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Abstract
With the help of modern memory integration technologies, Processing-in-Memory (PIM) has

emerged as a practical approach to mitigate the memory wall while improving performance and
energy efficiency in contemporary applications. Since these designs encompass accelerating and
increasing the efficiency of critical specific and general-purposed applications, it is expected that
these accelerators will be coupled to existing systems and consequently with systems capable of
multi-thread computing. However, there is a lack of tools capable of quickly simulating different
PIMs designs and their suitable integration with other hosts. This gap is even worse when considering
simulations of multi-core systems. This work presents Sim2PIM, a Simple Simulator for PIM devices
that seamlessly integrates any PIM architecture with the host processor and memory hierarchy. The
framework simulation achieves execution speeds and accuracy on par with the perf tool on host code,
less than 10% run-time overhead, and around 2% difference in metrics. Additionally, by exploring
the thread parallelism in the application and utilizing the host hardware, Sim2PIM can achieve more
than 8× simulation speedup compared to a sequential simulation and orders of magnitude compared
to other simulators. Sim2PIM is available to download at https://pim.computer/.

1. Introduction
Processing-in-Memory (PIM) and its variations have

emerged as a prominent solution to the memory-wall prob-
lem, sharing a common approach: reducing data movement
from main memory to processing units, aiming to increase
performance and energy efficiency of computational sys-
tems. In the last decade, technological advancements have
allowed the creation of a myriad of PIM designs in different
flavors [1–7].

More recently, commercial PIM designs based on com-
modity Dynamic Random Access Memory (DRAM) devices
have taken the spotlight [8, 9]. These designs are intended to
be integrated with unmodified general-purpose processors
to facilitate their adoption, expanding support for more ap-
plications, and reducing programming efforts. To seamlessly
couple PIM and general-purpose systems, PIM must rely on
the host resources (software or hardware) to provide neces-
sary mechanisms, such as cache coherence, virtual memory
support, data consistence, and communication. Thus, PIM
performance is tied to its reliance on the host processor,
which is increased when multiple units operate simultan-
eously in a Single Instruction Multiple Data (SIMD) or
multi-threading fashion. Therefore, testing the interactions
of PIM hardware, host integration and real applications is
crucial.
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Although there have been considerable advances in the
available tools to experiment on these designs, the field
still lacks solutions capable of thoroughly simulating the
interactions of PIM accelerators and different modern multi-
core host processors. Even more critical is the lack of tools
capable of doing so in a fast and simple manner, such that
designers can quickly prototype hardware and algorithms.

In this work, Sim2PIM [10] evolved from a single-thread
PIM simulator, to a full-fledged multi-thread capable PIM
simulation and instrumentation framework. The Sim2PIM
framework presents a high accuracy, low overhead, low
execution time, and quick to implement simulation. These
qualities place the Sim2PIM framework in stark contrast
to other current simulation methodologies like full-system
[11, 12] and trace-based simulators [12–15].

With Sim2PIM, the application is integrated and con-
trolled by the framework, in an inversion of control, to
become a single executable that can run natively on the
host terminal. This allows Sim2PIM to use host hardware
for executing host instructions and the PIM-simulator for
PIM instructions. Moreover, the framework is designed with
multi-threaded code execution in mind, allowing for paral-
lel applications to actually access multi-core hardware and
software resources. This support is built around the pthread
library, allowing for the library’s complete functionality,
including synchronization capabilities. Therefore, Sim2PIM
does not have to replicate or emulate this functionality.

Other current simulators presented in the literature must
simulate performance metrics, while Sim2PIM delivers the
host’s Hardware Performance Counter (HPC) as the most
accurate baseline possible for real hardware. The simulator
makes smart use of the host HPC to integrate code in-
strumentation directly with application code. This allows
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Sim2PIM to add functionality to the application environ-
ment and control even fine-grained PIM interaction with
host hardware. Furthermore, by running natively, Sim2PIM
makes use of the Operating System (OS), with its libraries,
kernel calls and any other native element. This integration
between native application and the PIM can be added auto-
matically by the instrumentation tool, or manually by in-
voking Sim2PIM as an Application Programming Interface
(API). The Sim2PIM framework provides:

• Hardware Prototyping Flexibility - The PIM-simulator
modularity allows the developer to deal with PIM
hardware and its design independently from the ap-
plication and instrumentation. The framework allows
the designer to experiment different PIM designs
and their interaction with different host resources,
including multiple cores and multiple processors.

• Fast PIM Prototyping - The framework provides a
flexible abstraction level, allowing the developer to
decide the simulation level of detail during develop-
ment, including hardware description language, PIM
technology, and architecture. Since host integration is
guaranteed, this leads to a fast implementation time.

• Fast Application Prototyping - Sim2PIM also allows
the developer to quickly experiment with multiple
software-side techniques to improve PIM perform-
ance (e.g., number of threads, thread scheduling, data
organization). This possibility is easily supported as
the framework integrates natively with C code and its
libraries.

• Fast Execution - Since the framework runs native host
code on the host processor, and simulates only the PIM
side, its performance is directly dependent on the level
of detail and complexity of the PIM design.

• Host Independence - PIM designs are expected to
be coupled with different hosts (e.g., Intel, AMD,
ARM). This work allows experimenting PIM adoption
in any system by running native code on the native
host processor.

• Host Metrics - Sim2PIM allows access to real metrics
provided by the host’s HPC. Hence, it is possible to
evaluate the impact of the PIM design on the entire
system.

Our proposal minimizes overheads when not simulating
PIM instructions. Thus it achieves execution speeds similar
to performance profiling tools such as perf on host code,
with as little as 10% run-time overhead and less than 2% met-
rics difference for most applications. Additionally, utilizing
the host hardware and OS resources allows Sim2PIM to sim-
ulate multiple PIM threads concurrently, exploring natural
parallelism for the tested applications, achieving more than
8× simulation speedup compared to a sequential simulation
and orders of magnitude compared to other simulators.

This paper is organized as follows: In Section 2, we show
the wide range of PIM architectures and some integration
strategies to unmodified host processors. Section 3 we intro-
duce the gap that other available simulators leave for single
and multi-thread applications and show how Sim2PIM is
well suited to this environment. Section 4 presents a com-
prehensive view of the complete framework architecture. In
Section 5 we evaluate qualitatively Sim2PIM in relation to
other PIM simulators, and measure its simulation speed and
accuracy overheads in relation to the host baseline. Finally,
we conclude the paper on Section 6 and present the next steps
of our research on Section 7.

