
A Fast Simulation Method for Multi-Thread PIM
Applications

Abstract—Processing-in-Memory is a prominent accelerator
for many application classes - from pattern matching to ma-
chine learning. Since these designs encompass accelerating and
increasing the efficiency of critical specific and general-purposed
applications, it is expected that these accelerators will be coupled
to existing systems and consequently coupled to systems capable
of multi-thread computing. However, few tools allow studies and
experimentation of single-thread Processing-in-Memory (PIM)
systems and even fewer multi-thread PIM systems. This work
presents an extension to Sim2PIM, a simple simulator for
Processing-in-Memory accelerators, to allow for multi-thread
support in a multi-core environment. Sim2PIM can simulate
different types of PIM accelerators while executing native host
instructions on the host. We extend this support to the Operating
System (OS) System Calls, and the pthread Application Program-
ming Interface (API). This support allows for the lowest possible
instrumentation overhead for multi-thread applications while
providing per-thread instrumentation. We show significant gains
in simulation speed while maintaining the original Sim2PIM’s
high accuracy.

Index Terms—Processing-In-Memory, Simulation, Threads,
Multi-Threaded, Parallel

I. INTRODUCTION

With the slowdown of Moore’s law, the processing units’
operating frequency cannot continue scaling at the same
rate. This drawback pushed the industry to increase the
number of processing cores within a single processor chip
to maintain performance gains and technological generation
improvements. On the other hand, the Memory-Wall appeared
due to the increased performance gap between processor
logic and main memory. This performance gap occurs mainly
due to technological differences. However, the increase of
processing cores on general-purpose systems widened this
gap by putting more pressure on the memory system. To
mitigate this gap, Processing-in-Memory (PIM), Near-Data
Processing (NDP), and Computing-In-Memory (CIM) have
emerged as a prominent solution while providing performance
and efficiency improvements.

In the last decade, technological advancements have allowed
creating a myriad of PIM designs [1], [2], [3], [4]. Although
there have been considerable advances in the available tools
to experiment and exploit these designs, the field still lacks
tools capable of seamlessly simulating the integration of PIM
accelerators and host processors. Even more critical are the
tools that allow simulation of these designs integrated to
multi-core systems and simulate these environments on multi-
threading applications.

In this work, we propose to extend Sim2PIM [5], a simple
simulator for PIM architectures, to allow for multi-thread

support in a multi-core environment. Sim2PIM already works
at a low level, so we extend it to identify pthreads and wrap
them with instrumentation code for each available core.

This extension to Sim2PIM provides:
• High-speed and high-accuracy simulations of multiple

application threads in parallel.
• Full compliance with native Operating System (OS)

Syscal and MT libraries.
• Full synchronization capabilities in targeted threads, with

the native pthread Application Programming Interface
(API).

Since our proposal minimizes overheads at the thread cre-
ation step when not simulating PIM instructions, it achieves
performance much similar to performance profiling tools such
as perf on host code, with as little as 10% run-time overhead
and less than 2% metrics difference for most applications.
Additionally, by utilizing the host hardware and OS resources,
it can run PIM threads concurrently, exploring natural paral-
lelism, for the tested application, achieving 2x simulation time
speedup.

The paper is organized as follows: In section II, we intro-
duce the gap that other available simulators leave for multi-
thread applications and show how Sim2PIM is well suited to
this environment. Section III presents the type of applications
that can benefit from a multi-thread compatible PIM device.
Section IV explains the modifications to the original Sim2PIM
design. Section V evaluates the impact this modification has on
Sim2PIM simulation speed and accuracy. Finally, we conclude
the paper on section VI.

II. PIM SIMULATORS

Not all PIM designs are created equally, and most simulators
available can handle only a tiny subset of these [6], [7], [8].
To accurately handle a multi-thread application in a multi-core
environment, the simulation must be aware of the OS and the
underlying hardware. Some simulators include the hardware
and a virtualized operating system, while others simulate only
the PIM device and use the complete host system.

Simulators such as gem5 [9], and SiNUCA [10] are capable
of simulating entire micro-architectures with an elevated level
of accuracy. SiNUCA [10] is a trace-based simulator, which
uses traces generated on a real machine. The simulator has
accurate descriptions of the hardware components down to
the pipeline of the processor. However, it can not simulate the
interactions with the operating system and other processes.
The simulator also suffers from the flaws of other trace-

based simulators in that the benchmark can not interact with
simulated hardware, as the traces have already been collected.

