading overall system performance.

Selection. The selection code consists of a simple compar-
ison operation that uses an unchanging vector containing the
filter value for repeated comparisons. The loop iterates over
a vector with the values being considered for selection. Here
we consider the late materialization scheme for this operation
and thus the comparison result is stored on a bitmap of equal
size for every execution of the instruction.

Code 2: VIMA selection operator code.
for (int i = 0; i < v_size; i += VECTOR_SIZE){

_vim2K_isltu (filter_vec, &vector1[i], &bitmap[i]);
}

Projection. For the projection operator, masks generated by
the selection operator are used to inform the load operation
that fetches the data onto which the operator is being applied.
The results are then stored in a third vector.

Code 3: VIMA projection operator code.
for (int i = 0; i < v_size; i += VECTOR_SIZE){

_vim2K_ilmku (&vector2[i], &bitmap[i], &result[i]);
}

B. Data Reuse

Applications with some degree of data reuse benefit from
cache memories by re-accessing data portions, presenting a
high locality of reference. That is the case of the join operator
from database systems, which merges two distinct datasets
according to a join condition. It is commonly implemented



using an intermediary data structure, such as a hash table or
bloom filter, that is re-accessed often.

Bloom Join. Our implementation of the join operator uses
a bloom filter and is the most complex of all operators
considered in this paper. We chose this specific variant of the
join operation because, as far as we are aware, it has not been
migrated to a NDP architecture before. It is composed of three
phases: bloom filter creation, bloom filter probing, and result
confirmation to generate the final result of the join operation.
All bloom filter code used in our experiments is largely based
on an existing implementation by Polychroniou [34], with
alterations to accommodate the different architectures and
chipsets available for testing.

Code 4: VIMA bloom join create operator code.
for (int i = 0; i < entries_size; i += VECTOR_SIZE) {

_vim2K_ilmku (&entries[i], mask_1, bit);
_vim2K_irmku (fun, mask_1);
for (int j = 0; j < functions; j++){

_vim2K_ipmtu (factors, fun, fac);
_vim2K_ipmtu (shift_m, fun, shift_vec);
_vim2K_imulu (bit, fac, bit);
_vim2K_isllu (bit, shift_vec, bit);
_vim2K_imodu (bit, bloom_filter_size, bit);
_vim2K_isrlu (bit, shift5_vec, bit_div);
_vim2K_iandu (bit, mask_31, bit_mod);
_vim2K_isllu (mask_1, bit_mod, bit);
_vim2K_iscou (bit, bit_div, bloom_filter);
_vim2K_iaddu (fun, mask_1, fun);

}
};

The VIMA implementation of the bloom filter creation
algorithm shown in Code 4 consists of a loop that sets bits
on an integer vector for each set of input elements. Since the
creation phase of a bloom filter does not discard any elements,
every data point goes through the same process. Each element
undergoes multiplication and shifting steps to determine hash
results, which are then used to establish the placement of
bits in the filter. Filter size and number of hash functions
are pre-determined, considering how many elements will be
represented in the filter and an acceptable false positive rate.
New elements are loaded into the vector on every iteration of
the outer loop, while the inner loop iterations represent each
calculated independent hash function.

The probing algorithm, shown in Code 5, iterates until all
elements are either found or discarded according to the bloom
filter algorithm. On every iteration, as elements are checked
for whether their corresponding bit is set in the bloom filter,
some of them may be discarded while others are not. This
means different hash functions may be being calculated for
different elements in an iteration. Consequently, every loop
either resets or increments elements in a vector of indexes
which inform what hash function is being calculated for each
element loaded in the input vector. The results of the hash
functions inform which indices of the bloom filter must be
loaded for probing. A gather instruction then fetches 32-bit
integers corresponding to these indices in the filter. Once the
specific bit being consulted on each index is determined, it
is isolated through a series of bit-wise operations. Each value
determines whether its corresponding element in the working

vector can be discarded.

