Memory Bandwidth: What can we improve?
Francis Birck Moreira', Marco Antonio Zanata Alves'

Instituto de Informdtica — Universidade Federal do Parana (UFPR)
Curitiba/PR

{fbm, mazalves}@inf.ufpr.br

Abstract. As the gap between processor performance and memory latency
widens, the computer architecture research area is always out for new solutions
for efficient memory access. In this paper, we analyze the maximum achievable
gain by simulating an ideal DRAM memory that always services requests as row
buffer hits, thus minimizing memory access latency and queuing. We reproduced
the state-of-the-art ConGen?2 technique from Natale et al. to measure how much
improvement is still available. ConGen2 minimizes row buffer misses according
to a min-k-cut solution based on all memory accesses of a target application. We
observed that ConGen?2 improves memory usage by 2.30% on average, while the
ideal memory gains 36.88% on average for the chosen benchmarks. This gap
leaves a wide margin of benefits to be gained.

1. Introduction

The computer industry’s focus on processor performance has driven technological in-
novation in the last decades. However, the memory industry has focused on increas-
ing memory capacity and bandwidth, while the memory latency has lagged behind the
processor performance significantly [Mutlu et al. 2020]. This culture led to the current
“memory wall” in the architecture industry [Santos et al. 2021]. The improvements in
the processor design are meaningless if the processor is idly waiting for memory most
of the time. Researchers are now developing processing-in-memory (PIM) as a solu-
tion to this issue [Santos et al. 2021]. The idea behind PIM is to avoid the high cost
of memory bandwidth and transference latency by adding processing capabilities to the
memory [Santos et al. 2021].

However, memory bandwidth is not entirely used due to inherent limitations of
its functionality. Open row accesses are much faster than accesses on a closed row, but
large systems cannot map the memory efficiently for all applications. Hence, we propose
exploring the mapping of addresses to DRAM to improve bandwidth usage.

2. Experiments

Natale et al. [Natale et al. 2020] have recently developed methodologies aimed to do this
exact proposal for limited and small systems. Their work transforms a list of addresses
into a min-k-cut problem, where they find the £ bits of the addresses that minimize
changes between the addresses, thus minimizing row accesses to different rows. k is de-
fined depending on the size of the system. For instance, a system with 48 bits of address-
ing, 4 channels (2 bits), 8 banks (3 bits), 8192 B of row buffer (13 bits), would require
k = 30. We have replicated the code of their work for memory-intensive applications
of the SPEC-CPU 2017 and NAS-NPB benchmarks. We chose applications with high



memory bandwidth consumption. We used the SINUCA simulator [Alves et al. 2015] to
measure the performance attained by the ConGen2 technique in 200 M instruction traces
in comparison to an oracle where every access to the memory is treated as a row buffer
hit in a different bank. We chose 200 M instruction traces as the simulator does not detail
context switches, estimating this amount to take roughly 1-10 ms.

Figure 1 shows the results. We can see ConGen2 is far from ideal in terms of
performance benefits. Our replication is also not precise, as we must make assumptions
for the position of channel and rank bits which are not described in their paper.

= Oracle
5 m ConGen2

o 80 - =
E 60 e %
: —
E‘: =) = < o =
g 2 S = c Sa
& 0 o o=

fotonik3d_s Ibm_s mg_W XZ-8

Figure 1. Application performance. Baseline is DRAM, Oracle is a DRAM where
every access is a row buffer hit, and ConGen2 is Natale et al.s work.

3. Conclusions

In conclusion, we can see that the replicated technique only considers row buffer miss and
hit, being inadequate for a real system with multiple channels. However, there is merit
to their technique, as seen in the row buffer miss reduction. In the future, we intend to
leverage this technique for specific pages controlled by the programmer, where we can
infer the best bit mapping for a page with compiler profiling.

Agradecimentos

Gostariamos de agradecer ao Instituto Serrapilheira pelo financiamento desta pesquisa.

References

Alves, M. A. Z. et al. (2015). Sinuca: A validated micro-architecture simulator. In 2015
IEEE 17th HPCC, pages 605-610. IEEE.

Mutlu, O. et al. (2020). A modern primer on processing in memory. arXiv preprint
arXiv:2012.03112.

Natale, V. et al. (2020). Efficient generation of application specific memory controllers.
In MEMSYS, pages 233-247.

Santos, P. C. etal. (2021). Survey on near-data processing: Applications and architectures.
JICS, 16(2):1-17.