2. Background
Processing-in-Memory (PIM) aims to mitigate data move-

ment and bring processing capabilities closer to memory
at different levels. Several memory technologies and mod-
ern integration techniques are candidates for PIM imple-
mentations, such as by exploring and modifying ordinary
DRAMs memories [6, 16], by examining inherent capab-
ilities on modern Memristor devices [17], or supported by
3D-Stacked solutions [18, 19]. Figure 1 displays common
types of PIM devices and their possible placement in a 3D-
stacked memory model. Each approach has its own specific
set of characteristics, and such differences imply different
architectural designs. These solutions can be characterized
as:

• Near-Data Processing Core approaches propose memory
chips with complete processing cores, which rely on
their cache hierarchy and proven methods for multi-
task processing [2, 9, 20].

• Specialized Processing Units adopts application-
specific hardware units capable of directly accessing
the PIM memory to improve computation time [21].

• Near-Data Functional Units bring simpler Func-
tional Units (FUs) to the memory, taking full advant-
age of the available area and power for compute cap-
ability. This approach requires the host to orchestrate
code emission and communication [1, 4, 8, 22].
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Figure 1: Common Types of Processing-in-Memory Devices
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Table 1
Comparing features of PIM Simulators and Sim2PIM.

PIMSim[13] SiNUCA [12] CLAPPS [14] HMC-SIM 2.0 [30] MNSIM [31] CIM-SIM [15] gem5 [11]
Host Independent N N Y Y Y Y implementable
PIM Agnostic Y Y N (HMC) N (HMC) N (Memrsitor) N (Memrsitor) Y
Fast Prototyping N N Y N N N N
Fast Execution N N Y Y Y Y N
Host Metrics profiling N N N N (behavior-level) N (functional simulation) implementable
Flexible Abstraction Level 3 modes N N N N N Y
Native System Calls Y Y Y N - - (gem5-libs)
Thread-isolated Simulation N N N N - N N
System-level support for PIM N N N N - N Y

• Analog Cells compute data in situ using DRAMs
cells [6, 16] or Memristive devices [5]. As they usually
present more restricted areas and power boundaries,
these devices also rely on the host processor.

PIM designs that adopt full processors require no modi-
fications on the host side to provide cache coherence, data
consistency, and virtual memory support since they can
rely on well-established multi-processing methods (i.e.,
OpenMP, MPI) [23–25].

Some of the PIM solutions described above do not have
the means to integrate with the host by themselves. Thus,
to couple with a general-purpose environment, these PIMs
require a series of novel solutions for code offloading, cache
coherence, and virtual memory support [26]. Code offload-
ing can happen in different granularities. The fine-grain
approaches rely on individual instructions being offloaded
to computing units [21, 27, 28]. Coarser grained implement-
ations dispatch more complex commands to PIM units, such
as MPI, OpenMP [23], CUDA-like functions [25, 29], and
kernel functions[18].

Cache coherence is dealt with distinct methods in PIM
designs. GraphPIM[21] uses a reserved uncacheable memory
space for PIM memory, and to guarantee cache coherence,
all data allocated to this region bypasses the cache hierarchy.
DNN-PIM[18] proposes a modification to openCL, inserting
an explicit method for host-PIM synchronization. Some
designs use flush calls to guarantee cache coherence via
high-level API [25] or compiler inserted flush instruc-
tions [28].

Virtual memory support allows PIM to integrate easily
with current programming methods and practices, including
the abstraction of memory addresses and ensuring multi-
process isolation. This can be accomplished if the PIM
replicates the host Translation Look-aside Buffer (TLB) and
the Memory Management Unit (MMU) hardware [2, 20],
or PIM must be able to share or access the host’s TLB
[21, 26, 28]. As seen by recent commercial solutions [8, 9],
integration with an unmodified host processor is preferred
for a rapid PIM adoption. Few solutions provide seamless
integration with the host processor [18, 20, 25], and even
fewer tackle these three requirements [28].

3. Related Works
Not all PIM designs are created equally, and most sim-

ulators available can handle only a tiny subset of these [14,
30, 31]. The simulation must be aware of the OS and the

underlying hardware to handle a multi-thread application
in a multi-core environment accurately. Some simulators
include the hardware and a virtualized operating system,
while others simulate only the PIM device and use the
complete host system.

Simulators such as gem5 [11] and SiNUCA [12] can
simulate entire micro-architectures with an elevated level of
accuracy. SiNUCA [12] is a trace-based simulator, which
uses traces generated on a real machine. The simulator has
accurate descriptions of the hardware components down to
the processor’s pipeline. However, it can not simulate the
interactions with the operating system and other processes.
The simulator also suffers from the flaws of other trace-
based simulators in that the benchmark can not interact
with simulated hardware, as the traces have already been
collected.

Researchers have used the gem5 [11] simulator to evalu-
ate a set of applications under different hardware configura-
tions, making this setup perfect for hardware-software co-
design. The simulator is divided into several independent
modules, coupled and decoupled to test different combin-
ations. However, this modularity and broad configuration
options create a notoriously steep learning curve for using
the gem5 environment. While the code maintainers strive
to improve usability, testing disruptive new hardware such
as PIM units on the simulator can prove a hurdle, even for
simplistic experiments.

A faster alternative is to use PinTools [32]. Utilizing
trace files containing cycles, memory access, and data as
input for basic processor and memory hierarchy models,

Figure 2: Simulators scope when considering system integ-
ration. gem5 [11], Sinuca [12], CLAPPS [14], PIMSim [13],
HMC-SIM 2.0 [30], CIM-SIM [15], and MNSIM [31].
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Figure 3: Overview of Sim2PIM modular components and execution phases.

acting much like SiNUCA, the tool can interpret each is-
sued instruction. PinTools’s huge instrumentation overheads
prohibit direct code measurements and gem5’s extensive
simulation times and barrier of entry. None of these simu-
lators can handle threaded applications with native system
calls. Baremetal simulators as [12] can not simulate OS-
level thread scheduling and system calls, while gem5 based
simulators still face long simulation times and added virtu-
alization overheads.