Researchers have used the gem5 [9] simulator to evaluate
a set of applications under different hardware configurations,
making this setup perfect for hardware-software co-design.
The simulator is divided into several independent modules,
coupled and decoupled to test different combinations. How-
ever, this modularity and broad set of configuration options
create a notoriously steep learning curve for using the gem5
environment. While the code maintainers strive to improve
usability, testing disruptive new hardware such as PIM units
on the simulator can prove a hurdle, even for simplistic
experiments.

A faster alternative is to use PinTools [11]. Utilizing trace-
files containing cycles, memory access, and data as input for
basic models of the processor and memory hierarchy, acting
much like SiNUCA, the tool can interpret each issued instruc-
tion. PinTools’s huge instrumentation overheads prohibit direct
code measurements and gem5’s extensive simulation times and
barrier of entry. None of these simulators can handle threaded
applications with native system calls. Baremetal simulators
as [10] can not simulate OS-level thread scheduling and system
calls, while gem5 based simulators still face long simulation
times and added virtualization overheads.

However, even with limited support from simulators, multi-
thread applications are a majority in high-performance com-
puting applications. Thus, the need arose for simulators capa-
ble of handling multiple memory stacks at the host and PIM
side. Developed explicitly for this purpose, MultiPIM [12],
which is based on two other simulators [13], [14], can simulate
a multi-stacked-memory PIM device. The simulator offloads
POSIX and OpenMP threads, mapping them to the PIM
hardware, maintaining coherence between cores, and a PIM-
side task scheduler. It can therefore handle multi-thread appli-
cations at PIM-side. However, the simulator utilizes Intel’s
PinTool [11] based instruction feeding mechanism, which
interprets each instruction in the virtual environment at run-
time. The program must then simulate all the metrics in a
virtual environment, bearing a long simulation time.

Sim2PIM [5], a recent simulator, proposed to overcome the
downfalls of previous simulators, providing a fast, accurate,
and simple-to-use experimentation environment for hardware-
software co-design of PIM devices. Sim2PIM acknowledges
that integration with available hardware is imperative for
testing and disseminating PIM technologies. To provide that,
the researchers described a method to use the host’s baseline
hardware and its OS to execute host-only sections of the
benchmarks. Like the kernel virtual machine (KVM) provided
in gem5, it can execute code at host speed, but it grants access
to program metrics via the Hardware Performance Counters.
Sim2PIM manages to directly instrument the compiled assem-
bly code containing PIM instructions and insert simulation
calls using a parser. It detects PIM instructions and substitutes
them for host memory instructions. In the technique described
in [15] the host is left as is, and integration happens in a
Plug and Play manner. However, Sim2PIM currently does not

provide support for multi-threaded benchmark applications. If
an MT benchmark is executed in Sim2PIM, the simulator will
execute each thread in series. The serial execution loses accu-
racy, as communication overheads between the threads will be
masked. It also significantly increases the simulation overhead
for Pthread mutexes and other synchronization schemes, as
these require that the current thread be halted, and another
one restarted.

As this simulator has the best accuracy results and fastest
simulation speeds, we chose it as a basis, and as we will
see, the main challenges lay in expanding the instrumenta-
tion methodology to multiple threads while maintaining low
overheads. In section IV we further explain the instrumentation
process and how its implementation is advantageous to a multi-
thread simulation. Since the authors make the code available,
it is straightforward to implement and modify with only a
handful of .c files.

III. MULTI-THREAD PIM MOTIVATION

The most prominent PIM architectures are intrinsically data-
parallel Single Instruction Multiple Data (SIMD)-like units,
which operate on vectors and matrices [1], [2], [3]. However,
applications can explore different parallelism levels, such as
task, data, and instruction parallelism [4]. These levels can be
used separately or jointly.

SIMD exclusive: The most straightforward case, where
SIMD units are well suited, is when exploiting the locality of
large chunks of data. A single host core can dispatch instruc-
tions to a SIMD unit located inside the memory device [2],
[16], [17], [18]. Most PIM architectures fall in this category,
as it is the simplest to implement and to benchmark against
Central Processing Units (CPUs) and Graphics Processing
Units (GPUs).

