
Efficient Machine Learning Execution with Near-Data Processing⋆
Aline S. Cordeiroa,∗, Sairo R. dos Santosa,b, Francis B. Moreiraa, Paulo C. Santosc, Luigi Carroc and
Marco A. Z. Alvesa

aFederal University of Paraná, Department of Informatics, Curitiba-PR, Brazil
bFederal Rural University of Semi-arid, Department of Exact Sciences and Information Technology, Angicos-RN, Brazil
cFederal University of Rio Grande do Sul, Informatics Institute, Porto Alegre-RS, Brazil

ART ICLE INFO
Keywords:
Near-Data Processing
Vector Processing
Machine Learning

ABSTRACT
A myriad of Machine Learning (ML) algorithms has emerged as a basis for many applications due to
the facility in obtaining satisfactory solutions to awide range of problems. Programs such asK-Nearest
Neighbors (KNN),Multi-layer Perceptron (MLP), andConvolutional Neural Network (CNN) are com-
monly applied on Artificial Intelligence (AI) to process and analyze the ever-increasing amount of
data. Nowadays, multi-core general-purpose systems are adopted due to their high processing capac-
ity. However, energy consumption tends to scale together with the number of used cores. In order
to achieve performance and energy efficiency, many Near-Data Processing (NDP) architectures have
been proposed mainly tackling data movement reduction by placing computing units as close as possi-
ble to the data, such as specific accelerators, full-stack General Purpose Processor (GPP) and Graphics
Processing Unit (GPU), and vector units. In this work, we present the benefits of exploring Vector-
In-Memory Architecture (VIMA), a general-purpose vector-based NDP architecture for varied ML
algorithms. Our work directly compares VIMA and x86 multi-core AVX-512 GPP. The presented
approach can overcome the x86 single-core in up to 11.3× while improving energy efficiency by up
to 8×. Also, our study shows that nearly 16 cores are necessary to match the NDP’s single-thread per-
formance for KNN and MLP algorithms, while it is necessary 32 cores for convolution. Nevertheless,
VIMA still overcomes x86 32 cores by 2.1× on average when considering energy results.

1. Introduction
Machine Learning (ML) studies emerged in the late

1980s focusing on learning algorithms enabled by digital
computers [67]. Due to the increased processing capacity
available in current computers, ML has gained popularity
and became the nucleus of manymodern applications to pro-
cess massive amounts of data generated by digital systems’
growth usage [38, 65, 27, 61, 18].

Meanwhile, modern general-purpose computing sys-
tems have evolved to many processing cores, implementing
deep cache memory hierarchies, high operating frequency,
and Single Instruction Multiple Data (SIMD) units. Despite
their ever-increasing performance, General Purpose Proces-
sors (GPPs) still present performance and energy efficiency
limitations in several applications and workloads. Appli-
cations that demand transferring large amounts of data and
streaming-like behavior (i.e., ML applications) primarily in-
crease the memory-wall problem [79]. Thus, these appli-
cations increase performance differences between the pro-
cessing unit (where they consume data) and main memory
(where data resides). The bandwidth between processing

⋆This work was partially supported by the Serrapilheira Institute (grant
number Serra-1709-16621), FAPERGS, CAPES and CNPq (Brazilian Gov-
ernment).

∗Corresponding author
ascordeiro@inf.ufpr.br (A.S. Cordeiro);

sairo.santos@ufersa.edu.br (S.R.d. Santos); fbm@inf.ufpr.br (F.B.
Moreira); pcssjunior@inf.ufrgs.br (P.C. Santos); carro@inf.ufrgs.br (L.
Carro); mazalves@inf.ufpr.br (M.A.Z. Alves)

ORCID(s): 0000-0002-8612-5749 (A.S. Cordeiro); 0000-0001-9981-5231
(S.R.d. Santos); 0000-0002-0926-3865 (F.B. Moreira); 0000-0001-8555-2637
(P.C. Santos); 0000-0002-7402-4780 (L. Carro); 0000-0003-2440-2664
(M.A.Z. Alves)

units and main memory has physical limits due to the power
dissipation, bus and pin-out width, and operating frequency.

On the other hand, systems use accelerators such as
Graphics Processing Units (GPUs), Field-Programmable
Gate Arrays (FPGAs), and Application-Specific Integrated
Circuits (ASICs) to mitigate these performance issues [79,
56, 37]. However, the memory-wall limitation is inherent to
contemporary processor designs. Although modern cache
hierarchies and high bandwidth memories can mitigate the
performance drawbacks, in terms of energy and latency, it
is not sufficient [29, 64, 63]. Moreover, this problem is of
critical concern, as studies indicate that data movement ac-
counts for up to 60% of the total system energy consumption
of modern systems [9].

Considering execution time and energy constraints,
Near-Data Processing (NDP) has emerged as a viable so-
lution for the memory-wall problem, with the idea of inte-
grating processing units as close as possible to the mem-
ory [55, 59]. NDP significantly reduces data movement be-
tween processing units and memory, which consequently re-
duces energy consumption. NDP takes advantage of access-
ing the vast internally available memory bandwidth, which
allows processing over large amounts, therefore improving
performance. Another potential of NDP is to overcome
multi-threading capability, once it is possible to achieve sig-
nificantly higher performance with one thread only if com-
pared with conventional systems.

The majority of the NDP proposals rely on ASIC or
full Central Processing Units (CPUs) and GPUs [26, 2, 54].
However, it is possible to enable a higher energy efficiency
with designs based on simple near-data vector units [3, 69,
57, 68] while considering constraints regarding the area and

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 1 of 13

Efficient Machine Learning Execution with Near-Data Processing

power [43]. In this manner, we based our study on HMC
Instruction Vector Extensions (HIVE) [3], which provides a
programming and simulation environment for NDP vector-
based architectures.

In this paper, we extend our previous published
work [15], where we presented the benefits of migrat-
ing three well-known ML kernels (K-Nearest Neighbors
(KNN), Multi-layer Perceptron (MLP), and Convolutional
Neural Network (CNN)) to Vector-In-Memory Architec-
ture (VIMA). This NDP design enabled large-vector oper-
ations, which allows a significant reduction in data move-
ment between the host processor and main memory, increas-
ing overall energy efficiency and performance. To execute
these evaluations with VIMA, we also developed Intrinsics-
VIMA, a vector-designed C/C++ library extension [14].
Our library facilitates the simulation and evaluation of algo-
rithms in VIMA and similar Processing-In-Memory (PIM)
architectures with reduced programming effort.

As our main contribution, we provide insights and show
benefits (in terms of execution time and energy results) when
migrating ML algorithms to a vector-based NDP architec-
ture compared to traditional x86 approaches using single-
and multi-threading programming. This comparison vary-
ing the number of threads helps us to understand the NDP ef-
ficiency trade-off. We also evaluate the multi-thread migra-
tions in terms of data throughput to better understand the cor-
relation between memory footprint and computational per-
formance.

Most ML algorithms have the training and inference
phases, which are two computation-intensive tasks. The
training step is performed once and is bound by latency as
it executes many operations over a massive set of training
instances to define the model parameters. The inference is
performed multiple times by multiple products. It relies on
high throughput to classify a stream of instances, represent-
ing real-world applications. In this paper, we focus only on
the inference phase since we are interested in evaluating the
computational performance of VIMA to classify a set of in-
stances straightforward as if the model training phase was
over.

Comparing the x86-only to the NDP, both with single
thread execution, we show improvements on execution time
of up to 10× for KNN, 11× for MLP, and 3× for convolu-
tion. Additionally, we reduce energy consumption by up to
7× for KNN, ∼ 8× for MLP and 2× for convolution. When
comparing the NDP single thread execution with x86-only
multi-threaded approach, near-data performance is on aver-
age 4.3× better than x86-2-threads, 1.8× better than x86-4-
threads, and 1.3× better than x86-8-threads. In addition, we
observed that NDP with a single thread has a performance
equivalent tomore than 8 x86 threads, leading to the best Dy-
namic Random Access Memory (DRAM) memory through-
put and energy efficiency in all the experiments, still con-
sidering a perfect Dynamic Voltage and Frequency Scaling
(DVFS) for x86 architecture.

2. Related Work
The first 3D-stackedmemory device made commercially

available with integrated NDP capabilities was the Hybrid
Memory Cube (HMC) [33, 35]. It integrates one memory
controller per individual vault, and each controller has a set
of Functional Units (FUs) that can execute simple operations
over up to 16-byte operands. As a result, much of the re-
search involving 3D-stacked memories have considered the
HMC design and specifications. More recently, another de-
vice became commercially available, the HBM-PIM [39].