However, even with limited support from simulators,
multi-thread applications are a majority in high-performance
computing applications. Thus, the need arose for simulators
capable of handling multiple memory stacks at the host
and PIM sides. Developed explicitly for this purpose, Mul-
tiPIM [33], based on two other simulators [34, 35], can sim-
ulate a multi-stacked-memory PIM device. The simulator
offloads POSIX and OpenMP threads, mapping them to the
PIM hardware, maintaining coherence between cores, and a
PIM-side task scheduler. It can therefore handle multi-thread
applications on side. However, the simulator utilizes Intel’s
PinTool [32] based instruction feeding mechanism, which
interprets each instruction in the virtual environment at run-
time. The program must then simulate all the metrics in a
virtual environment, bearing a long simulation time.

Figure 2 summarizes the current academic simulation
ecosystem [11, 12]. Also, current PIM architecture simu-
lators are either architecture-specific [30] or rely on system
simulators [14] or other tools with a heavy overhead [13].
Finally, simulators for newer technologies are incomplete,
as they do not try to simulate a fully connected system [31],
and again rely on tools presenting a heavy overhead [15].
Table 1 shows the most important features present in several
available simulators for comparison. As Table 1 clarifies,
PIM’s current simulation ecosystem lacks a low-overhead
solution capable of providing system integration with coher-
ence and code offloading mechanisms, together with virtual
memory capabilities, which does not rely on full-fledged
system simulators.

4. Framework Architecture
The Sim2PIM framework operation is composed of two

different phases, offline instrumentation and online execu-
tion. The offline phase contains the instrumentation parser,
responsible for inserting instructions in the PIM’s applica-
tion assembly code. This is accomplished with a low, and
more importantly, known overhead, as is shown in Sec-
tion 4.1. The online phase is composed of several function-
ally separate modules. It integrates the offline phase output,
the backbone, and the PIM-simulator interface. An overview
of the modules is shown in Figure 3.

Sim2PIM strives in software-hardware co-design by not
hampering software development and providing a clean in-
terface for any level of PIM simulation. For example, if the
PIM-simulator is implemented as a timing-aware functional
simulation written in 𝐶 language, the use flow of Sim2PIM
is as follows:

1. Generate PIM code assembly (e.g., using a PIM com-
piler [27]).

2. Parse the assembly with the instrumentation tool (in
blue Figure 3).

3. Compile the Sim2PIM backbone (in yellow Figure 3).
4. Compile the PIM-simulator (in green Figure 3).
5. Link the instrumented assembly with the backbone

and PIM-simulator.
6. Execute the binary.
If the application software needs to be rewritten, only

the instrumented assembly must be generated again. When
a hardware detail must be changed, the PIM-simulator can
be modified and re-linked to the rest of the framework. For
the scenario described, Sim2PIM usage does not differ from
compiling a program with an ordinary compiler to run on the
terminal. Sim2PIM supports pthread, as it is the lowest level
API for multi-threading. It could also easily be extended to
other multi-processing paradigms.
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4.1. Instrumentation
Sim2PIM leverages a static instrumentation tool, namely

a parser. The role of the parser is to replace any code offload-
ing method, such as explicit PIM instruction (e.g., generated
by a compiler [27]), code annotated section (e.g., OpenMP,
MPI [23]), or function/block call (e.g., CUDA [36] by an
instrumented code that represents the original offloading
method behavior, and provides the necessary information to
the simulator.
Listing 1:
Original x86+PIM Code Snippet - Annotated or Compiled

1 movq %rax , %r14

2 . . . . .

3 PIM_LOAD 32512( %rbx , %rax), %PIM_REG_0 ;PIM

instruction

4 . . . . .

5 addq $2048 , %rax

For example, in the case of a PIM that adopts an ex-
clusive Instruction Set Architecture (ISA), a compiler can
mix both host and PIM instructions [27, 28], as illustrates in
Listing 1. Hence, the parser will scan the code and replace
each PIM instruction with a predetermined code block to
meet the target code offloading method behavior [28]. Addi-
tionally, this block is responsible for feeding the instruction
and data address to the simulator with a minimal and known
overhead.

Listing 2:
Parsed x86+PIM Code Snippet

1 movq %rax , %r14

2 . . . . .

3 subq $120 , %rsp ;Adjusting Stack Pointer

4 pushq %rax ;Saving registers

5 pushq %rbx ;Saving registers

6 pushq %rcx ;Saving registers

7 pushq %rdx ;Saving registers

8 pushq %rdi ;Saving registers

9 pushq %rsi ;Saving registers

10 . . . . .

11 movq PIM_LOAD_OPCODE , %rcx ;read PIM instruction as a

string

12 movq %rcx , (GLOBAL_VAR_PIM_INST) ;PIM Instruction is

emitted to the simulator

13 leaq 32512(%rbx , %rax ), %rcx ;PIM memory access

calculation in case of LOAD/STORE

14 movq %rcx , (GLOBAL_VAR_PIM_INST_ADDR) ;PIM memory

access address is emitted to the simulator

15 callq PIM_interface ;PIM interface call (Section 4.2)

16 . . . . .

17 popq %rsi;Recovering registers

18 popq %rdi;Recovering registers

19 popq %rdx;Recovering registers

20 popq %rcx;Recovering registers

21 popq %rbx;Recovering registers

22 popq %rax;Recovering registers

23 addq $120 , %rsp ;Adjusting Stack Pointer

24 . . . . .

25 addq $2048 , %rax

In Listing 2, lines 3 through 9 and lines 17 through
23 maintain the architecture calling convention and adjusts
stack pointers to avoid overlapping data addresses in the
stack, much like Pin [32]. Lines 11 through 14 in Listing 2,

the PIM instruction is fed to the simulator as data. This
method allows a user-defined instruction encoding, easily
customizable and accessible by the simulator on a fixed
address (as shown in the code comments). This also allows
the user to experiment with any instruction, even iteratively
explore different PIM ISAs. Finally, line 15 adds the PIM_-
interface function call to the code, which will effectively call
the simulator, as described in Section 4.2.