SIMD + Instruction Level Parallelism (ILP): A more
interesting case is when the application allows for the simul-
taneous execution of the different instructions in multiple data
chunks, with a single core dispatching instructions to different
SIMD execution units, like a multi-issue execution stage. The
application itself is still serial on the host core, as it uses
independent sets of data to apply different instructions. The
work presented in [19], [2] are examples of this approach,
where each tile is controlled and scheduled independently by
the dispatching unit.

SIMD + Thread Level Parallelism (TLP): The least ex-
plored case in PIM literature is when multiple cores or threads
interact with the PIM simultaneously. TLP usually relies on
exploiting multi-core architectures to compute different parts
of a program simultaneously while taking care of inter-thread
communication and preventing data races.

When discussing PIM performance, it is common to com-
pare it with multiple threads executing applications with great
spatial-locality in the multiple processor cores while using
the SIMD units [20]. However, many applications, like N-
Body simulations, layers of a neural network, among others,
can be implemented making use of threads computing on
different segments of data concurrently. So far, to the best of

our knowledge, there is no available tool that allows precise
and fast simulation of such applications executing on a multi-
thread PIM environment.

IV. SIMULATOR METHODOLOGY

This section reviews the process that makes Sim2PIM fast
and accurate and then describes the added features that make
it suitable for Multi-Thread simulation.

A. Flow and Integration

The simulation comprises three distinct components: the
instrumented assembly code, the simulator backbone, and a
PIM description code. Before the simulation, a parser gen-
erates the assembly code by replacing user-defined macros,
functions, intrinsics, explicit compiled PIM instructions or
other means to tag PIM operations with host memory in-
structions, as described in [15]. This process guarantees the
results are comparable to a real PIM hardware interfacing with
the host processor as is. This method also guarantees that the
simulation environment operates on the same memory space,
allowing for seamless inter-thread data coherence and virtual
memory support. If the PIM hardware does not support inter-
thread communication inside the PIM device, as is the case
with UPMEM [21] and PIM-HBM [22], communication in the
host caches can be mimicked with loads and write-backs.

However, if the PIM design demands other offloading, cache
coherence, or virtual memory support methods, the inserted
overheads in this step (Offload overheads in Figure 1) can
be discounted and even changed for the appropriate over-
heads. The parser also inserts function calls to the simulator
backbone, respecting calling conventions, as illustrated on
Listings 1 and 2. These calls are not resolved since the
instrumented assembly code is linked with the simulation
backbone and the PIM simulation at a later stage.

Listing 1:
Original x86 + PIM Code Snippet - Annotated or Compiled
1 movq %rax , %r14
2
3 PIM LOAD 32512(% rbx ,% r a x) , %PIM REG 0 ; PIM i n s t r u c t i o n
4
5 addq $2048 , %r a x

The simulator backbone handles the setup of performance
counters, launching of threads, and offloading of PIM instruc-
tions from the benchmark to the PIM simulator. Also, it is
responsible for launching the PIM simulation in a reserved
thread. This approach assures that there will be minimal
pollution of the caches during simulation time, which increases
the accuracy of the hardware counters. It is also responsible
for warming up the performance counters and evaluating over-
heads to be considered and discounted later. The simulation
call inserted into the application’s assembly code (as shown
in listing 2) is part of the backbone code. Before it starts
the simulation of PIM instructions, the backbone samples the
performance counters of the current core and then invokes the
PIM simulation environment.

Start
PC

Start
PC

Application Thread 0

Time
Counted
Metrics

Simulated
Metrics

Setup

Backbone

Start
PC

Create
Thread

Create
Thread

PIM Simulation Thread

Join
Thread

Join
Thread

PIM
Inst

Sim
Call

PIM
SIM

PIM
SIM

PIM
Inst

Sim
Call

End PC

End PC

Simulator
Overhead

Offload
Overhead

Sys Call
Metrics

Uncounted
Metrics

Application Thread N

Simulator
Space

Translated
Inst.

Benchmark

Fig. 1: Overhead diagram for a multi-thread application on the
extended Sim2PIM.