Code 5: VIMA bloom join probe operator code.
int j = 0;
for (int i = 0; i <= entries_size; ) {

_vim2K_ilmku (&entries[i], mask_k, key);
i += j;
_vim2K_irmku (fun, mask_k);
_vim2K_icpyu (key, bit);
_vim2K_ipmtu (factors, fun, fac);
_vim2K_ipmtu (shift_m, fun, shift_vec);
_vim2K_imulu (bit, fac, bit);
_vim2K_isllu (bit, shift_vec, bit);
_vim2K_imodu (bit, bloom_filter_size, bit);
_vim2K_isrlu (bit, shift5_vec, bit_div);
_vim2K_iandu (bit, mask_31, bit_mod);
_vim2K_isllu (mask_1, bit_mod, bit);
_vim2K_igtru (bloom_filter, bit_div, bit_div);
_vim2K_iandu (bit, bit_div, bit);
_vim2K_icmqu (bit, mask_0, mask_k);
_vim2K_icmqu (fun, fun_max, mask_kk);

_vim2K_idptu (mask_kk, &j);
if (j > 0) {

_vim2K_ismku (key, mask_kk, &output[*output_count]);

*output_count += j;
}

_vim2K_iorun (mask_k, mask_kk, mask_k);
_vim2K_idptu (mask_k, &j);
_vim2K_iaddu (fun, mask_1, fun);

};

Values in the hash function vector are reset or incremented
according to a mask updated with the result of the bloom
filter consultations made on every loop iteration. Whenever
an element is discarded, this value resets to zero. When this
index is equal to the total number of hash functions being
used, its corresponding element is stored as a possible positive
result. This mask is also used to load new data into the
working elements vector as elements are discarded. This policy
guarantees no processing goes to waste, except at the very end
of the process when the number of elements left is smaller than
the vector size. The algorithm moves on once every element
in the vector has reached one of the two possible outcomes.
Elements found in the bloom filter are stored in an output
vector that will be used in the confirmation phase of the join
operation.

The confirmation step compares the positive results of the
bloom filter probing phase with the actual elements in the
dataset used to create the filter. This is necessary due to the
nature of hashing algorithms, which are used for the bloom
filter and may generate false-positive results. Code 6 shows
the implementation.

Code 6: VIMA bloom join confirmation operator code.
for (int i = 0; i < positives_size; i++){

_vim2K_imovu (positives[i], vector);
for (int j = 0; j < entries_size; j += VECTOR_SIZE){

count = 0;
_vim2K_icmqu (vector, &entries[j], check);
_vim2K_idptu (check, &count);
if (count > 0){

result++;
break;

}
}

}

All Intrinsics-VIMA functions used in the code are de-
scribed on Table I. We used these implementations to process



TABLE I: VIMA instruction used in the implementation of
the database operators.

Instruction Description

vim2K iaddu Addition operation
vim2K imulu Multiplication operation
vim2K imovu Move operation
vim2K iandu Bitwise AND
vim2K iorun Bitwise OR
vim2K isllu Bitwise shift to the left
vim2K isrlu Bitwise shift to the right
vim2K isltu Set if lower than
vim2K icmqu If equal comparison
vim2K imodu Modulo division by immediate value
vim2K icpyu Copy operation
vim2K igtru Gather operation
vim2K iscou Scatter operation
vim2K ilmku Loads data from memory into vector according to set

indexes in the mask
vim2K ismku Stores data from vector into memory according to set

indexes in the mask
vim2K irmku Sets vector positions to zero according to set

indexes in the mask
vim2K ipmtu Permutates elements from another vector according to

indexes in the mask
vim2K idptu Dot product of all elements in a vector

random data and generate simulation traces. The simulation
environment and results are presented in the next section.

IV. EVALUATION METHODOLOGY AND RESULTS

In this section we describe our methodology and results
for the evaluation of our query operators for the VIMA
architecture. AVX and VIMA stand for Intel AVX-512 and
Vector-In-Memory Architecture (VIMA) results, respectively.

A. Methodology

Table II shows the parameter details used in our simula-
tions. Parameters were set to be similar to Intel’s Skylake
microarchitecture. All simulations were run on SiNUCA [35],
a validated cycle-accurate simulator. The original paper that
describes SiNUCA reports only a 9% average error when
compared with actual hardware performance, and thus we
believe it to be appropriate for our evaluation purposes.

Test workloads used random 32-bit integer elements gener-
ated with standard C/C++ math functions. The dataset sizes
chosen consider the capabilities of the architectures being
compared: since NDP offers good performance when the
dataset exceeds cache capacity, we ensure for every operator
that at least one dataset size would surpass the x86 architec-
ture’s LLC size. The sizes used are 1, 20, 64, and 80 MB.