Several efforts achieve better performance by attaching
processing cores to 3D-stacked architectures. Such is the
case of NeuroStream [7] and Network Training Accelera-
tor (NTX) [70], both composed of RISC-V cores with lo-
cal cache, Direct Memory Access (DMA) and specific cores.
The two platforms use vector instructions to runDeepNeural
Networks (DNNs) and Deep Convolutional Neural Network
(DCNN), respectively, and connect to the crossbar switch of
the 3D-stacked memory. Aimed at Big data Machine Learn-
ing Analytics (BMLA) applications, the Millipede [75] also
adds full processors to the logic layer of 3D-stacked memo-
ries. Tesseract [2] applies a similar approach to large-scale
processing, integrating a single-issue in-order ARM core to
a HMC device. Gao et al. [25] implement an architecture
geared toward in-memory analytics frameworks with a com-
bination of ARM cores with Translation Look-aside Buffers
(TLBs) and virtual memory using a vault router for com-
munication between processing cores. Another possible ap-
proach is to implement programmable ARM-based cores in
the HMC logic layer [45] so that the programmer can offload
some functions to these cores.

All of the mentioned research efforts add complex cores
to their designs, including all elements commonly associ-
ated. Integrating a complex core with a pipeline, cache hier-
archy, and local memory near data increases complexity and
energy consumption while imposing large area and power
dissipation requirements. The added complexity of mapping
functions to specific cores also hinders usability.

MAssively Parallel Learning/Classification Engine
(MAPLE) [48] applies two distinct modules to the overall
operation: one to aid MapReduce applications and one to
map kernels to NDP resources automatically. The archi-
tecture uses multiple cores with registers, vector FUs, and
local storage to achieve high parallelism. Xu et al. [80] use
Accelerated Processing Units (APUs) consisting of multiple
CPU and GPU cores to parallelize CNNs. Since these
works add multiple processing cores to the architecture,
they can be considered onerous in energy consumption and
total area.

Another approach is to develop NDP architectures where
cores are attached to individual vaults of a 3D-stacked mem-
ory, using a data controller for communication [23]. For
instance, TETRIS [26] and NeuralHMC [50] use Process-
ing Elements (PEs) connected with Network-on-Chip (NoC)
technology to accelerate Neural Networks (NNs). Other than
the challenges many-core integration causes, this approach
requires specific attention to data placement in each vault.

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 2 of 13

Efficient Machine Learning Execution with Near-Data Processing

Table 1
Summary of correlated papers characteristics.

Paper Reference Architecture Model Application Migrated
Full Processor Functional Units Near-Cell ASIC Convolution or CNN KNN MLP

[10] 2010 x x
[80] 2015 x x
[25] 2015 x x x
[12] 2016 x x x
[71] 2016 x x
[6] 2017 x x
[57] 2017 x x
[26] 2017 x x
[42] 2017 x x
[11] 2017 x x
[73] 2017 x x
[45] 2018 x x x
[7] 2018 x x x
[70] 2018 x x x
[40] 2018 x x
[20] 2018 x x
[16] 2018 x x
[72] 2018 x x
[24] 2018 x x
[16] 2018 x x
[78] 2019 x x
[81] 2019 x x
[17] 2019 x x
[34] 2019 x x
[50] 2019 x x x
[19] 2020 x x
[66] 2020 x x x
[47] 2020 x x

Our Proposal x x x x

Utilization is complex when data from separate vaults are
involved in a computation.

Some researchers have proposed adding reconfigurable
logic to 3D memories. For instance, Neuron In-Memory
(NIM) [57] uses reconfigurable FUs, a register bank and a
sequencer to simulate NN near-data. Another example is the
work by de Lima et al. [44], which adjusts FUs on demand.
These solutions focus only on specific applications and as-
sign processing elements to specified vaults, thus requiring
precise data allocation.

Lastly, another approach is to modify DRAM cells so
they can carry out simple instructions, which is inexpen-
sive [24, 16, 42, 17, 72, 74]. However, since processing ele-
ments are connected directly to memory arrays, these solu-
tions can be complex, and programming them is prone to er-
rors. Also, due to the limitations of the available Instruction
Set Architecture (ISA), porting algorithms to such devices is
non-trivial.

Table 1 summarizes a comprehensive list of related work
regarding NDP applied to ML algorithms such as CNN,
KNN and MLP. The table presents two main aspects: the
architecture model and the applications migrated. Regard-
ing the architecture, we could observe full-core integration.
Instead of the full-processors integration, several propos-
als add only logical and arithmetic units near-data, enabling
large vector processing. Other proposals consider attach-
ing processing elements within the memory cells. Finally,
several proposals integrate custom ASICs able to accelerate
only specific applications.

In this paper, we used the VIMA architecture with its
programming library to migrate ML programs to NDP. Al-

though we used a specific vector architecture as a target, we
believe that such results would be similar for other vector
NDP approaches. Besides, we extend our evaluation com-
paring to x86 processors with single- and multi-threaded ex-
ecution.

3. Background on Near Data Processing
Moore’s law predicted that the number of transistors in

computer systems doubles every 18 months -currently, ev-
ery 24 months -, which usually results in improvement of the
processing capacity [52, 53]. For decades, as memory and
processing capacity were the main limiting factors in devel-
oping efficient computer programs, his prediction proved to
be correct [30], with current issues like thememorywall [79]
and dark silicon [22].

ML emerged as an Artificial Intelligence (AI) research
field in this context, as researchers tried to devise artificially
intelligent systems that could find patterns in data without
human intervention. Several ML techniques have thus been
developed, such as supervised, unsupervised, and reinforce-
ment learning [28, 51].

Meanwhile, 3D integration technology sparked interest
in Near-Data Processing (NDP), an idea last explored in the
1990s [59, 21] but that failed to gain traction because of
technological limitations of the time. Recently, 3D-stacked
memories became commercially available, with the HMC
and the High Bandwidth Memory (HBM) being the most
widely known examples [31, 33].

By stacking several layers of DRAMs using vertical
Through-Silicon Via (TSV) interconnection [58], as de-

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 3 of 13

Efficient Machine Learning Execution with Near-Data Processing

picted in Figure 1, these 3D-stacked memories achieve high
bandwidth and better energy efficiency in comparison to typ-
ical Double Data Rate (DDR) memories [77, 5]. The chosen
device, HMC, has 32 independent logical partitions. Each
partition has an individual memory controller placed in an
additional logic layer.

B0 B1

B2 B3

B14 B15

B0 B1

B2 B3

B14 B15

B0 B1

B2 B3

B14 B15

Cross-bar switch

...Vault 0
Logic

T
S
V

... …

Vault 1
Logic

T
S
V

... …

Vault 31
Logic

T
S
V

... …

16
Lanes

16
Lanes

16
Lanes

16
Lanes

Links

Logic
Layer

Memory
partitions

(DRAM layers)

Vaults

Vault controller

Write
buffer

Read
buffer

DRAM sequencer

Figure 1: HMC block diagram with 32 vaults with 16 banks
each one. Adapted from [32].

One common approach to implement NDP systems is
to add processing elements to the logic layer in 3D-stacked
memories, thus enabling processing with no need for data
movement between memory and processor. Such systems
are particularly interesting for data-driven applications that
apply high pressure to memory. The most benefit is seen
by applications with low data reuse and high parallelism, as
they can take advantage of the high parallelism and band-
width 3D-stacked devices offer [32, 36, 60].

In this paper we use VIMA which is based on HIVE [3]
architecture, a general-purpose NDP architecture. HIVE
leverages the high bandwidth and parallelism of 3D-stacked
memories to enable the execution of vector instructions of
extensive data loaded in parallel from the many indepen-
dent logical vaults in the device. By adding its instructions
to the host processor’s ISA, it avoids implementing instruc-
tion fetching and decoding in the memory. Figure 2 shows
VIMA which replaces the original register bank from HIVE
with a dedicated cachememory to simplify its programming,
adding transparency and flexibility. Both HIVE and VIMA
support ARM NEON instructions and operate over vectors
of 256 B or 8 KB in size.

The host processor handles all instruction front-end pro-
cessing (e.g., fetching, decoding, renaming, and dispatching)
and sees VIMA instructions as regular memory instructions.
Thememory requests bypass the cache hierarchy, andVIMA
executes the instructions using vector FUs inside the DDR
module. Upon completion, VIMA sends an instruction sta-
tus back to the processor. For more details on near-data ex-
ecution please refer to HIVE’s paper [3].