Listing 2:
Original x86 + Simulation Code Snippet - Parsed

1 movq %rax , %r14
2
3 movq (PIM LOAD) , %r d i ; PIM i n s t r u c t i o n as PIM s i m u l a t o r

opcode
4 c a l l q SIM CALL ; SIM CALL r e c e i v e s %r d i a s p a r a m e t e r
5
6 addq $2048 , %r a x

The benchmark itself is defined as a function to be called
in the backbone between instrumentation sections. For the
simulation of a multi-thread application, each thread will
perform its simulation calls, isolated in each core. After the
thread offloads its instruction to the simulator, the counters
are sampled again1, and the original assembly code continues.
The HW simulation receives the instructions through a single-
consumer and multiple-provider circular buffer with atomic
locks to allow the offloading of multiple control streams to the
PIM. In this multi-core environment, the benchmark threads do
not wait for the PIM simulation to complete, more accurately
simulating the PIM as a separate, asynchronous unit.

Since the benchmark, the backbone, and the PIM simulation
are all threads in the same program, they share the same
memory space. Thus it is trivial for the PIM to operate over
the program data as if both PIM and data were on the same
memory device. Also, this feature allows to seamlessly simu-
late PIM devices that support virtual memory. Additionally,
the host’s cache hierarchy guarantees cache coherence for
the simulation itself. The process described in [15] can be
used to implement the coherence and virtual memory support
in standard hardware, or the simulation could be coupled
with other methods of cache coherence (e.g., [23]). The
PIM simulator code takes the complexity level the designer
desires, from a cycle-accurate simulation (e.g., SystemC) to an
instruction-level look-up table, and in our tests, a functional
description of the hardware with estimated execution times.

B. Simulation Thread Mapping

The single thread version of Sim2PIM environment relies
on a multi-core system so that the hardware simulation does

1The Hardware Performance Counter (HPC) are overflow counters; this
means one must acquire the difference between two consecutive measures
instead of an absolute value.

not affect the metrics from the benchmark. The simulation
uses two dedicated cores, one exclusive for the PIM hardware
simulation and the other for the backbone and benchmark.
To guarantee that each thread’s metrics are accounted for
correctly, we must apply the same principle of isolating each
part of the application in a different core. As each core has
its performance counters, we must ensure that the threads do
not migrate cores, which would result in a wrong calculation
of the metrics.

If the number of threads is greater than the number of
available cores, Sim2PIM can offer two distinct approaches:
1) it can allow for all the threads to be launched by the
main thread and dispute core time with the other thread.
This approach would allow the OS to optimize thread context
switches and simultaneously keep a more significant number
of threads alive. Alternatively, 2) it can allow the execution
of only one thread per physical core at a time. Thus, this
solution provides the best accuracy for individual threads, even
allowing for better profiling of the PIM instructions.

We extend the pre-linkage parser as shown in Section IV-A
to identify and modify calls to the pthread library made
in the benchmark code, especially the pthread create() and
pthread join() functions. They are replaced by wrapper func-
tions, which extend the pthread calls, making them capable
of setting the core affinity, marking the physical core as in-
use (if using strategy 2)), and acquiring metrics before the
start of the thread function itself. Inside this function, the
only measurement made is around the pthread create() call,
as we make sure to measure the thread’s launch, as this poses
a significant overhead in multi-thread applications, shown in
Figure 1 as Sys Call Metrics.

Each thread counts its metrics, and we assume all the
threads are executed concurrently. For the elapsed-cycles and
elapsed-time metrics, only the largest value is considered to the
final count, as it is the bottleneck for program conclusion. For
the other types of metrics available on the host, core/thread-
wise metric counts are valuable (e.g., emitted instructions,
cache misses) and are thus counted separately for each thread.
For all metrics, the wrapper function around pthread join()
guarantees the waiting time for the simulations to end is not
counted on the benchmark’s main thread metrics, as shown in
Figure 1.

A note on PIM hardware thread mapping: There are
three main ways to map a thread to the PIM hardware;
hard-coded user assignment, automatic compiler mapping,
and OS/Driver mapping (General-Purpose/GPU-like). The pro-
grammer or the compiler can map the threads to the hardware
directly in the benchmark code. However, if the designers
desire it, a scheduler module could be added in several places
to handle scheduling in a specialized manner. If added to the
thread creation wrapper, the scheduler could handle a static but
run-time assignment. If the module is added to the simulation
environment, it could handle the threads dynamically, or if the
scheduler is added to the PIM HW functional simulation, it
could handle thread assignment inside the device. Sim2PIM
provides much flexibility, as all the steps of execution are in

control of the user.

