

Seasonal School on Digital Processing

of Visual Signals and Applications Virtual, October 19 - 21, 2020

Universidade Federal de Pelotas

SIMD IMPLEMENTATION OF MOTION COMPENSATION FOR **PROCESSING-IN-MEMORY EXPLOITATION IN VIDEO DECODERS**

Garrenlus de Souza¹, Marco Antonio Zanata Alves², Bruno Zatt³, Sergio Bampi^{1,}, Felipe Sampaio⁴

qsouza@inf.ufrqs.br

INTRODUCTION

Motion compensation (MC) for HEVC video decoding

- \circ Goal \rightarrow reconstruct (at the encoder side) the blocks predicted using interframe modes (Fig. 1);
- Support of bi-prediction and half- and quarter-pixel Adopted Simulation methodology 0 interpolations:
- Memory aspects \rightarrow poor temporal locality [1].

Processing-in memory (PIM)

- \circ Key idea \rightarrow move computations to near the data array blocks (aka. near-memory computing);
- Overcomes cache hierarchy inefficiency in case of: poor data locality (mainly temporal), high data traffic and intensive computing.

This work

- \circ Goal \rightarrow to exploit a PIM-based hardware to improve motion compensation performance and energy efficiency in video decoding;
- Main contribution \rightarrow SIMD implementation of MC for PIM exploitation onto VIMA architecture.

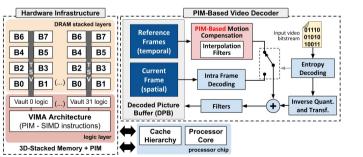


Fig. 1 PIM hardware infrastructure and video decoder diagram.

SIMD IMPLEMENTATION

Interpolation filters

- Critical operation for fractional motion vectors;
- Half- and guarter-pixel precisions.
- - VIMA intrinsics library (C language);
- OrCS cycle-accurate simulation environment.

· PIM-Based implementation strategy

- Exploit entire data segments → 256B-8KB 0 accessed in parallel thanks to through-silicon vias (TSV) at 3D-Stacked DRAM organization;
- o Interpolation filters decomposed into bulk operations, like multiplication and sum;
- Vertical and horizontal interpolation achieved by breaking the filter calculations into several arrays, one for each of the weights.

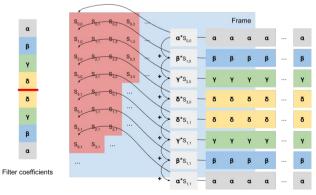


Fig. 2 Vertical Interpolation with an 8-tap filter.

¹Federal University of Rio Grande do Sul (**UFRGS**), Brazil ²Federal University of Paraná (**UFPR**), Brazil ³Federal University of Pelotas (**UFPel**), Brazil ⁴Federal Institute of Rio Grande do Sul (**IFRS**), Brazil

Filters implementation

- **Vertically** \rightarrow The sum of products is achieved by the paired aggregation of the temporary array that holds the products by the filter weights (Fig. 2).
- **Horizontally** \rightarrow The sum of products is achieved by the lateral offset and shifted sum (Fig. 3)

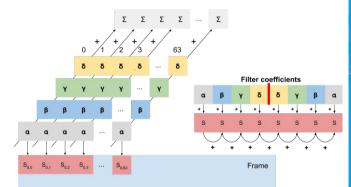


Fig. 3 Horizontal Interpolation with an 8-tap filter.

FINAL CONSIDERATIONS

- Research status \rightarrow execution for first set of experiments for preliminary evaluations (ongoing);
- Further analysis will be made in order to exploit the pitfalls and advantages of such an approach;
- · Future works: evaluation of other kernels that can take advantage of PIM, such as low power, faster memory access and I/O latency reduction.

[1] G. Souza, A. Cerveira, B. Zatt, S.Bampi and F. Sampaio, "Evaluation of Cache-Based Memory Hierarchy for HEVC Video Decoding" in IEEE 33rd Symposium on Integrated Circuits and Systems Design (SBCCI), 2020.