Contrary to Pin’s dynamic instrumentation [32], the
instrumentation is static, so it can be done beforehand,
avoiding Pin’s severe Just In Time (JIT) execution over-
heads [13, 32]. Due to the modular nature of the framework
and the application being instrumented separately, Sim2PIM
avoids linkage errors. The interface API calls can be inserted
automatically by the parser or manually by the programmer
in the original 𝐶 code. It can replace pthread calls with the
Sim2PIM interface API to allow dynamic simulation support
for multi-threaded applications. For basic tests inserting the
interface API directly might prove faster. However, as the
application code grows larger, it becomes easier and more
reliable to use the parser. The currently available interfaces
represent the most basic functionality of Sim2PIM.
4.2. Interfaces

The role of the interfaces is to add functionality to
the application code with the least amount of interference
as possible. This is accomplished in two ways: first, code
and memory accesses inside the interfaces are kept to a
minimum, avoiding too much interference with the caches.
Second, as will be discussed in Section 4.3.1, the interfaces
efficiently use the HPC to avoid measuring their overhead.

PIM_interface: This interface is inserted right after
PIM instruction offloads or annotated PIM blocks. The
PIM_interface serves as the output of the application en-
vironment. It contains the logic required to retrieve the PIM
instructions and memory access addresses. This information
is offloaded from the application to the backbone through
a non-blocking software FIFO buffer, discussed in Sec-
tion 4.3.3. The only scenario where this interface presents
blocking behavior happens when the host and PIM need to
synchronize, discussed in Section 4.5.

create_interface: We encapsulate the original pthread_-
create calls in application code by directly changing the
function call, with the same inputs. As will be shown in
Figure 6, this wrapper allocates a new physical core for
the thread and then measures the pthread_create with the
performance counters. It substitutes the thread function with
a dedicated thread launcher function, which is responsible
for executing the performance counter setup for the new
thread before it is launched (Setup_Thread), as shown in
Figure 4.

join_interface: Much like the create_interface, this
function encapsulates calls to pthread_join function. The
pthread_join function is a blocking interface that awaits
the end of the issued thread. Due to its blocking behavior,
measuring the performance counters when the thread stays
blocked is pointless, as simulated and executed metrics are
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Figure 4: Creation of threads before instrumentation (left) and
after (right).

distinct. Thus, this wrapper’s role is to avoid measuring the
blocking behavior, as will be shown in Figure 6.
4.3. Backbone

Sim2PIM online phase tries to isolate the application,
backbone, and PIM-simulation in different physical cores for
higher simulation speed and precision. Not only does this
provide more accurate metrics for the application isolated
from the simulation environment, but it also allows for
any application threads to actually execute in parallel. The
backbone contains Sim2PIM entry-point. It is responsible for
generating the multi-thread infrastructure in which the entire
simulation will execute. There are inherent advantages to
using multiple threads in the simulation environment. Since
the application, the backbone, and the PIM-simulator are
all threads in the same program, they can easily share the
same memory space. Thus it is trivial for the PIM to operate
over the target application data as if both PIM and data
were physically on the same memory device. This allows
simulating PIMs that reside on the system’s main memory
or accelerators in a specific memory device (by adjusting the
data movement overheads).

Additionally, the host’s cache hierarchy guarantees cache
coherence for the simulation data. The process described
in [28] can be used to implement the coherence and vir-
tual memory support in unmodified hardware, or the sim-
ulator could be coupled with other methods of cache coher-
ence [37]. The backbone is responsible for several house-
keeping tasks and interfaces, including environment setup,
application thread management, instruction and data buffers,
and PIM-simulator and application interfaces. It also con-
tains the low-overhead assembly functions responsible for
calling the HPC, and the output functions responsible for
delivering the final metrics.
4.3.1. Precise measurements

The HPC are overflow counters. This means one must
acquire the difference between two consecutive measures
instead of an absolute value. Sim2PIM makes use of inline
functions to call the rdpmc instructions directly. These in-
structions take as input the configured HPC register and an
output register. Multiple threads can share a core, so the
return values of the rdpmc instructions are stored in a per-
thread data structure. The usage of the counters is straight-
forward. At the beginning of a backend code segment, the
counter values are collected with a STOP COUNTERS

call. When the backend code ends, the counter values are
collected with a RESUME COUNTERS call. The values
subtracted from subsequent resume-stop calls represent the
measured code, the application space. Backend code effect-
ively runs in a blind spot of the measurement functions,
which we call the Sim2PIM space.

There are multiple HPC available for any given host,
such as retired instructions, unhalted cycles, cache mis-
ses/hits, among others. Sim2PIM avoids over-engineering
a solution to this multitude of possibilities by providing
a clean, uniform interface through a user-defined config-
uration file. The counters themselves can be configured
beforehand for any host architecture.
4.3.2. Environment Setup

Sim2PIM flow for a single-threaded application occurs
as in Figure 5. We can see that the application space (dashed
lines) contains the original application code, while the rest
of the framework resides in Sim2PIM space. The following
steps are executed in this part of execution:

CONFIGURE COUNTERS: At the start of the sim-
ulation, the configuration file is read, and the counters are
selected for the simulation (run time defined as command-
line inputs). There is no need to recompile the simulator for
using different active counters, and more than one counter
can be used simultaneously. However, they will be triggered
sequentially to access multiple counters at once, which re-
duces the precision due to compounding overheads. This
feature is helpful for when an extended test run is required,
and a trade-off between losing accuracy in some metrics and
a smaller number of total executions is acceptable.

WARM-UP: Different hosts and compilers may result in
different measurements and generated code. Considering the
relevance of precise metrics, this module executes several

Figure 5: Interfaces and overheads of offloading data from the
application to PIM-simulation.
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back-to-back HPC calls to collect the instrumentation over-
head. These overheads include the serialization instructions
inserted on each HPC call (as is shown in Section 4.1)
and the instruction overhead required to read the HPCs. In
Figure 5 the measured overheads for instrumentation are
represented before and after the PIM-interface (green in
Figure 5), and the HPC calls overheads before each counter
invocation (orange in Figure 5). The values extracted here
are subtracted after each call in Sim2PIM space.