C. Code Offloading

We adopt the design presented in [15] that provides code
offloading, cache coherence, and virtual memory support.
We chose this design since it can be extended to several
modern PIM designs, from PIM designs that exploit cache
memories [1], logic layers in 3D stacked memories [2], mem-
ristors [3] and in-memory 3D-stacked accelerators, such as
Samsung’s PIM-HBM [22]. The overheads of this method can
be easily estimated and can also be discounted if the designer
wishes. Since the delivery of instructions is guaranteed, other
offloading means (e.g., Instruction Set Architecture (ISA)
extension) could be added if we can estimate the overhead
and create a functional simulation.

D. Synchronization

When using pthreads, the programmer primarily handles
synchronization between threads, with mutexes, semaphores,
and other atomic operations. This behavior does not change on
the simulator, as the caches are still used for shared memory
space between threads, and synchronization, in general, hap-
pens at the host-side and is thus handled natively.If shared data
is used concurrently by multiple threads (e.g., a shared vector),
the typical approach would be to use pthread barriers or other
atomic operations to avoid using outdated values in other
threads, maintaining synchronization. This approach remains
valid for most situations in the simulation environment, as all
synchronization mechanisms still execute natively. However,
in cases where the last issued PIM instruction before the
barrier was a store, the thread must await its completion before
proceeding with further instructions. The same is valid for in-
thread data checks.

A simple solution is for the simulator to consider store
instructions synchronization barriers in the simulation. It must
wait for the PIM hardware simulator to finish the instruction
before returning to benchmark code. Thus the instrumented
simulation call must be aware of the store instruction and
await its completion by the PIM thread. The time this takes
is not accounted for, as this happens in simulation space.
This behavior mirrors the real-hardware as described by the
offloading mechanism [15], and the cache coherence works as
well.

V. EVALUATION

Sim2PIM merits lay on top of its high simulation
speeds, high-accuracy host hardware metrics, and the back-
bone’s structure high modularity. These characteristics make
Sim2PIM especially suited to evaluate the interactions between
host hardware and the PIM device, including the system’s
memory hierarchy and technology. We show this by evaluating
different host systems, with a known PIM [2] architecture
built upon the HMC [24] memory. The specifications can be
seen in Table I. We set out to showcase the low-overheads
our modifications incur in pthread calls and the speedup
of simulating multiple threads in Sim2PIMs truly multi-core

environment. For the backbone overhead evaluation tests, we
used some of the algorithms on the PolyBench benchmark
suite [25]. As for the PIM performance measurements, we
used an ideal VecSum kernel operating over a large (64MB)
vector.

A. Pthread Overheads

The extension to Sim2PIM’s backbone can be seen as
thread-level instrumentation, akin to the original simulator for
a single-thread benchmark. Therefore the costs and overhead
evaluation within the thread and for PIM instructions are
similar to the original publication. The new simulation over-
heads happen at the wrapper functions for thread creation and
destruction, as aforementioned in Section IV-B. To evaluate
the impact of these overheads on PIM multi-thread simulation,
we compared the same set of applications executing with and
without the simulator. The simulator instrumentation is as
presented in Section IV, while for the comparison, we selected
perf as an easy to deploy, low-overhead and high-accuracy
performance profiling tool. The results are shown in Table II.

For both the single thread and multi-thread results, we can
see that for most benchmarks, Sim2PIM and perf show similar
results, with a trend towards smaller results in Sim2PIM. We
leverage this trend is due to the instrumentation provided by
Sim2PIM to be more accurate due to the use of hard-coded
HPC, not depending on slower system calls. The cycles metric
is influenced by several factors, including the congestion of
the memory subsystem and frequency fluctuations. Thus some
applications may present more variation than others. Splitting
the application between threads might also affect this behavior,
increasing the traffic in the processor caches. We can also
see the execution time collected with the time command for
Sim2PIM and from perf itself. If we consider the overhead
of the perf application negligible on larger run-times, we
can see that Sim2PIM’s performance for host code is very
competitive, especially if we consider the usual run-times of
other simulators.