B. Results

Figure 4 shows the speedup (higher the better) of VIMA
over AVX for selection and projection query operators. Per-
centages over bars refer to energy savings over baseline (higher
the better). The speedup for both operators happens mainly
because of the superior use of memory parallelism fetching
data inside the memory. VIMA requires two operands on the
instructions used for these operators, which causes two 8 KB

TABLE II: Baseline and VIMA system configuration.

OoO Execution Cores 1 core @ 2.0 GHz, 32 nm; Power: 6W/core;
6-wide issue; Buffers: 40-entry fetch,
128-entry decode; 168-entry ROB;
MOB entries: 72-read, 56-write; 2-load, 1-store units (1-1 cycle);
4-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
2-alu, 2-mul. and 1-div. fp. units (3-5-10 cycle);
1 branch per fetch; Branch predictor: Two-level GAs. 4096 entry BTB;
L1 Inst. Cache 64 KB, 8-way, 4-cycle; 64 B line; LRU policy;
Dynamic energy: 194pJ per line access; Static power: 30mW;
L1 Data Cache 64 KB, 8-way, 6-cycle; 64 B line; LRU policy;
Dynamic energy: 194pJ per line access; Static power: 30mW;
L2 Cache 128 KB, 16-way, 34-cycle; 64 B line; LRU policy;
Dynamic energy: 340pJ per line access; Static power: 130mW;
LLC Cache 16 MB, 16-way, 52-cycle; 64 B line; LRU policy;
Dynamic energy: 3.01nJ per line access; Static power: 7W;
3D Stacked Mem. 32 vaults, 8 DRAM banks/vault, 256 B row buffer;
4 GB; DRAM@1666 MHz; 4-links@8 GHz; Inst. lat. 1 CPU cycle
8 B burst width at 2.5:1 core-to-bus freq. ratio; Open-row policy;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);
Avg. energy per access: x86:10.8pJ/bit; VIMA:4.8pJ/bit;
Static power 4W;
VIMA Processing Logic Operation frequency: 1 GHz; Power: 3.2W;
256 int. units: alu, mul. and div. (8-12-28 cycles for 8 KB pipelined)
256 fp. units: alu, mul. and div. (13-13-28 cycle for 8 KB pipelined);
VIMA cache: 256 KB, fully assoc., 2-cycle (1-tag, 1-per data);
Dynamic energy: 194pJ per line access; Static power: 134mW;

vectors to be loaded from memory. These requests use most
of 3D-memory’s vault parallelism, thus achieving speedups
of up to 8× for the selection operator and 6.5× for the
projection operator, as pictured. For the selection operator,
VIMA spends 75% less energy, while the projection operator
consumes roughly half the energy used by the baseline.
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Fig. 4: Speedup over baseline for selection and projection
operators, percentages indicate energy savings over baseline.

The bloom join operation used for our experiments features
two columns, one being four times larger than the other. Here,
dataset sizes refer to the size of the larger column between the
two used by the operator. The bloom filter is created using
the smaller column, while the larger one is used for probing.
We devised datasets with varying selectivity to design tests
that represent real-world situations and see how the archi-
tectures compare at a realistic data-join operation situation.
We generated all data randomly and controlled selectivity by
purposely adding elements from the smaller column into the
larger according to the desired selectivity. Selectivity ranges



from 0% to 100%, varying by 10% for each test. As for the
bloom filter, we used a simple hash function consisting of
a multiplication step followed by a shifting step [36]. The
number of hash functions varied according to the number
of elements being processed so the false positive rate was
kept under 1%. All multiplication and shifting factors were
kept the same for both VIMA and AVX implementations. All
speedup results are shown in Figure 5. Percentages over bars
refer to energy savings over baseline, negative figures meaning
consumption was higher than the baseline.

Data selectivity affects the execution length of each phase
of the operator’s execution (bloom filter creation, bloom
filter probing, and confirmation), which impacts performance
directly. The creation phase is defined by the hash function
calculations being applied to the first column of the join
operation, setting in the bloom filter vector the bits corre-
sponding to the results. This first phase behaves the same no
matter the expected results from the dataset because every
element goes through all calculations regardless of its value.
Nevertheless, the bloom filter probing phase is much more
efficient at determining that data elements are not part of its
represented dataset than otherwise. This behavior is because
distinct operations are executed according to data patterns.