CREATE ENVIRONMENT: Sim2PIM tries to isolate
the simulation from the user application to provide more
accuracy for the hardware counters by reserving a physical
core for the PIM-Control and another one for the PIM-
simulator. The rest of the host’s cores remain free for the
user’s application. This approach reduces the interference in
the data and instruction caches, hence allowing more precise
measurements.
4.3.3. Communication Buffer

PIM devices that connect with unmodified host pro-
cessors through the memory channel do not have 2-way
communication; hence the PIM can not directly write on
processor cache memory and registers. This induces PIM
designs to operate asynchronously from the host akin to the
main memory device, which means the host does not block
on PIM instructions.

When a single-thread application interacts with the PIM-
simulator, the instruction offload throughput from the host
might not be enough to keep the PIM-simulator fully occu-
pied. However, as more threads offload to the PIM-simulator,
there will be contention on the input-side and a bottleneck on
the output. This can happen because one core is responsible
for simulating PIM instructions delivered from many cores.
Although this is an exclusive simulation bottleneck, it may
cause contention on the host side, artificially reducing the
PIM instruction offload throughput and the host’s native
instruction execution.

To mitigate this effect in the multi-threaded architecture
of Sim2PIM, the PIM-interface writes a data structure to a
non-blocking FIFO buffer (i.e., a controlled shared memory
space). Each thread has its row in the buffer, so they do
not contend between themselves. The data structure written
contains instructions, data addresses, and any other meta-
data Sim2PIM has access to, including current performance
counter values. The non-blocking buffer is implemented
with atomic primitives to avoid costly system calls. On
the other side of the buffer, the PIM-Control retrieves the
data structure from all the threads and offloads them to
the PIM-simulator as needed. As shown in Figure 5, when
the application code calls the PIM-interface, the HPCs are
sampled, and the code is now in Sim2PIM space. Thus, it
can interact with the instruction buffer without the risk of
interfering with host metrics. When the PIM-interface is
done with the buffer, the counters are resumed, and the code
returns to application space.

4.3.4. PIM-Control Interface
The PIM-Control Interface is responsible for reading the

communication buffer (Section 4.3.3), invoking the PIM-
simulator, and collecting the PIM simulation metrics. It is
worth noting that any PIM-simulator that fulfills the inter-
face requirements can be coupled to this interface, especially
those that take trace-files as inputs [12–15, 30, 31]. As shown
in Figure 3, the PIM-Control Interface feeds three types of
input to the PIM-simulator: meta-data, PIM instruction, and
data addresses. Meta-data outputs consist of those originat-
ing from the host code instrumentation. These can include
the thread that originated the instruction and any available
metrics, even the cycle in which the PIM instruction was
issued and the number of cache misses. The PIM instruction
and the address are the outputs from the host processor to
the PIM.

Table 2 shows the execution traces collected from the
Communication Buffer by the PIM-Control Interface in an
example application. With it, the PIM-simulation is aware
of the thread that sent the instruction, the PIM instruction
opcode, data addresses in case of memory instructions,
and any host metrics that the simulation might need. Thus,
the PIM-Control Interface can operate as a dynamic trace
generator for any simulation that is couple with it, providing
run-time metrics. If the PIM-simulator is not integrated
within the application address space (if the simulator is in
another process), this control thread can access the data
addresses directly and transmit the data back and forth to the
simulator. As discussed in Section 4.3.3, the buffer consists
of a dedicated memory space, accessible by each thread, this
is seen in the first column of Table 2, where PIM instructions
from different cores are received simultaneously.
4.4. Application Thread Management

As shown in Figure 6, the application itself is a function
to be called in the backbone between instrumentation sec-
tions. For the simulation of a multi-thread application, each
thread will perform its backend calls. As each core has its
performance counters, we must ensure that the threads do
not migrate cores, which would result in a wrong calculation
of the metrics.

If the number of threads is greater than the number of
available cores, Sim2PIM can offer two distinct strategies:
1) it can allow for all the threads to be launched by the
main thread and dispute core time with each other. This
approach would enable the OS to optimize thread context
switches and simultaneously keep a more significant number
of threads alive. Alternatively, 2) it can allow the execution
of only one thread per physical core at a time. Thus, this
solution provides the best accuracy for individual threads,
even allowing for better profiling of the PIM instructions.

As shown in Section 4.2 pthread_create() and pthread_-
join() functions are replaced by the interface functions,
create_interface and join_interface respectively. These in-
terfaces wrap around the pthread call functionality, adding
the capability of setting the core affinity, marking the phys-
ical core as in-use (if using the strategy mentioned above
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Table 2
Run-Time traces collected from the host execution. The first 6 PIM instructions received by the PIM-simulation from a multi-
threaded vecsum application with Reconfigurable Vector Unit (RVU)-based ISA [4].

Thread PIM Instruction Opcode Memory Address Cycle Host Instructions L1 Hit L1 Miss L2 Hit L2 Miss
0 PIM_LOAD 0x005200000000000 0x00a14180 817 147 16 1 1 0
1 PIM_LOAD 0x005200000000000 0x00c14180 517 147 16 0 0 0
0 PIM_ADD 0x095200002000040 - 898 258 48 1 1 0
1 PIM_ADD 0x095200002000040 - 597 258 49 0 0 0
0 PIM_STORE 0x015200002000000 0x00e14180 1917 389 80 1 1 0
1 PIM_STORE 0x015200002000000 0x01014180 2425 389 82 0 0 0

Figure 6: Overhead diagram for a multi-thread application on the Sim2PIM with the Hardware Performance Counters (HPC).

2)), and acquiring metrics before the start of the thread
function itself. Inside the create_interface function, the only
measurement made is around the original pthread_create()
call. We make sure to measure the thread’s launch, as this
can pose a significant overhead in multi-thread applications,
shown in Figure 6 as Sys Call Metrics.

If Sim2PIM multi-thread application executes on a Non-
Uniform Memory Access (NUMA) system, it will face the
same challenges as a real PIM implementation on this scen-
ario, which means different memory access latencies for
each processor and PIM devices distribution on the memory
systems. On a system with multiple main memory modules
(regardless of the number of memory controllers), the thread
mapping and affinities set will affect the performance of the
PIM application as much as in a real system. This happens
because the host metrics are precise and represent the host’s
behavior found on the actual system. Thus it is possible for
the user to try different configurations on the thread mapping
to achieve better performance.