B. Multi-Thread Simulation

We test the multi-thread PIM simulation on a simple em-
barrassingly parallel kernel that performs the vector sum of

TABLE I: Baselines and Case Study PIM Parameters

Baseline/Host Intel Xeon Silver-4214 @ 2.2GHz;
Cache per Core L1 = 32kB; L2 = 1024kB;
Last Level Cache = 16MB;
Main Memory DDR4 2x32GB 2400MHz CL16;

Baseline/Host AMD R5-1600 @ 3.2GHz;
Cache per Core L1 = 32kB; L2 = 512kB;
Last Level Cache = 8MB;
Main Memory DDR4 2x8GB 2666MHz CL16;

RVU Processing Logic [2] Operation frequency: 1 GHz;
Up to 32x 64 functional units (integer + floating-point);
Vector sizes (bytes): 32x 256, 16x 512, 8x 1024, 4x 2048, 2x 4096, 1x 8192
Latency (cycles): 1-alu, 3-mul. and 20-div. int. units;
Latency (cycles): 5-alu, 5-mul. and 20-div. fp. units;
Register bank: 8 sets of 32 composable registers of 256 bytes each;

Number of Threads

C
yc

le
s

(m
ill

io
ns

)

Ti
m

e
(m

s)

0

5

10

15

20

0

50

100

150

200

1 2 4 8

Simulated Cycles Simulation Time

Fig. 2: Simulated Cycles and Simulation Time speedup for a
64MB VecSum application offloaded by the Xeon CPU to the
PIM device achieved by increasing the number of threads for
the application.

a large array. This way, we avoid complications dealing with
complex vector algorithms and inter-thread communication.
As the number of threads increases, the size of the array for
each thread gets smaller. In Figure 2 we can see the advantages
of executing PIM code with thread-level parallelism as there
is an apparent speedup in the collected metrics (Simulated
Cycles). Moreover, we can see that the simulation does not
suffer a performance penalty for simulating this scenario. It
becomes even faster. The advantages of simulating each thread
in parallel are evident when we evaluate the costs of executing
a multi-thread benchmark, dividing work between a different
number of cores.

Even though simulators like Gem5 can simulate very dif-
ferent architectures, even enabling the design of new architec-
tures, the added complexity limits the ease of use for simple
tests like these. Quickly changing a parameter and rerunning
the simulation is not an option as the simulation can take
hours. Intel’s PinTool offers very fine control over the code
currently executing, allowing the user to follow branches and
accessed memory addresses. However, once again, the slow
simulation speed makes quick testing a nuisance. Furthermore,
PinTool and other trace-based simulations suffer from another
challenge, as changes in the benchmark require the traces to
be reacquired. Figure 3 presents a comparison between our
previous experiments with these tools showing the accuracy
of the metrics in relation to estimates of the actual hardware
performance [2] on the y-axis. On the x-axis, the simulation
speeds are normalized to the run-time of the multi-threaded
version of Sim2PIM.

Like many other simulators, the original version of
Sim2PIM could simulate multi-thread applications by execut-
ing each thread sequentially. However, it could not simulate
the interaction of these multiple requests on shared resources,
such as memory access bandwidth. Sim2PIM is now capable
of doing so in a fast simulation time, with minimal simulation
overheads.

TABLE II: Simulated Cycles vs Simulation time for Sim2PIM and perf on the AMD processor.

Benchmark - data size Perf cycles Sim2PIM cycles cycles % increase Perf Time (s) Sim2PIM Time (s)
1T 4T - Average 1T 4T - Average 1T 4T - Average 1T 4T - Average 1T 4T - Average

vecsum - 32MB 1.25E+07 3.06E+06 1.23E+07 3.05E+06 -1.799 -0.541 0.0165 0.0083 0.037 0.035
gemm - 1,5MB 2.89E+07 9.68E+06 2.84E+07 7.99E+06 -1.577 -17.497 0.0173 0.0089 0.029 0.033
2mm - 750kB 1.57E+08 3.93E+07 1.57E+08 3.92E+07 -0.018 -0.255 0.0524 0.0219 0.039 0.046
covariance - 16MB 1.48E+09 4.30E+08 1.66E+09 4.23E+08 12.491 -1.734 0.7163 0.4740 1.041 0.5
Floyd-Warshall - 8MB 1.18E+10 3.93E+09 1.18E+10 3.88E+09 -0.018 -1.261 3.2186 1.1955 3.232 1.22
Nussinov - 8MB 2.86E+10 7.23E+09 2.88E+10 7.21E+09 0.597 -0.319 7.7568 1.9769 7.825 1.998

Real Hardware
Estimated
Performance

Sim²PIM MT
Simulation

Sim²PIM ST
Simulation

PinTool
Simulation

gem5
Simulation

Fig. 3: Execution time and accuracy for a VecSum application
with 8 threads in different simulators.