NDP mitigates issues caused by data movement and, in
comparison to traditional CPU and other accelerator sys-
tems, tends to be more efficient in time spent and energy
consumption. For the remainder of this paper, we focus on
migrating well-known ML classifications to NDP to exploit
this approach.

3D Stacked MemoryProcessor Core

ALUFetch Decode Rename
Dispatch

Write
Back

Memory Order Buffer

Cache
Hierarchy

Last Level
Cache

VIMA instruction VIMA status

Vault 0
logic

Vault 1
logic

Vault 31
logic

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

...

Crossbar switch

VIMA

Vector
Units

L1 Cache

DRAM
Layers

Logic
Layer

Reorder Buffer

...

4 serial links

VIMA Cache Memory

Inst.
seq.

Mem. Vaults

Figure 2: Processor connected to a 3D-stacked memory mod-
ule with the VIMA architecture.

4. Programming for VIMA
In this paper we used Intrinsics-VIMA to evaluate the

migration of ML code to VIMA. This C/C++ library can be
used to write VIMA code for simulation purposes. It works
like Intel and ARM Intrinsics libraries [46], which embed
code directly in the compiler. Thus, the resulting assem-
bly code includes specific instructions from their extended
ISA [13].

Intrinsics-VIMA functions achieve the same effect.
When a programmer compiles code using such functions
and uses it for simulation purposes, the library provides the
illusion of VIMA instructions being part of the processor
ISA. Intrinsics-VIMA functions appear explicitly in assem-
bly code. When our trace generator, a tool implemented in
our simulation infrastructure, detects Intrinsics-VIMA func-
tions, it replaces them with VIMA instructions supported by
the simulation software. All Intrinsics-VIMA code can be
debugged and executed on any x86 architecture to make sure
the algorithm is behaving as expected [14]. Codes 1 and 2
show examples of library function code and its use in appli-
cation code, respectively.

Code 1: Intrinsics-VIMA routine example.
//This routine can be fully executed in a x86 architecture

//Our simulator replaces this routine with a VIMA instr.

void *_vim2K_fadds(__v32f *a, __v32f *b, __v32f *c) {

for (int i = 0; i < vima_size; ++i) {

c[i] = a[i] + b[i];

}

return EXIT_SUCCESS;

}

We wrote Intrinsics-VIMA on top of an open-source In-
trinsics library which we used to evaluate the performance of
applications using native HMC instructions [14]. Its inter-
face exposes VIMA instructions with 256 B and 8 KB vector
operands. Thus, vectors store 32 or 64 and 1024 or 2048 8 B
or 4 B elements, respectively. Supported data types are in-
teger and single or double-precision floating-point.

Our library assumes the size of a vector is a multiple of
32, 64, 1024, or 2048. The Intrinsics-VIMA library can iter-
ate over vectors with these strides. Codes 1 and 2 show the
implementation of an Intrinsics-VIMA routine and a vector

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 4 of 13

Efficient Machine Learning Execution with Near-Data Processing

sum application, respectively. While previous work focused
on scalar processing based on the HMC ISA [14], in this
paper, we focus on the performance of vectorized near-data
implementations using VIMA.

Code 2: Intrinsics-VIMA routine call for vector sum.
uint32_t vima_size = 2048;

// Allocate the vectors A, B (sources) and C (result)

__v32f *A = (__v32f *) malloc(sizeof(__v32f)* vima_size* x);

__v32f *B = (__v32f *) malloc(sizeof(__v32f)* vima_size* x);

__v32f *C = (__v32f *) malloc(sizeof(__v32f)* vima_size* x);

// Initialize the memory location

<...>

// Perform the vector sum: C[i] = A[i] + B[i]

for (int i = 0; i < vima_size * x; i += vima_size) {

_vim2K_fadds (&A[i], &B[i], &C[i]);

}

5. Migrating Machine Learning algorithms
using Intrinsics-VIMA
ML analyzes data sets and recognizes patterns that en-

able them to make decisions and predictions regarding
the domain represented in the data. The class of super-
vised algorithms has the training and inference phases, both
uniquely challenging and computation-intensive. The train-
ing phase processes a large amount of representative data to
generate a model. It iterates over data points to extract and
adjust a model until it is considered adequately descriptive
for a task. Since this phase iterates over massive data sets,
it relies on robust architectures for performance. The infer-
ence phase classifies instances according to the model gen-
erated in the training phase, possibly in real-time, thus being
more throughput-oriented. Models are created once and run
in multiple devices, including embedded systems with lim-
ited resources [49, 62, 76]. Here, we focus on the inference
phase.

Moreover, in this section, we describe how to write three
widely used ML algorithms to use VIMA, including vector-
ization details. We choose a convolution kernel (commonly
used in CNNs), MLP, and KNN and use 8 KB VIMA in-
structions to operate over 2048 single-precision values per
instruction. While HIVE and VIMA use 8 KB vectors, both
architectures can operate in a pipeline to operate using fewer
vector FUs over smaller vectors and still offer high perfor-
mance with low area usage [3].

The main idea here is to present our solutions when mi-
grating these algorithms to VIMA architecture.
5.1. Convolution

Convolution operations are widely used in science and
are explained first due to their simplicity. Its main loop con-
sists of computing values according to a pattern involving
neighboring data points in a 2D or 3D grid [1]. One of
the most common patterns is the Von Neumann neighbor-
hood, which considers the four direct neighbors of an ele-
ment. Convolutions often suffer from inefficient memory

use due to their poor locality of reference [1]. However,
since each element is independent, the algorithm is highly
parallel, making it a good candidate for NDP.

Figure 3: Convolution pattern used for VIMA.

We adopt a naive convolution with a Von Neumann pat-
tern of range 1, as pictured in dark gray in Figure 3. Each
loop loads and processes elements from three consecutive
lines, as pictured in light gray.

Code 3: Von Neumann convolution code in C.
for (int i = ColSize; i < max_elem; i++) {

VecB[i] = VecA[i]; // Center Elem.

VecB[i] = VecB[i] + VecA[i - ColSize]; // Upper Elem.

VecB[i] = VecB[i] + VecA[i + ColSize]; // Lower Elem.

VecB[i] = VecB[i] + VecA[i - 1]; //Left Elem.

VecB[i] = VecB[i] + VecA[i + 1]; // Right Elem.

VecB[i] = VecB[i] * constK;

}

We consider a matrix stored in a continuous array, as
shown in Code 3. The algorithm stores the results in a new
matrix.
Code 4: Von Neumann convolution using Intrinsics-VIMA.
for (int i = ColSize; i < max_elem; i += vec_size) {

_vim2K_fmovs (&VecA[i], &VecB[i]);

_vim2K_fadds (&VecB[i], &VecA[i-ColSize], &VecB[i]);

_vim2K_fadds (&VecB[i], &VecA[i+ColSize], &VecB[i]);

_vim2K_fadds (&VecB[i], &VecA[i+1], &VecB[i]);

_vim2K_fadds (&VecB[i], &VecA[i-1], &VecB[i]);

_vim2K_fmuls (&VecB[i], &VconstK[i], &VecB[i]);

}

The corresponding Intrinsics-VIMA code is shown in
Code 4 and ignores the borders of the matrix. It adds the
five elements, multiplies the result by a constant, and stores
results into a separate matrix.
5.2. K-nearest Neighbors

KNN classifies instances by searching the k minimal dis-
tances between a testing instance from the training ones.
These instances are n-dimensional arrays. Thus, we can ab-
stract them as points in an n-dimensional space. We must
choose a method to calculate these distances depending on
the distance criteria. Here, we are using the Euclidean Dis-
tance method, which considers the values of each array posi-
tion since they correspond to the features that represent the
instances. The higher the value, the more representative it
is [51].

The KNN algorithm requires storing the training data in
memory to classify the test instances. As the VIMA vectors

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 5 of 13

Efficient Machine Learning Execution with Near-Data Processing

have static sizes, an instance can contain a smaller number of
features when compared with a VIMA vector, as depicted in
Figure 4, so different training instances can be stored consec-
utively in a VIMA vector. In other cases, a training instance
can occupy at least one VIMA vector.

instance 0 instance 1 instance 2 ... instance 63

0 2047

Figure 4: E.g., full utilization of a VIMA vector with training
and test instances. Here, we could allocate 64 instances with
32 features inside the vector of 8 KB.