Each thread counts its metrics, and we assume all the
threads are alive simultaneously. For all metrics, core/thread-
wise metric counts are available. Only the largest value is
considered to the final count for the total program elapsed-
cycles and elapsed-time metrics, as it is the bottleneck for
program conclusion. The interface function around pthread_-
join() guarantees the waiting time for the simulations to end
is not counted on the benchmark’s main thread metrics, as
shown in Figure 6.

4.5. Thread Synchronization
When using pthreads, the programmer primarily handles

synchronization between threads, with mutexes, semaphores,
and other atomic operations. This behavior does not change
on Sim2PIM, as the host memory caches are still used for
shared memory space between host threads. Synchroniz-
ation between PIM-threads still happens at the host side,
as the PIM depends on the host for memory accesses and
instruction offloading.

If shared data is used concurrently by multiple threads
(e.g., a shared vector), the typical approach would be to use
pthread barriers or other atomic operations to avoid using
outdated values in other threads, maintaining synchroniza-
tion. This approach remains valid for most situations in the
simulation environment, as all synchronization mechanisms
still execute natively. However, in cases where the last issued
PIM instruction before the barrier was a store, there can be
a race condition between the PIM store instruction and the
next host load instruction. A simple solution is for the host
to consider PIM store instructions synchronization barriers
in the execution.
4.6. PIM-Simulator

As described in Section 4.3.4, the PIM-simulator module
is fed from the PIM-Control interface. PIM instruction and
data addresses are used to trigger specific operations (e.g.,
PIM arithmetic, PIM memory access), while the meta-data
involves metrics that might be useful to the simulation, such
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as the cycle in which the PIM instruction was emitted. This
module can take the complexity level the designer needs,
from a cycle-accurate to an instruction-level look-up table.
Moreover, due to the modular nature of the Sim2PIM, for this
module, any language can be adopted, as well as connected
to different tools (e.g., specialized memory or PIM simu-
lators [15]). Therefore, the designer can use hardware de-
scription languages (e.g., SystemVerilog, SystemC, VHDL)
or high-level abstract languages (e.g., C, C++, Python).

5. Framework Evaluation
As shown in Table 1, most simulators focus on PIM ar-

chitecture experimentation. However, they lack connections
between actual hosts and simulated architectures. Thus, their
metrics need to be virtualized, as no real hardware is in
play. Furthermore, this behavior prevents the utilization of
existing host resources, such as multiple cores, integration
with the memory system, OS support, and the HPC. While
these features can be simulated, they make implementation
more complex, more costly, and less accurate if not done
carefully.

This Section evaluates the Sim2PIM framework, show-
ing the benefits of simulating only the design of interest.
To assess the framework, we implemented three different
PIM approaches, as illustrated in Figure 7. The first is a PIM
based on analog computation on DRAM cells [16] that also
serves as the host main memory. This approach can be seen
in Figure 7a, it violates the DRAM command timings to
force cells to share charges and accomplish analog bit-wise
computation on DRAM rows. This approach is the simplest
to map to our simulation system, as it uses standard DRAM
data arrangement. The second is a memristor based on the
technology used in the ISAAC pipeline [38]. The array acts
as an accelerator to the system. This approach does not use
the PIM as a main memory unit. Thus, we separate a range
of addresses to act as the memristor data space, as shown
in Figure 7b. The communication between main memory
and memristor memory is done with Direct Memory Access
(DMA) commands. Finally, the last approach implements
FUs within a 3D-stacked memory [1, 4, 8]. This case study
is based on the RVU architecture [4] and [28]. We map
groups of vaults in the RVU to a different DRAM chip, thus
they operate on their own data addresses, as illustrated in
Figure 7c. For the PIMs that use different memory tech-
nologies than the host system, the data access latency is
adjusted according to estimates provided by the original
authors. Table 3 summarizes the hosts’ systems and PIMs
parameters.
5.1. Overhead Evaluation

Two main types of overheads are inserted in the ap-
plication code by Sim2PIM: PIM_interface insertion and
the create_interface. The former interface is inserted before
each PIM instruction, while the last one replaced the original
ptrhead_create() in case of a multi-threaded application. As
mentioned in Section 4.3.2, the warm-up phase is required
to remove the overheads from the HPC and PIM_interface

Table 3
Baselines and Case Study PIM Parameters

Baseline/Host Intel i5-7600 @ 3.5GHz;
Cache per Core L1 = 32kB; L2 = 256kB;
Last Level Cache = 6MB;
Main Memory DDR4 1x16GB 2400MHz CL18;

Baseline/Host Intel Xeon Silver-4214 @ 2.2GHz;
Cache per Core L1 = 32kB; L2 = 1024kB;
Last Level Cache = 16MB;
Main Memory DDR4 2x32GB 2400MHz CL16;

Baseline/Host AMD R5-1600 @ 3.2GHz;
Cache per Core L1 = 32kB; L2 = 512kB;
Last Level Cache = 8MB;
Main Memory DDR4 2x8GB 2666MHz CL16;

ComputeDRAM [16] Bus Frequency: 400 MHz
Configurable bit-width, up to 8 kB bit-wise Vector Operations
Operations in bus cycles:

Row Copy 18 cycles; SHIFT 36 cycles; AND 172 cycles;
OR 172 cycles; XOR 444 cycles; ADD 1332 cycles

ISAAC pipeline - [38] Crossbar read: 100 ns (10 MHz)
Crossbar - 128x128, 2-bit cell;
In-Situ Multiply Accumulate (IMA) - 8 crossbars;
Tile - 8 IMAs, capable of 8 concurrent operations;
64 kB eDRAM buffer per Tile;
Vector-Matrix Multiplication:

Size: 128 elements vector and 128x128 elements matrix (16-bit word);
Latency: Pipeline of 22 cycles.

RVU Processing Logic [4, 28] Operation frequency: 1 GHz;
Up to 32x 64 functional units (integer + floating-point);
Vector sizes (bytes):

32x 256, 16x 512, 8x 1024, 4x 2048, 2x 4096, 1x 8192
Latency (cycles): 1-alu, 3-mul. and 20-div. int. units;
Latency (cycles): 5-alu, 5-mul. and 20-div. fp. units;
Register bank: 8 sets of 32 composable registers of 256 bytes each;

Table 4
Average overheads for two different HPCs, unhalted cycles and
retired instructions. Measured with 10,000 repetitions in the
warm-up phase of two different processors.