VI. CONCLUSION

It is more apparent than ever that new architectural
paradigms must be proposed to keep up with computing trends.
PIM is a clear contender to take the top spot of energy
efficiency and acceleration. However, there must be leaps in
architectural designs and the support environment to accelerate
this development, including simulators. This extension to
Sim2PIM brings a fast and accurate simulation tool for multi-
thread applications to the hands of researchers and designers. It
makes few compromises, guaranteeing fast simulation speeds
and high accuracy, as long as the host hardware is available
for testing. Currently, the simulator is perfectly capable of
exploring dual-socket systems, and as future work, we aim to
explore the use of more than one HW simulation thread to
emulate multiple PIM devices in the same system.

REFERENCES

[1] S. Aga et al., “Compute caches,” in 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2017.

[2] P. C. Santos et al., “Operand size reconfiguration for big data processing
in memory,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2017.

[3] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in 2015 Design, Automation Test
in Europe Conference Exhibition (DATE), 2015.

[4] H. A. D. Nguyen et al., “A classification of memory-centric computing,”
J. Emerg. Technol. Comput. Syst., vol. 16, Jan. 2020.

[5] P. C. Santos, B. E. Forlin, and L. Carro, “Sim²pim: A fast method for
simulating host independent pim agnostic designs,” ser. DATE ’21,
2021.

[6] G. F. Oliveira, P. C. Santos, M. A. Z. Alves, and L. Carro, “A generic
processing in memory cycle accurate simulator under hybrid memory
cube architecture,” in SAMOS, 2017.

[7] L. Xia et al., “Mnsim: Simulation platform for memristor-based neu-
romorphic computing system,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2018.

[8] J. D. Leidel and Y. Chen, “Hmc-sim-2.0: A simulation platform for
exploring custom memory cube operations,” in 2016 IEEE Int Parallel
and Distributed Processing Symp Workshops (IPDPSW), 2016.

[9] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, 2011.

[10] M. A. Z. Alves et al., “Sinuca: A validated micro-architecture simu-
lator,” in 2015, 17th Int. Conf. on High Performance Computing and
Communications, 2015.

[11] C.-K. Luk et al., “Pin: Building customized program analysis tools
with dynamic instrumentation.” Association for Computing Machinery,
2005.

[12] C. Yu, S. Liu, and S. Khan, “Multipim: A detailed and configurable
multi-stack processing-in-memory simulator,” IEEE Computer Architec-
ture Letters, 2021.

[13] D. Sanchez and C. Kozyrakis, “Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems,” in Int. Symp. on Computer
Architecture, 2013.

[14] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram
simulator,” IEEE Computer Architecture Letters, 2016.

[15] P. C. Santos, B. E. Forlin, and L. Carro, “Providing plug n’ play for
processing-in-memory accelerators,” in Asia and South Pacific Design
Automation Conference (ASPDAC), 2021.

[16] M. Drumond et al., “The mondrian data engine,” in Int. Symp. on
Computer Architecture. ACM, 2017.

[17] G. F. Oliveira, P. C. Santos, M. A. Alves, and L. Carro, “Nim: An
hmc-based machine for neuron computation,” in Int. Symp. on Applied
Reconfigurable Computing (ARC). Springer, 2017.

[18] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “Computedram: In-memory
compute using off-the-shelf drams,” in Proceedings of the 52nd Annual
IEEE/ACM Int Symp on Microarchitecture, ser. MICRO ’52, 2019.

[19] A. Shafiee et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Int. Symp on Computer
Architecture (ISCA), 2016.

[20] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in Int. Symp. on Mi-
croarchitecture (MICRO), 2017.

[21] J. Nider et al., “A case study of processing-in-memory in off-the-shelf
systems,” in 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, Jul. 2021, pp. 117–130. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/nider

[22] S. Lee et al., “Hardware architecture and software stack for pim based on
commercial dram technology : Industrial product,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 43–56.

[23] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence Mech-
anism for Processing-in-Memory,” IEEE Computer Architecture Letters,
2016.

[24] Hybrid Memory Cube Consortium, “Hybrid memory cube specification
rev. 2.0,” 2013, http://www.hybridmemorycube.org/.

[25] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” URL:
http://www.cs.ucla.edu/pouchet/software/polybench, 2012.