Reinforcing the importance of the VIMA vector sizes,
we have to allocate enough memory to store the training in-
stances while considering that this amount of memory must
be multiple of the VIMA vector size. For example, if we
have 8192 training instances with 32 features each one, it is
necessary to split them in 4 VIMA vectors of 8 KB each, as
depicted in Figure 5. In our case, as the focus of this paper is
not achieving a better accuracy, we considered two generic
classes as input - 0 for negative and 1 for positive - and we
store these labels in a different array than the training set.instance 0 instance 1 instance 2 ... instance 63

0 2047

inst 0 inst 1 inst 2 inst 3 ... inst 8191

0 262143

0 1 1 0 ... 1

0 8191

Label vector

Figure 5: VIMA vectors with training instances with 32 fea-
tures and the respective labels.

Consider the Euclidean Distance method, represented by
the following function:

d ≡

√

√

√

√

n
∑

i=1
(te(xi) − tr(xi))2

Where tr refers to the training instance and te to the test in-
stance. With Intrinsics-VIMA routines, except for the square
root operation, it is possible to vectorize the following steps
presented in this method during its implementation:

• _vim2K_fsubs() to subtract the values between the
training and test instances;

• _vim2K_fmuls() to raise the resulting value to the
power of two;

• _vim2K_fcums() to accumulate sum the results to find
out the distance between two instances.

Although a VIMA vector can allocate more than one in-
stance when they are smaller than it, if we kept all these in-
stances in a VIMA vector, we cannot simply execute all the
mentioned vector operations. It is possible to subtract and
multiply the values in correspondent instances. However,
the accumulation sum routine will consider the features of
more than one instance, which will lead to divergent results.

Besides, this format will force us to allocate morememory to
replicate the same training instance in one VIMA vector to
correctly calculate its distance from different test instances.
To avoid these complications, we created a single mask to
isolate training and test instances in one single VIMA vec-
tor each. For example, as depicted in Figure 6, if we consider
instances with 32 features, the mask will be of the size of a
VIMA vector and will set the first 32 positions to "1," and
fill the rest of the array with "0." There is no need for a mask
when the instance is greater than the VIMA vector.

instance 0 instance 1 instance 2 ... instance 63

0 2047

inst 0 inst 1 inst 2 inst 3 ... inst 8191

0 262143

0 1 1 0 ... 1

0 8191

Label vector

1111111...1 0000000...0 0000000...0 0000000...0 0000000...0

instance 0 instance 1 instance 2 ... instance 63

0 31 2047

Figure 6: Operation to apply a mask over a VIMA vector of
8 KB with instances representing 32 features.

For simplicity, we chose to implement a single mask in-
stead of different masks to ensure this mask vector will be
allocated in VIMA’s cache memory for a longer time. The
presence of the mask in the cache contributes to better com-
putational performance since VIMA’s cache memory only
has 64 KBwith eight available cache lines of 8 KB each one.
Thus, our code uses the minimum amount of VIMA vectors
per operation. Moreover, we can easily apply this mask to
the training and test sets by iterating the instance arrays to
be operated with the mask vector.

After calculating each training and test instance, we store
all the accumulated sums in different arrays. Each array
represents one test instance, and each position represents
a distance from the array’s test instance to all the training
instances. Finally, these arrays are operated with the x86
square root instruction, resulting in the Euclidean Distances,
which are paired with the label vector to find the k lowest
distance values since they represent the minimum distance
between a test and training instance. This final step does not
use Intrinsics-VIMA routines.
5.3. Multi-layer Perceptron

The MLP algorithm is a supervised learning technique
that emulates the theoretical behavior of the human brain
by similarly linking "neuron" objects. More specifically, a
MLP combines a series of perceptrons or neurons in layers
to compute its activation values and adjust its weights, ap-
plying non-linear transformations and focusing on finding
an appropriate combination of parameters, which can lead
to higher accuracy. This algorithm arranges these neurons
in one input layer, one or multiple hidden layers, and one
output layer to train and classify instances.

The number of neurons in the input layer is the number
of features each instance contains. Meanwhile, the number
of neurons in the hidden layer needs more attention since it
must identify the most relevant input features in the model.
If this layer contains too few or toomany neuron units, it may
not correctly identify and correlate the model input features,

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 6 of 13

Efficient Machine Learning Execution with Near-Data Processing

leading to inaccurate results. Thus, we define this layer as
half of the input layer. Finally, as depicted in Figure 7 the
output layer has only two neurons to classify instances be-
tween positive and negative.

As in the KNN algorithm, we select VIMA vectors of
8 KB and floating-point single precision, which gives us vec-
tors with 2048 positions. Besides, we consider only the in-
ference stage of the MLP algorithm using a trained model as
input. We disregard any training or classification parameters
since our objective is evaluating the computational perfor-
mance instead of accurate neural network results.

i4

i2

i3

h1

h2

h0

o0

o1

Input
Layer

Hidden
Layer

Output
Layer

i5

i1

i0 w00

w20

w30

w40

w10

w50

w’00

w’10

w’20

bias
bias

b0

b1

b2

b’0

b’1

Figure 7: Representation of an Artificial Neural Network
(ANN).

We use the same strategy applied to the KNN algorithm.
If the number of features of an instance is less than theVIMA
vector size, we apply a mask vector to isolate one test in-
stance per vector. Otherwise, at least one VIMA vector will
be enough for a test instance, and no transformation will be
necessary.

To classify an instance, first, we have to operate a dot
product between the features in the input layer and its con-
nection weights values (wxy) to obtain the activation values
from the hidden layer. Second, we must repeat this pro-
cess between the hidden layer activation and the connection
weights values (w′

xy) to obtain the output activation values.
In both steps, we can use two vector routines from VIMA as
follows:

• _vim2K_fmuls() to multiply the activation values and
its weights;

• _vim2K_fcums() to accumulate the values from mul-
tiplication, resulting in one activation value from the
next layer.

In both processing stages, after calculating all the acti-
vation values of a layer, a bias - a correction factor - is added
or subtracted to each activation value to adjust it and reduce
errors. Finally, the activation function is applied to the val-
ues. In our case, we use the Rectified Linear Unit (ReLU)

activation function on the hidden layer to introducing non-
linearity to the instances, and the Softmax activation func-
tion on the output layer to transform the final activation val-
ues in probabilities [8]. Except for Softmax calculation, we
use Intrinsics-VIMA routines to execute these operations, as
follows:

• _vim2K_fadds() to add the bias vector to the hidden
and output layers;

• _vim2K_fmaxs() to apply ReLU in the hidden layer.
Here the hidden layer vector is operated with a zeroed
vector, and the max operation then replaces every neg-
ative value by zero.

As we can notice, the operations between the layers are
the same. However, we must pay attention to the varying
number of weights for each layer since this factor defines
the mask size to isolate the instances in VIMA vectors, as
depicted in Figure 8.

11111111 00000000 00000000 00000000 00000000

weight set 0 weight set 1 weight set 2 weight set 3 XXXXX...X

0 7 15 23 31 2047

weight set 0 00000000 00000000 ... 00000000

instance 0 00000000 00000000 ... 00000000

Figure 8: Example of a VIMA vector with four sets of weights
for instances representing 8 features.

As mentioned, we are considering a binary label, so a
result is positive or negative, i.e., the output layer contains
only two neurons. Thus, two sets of weights (w′

xy) are de-
fined, both sets with the same size as the hidden layer and re-
ferring to the connections between the hidden layer and the
output layers. After applying the Softmax activation func-
tion, the higher probability will correspond to the label most
likely to classify the instance. However, in this final step, we
did not use any Intrinsics-VIMA routine.

6. Experimental Evaluation of VIMA
This section presents the methodology and the simula-

tion results for our ML kernel implementations.
6.1. Methodology and Simulation Setup

Due to the high cost of prototyping, research in com-
puter architecture often relies on simulation to validate ideas.
Simulators enable researchers to represent the high complex-
ity of computer systems with more accuracy than analytical
models. For our experiments, we use an in-house simulator
based on SiNUCA [4], an open-source cycle-accurate simu-
lator. We used it to model our custom architecture and ana-
lyze its behavior when simulating selected benchmarks. Ta-
ble 2 shows the parameters used for the simulation as well
as the power consumption for each sub-system.