Overheads
Intel

Core i5-7600@GCC7.5
AMD

R5-1600@GCC9

# Cycles Instrumentation 174 184
Backend 168 180

# Instructions Instrumentation 28 27
Backend 9 8

calls. To exemplify this, we collected these overheads for
two different host processors for the instructions and cycles
metrics. These overheads are directly dependent on the host
processor, as illustrated in Table 4.

In the case of multi-threaded applications, the multi-
thread overheads happen in the create_interface function,
as aforementioned in Section 4.4. To evaluate the impact
of these overheads on PIM multi-thread simulation, we
compared the same set of applications executing with and
without the simulator. We selected the well-established perf
as an easy to deploy, low-overhead, and high-accuracy per-
formance profiling tool for the comparison. We used some
of the algorithms on the PolyBench benchmark suite [39].
The results are shown in Table 5.
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(a) ComputeDRAM Simulation [16] (b) ISAAC pipeline Simulation [38] (c) RVU Simulation [4]
Figure 7: Sim2PIM address space organization for different types of PIMs in the evaluated system. The PIM can be part of the
host memory space (7a,7c) or be on a separate address space (7b).

Table 5
Simulated Cycles vs. Simulation time for Sim2PIM and perf on the AMD processor.

Benchmark - data size Perf cycles Sim2PIM cycles cycles % increase Perf Time (s) Sim2PIM Time (s)
1T 4T - Average 1T 4T - Average 1T 4T - Average 1T 4T - Average 1T 4T - Average

vecsum - 32MB 1.25E+07 3.06E+06 1.23E+07 3.05E+06 -1.799 -0.541 0.0165 0.0083 0.037 0.035
gemm - 1,5MB 2.89E+07 9.02E+06 2.84E+07 8.77E+06 -1.577 -2.771 0.0173 0.0089 0.029 0.033
2mm - 750kB 1.57E+08 3.93E+07 1.57E+08 3.92E+07 -0.018 -0.255 0.0524 0.0219 0.039 0.046
covariance - 16MB 1.58E+09 4.30E+08 1.61E+09 4.23E+08 1.898 -1.734 0.7163 0.4740 1.041 0.5
Floyd-Warshall - 8MB 1.18E+10 3.93E+09 1.18E+10 3.88E+09 -0.018 -1.261 3.2186 1.1955 3.232 1.22
Nussinov - 8MB 2.86E+10 7.23E+09 2.88E+10 7.21E+09 0.597 -0.319 7.7568 1.9769 7.825 1.998

For both the single thread and multi-thread results, we
can see that for most benchmarks, Sim2PIM and perf show
similar results, with a trend towards more minor results in
Sim2PIM. We leverage this trend is due to the instrumenta-
tion provided by Sim2PIM to be more accurate due to the
use of hard-coded HPC, not depending on slower system
calls. The cycles metric is influenced by several factors,
including the congestion of the memory subsystem and
frequency fluctuations. Thus some applications may present
more variation than others. Splitting the application between
threads might also affect this behavior, increasing the traffic
in the processor caches. We can also see the execution time
collected with the time command for Sim2PIM and perf
itself. Although Sim2PIM adds execution time, this effect
is smaller as the execution gets longer. We can see that
Sim2PIM’s performance for host code is very competitive,
especially if we consider the usual run-times of other simu-
lators.
5.2. Single-Thread Simulation Time Evaluation

Sim2PIM merits lay on top of its high simulation speeds,
high-accuracy host hardware metrics, and the backbone’s
structure high modularity. These characteristics make Sim2PIM
especially suited to evaluate the interactions between host
hardware and the PIM device, including the system’s memory
hierarchy and technology. Thus we evaluate the 3 selected
PIM architectures in their interaction with the host system
with the characteristics highlighted in Table 3. This is not an
attempt at comparing the architectures, as this is beyond the
scope of this paper, so for each test we execute a benchmark
that is best suited for each architecture. In all tests, the data
starts on the host main memory, we measure the cycles spent
on the host, the simulated PIM metrics, and the actual run-
time of the simulator.

For the ComputeDRAM PIM benchmark, we chose a
database bitmap indices application [40]. It filters a database
of 64 thousand identifiers (e.g., users of a platform) search-
ing the presence of any of 100 characteristics. Mapping this
application to the memory, each identifier occupies a column
in memory, with each characteristic occupying a bit in the
row. Thus, we must execute 100 OR operations between
rows to filter the database. When the PIM operations are
completed, the host accesses the resulting data to check for
membership. The results can be seen in Figure 8. We can see
that most of the simulated metrics happen on the PIM-side
of the simulation, as the host has a merely auxiliary role in
the PIM’s operation. The application and simulation time are
also proportional to this characteristic, meaning most of the
time spent on Sim2PIM’s execution is on the simulation side.

For the memristor architecture similar to the ISAAC
pipeline [38], we chose a series of vector-matrix multiplic-
ations, representing the convolution operations of a Convo-
lutional Neural Network (CNN). As this is not an attempt
at benchmarking the architecture, we only execute a single
layer with pipelined input data. This means we operate only
one Tile of the architecture. As ISAAC’s pipeline is arbitrar-
ily long to accommodate the appropriate number of layers
in a Deep Neural Network (DNN), one Tile is enough to
present the behavior of interaction with the host. Assuming
an application layer that performs a dot-product operation on
a 4 × 4 × 64 matrix, and there are 64 kB of input data to be
processed. The host will have to fill the accelerator eDRAM
memory and collect the results back to main memory. The
results of this operation can be seen in Figure 8. As the PIM
and host do not share memory space, the host has a role of
moving data back and forth from the accelerator, this impact
is visible as for this small application, the data movement
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Figure 8: Simulated Cycles and Simulation Time for each PIM
architecture executing different benchmarks.

impact on the host is large. Of course, this impact would be
lessened with more tiles in the pipeline, as data would remain
in the accelerator for longer. Here the actual time spent on
the simulations is smaller than the time spent on host-side
application code.

