
Processing-In-Memory of Data Filter On Compressed Data

Tiago R. Kepe1,2, Francis B. Moreira1, Marco A. Z. Alves1

1Departament of Informatics – Federal University of Paraná (UFPR)

2Departament of Informatics – Federal Institute of Paraná (IFPR)

{trkepe,fbm,mazalves}@inf.ufpr.br

Abstract. The data filter is essential in data-centric applications, but it requires
moving large data sets to the processing units. One approach to tackle such a
hassle is data compression by using lightweight compression methods such as
dictionary encoding. In this paper, we exploit the idea of Processing-In-Memory
(PIM) data filters directly over compressed data. The initial experiments show
noticeable speed-ups of over 2x against the AVX512 architecture.

1. Introduction
The data filter operation is ubiquitous in data-centric applications from database systems
to specialized algorithms like machine learning, genome analysis, and data science. How-
ever, it requires moving large data sets to the processing units to compute smaller filtered
subsets. This data movement is time and energy-consuming, further impairing today’s big
data applications as the amount of data grows exponentially. Some solutions, especially in
the database field, use data compression not only for storage reduction but also to improve
the operation latency [Abadi et al. 2006]. Some approaches apply filters directly on com-
pressed data [Li and Patel 2013, Feng et al. 2015] but still have two residual drawbacks:
1) they demand data transfer through the memory hierarchy; 2) they require a costly and
non-vectorized operation to extract a bitmap from the filter’s result.

In this paper, we engage in (1) Processing-In-Memory (PIM) architectures to deal
with the data movement issues and (2) a lightweight compression method suitable for
filtering compressed data and enabling intra-bank and inter-bank parallelism through in-
memory vectorized instructions. Our goal is to evaluate the performance of the equality
filter on compressed data with PIM against AVX512 and reveal research opportunities.

2. Data Filter On Compressed Data with PIM
PIM architecture. We use the Vector-In-Memory Architecture
(VIMA) [Cordeiro and et al. 2021] as a target PIM architecture because of its na-
tive vectorized capabilities and intrinsic instructions. VIMA can operate over 8 KB
vector registers performing arithmetic on integers, floating-point, and bitwise instructions.

Data Compression. Many applications apply data compression to alleviate storage re-
quirements. Compression can also aid in vectorized architectures (e.g., Intel-AVX512) to
boost data processing parallelism [Feng et al. 2015]. As the decompression step is costly,
lightweight compression methods are required to enable data filtering on compressed data.
A widespread method is the dictionary encoding with value/code order-preserving such
that codei < codej for every valuei < valuej from a data set, which preserves data
semantics allowing to perform arithmetic and bitwise operations on compressed data.



The dictionary maps distinct values from a data set to unique compressed codes.
For instance, Brazil has twenty-seven states, which we can represent with 5 bits. Each
state is associated with a code by preserving the order of the values: AC → 00000, AL →
00001, ..., TO → 11011. We store these codes in a byte slice that is suitable for SIMD
data-parallelism [Feng et al. 2015]. Then we apply a padding of 1’s and keep only the
most significant bit in 0, e.g., AC → 01100000. After, we generate a proper bitmask
(BM) for every code by setting the more significant bit in 1, e.g., BMAC → 11100000.

With this dictionary structure, we can filter all people that reside in the Acre state
by extracting the bitmask (e.g., 11100000). We replicate as many copies as possible in a
vector register and apply a series of proper arithmetic and bitwise SIMD instructions to
filter the compressed codes that match the Acre state code, generating a resulting bitmap.

0,0E+00

2,0E-04

4,0E-04

6,0E-04

8,0E-04

1,0E-03

1,2E-03
AVX512

VIMA

E
xe

cu
tio

n
 T

im
e

 (
s)

Figure 1. Evaluation of equality filter on
compressed data in AVX512 and VIMA.

We evaluated such equality filter
with the OrCS1 in-house simulator and the
data set from the TPC-H2 benchmark with
factor of 1 GB. We filtered a compressed
column using two different approaches: 1)
We transfer the target data set to the CPU
to process it using Intel-AVX512 instruc-
tions and 64 B register vectors; 2) We
ran the same experiment with VIMA using
vector registers of 8 KB to assess the per-
formance of computing filters within the
memory chip. Figure 1 present a high
speed-up of over 2x using the PIM capa-
bilities of VIMA.

3. Conclusions
Data filter on compressed data with PIM is feasible and promising. Our preliminary result
(over 2x speed-up) has shown the advantage PIM can bring to applications that rely on
data filtering. Besides equality filters, other kinds of data filters still need to be evaluated,
such as inequality filters, range filters, and chains of filters to assess data reuse.

References
Abadi, D. J., Madden, S., and Ferreira, M. (2006). Integrating compression and execution

in column-oriented database systems. SIGMOD, pages 671–682.

Cordeiro, A. S. and et al. (2021). Machine learning migration for efficient near-data pro-
cessing. In Euromicro International Conference on Parallel, Distributed and Network-
Based Processing, pages 212–219.

Feng, Z., Lo, E., Kao, B., and Xu, W. (2015). Byteslice: Pushing the envelop of main
memory data processing with a new storage layout. SIGMOD, pages 31–46.

Li, Y. and Patel, J. M. (2013). Bitweaving: fast scans for main memory data processing.
SIGMOD, pages 289–300.
1https://github.com/mazalves/OrCS
2http://www.tpc.org/tpch/