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 7 of 13

Efficient Machine Learning Execution with Near-Data Processing

Table 2
Baseline and VIMA system configuration.
OoO Execution Cores 32 cores @ 2.0 GHz, 32 nm; Power: 6W/core;
6-wide issue; Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;
MOB entries: 64-read, 36-write; 2-load, 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);
1 branch per fetch; Branch predictor: Two-level GAs. 4096 entry BTB;
L1 Data + Inst. Cache 64 KB, 8-way, 2-cycle; 64 B line; LRU policy;
Dynamic energy: 194pJ per line access; Static power: 30mW;
L2 Cache 256 KB, 8-way, 10-cycle; 64 B line; LRU policy;
Dynamic energy: 340pJ per line access; Static power: 130mW;
LLC Cache 16 MB, 16-way, 22-cycle; 64 B line; LRU policy;
Dynamic energy: 3.01nJ per line access; Static power: 7W;
3D Stacked Mem. 32 vaults, 8 DRAM banks/vault, 256 B row buffer;
4 GB; DRAM@1666 MHz; 4-links@8 GHz; Inst. lat. 1 CPU cycle
8 B burst width at 2.5:1 core-to-bus freq. ratio; Closed-row policy;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);
Avg. energy/access: x86:10.8pJ/bit; VIMA:4.8pJ/bit; Static power 4W;
Memory mapping: ROW-BANK-VAULT-COL.ROW-COL.BYTE;
OS memory management scheme: 2 GB huge pages;
VIMA Processing Logic Operation frequency: 1 GHz; Power: 3.2W;
256 int. units: alu, mul. and div. (8-12-28 cycles for 8 KB pipelined)
256 fp. units: alu, mul. and div. (13-13-28 cycle for 8 KB pipelined);
VIMA cache: 64 KB (8 lines), fully assoc., 2-cycle (1-tag, 1-per data);
Dynamic energy: 194pJ per line access; Static power: 134mW;

x86 baseline: We configured our baseline architecture to be
similar to the Intel Sandy Bridge microarchitecture, hence-
forth referred to as x86.
VIMA architecture: The NDP scenario for comparison
uses operations over 8 KB vectors so that VIMA uses all
the 32 memory vaults simultaneously. VIMA instructions
implement the NEON ISA near-data and are triggered and
executed by the host processor alongside x86 instructions.
Benchmark: For comparison, we run the KNN, MLP, and
convolution kernels in baseline, multi-threading, andVIMA.
For the x86 single-thread comparison with VIMA single-
thread we consider 4096 instances for MLP, 65536 training
instances, 256 test instances, and 9 neighbors for KNN, vary-
ing the number of features for both applications (32, 64, 128,
256, 512, 1024, 2048, and 4096). Comparing x86 multi-
threaded version with VIMA single-thread, we consid-
ered only the highest number of features and size tested. In
this case, 4096 for KNN andMLP benchmarks, and a matrix
size of 11648 × 11648 for the convolution benchmark. For
all cases, we varied the number of threads between 1, 2, 4,
8, 16, and 32.

Our evaluations focus on architecture efficiency when
migrating ML algorithms. Thus, our evaluations adopts
three metrics: speedup, energy savings, and data through-
put.

We use CACTI and Multicore Power, Area, and Timing
(McPAT) tools to estimate energy consumption, as is cus-
tomary in other related work [25, 26, 45]. We considered
both in cost estimates on power, area, and timing parame-
ters according to circuitry characteristics [41]. Besides, we
considered a perfect DVFS in x86 energy calculations.
6.2. Execution Time Results - Single Threaded

For the convolution algorithm, described on Code 4, we
have tested matrix sizes from 512 × 512 to 11648 × 11648.
The speedup results are depicted in Figure 9(a), showing that
the convolution is not linear since it depends on the vector fill

rate and the x86 baseline implementation time, which varies
depending on the usefulness of the cache memory. The code
allocates 512 MB of memory for the greatest matrix size
—11648 lines —and consequently each line has 44.2 KB.
However, as the convolution operation allocates three ma-
trix lines in cache memory to calculate one matrix line only,
it results in 132.6 KB, which allows a fair usage of the x86
cache hierarchy.

Meanwhile, MLP and KNN algorithms presented better
speedup results for VIMA, as depicted in Figure 9(b). This
speedup happens because both algorithms exceed the Last-
Level Cache (LLC) size by consuming 32 MB of memory
with 512 and 256 features, respectively. When this occurs,
the Advanced Vector Extensions (AVX) implementation be-
comes more expensive if compared with VIMA due to the
need for frequent cache line replacements. At the same time,
it is possible to observe that when the memory allocation
stays within the LLC size, this behavior does not occur, re-
sulting in a VIMA slow down over the baseline, as repre-
sented in MLP algorithm with up to 256 features and KNN
with up to 128 features.

Comparing these two algorithms, we can notice that
KNN exceeds the LLC capacity earlier - with 128 features -
since it is a quadratic algorithm, while MLP is a linear algo-
rithm, achieving a significant speedup later, with 4096 input
features.
6.3. Energy Results - Single Threaded

The energy efficiency results follow the speedup results
pattern. As we can observe for the convolution, in Fig-
ure 10(a), the gains are higher when a matrix row fits per-
fectly into a VIMA vector, spending just half of the energy
than the baseline.

For the MLP and KNN algorithms, the energy savings
are proportional to the speedup, as depicted in Figure 10(b).
On one side, we can notice an energy consumption reduction
by 7× of VIMA over the baseline. On the other side, the
energy savings for MLP and KNN with a lower number of
features, i.e., until 512 and 128, respectively, is irrelevant
since VIMA can consume up to 6× more energy than AVX
in these cases.

In summary, the energy savings achieved by VIMA de-
pend directly on memory usage and algorithm behavior.
VIMA has impressive results for speedup and energy con-
sumption with large datasets. However, when the memory
footprint fits the x86 cache memory, a conventional proces-
sor presents higher efficiency. This result reinforces the con-
cept of NDP as an accelerator for applications with data-
stream behavior and low data reuse.
6.4. Execution Time and Energy Results -

Multi-Threaded
Figure 11(a) presents the speedup results of VIMA over

x86 multi-threaded for the KNN, MLP, and convolution al-
gorithms. We can observe that x86 computational perfor-
mance increases with the number of threads, especially for
the MLP and KNN algorithms, in which VIMA presents a

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 8 of 13

Efficient Machine Learning Execution with Near-Data Processing

1 2 4 8 16 32 64 128 256 512−4

−2

0

2

4

6

0

−
1.
01
×

1.
66
×

1.
06
×

1.
24
×

1.
90
× 3.
19
×

1.
73
×

1.
92
×

1.
74
× 2.
87
×

Matrix Size (MB)

VI
MA

Sp
eed

up

(a) Convolution

32 64 128 256 512 1K 2K 4K−12

−8

−4

0

4

8

12

16

0

−
3.
35
×

−
4.
15
×

−
2.
58
×

−
3.
01
×

−
2.
46
×

−
1.
68
×

−
1.
96
×

1.
30
×

2.
02
×

2.
66
×

11
.3
×

2.
46
×

4.
45
× 7.
12
×

9.
35
×

10
.5
2×

Number of Features

MLP
KNN

(b) KNN and MLP
Figure 9: VIMA’s Speedup results over baseline for (a) Convolution varying matrix size, (b) MLP and KNN varying number of
features. In both cases higher is better for VIMA.

1 2 4 8 16 32 64 128 256 512−6

−4

−2

0

2

4

6

0

−
2.
33

×

−
1.
25
×

−
1.
08
×

1.
22

×

1.
45
×

2.
34
×

1.
32
×

1.
45
×

1.
33

×

2.
10

×

Matrix Size

VI
MA

En
erg

yS
avi

ng
s

(a) Convolution

32 64 128 256 512 1K 2K 4K
−12

−8

−4

0

4

8

12

0

−
4.
97

×

−
6.
29

×

−
3.
89

×

−
4.
56

×

−
3.
72

×

−
2.
52

×

−
2.
95

×

−
1.
12

×

1.
40

×

1.
89

×

7.
95

×

1.
63

×

3.
00

×

4.
87

×

6.
54
×

7.
33
×

Number of Features

MLP
KNN

(b) KNN
Figure 10: Energy savings of VIMA over baseline for (a) Convolution varying matrix size, (b) MLP and KNN varying number of
features and neighbors. In both cases higher is better for VIMA.

slow down of around 3× for both. As we can observe in
Figure 9, when we increase the number of threads VIMA’s
speedup over x86 decreases by half until it is almost null,
with 8 threads.

Meanwhile, Figure 11(b) presents the energy-saving re-

sults of VIMA over x86 multi-threading for KNN,MLP, and
convolution algorithms. We can observe that VIMAmay not
present a better performance in speedup for all the cases pre-
sented, but it stays more energy efficient. Even if compared
to an x86 implementation with 32 threads VIMA spends up

1 2 4 8 16 32−12

−8

−4

0

4

8

12

16

0

−
1.
41

×

−
2.
80

×

−
1.
54

×

−
3.
03

×

11
.3
8×

5.
69

×

2.
85

×

1.
42

×

10
.5
1×

5.
14

×

2.
59

×

1.
28

×

3.
03

×

2.
09

×

1.
52

×

1.
22

×

1.
08

×

1.
03

×

Number of Threads

VI
MA

Sp
eed

up

MLP
KNN
Convolution

(a) Speedup of VIMA over x86 multi threading.