Finally, for the tests with the RVU architecture, we
execute a data crunching kernel composed of a series of
arithmetic operations that can represent a liner-algebra equa-
tion. This is done because it exposes the architecture more of
the architectural complexity of an architecture with internal
registers and more diverse operations [4]. In this example,
each equation is composed of 3 arithmetic instructions (i.e.,
ADD, MUL, and SUB) that will operate with 8 kB vectors
on of 8 MB of data. The host will offload all the instructions
to the PIM, dispatching load instructions that will access the
main memory, the arithmetic instructions that will operate in
data stored in the internal registers, and the store operations
that will save data back to the memory. The results of
this operation can be seen in Figure 8. On these tests, this
architecture depends on the host for issuing instructions [28],
this impact is seen as most of the metrics and simulation
time are spent on the host code. Furthermore, the simulation
time is significantly higher than the other architectures as
we implemented a much more complex and in-depth PIM-
simulation. For the purposes of demonstration, both Com-
puteDRAM and ISAAC PIM-simulations are comprised of
fixed function implementations that replicated the behavior
of the architecture in code, adding the metrics according to
the description provided in the original papers [16, 38]. The
RVU PIM-simulation covers many more implementation
cases than the ones demonstrated here, but the idea is that the
researcher can increment their simulation as much as they
deem necessary.
5.3. Multi-Thread Simulation Time Evaluation

We set out to showcase the speedup of simulating mul-
tiple threads in Sim2PIMs truly multi-core environment. For
this multi-thread experiment, we selected from the previ-
ously presented architectures the one which is most suitable
for multi-thread operations without any modifications. In
this case, the RVU architecture. RVU is capable of operating
on different control flows simultaneously without the prob-
lem of a fixed vector width (ComputeDRAM) or being part
of a larger pipeline (ISAAC). We test the multi-thread PIM
simulation on a simple embarrassingly parallel kernel that

performs the vector sum (vecsum) over 64MB data, varying
from 1 to 8 perfectly balanced threads. This way, we avoid
complications dealing with complex vector algorithms and
inter-thread communication.

In Figure 9 the bars represent the number of simulated
cycles for the application with varying numbers of active
threads. To evaluate the effectiveness of isolating simulation
and application threads in different physical cores, the lines
in Figure 9 represent the execution speed (ms) of three
different Sim2PIM configurations: a single-core execution, a
dual-core execution (simulator + application), and the stand-
ard Sim2PIM with dedicated cores. The Sim2PIM 1-Core
line represents the single-core execution, meaning the entire
framework and the application threads share a single core.
While the OS can dynamically schedule them, most applic-
ations effectively run sequentially with the PIM-simulator.
This is similar to many other simulators (e.g., [11, 13] that do
not support parallel simulation execution readily. The results
clarify that forcing the PIM-simulator and backbone to share
a core with the application severely harms the framework
performance. This is directly proportional to the number of
threads disputing for core time, which results in an increased
number of context switches between the application threads
and between framework and application threads.

Thus, when we remove the framework from this dis-
pute (by placing it in an exclusive core), as shown in line
Sim2PIM 2-Cores in Figure 9, there is a significant release
in pressure for the application core. For this example, the
vecsum application is lightweight and straightforward on
the host side, there is still contention between application
threads disputing the same core, but it is significantly smal-
ler. Finally, we achieve the most efficient execution when
we execute Sim2PIM with dedicated cores (line Sim2PIM
N-Cores in Figure 9) for each application thread and the
framework. This way, the application parallelism works in
favor of the framework, as long as there are enough free
cores to operate in all threads in parallel. This impact might
be more meaningful for larger applications on the host side
when deciding how to test the application.

Our experience with simulators like Gem5 [11] is that
although they can simulate very different architectures and
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device using three different simulation configurations.
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Figure 10: Execution time and accuracy for a vecsum applica-
tion with eight threads in different simulators.

enable the design of new architectures, the designer is forced
to simulate the host architecture. If the designer desires to
couple the PIM with a different host, there is a need to
implement the new host and its features. Quickly changing
a software or hardware parameter and rerunning the sim-
ulation is not an option as the simulation can take hours,
even in the most straightforward modes. Tools based on
Intel’s Pin [32] offer very fine control over the code currently
executing, allowing the user to follow branches and see ac-
cessed virtual memory addresses without recompiling code.
However, the JIT model of instrumentation and execution
makes the simulation speed slow and makes quick testing a
nuisance.

Besides, trace-based simulators, which require applic-
ation traces, suffer from another challenge: changes in ap-
plication code require the traces to be reacquired. Figure 10
presents a comparison between our previous experiments
with these tools showing the accuracy of the metrics con-
cerning simulation estimates of the actual hardware per-
formance [4, 28] (y-axis). The simulation speeds (x-axis)
are normalized to the run-time of the execution speed of
Sim2PIM. In case of a lack of available cores, executing
applications serially in Sim2PIM as shown in line Sim2PIM
2-Cores in Figure 9, slows down the simulation and prevents
us to evaluate the interaction of these multiple requests on
shared resources, such as memory access bandwidth. Even
then, Sim2PIM is orders of magnitudes faster than the other
base simulation options, either trace-based or full-system
simulators.

6. Conclusion
It is more apparent than ever that the architectural com-

munity must propose new paradigms to keep up with com-
puting trends. PIM is a clear contender to take the top spot of
energy efficiency and acceleration. However, there must be
leaps in architectural designs and the support environment
to accelerate this development, including simulators. The
Sim2PIM framework brings a fast and accurate simula-
tion tool for single and multi-threaded applications to the
hands of researchers and designers. Sim2PIM makes few
compromises, guaranteeing fast simulation speeds and high
accuracy, as long as the host hardware is available for testing.
We have released Sim2PIM as an open-source tool, and it is
available to download at https://pim.computer/

7. Future Development
Sim2PIM as a framework already has a high complexity

in its inner workings. However, there is still a lot of func-
tionalities that can be added to the simulator backend or as
part of the functional simulation. As future work, we are
testing ways to implement Sim2PIM as an instrumentation
tool for current commercial PIMs. Also, as the framework
controls the creation of threads, there is space for testing how
a PIM-aware scheduler could affect performance during the
lifetime of host threads. The framework makes it easy to test
on the current host system as is. However, we mean to test
its integration with memory simulators to try and change the
memory behavior for host-side applications as well.
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