At the probing phase, data content directly impacts per-
formance. Here, the hash result of elements in the second
column is used to check whether a specific bit is set in the
bloom filter. If any hash result for an element points to a
bit that is not set, that element is confirmed a negative and
can be discarded. Consequently, data selectivity determines
the length of the probing and also confirmation phases. This
explanation is why results for the 0% selectivity datasets
show a considerable advantage for VIMA over AVX. For
VIMA, each loop iteration discards up to 2048 elements,
and therefore, the probing process moves fast. Meanwhile,
for the 100% selectivity dataset, all elements go through all
hash computations, meaning the probing phase lasts very long.
Here, VIMA is also aided by its dedicated cache, which is able
to house the vectors used for the hash function computations
in the probing phase which are repeatedly reused.

The confirmation phase is another reason why the 0%
selectivity dataset has such superior results. During this phase,
positive results from the probing phase are checked against the
data used to create the bloom filter. Since each such element
must be checked against all elements in this dataset, this phase
can be very time-consuming. In datasets with positive results,
many elements pass the probing phase and go through the
confirmation phase, representing a more significant portion of
the execution time with each increasing stride in selectivity.
However, with the all negative dataset, the probing phase
yields very few positives, most of these being false positives,
causing only a very short confirmation phase. Since the prob-
ing phase is highly efficient on VIMA, it represents most of the
execution time in these cases, explaining the sharply superior
0% selectivity result. These gains decrease with selectivity,
with the confirmation phase representing a larger portion of

the entire execution time and the reuse capabilities of each
architecture start to influence overall performance.

Results are also influenced by the smaller column size,
which is repeatedly accessed in full for the confirmation phase.
Since this column is one fourth of the dataset size, its size is
256 KB, 5 MB, 16 MB and 20 MB for the datasets considered
here. This means that, for all datasets but the largest one, this
data can be fully stored in the baseline architecture’s LLC.

The benefits of the LLC are clear on the results for the 1 MB
dataset. While VIMA outperforms AVX at low selectivity
levels, the advantage disappears as selectivity rises, which
shows how much the baseline benefits from the faster access
provided by the its cache hierarchy. Energy consumption
follows the same pattern, with VIMA using much more energy
as it reloads data from the main memory repeatedly while this
data is kept in the baseline’s LLC, translating into a significant
advantage maintained from 20% selectivity onward.

Looking at the results for the 20 MB and 64 MB datasets,
VIMA remains advantageous even with growing selectivity
due to the effect of its large vectors. As the amount of data
that must be considered for the confirmation phase grows
(original data column and positives from the probing phase),
VIMA’s ability to load and process large vectors at once starts
to surpass the effect of AVX’s cache hierarchy.

For more extensive datasets (e.g. 80 MB), VIMA offers
superior performance in both metrics. For example, when
looking at the 80 MB results, we observe that VIMA outper-
forms AVX by 16× at 0% selectivity while consuming over
99% less energy. Here, the data through which the application
must iterate to confirm probing phase results is larger than
the LLC in the baseline architecture, which means AVX no
longer benefits from it and is forced to reload data directly
from the main memory. Since at this dataset size even the
0% selectivity workload still yields a few thousand false
positive results from its probing phase, VIMA’s large vectors
coupled with the baseline’s fetching inefficiency results in this
considerable performance improvement. As selectivity grows,
the confirmation phase becomes longer, and this advantage
declines, but VIMA continues to outperform AVX by at least
3.5× at 100% selectivity while consuming 54% less energy.

V. RELATED WORK

In the late 1990s, researchers began considering the per-
formance of database systems on modern computers. For
instance, Ailamaki et al. [37] and Boncz et al. [38] discuss
how the memory wall impacted database systems as processors
evolved much faster than main memory technology. This led
to a tendency for database software to increasingly consider
and fit the hardware architecture on which they were run, by
redesigning all database system elements with a modern hard-
ware architecture in mind. This redesign led to techniques such
as columnar data storage, bulk query relational algebra, cache-
conscious algorithms, and automatic optimization strategies to
finely tune behavior to take advantage of the hardware [39].

Such adaptations, however, focus only on using existing
hardware to the best of its ability, making no attempt to reduce
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Fig. 5: Speedup over baseline for the bloom join operator with varying selectivity rates, figures over 1 indicate speedup.
Percentages over the bars indicate energy savings over baseline, negative values indicate energy consumption exceeded baseline.

data movement across the memory hierarchy. On the other
hand, as NDP technology becomes a reality, strategies to move
database computations closer to the data start to look attractive,
especially as data set sizes to continue to grow [40].