1 2 4 8 16 320

2

4

6

8

10

0

8.
00

×

5.
05

×

3.
52

×

2.
76

×

2.
37

×

2.
19

×

7.
32

×

4.
55

×

3.
20

×

2.
48

×

2.
14

×

1.
97

×

2.
21

×

1.
66

×

1.
47

×

1.
39

×

1.
57

×

2.
16

×

Number of Threads

VI
MA

En
erg

yS
avi

ng
s MLP

KNN
Convolution

(b) Energy savings of VIMA over x86 multi threading.
Figure 11: Speedup and energy savings of VIMA over x86 multi threading. For both cases, we considered the execution of MLP
with 4k instances and 4k features, kNN with 65k training instances, 256 test instances, and 4k features, and Convolution with a
matrix of 512MB. In both cases higher is better for VIMA.

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 9 of 13

Efficient Machine Learning Execution with Near-Data Processing

to 2× less energy with the same benchmark. These results
perfectly illustrate the benefits of near-data processing us-
ing vector units. Our NDP implementation could, for most
cases, achieve higher memory throughput, reducing off-chip
data transfers while also requiring less complex units (such
as processing cores).
6.5. Data Throughput Results - Multi-Threading

1 2 4 8 16 32

10−1

100

101

102
101.82

66.1

14.5
23.9

32.9
40.9 46.2 48.4

12.7
17.3

24.4
30.8 35.3 37.7

0.2
0.3

0.5 0.6 0.7 0.7

Number of Threads

Da
taT

hro
ug
hp
ut

(G
B/s

)

VIMA DRAM Rqst.
CPU-to-L1 Rqst. (Max. Limit)
L3-to-DRAM Rqst.
CPU-to-L1 Rqst. (Min. Limit)

Figure 12: Accesses data per second in Convolution algorithm.

1 2 4 8 16 32

10−1

100

101

102

101.63
42.3

7.4

14.9

29.8

59.5

119.2

237.8

3.73.7 3.7 3.7 3.8 3.9

0.1

0.2

0.4

0.9

1.8

3.7

Number of Threads

Da
taT

hro
ug
hp
ut

(G
B/s

)

VIMA DRAM Rqst.
CPU-to-L1 Rqst. (Max. Limit)
L3-to-DRAM Rqst.
CPU-to-L1 Rqst. (Min. Limit)

Figure 13: Accesses data per second in MLP algorithm.

Figures 12, 13, and 14 present data throughput (GB/s)
during the algorithms’ execution. Nowadays, x86 instruc-
tions can fetch from 1 byte to 64 bytes of data with a single
request using scalar or AVX-512 instructions. Thus, when
observing the number of CPU requests, the amount of data
fetched can vary between two limits. The CPU-to-L1 Rqst.
(Min. Limit) would refer to the total number of loads and
stores from all the cores if they were all operations of 1-byte
and the CPU-to-L1 Rqst. (Max. Limit) refers to the same

1 2 4 8 16 32

10−1

100

101

102

101.56
36.7

10.6
14.6

29.1

58.6

116.1

228.1

3.5

7.2 7.2 7.4 7.6 7.9

0.1

0.2

0.4

0.9

1.8

3.5

Number of Threads

Da
taT

hro
ug
hp
ut

(G
B/s

)

VIMA DRAM Rqst.
CPU-to-L1 Rqst. (Max. Limit)
L3-to-DRAM Rqst.
CPU-to-L1 Rqst. (Min. Limit)

Figure 14: Accesses data per second in kNN algorithm.

number of loads and stores, but if they were all of the 64-
bytes. Considering these two curves, we can affirm that ac-
tual CPU throughput will be within these two limits.

Furthermore, memory hierarchy can filter many requests
avoiding DRAM fetches. L3-to-DRAM Rqst. represents
the amount of data (GB/s) fetched from the main memory.
In other words, load and store requests that are not filtered by
the cache hierarchy turn into 64 byte cache line requests to
DRAM. Finally, the VIMA DRAM Rqst. shown in the plot
as a star (⋆) refers to the number of DRAM requests made
when the code uses VIMA with a single thread.

The MLP and KNN results follow a similar pattern,
which differs from the Convolution algorithm. For MLP
and KNN, the cache hierarchy filters most of the memory
requests. This conclusion is evident when we compare the
results for 2 and 32 threads, in which the L3-to-DRAM
throughput is closer to the CPU-to-L1 Rqst. (Max. Limit)
requests when using only 2 threads. However, using 32
threads, the L3-to-DRAM throughput is maintained, while
the CPU-to-L1 Rqst. (Max. Limit) is up to 58× higher. This
observation means that all 32 threads frequently reuse data
in the cache hierarchy.

For all the algorithms, we can observe that VIMA’s
DRAM throughput with a single thread is up to 11× higher
than x86 single-thread. VIMA is capable of achieving such
good performance because its instruction executes over 8KB
of data at once. Thus, it is typical for the algorithms during
execution in VIMA to have a low rate of CPU requests to
the cache memory hierarchy but have a significantly higher
rate of requests made in main memory. We can observe
that for MLP and KNN, the VIMA’s throughput became
slightly lower than x86 with 8 threads. Moreover, this dif-
ference increases faster for 16 and 32 threads leading to a
VIMA’s speedup decreases in these cases, as Figure 11(a)
presents. For the Convolution algorithm, VIMA keeps a
higher throughput rate if compared with all the x86 multi-
thread cases, and this rate becomes closer when we increase

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 10 of 13

Efficient Machine Learning Execution with Near-Data Processing

the number of threads. We can observe that the same pattern
occurs in Figure 11(a).

Comparing these throughput results with the VIMA’s
speedup and energy savings, we can understand why the
MLP and KNN algorithms have better performance and are
more energy-efficient when executed with x86+AVX-512
with a higher number of threads. As Figures 13 and 14 show,
in these cases, the data reuse in cache hierarchy increases
together with the number of threads, reducing the number
of memory requests (notice that cache accesses consumes
only a fraction of energy and time compared to DRAM).
For the Convolution algorithm, we see that its speedup and
energy-saving stats remain similar when varying the number
of threads, and the same occurs with the number of requests
per second.

7. Conclusions and Final Considerations
In the last few years, several approaches to NDP have

emerged to overcome the memory wall problem. Mean-
while, the number of applications requiring ML solutions
has greatly increased.

In this paper, we presented an extension of our previous
work [15] published on PDP’21 where we proposed the mi-
gration ofML kernels to VIMA, a vector execution near-data
system, to achieve high speedup with low energy consump-
tion. As extensions, we further discussed the efficiency of
NDP by including comparisons with multi-threading imple-
mentation executing in x86. We also present a throughput
evaluation to detail multi-threading performance.

We compared VIMA single thread, representing a
generic solution for vector NDP, against x86 using AVX-512
multi-thread. Our ML migration allows the case study NDP
to perform up to 11× better than x86 single thread. Mean-
while, VIMA equates x86 with 8 cores. Regarding energy
results, the NDP approach consumes less energy than x86 in
all the test cases. For the highest number of cores for x86,
VIMA’s consumption is lower by 2.1× on average.

These results show that our approach allows to efficiently
use the vector NDP architecture’s resources for ML algo-
rithms. Nonetheless, we expect any program to benefit from
VIMA if it relies on stream-based, contiguous data access
behavior, low data reuse, and a memory consumption larger
than the cache memory hierarchy capacity.

As future work, we consider extending the migration to
other ML algorithms, including its training phase, and im-
proving the Intrinsics-VIMA library to achieve better perfor-
mance.

All the source code for our VIMA architecture simula-
tion, theML algorithms, and the Intrinsics-VIMA library are
freely available in our online repositories1,2.

1https://github.com/mazalves/OrCS/
2https://github.com/ascordeiro

References
[1] Afonso, S., Acosta, A., Almeida, F., 2017. Automatic acceleration

of stencil codes in android devices, in: Int. Conf. on Algorithms and
Architectures for Parallel Processing.

[2] Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K., 2016. A scal-
able processing-in-memory accelerator for parallel graph processing.
ACM SIGARCH Computer Architecture News 43.

[3] Alves, M.A., Diener, M., Santos, P.C., Carro, L., 2016. Large vector
extensions inside the hmc, in: Design, Automation & Test in Europe
Conf. & Exhibition (DATE).

[4] Alves, M.A.Z., Villavieja, C., Diener, M., Moreira, F.B., Navaux,
P.O.A., 2015. Sinuca: A validated micro-architecture simulator., in:
HPCC/CSS/ICESS, pp. 605–610.

[5] AMD, 2015. DDR5 and HBM comparison. https://www.amd.com
/system/files/documents/high-bandwidth-memory-hbm.pdf. [Online;
accessed 01-July-2019].

[6] Ando, K., Ueyoshi, K., Orimo, K., Yonekawa, H., Sato, S., Nakahara,
H., Takamaeda-Yamazaki, S., Ikebe, M., Asai, T., Kuroda, T., et al.,
2017. Brein memory: A single-chip binary/ternary reconfigurable in-
memory deep neural network accelerator achieving 1.4 tops at 0.6 w.
Journal of Solid-State Circuits .

[7] Azarkhish, E., Rossi, D., Loi, I., Benini, L., 2018. Neurostream: Scal-
able and energy efficient deep learning with smart memory cubes.
Trans. on Parallel & Distributed Systems .

[8] Bishop, C.M., et al., 1995. Neural networks for pattern recognition.
Oxford university press.

[9] Boroumand, A., Ghose, S., Kim, Y., Ausavarungnirun, R., Shiu,
E., Thakur, R., Kim, D., Kuusela, A., Knies, A., Ranganathan, P.,
et al., 2018. Google workloads for consumer devices: Mitigating
data movement bottlenecks, in: Int. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[10] Cadambi, S., Majumdar, A., Becchi, M., Chakradhar, S., Graf, H.P.,
2010. A programmable parallel accelerator for learning and classifi-
cation, in: Int. Conf. on Parallel architectures and Compilation Tech-
niques (PACT).

[11] Cheng, M., Xia, L., Zhu, Z., Cai, Y., Xie, Y., Wang, Y., Yang, H.,
2017. Time: A training-in-memory architecture for memristor-based
deep neural networks, in: Design Automation Conf. (DAC).

[12] Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., Xie, Y.,
2016. Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory. ACMSIGARCH
Computer Architecture News .

[13] Coorporation, I., 2009. Intel 64 and ia-32 architectures optimization
reference manual.

[14] Cordeiro, A.S., Kepe, T.R., Tomé, D.G., de Almeida, E.C., Alves,
M.A.Z., 2017. Intrinsics-hmc: An automatic trace generator for simu-
lations of processing-in-memory instructions. Simpósio em Sistemas
Computacionais de Alto Desempenho (WSCAD) .

[15] Cordeiro, A.S., dos Santos, S.R., Moreira, F.B., Santos, P.C., Carro,
L., Alves, M.A., 2021. Machine learning migration for efficient near-
data processing, in: 2021 29th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), IEEE.
pp. 212–219.

[16] Deng, Q., Jiang, L., Zhang, Y., Zhang, M., Yang, J., 2018. Dracc:
a dram based accelerator for accurate cnn inference, in: Design Au-
tomation Conf. (DAC).

[17] Deng, Q., Zhang, Y., Zhang, M., Yang, J., 2019. Lacc: Exploiting
lookup table-based fast and accurate vector multiplication in dram-
based cnn accelerator, in: Design Automation Conf. (DAC).

[18] Dietterich, T.G., 2000. Ensemble methods in machine learning, in:
Int. workshop on multiple classifier systems.

[19] Drebes, A., Chelini, L., Zinenko, O., Cohen, A., Corporaal, H.,
Grosser, T., Vadivel, K., Vasilache, N., 2020. Tc-cim: Empowering
tensor comprehensions for computing-in-memory, in: Int. Workshop
on Polyhedral Compilation Techniques (IMPACT).

[20] Eckert, C., Wang, X., Wang, J., Subramaniyan, A., Iyer, R., Sylvester,
D., Blaaauw, D., Das, R., 2018. Neural cache: Bit-serial in-cache
acceleration of deep neural networks, in: Int. Symp. on Computer

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 11 of 13

Efficient Machine Learning Execution with Near-Data Processing

Architecture (ISCA). doi:10.1109/ISCA.2018.00040.
[21] Elliott, D.G., Stumm, M., Snelgrove, W.M., Cojocaru, C., McKenzie,

R., 1999. Computational ram: Implementing processors in memory.
IEEE Design & Test of Computers 16.

[22] Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., Burger,
D., 2011. Dark silicon and the end of multicore scaling, in: Int. Symp.
on computer architecture (ISCA).

[23] Ganguly, A., Singh, V., Muralidhar, R., Fujita, M., 2018. Memory-
system requirements for convolutional neural networks, in: Proceed-
ings of the Int. Symp. on Memory Systems.

[24] Gao, D., Shen, T., Zhuo, C., 2018. A design framework for
processing-in-memory accelerator, in: Int. Workshop on System
Level Interconnect Prediction (SLIP).

[25] Gao, M., Ayers, G., Kozyrakis, C., 2015. Practical near-data process-
ing for in-memory analytics frameworks, in: Parallel Architecture and
Compilation (PACT).

[26] Gao, M., Pu, J., Yang, X., Horowitz, M., Kozyrakis, C., 2017. Tetris:
Scalable and efficient neural network acceleration with 3d memory.
ACM SIGOPS Operating Systems Review 51.

[27] Gardner, M.W., Dorling, S., 1998. Artificial neural networks (the
multilayer perceptron)—a review of applications in the atmospheric
sciences. Atmospheric environment 32.

[28] Géron, A., 2019. Hands-on machine learning with Scikit-Learn,
Keras, and TensorFlow: Concepts, tools, and techniques to build in-
telligent systems. O’Reilly Media.

[29] Hashemi, M., Ebrahimi, E., Mutlu, O., Patt, Y.N., et al., 2016. Accel-
erating dependent cache misses with an enhanced memory controller,
in: Int. Symp. on Computer Architecture (ISCA).

[30] Hennessy, J.L., Patterson, D.A., 2014. Computer Organization and
Design: The Hardware and Software Interface. volume 4. Elsevier.

[31] Hrusca, J., 2015. PIM comparison. https://www.extremetech.com/
computing/197720-beyond-ddr4-understand-the-differences-
between-wide-io-hbm-and-hybrid-memory-cube. [Online; accessed
01-July-2019].

[32] HybridMemory Cube Consortium, 2013. Hybrid memory cube spec-
ification rev. 2.0. http://www.hybridmemorycube.org/.

[33] HybridMemory Cube Consortium, 2014. Hybrid memory cube spec-
ification 2.1. http://www.hybridmemorycube.org/.

[34] Imani, M., Gupta, S., Kim, Y., Rosing, T., 2019. Floatpim: In-
memory acceleration of deep neural network training with high pre-
cision, in: Int. Symp. on Computer Architecture (ISCA).

[35] Jeddeloh, J., Keeth, B., 2012a. Hybrid memory cube new dram archi-
tecture increases density and performance, in: 2012 symposium on
VLSI technology (VLSIT), IEEE. pp. 87–88.

[36] Jeddeloh, J., Keeth, B., 2012b. Hybrid memory cube new DRAM
architecture increases density and performance, in: Symp. on VLSI
Technology.

[37] Kara, K., Alistarh, D., Alonso, G., Mutlu, O., Zhang, C., 2017. Fpga-
accelerated dense linear machine learning: A precision-convergence
trade-off, in: 2017 IEEE 25th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), IEEE.
pp. 160–167.

[38] Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet clas-
sification with deep convolutional neural networks, in: Advances in
neural information processing systems.

[39] Kwon, Y.C., Lee, S.H., Lee, J., Kwon, S.H., Ryu, J.M., Son, J.P.,
Seongil, O., Yu, H.S., Lee, H., Kim, S.Y., et al., 2021. 25.4 a 20nm
6gb function-in-memory dram, based on hbm2 with a 1.2 tflops pro-
grammable computing unit using bank-level parallelism, for machine
learning applications, in: 2021 IEEE International Solid-State Cir-
cuits Conference (ISSCC), IEEE. pp. 350–352.

[40] Lee, V.T., Mazumdar, A., del Mundo, C.C., Alaghi, A., Ceze, L.,
Oskin, M., 2018. Application codesign of near-data processing for
similarity search, in: Int. Parallel and Distributed Processing Symp.
(IPDPS).

[41] Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M.,
Jouppi, N.P., 2009. Mcpat: an integrated power, area, and timing
modeling framework for multicore and manycore architectures, in:

Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 469–480.