JAFAR [40], [41], for instance, is a near-data accelerator
that considers column-store databases and implements the
selection operator, providing a speed improvement of up to
9× for selects. This design places the accelerator close to a
DRAM chip, being able to receive data directly from it and
filter this data according to a comparison value and predicate
type. This way, it builds a bit-mask that indicates which tuples
of a relational database table passed the filter, which can then
be used for further query computation. While JAFAR shows
promising results for the selection operator, its design cannot
be easily extended to support the execution of other operators.

Biscuit [14] uses a different approach, proposing NDP on
Solid State Drive (SSD) disks. The authors point out that most
existing NDP research focuses mainly on providing proof-of-
concept, failing to consider or propose features that would
make NDP adoption practical. They then propose an entire
framework implementing an expressive programming model,
dynamic task loading, support for high-level programming
languages, and multi-core and threading capabilities. Further-
more, the authors fully port the MySQL database engine to
their framework and report a speedup of up to 15.4× for
query execution and a 3.6× reduction of execution time for
all TPC-H queries. Biscuit offers comprehensive experiments
and results, but its solution for database processing requires
extensive modifications of SSD devices through the addition
of complete cores. However, our work focuses on in-memory
execution. Meanwhile, it can easily be extended to feature all
database operators using a much simpler hardware architecture
to achieve similar improvements in performance.

HIPE [27] considers the HMC and proposes adding support

for predicated instructions inside an HMC so it is able to
perform database queries. HIPE is also based on HIVE [26],
which proposed adding vector functional units and a register
bank to the logic layer of an HMC chip. HIPE adds architec-
tural predication support to this design, thus enabling control-
flow dependencies to be solved in the memory. With this
design, the authors implement a database selection operator
and report results 6.46× superior to an x86 architecture
while being 5% more energy-efficient than the state-of-the-
art. Although we use a similar architecture and simulation
infrastructure, as is evidenced by the difference between our
energy consumption results, their approach is not as efficient.
The authors also only experiment with the selection operator.

Kepe et al. [13] implement five database query operators (se-
lection, projection, aggregation, sorting, and join) to evaluate
how an NDP architecture performs against a state-of-the-art
x86 architecture. The architecture used for the experiments is
HIVE [26], using a similar infrastructure used in the present
work. Considering a baseline x86 architecture with Intel AVX-
512 extensions, the authors report: the selection operator runs
at least 3× faster, regardless of input size, while consuming
45% less energy; the projection operator runs 7× faster if
the dataset fits the baseline’s last level cache otherwise it is
10× faster while reducing energy use by 3×; performance for
the join operator varies according to implementation (nested
loop, hash, and sort-merge), but the NDP implementation is
significantly more energy-efficient in all cases; the aggregation
operator performs moderately worse at both execution time
and energy consumption. In comparison to our work, although
the authors feature a wider variety of database operators and
use a similar architecture, they do not consider vector sizes that
fully utilize the parallelism opportunities possible with such
an architecture. We report superior execution time results for
the selection and join operators (though this work implements



different versions of the join operator) and superior energy
savings across all operators when considering large input sizes.
Here, we highlight our join results according to selectivity,
something this work also investigates. Our results are superior
in both execution time and energy savings. The authors report
speed improvements ranging from 1.6× to 3× with energy
savings between 5 and 70%, while our results range from 3.5×
to 16× in speed improvement with energy savings ranging
from 46% to 99% for the largest input size considered.

VI. CONCLUSIONS AND FINAL CONSIDERATIONS

With the growing relevancy of analytics applications that
process vast sets of data, NDP emerges as a solution for the
memory wall problem. In this paper, we migrate execution of
standard database query operators to a near-data architecture.

Our approach improves execution time up to 8× for the
selection operator, 6× for the projection operator, and 16×
for the join operator used. We also achieved energy savings
of 75% for the selection, 50% for the projection, and up to
99% for the join operator. These results are superior to the
state-of-the-art and consider a simpler and more programmer-
friendly architecture. To the best of our knowledge, this work
is the first to implement and evaluate database operators on
an architecture featuring very large vectors and also the first
to migrate the bloom join operator to any NDP architecture.

Future work includes migrating other database operators and
implementations of the join operator, as some implementations
can suit certain situations better. This should enable us to
evaluate this NDP approach with the entire TPC-H benchmark
and better assess how NDP may benefit database processing.
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