[42] Li, S., Niu, D., Malladi, K.T., Zheng, H., Brennan, B., Xie, Y., 2017.
Drisa: A dram-based reconfigurable in-situ accelerator, in: Int. Symp.
on Microarchitecture.

[43] Lima, J.a.P., Santos, P.C., Alves, M.A.Z., Beck, A.C.S., Carro, L.,
2018. Design space exploration for pim architectures in 3d-stacked
memories, in: Proceedings of the Computing Frontiers Conference,
ACM.

[44] de Lima, J.P.C., Santos, P.C., de Moura, R.F., Alves, M.A., Beck,
A.C., Carro, L., 2019. Exploiting reconfigurable vector processing for
energy-efficient computation in 3d-stacked memories, in: Int. Symp.
on Applied Reconfigurable Computing.

[45] Liu, J., Zhao, H., Ogleari, M.A., Li, D., Zhao, J., 2018. Processing-
in-memory for energy-efficient neural network training: A heteroge-
neous approach, in: Int. Symp. on Microarchitecture (MICRO).

[46] Lomont, C., 2011. Introduction to intel advanced vector extensions.
Intel White Paper .

[47] Long, Y., Lee, E., Kim, D., Mukhopadhyay, S., 2020. Q-pim: A ge-
netic algorithm based flexible dnn quantization method and applica-
tion to processing-in-memory platform, in: Design Automation Conf.
(DAC).

[48] Majumdar, A., Cadambi, S., Becchi, M., Chakradhar, S.T., Graf, H.P.,
2012. A massively parallel, energy efficient programmable accelera-
tor for learning and classification. ACM Transactions on Architecture
and Code Optimization (TACO) 9, 1–30.

[49] McDanel, B., Teerapittayanon, S., Kung, H., 2017. Embedded bina-
rized neural networks. arXiv preprint arXiv:1709.02260 .

[50] Min, C., Mao, J., Li, H., Chen, Y., 2019. Neuralhmc: an efficient
hmc-based accelerator for deep neural networks, in: Asia and South
Pacific Design Automation Conf. (ASPDAC).

[51] Mitchell, T.M., Learning, M., 1997. Mcgraw-hill science. Engineer-
ing/Math .

[52] Moore, G.E., 1998. Cramming more components onto integrated cir-
cuits. Proceedings of the IEEE 86, 82–85.

[53] Moore, G.E., et al., 1975. Progress in digital integrated electronics,
in: Electron Devices Meeting, pp. 11–13.

[54] Nair, R., Antao, S.F., Bertolli, C., Bose, P., Brunheroto, J.R., Chen,
T., Cher, C.Y., Costa, C.H., Doi, J., Evangelinos, C., et al., 2015. Ac-
tive memory cube: A processing-in-memory architecture for exascale
systems. IBM Journal of Research and Development 59.

[55] Nowatzyk, A., Pong, F., Saulsbury, A., 1996. Missing the memory
wall: The case for processor/memory integration, in: Int. Symp. on
Computer Architecture (ISCA).

[56] Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krishnan, S., Marr,
D., 2016. Accelerating recurrent neural networks in analytics servers:
Comparison of fpga, cpu, gpu, and asic, in: 2016 26th International
Conference on Field Programmable Logic and Applications (FPL),
IEEE. pp. 1–4.

[57] Oliveira, G.F., Santos, P.C., Alves, M.A., Carro, L., 2017. Nim: An
hmc-based machine for neuron computation, in: Int. Symp. on Ap-
plied Reconfigurable Computing.

[58] Olmen, J.V., Mercha, A., Katti, G., et al., 2008. 3D stacked IC demon-
stration using a through silicon via first approach, in: Int. Electron
Devices Meeting.

[59] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K.,
Kozyrakis, C., Thomas, R., Yelick, K., 1997. A case for intelligent
ram. IEEE micro 17.

[60] Pawlowski, J., 2011. Hybrid memory cube (hmc). Hot Chips 23.
[61] Peterson, L.E., 2009. K-nearest neighbor. Scholarpedia 4.
[62] Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T.,

Xu, N., Song, S., et al., 2016. Going deeper with embedded fpga plat-
form for convolutional neural network, in: Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 26–35.

[63] Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely, S.C., Emer, J., 2007a.
Adaptive insertion policies for high performance caching. ACM
SIGARCH Computer Architecture News 35.

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 12 of 13

http://dx.doi.org/10.1109/ISCA.2018.00040

Efficient Machine Learning Execution with Near-Data Processing

[64] Qureshi, M.K., Suleman, M.A., Patt, Y.N., 2007b. Line distillation:
Increasing cache capacity by filtering unused words in cache lines, in:
Int. Symp. on High Performance Computer Architecture (HPCA).

[65] Rakotomamonjy, A., 2003. Variable selection using svm-based crite-
ria. Journal of machine learning research 3.

[66] Ramanathan, A.K., Kalsi, G.S., Srinivasa, S., Chandran, T.M., Pillai,
K.R., Omer, O.J., Narayanan, V., Subramoney, S., 2020. Look-up
table based energy efficient processing in cache support for neural
network acceleration, in: Int. Symp. on Microarchitecture (MICRO).

[67] Russell, S.J., Norvig, P., 2016. Artificial intelligence: a modern ap-
proach. Malaysia; Pearson Education Limited,.

[68] Santos, P.C., Oliveira, G.F., Lima, J.P., Alves, M.A., Carro, L., Beck,
A.C., 2018. Processing in 3d memories to speed up operations on
complex data structures, in: Design, Automation & Test in Europe
Conf. & Exhibition (DATE), IEEE.

[69] Santos, P.C., Oliveira, G.F., Tomé, D.G., Alves, M.A., Almeida, E.C.,
Carro, L., 2017. Operand size reconfiguration for big data process-
ing in memory, in: Design, Automation & Test in Europe Conf. &
Exhibition (DATE).

[70] Schuiki, F., Schaffner, M., Gürkaynak, F.K., Benini, L., 2018. A scal-
able near-memory architecture for training deep neural networks on
large in-memory datasets. arXiv preprint arXiv:1803.04783 .

[71] Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Stra-
chan, J.P., Hu, M., Williams, R.S., Srikumar, V., 2016. Isaac: A con-
volutional neural network accelerator with in-situ analog arithmetic
in crossbars. ACM SIGARCH Computer Architecture News .

[72] Sim, J., Seol, H., Kim, L.S., 2018. Nid: processing binary convolu-
tional neural network in commodity dram, in: Int. Conf. on Computer-
Aided Design (ICCAD).

[73] Song, L., Qian, X., Li, H., Chen, Y., 2017. Pipelayer: A pipelined
reram-based accelerator for deep learning, in: Int. Symp. on High
Performance Computer Architecture (HPCA).

[74] Sudarshan, C., Lappas, J., Ghaffar, M.M., Rybalkin, V., Weis, C.,
Jung, M., Wehn, N., 2019. An in-dram neural network processing
engine, in: Int. Symp. on Circuits and Systems (ISCAS).

[75] Thottethodi, M., Vijaykumar, T., et al., 2018. Millipede: Die-stacked
memory optimizations for big data machine learning analytics, in: Int.
Parallel and Distributed Processing Symp. (IPDPS).

[76] Tian, Y., Pei, K., Jana, S., Ray, B., 2018. Deeptest: Automated testing
of deep-neural-network-driven autonomous cars, in: Proceedings of
the 40th international conference on software engineering, pp. 303–
314.

[77] Transcend, 2014. DDR comparison. https://www.transcend-info.com
/Support/FAQ-296. [Online; accessed 01-July-2019].

[78] Wang, X., Yu, J., Augustine, C., Iyer, R., Das, R., 2019. Bit prudent
in-cache acceleration of deep convolutional neural networks, in: Int.
Symp. on High Performance Computer Architecture (HPCA).

[79] Wulf, W.A., McKee, S.A., 1995. Hitting the memory wall: implica-
tions of the obvious. ACM SIGARCH computer architecture news
23.

[80] Xu, L., Zhang, D.P., Jayasena, N., 2015. Scaling deep learning on
multiple in-memory processors, in: Workshop on Near-Data Process-
ing.

[81] Yin, S., Jiang, Z., Kim, M., Gupta, T., Seok, M., Seo, J.S., 2019.
Vesti: Energy-efficient in-memory computing accelerator for deep
neural networks. Trans. on Very Large Scale Integration (VLSI) Sys-
tems .

Aline S. Cordeiro et al.: Preprint submitted to Elsevier Page 13 of 13

