
Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 1

Survey on Near-Data Processing:
Applications and Architectures

Paulo C. Santos, Luigi Carro
Federal University of Rio Grande do Sul

(pcssjunior, carro)@inf.ufrgs.br

Tiago R. Kepe
Federal Institute of Paraná

tiago.kepe@ifpr.edu.br

Francis B. Moreira, Aline S. Cordeiro,
Sairo R. Santos, Marco A. Z. Alves

Federal University of Paraná
(fbm, ascordeiro, srsantos, mazalves)@inf.ufpr.br

Abstract—One of the main challenges for modern processors
is the data transfer between processor and memory. Such data
movement implies high latency and high energy consumption. In
this context, Near-Data Processing (NDP) proposals have started
to gain acceptance as an accelerator device. Such proposals
alleviate the memory bottleneck by moving instructions to data
whereabouts. The first proposals date back to the 1990s, but
it was only in the 2010s that we could observe an increase in
papers addressing NDP. It occurred together with the appearance
of 3D-stacked chips with logic and memory stacked layers. This
survey presents a brief history of these accelerators, focusing on
the applications domains migrated to near-data and the proposed
architectures. We also introduce a new taxonomy to classify such
architectural proposals according to their data distance.

Index Terms— Near-Data Processing (NDP); Near-Memory
Accelerator (NMA); In-Memory Accelerators (IMA); Near-Cell
Accelerators (NCA); Taxonomy;

I. INTRODUCTION

Since the 1960s, Moore’s law guided processor manufac-
turing technology, where smaller transistors paved the way
for ever-faster processing units. However, main memory tech-
nology and manufacturing processes presented much slower
advancements due to different trade-offs and design points [1,
2, 3]. This difference in latency led to a performance gap
between processing units and memory devices, the well-known
memory-wall bottleneck. The processor industry adopted data-
latency hiding strategies such as multi-threading [4], bigger
Reorder Buffer (ROB) and Memory Order Buffer (MOB) [5],
complex memory hierarchies, non-blocking caches and aggres-
sive prefetching [6]. Nevertheless, current processors increased
the pressure on the memory due to the increasing number of
cores and the trend towards vector instructions (NEON, MMX,
SSE, and AVX, among others). By the same time, the memory
industry started to provide multiple data channels and memory
controllers, introducing parallelism between memory modules,
delivering data at higher bandwidth to the processor cores [7].

An emerging approach to enable fast computation on data-
driven applications is to move computation closer to the data,
reducing the latency and energy consumption of transferring
data between memory and processor. This idea dates back to
the 1990s [8, 9] when the industry was unable to integrate
Dynamic Random Access Memory (DRAM) and logic cells
on the same die. Around the 2010s, NDP architectures became
a viable solution with the release of 3D-stacked architectures
such as Hybrid Memory Cube (HMC) and High Bandwidth

Memory (HBM) [10, 11]. These architectures use Through-
Silicon Vias (TSVs) [12] to bundle logic and DRAM layers,
adding processing elements to the same chip as DRAM. Mean-
while, the rise of memristor technologies enabled a different
approach to processing near-data, with multiple proposals
of memory cells capable of performing different logic and
arithmetic operations [13, 14].

These new data-centric architectures extend the von Neu-
mann model by adding part of the processing capabilities
near-data. Such extension mitigates data movement between
memory and processor and enhances time and energy con-
sumption while presenting data parallelism, thus enabling high
processing bandwidth near-data. Such architectures are ideal
for streaming and vector applications, such as databases, nu-
merical modeling, and other applications with a low temporal
locality. These algorithms have low data-reuse and reduce the
cache memory’s effectiveness, as they stream large data sets
and evict data from caches with no reuse. For algorithms that
also present high spatial locality (i.e., coalescent pattern), near-
data processing has even higher potential by exploring the
inherent spatial locality of memory row buffers.

Several years’ worth of research in NDP have generated
a large body of pertaining scientific papers. In this survey,
we present a systematization of such work. While other
authors have attempted to adequately classify existing NDP
architectures, here we look to previous work from the prism
of the application domains that benefit from data proximity.
We also aim to highlight how hardware has evolved in a way
that enables and supports NDP architectures and elucidate why
certain application domains tend to make the move to near-
data solutions. Our main objectives are:
• To present application domains most migrated to NDP.
• To propose a taxonomy to the architectural designs to NDP.
• To discuss the main programming and offloading models of
these new architectures.

In this paper, we will use four terms to refer to different
architectural approaches (explained in Section III): Near-Data
Processing (NDP) to generically describe any computation
model that performs computation closer to the memory; Near-
Memory Accelerator (NMA) to proposals that place com-
putation outside the memory die; In-Memory Accelerators
(IMA) to proposals that place computation inside the memory
die; Near-Cell Accelerators (NCA) to proposals that perform
computation by adding small logic near the memory cells.

Digital Object Identifier 10.29292/jics.v16i2.502

2 SANTOS et al.: Survey on Near-Data Processing: Applications and Architectures.

II. NEAR-DATA APPLICATIONS

This section discusses the application domains most com-
monly migrated to NDP. Thereby, we will understand where
most efforts are and which domains are being neglected. Al-
though innumerable algorithms could be candidates for near-
data processing, NDP devices exploit two main principles:
(i) a data streaming behavior guarantees a constant flow
of data from/to memory. A streaming behavior in the tradi-
tional processor reduces the effectiveness of cache memory,
increasing power dissipation and energy consumption due to
data movement. (ii) by enabling coalescent data access, the
application allows NDP to access large amounts of data at
once, which translates to high usage of memory bandwidth;

To illustrate the migration of applications to NDP, Figure 1
shows a simple experiment performed in a simulation setup
equal to previous work [15, 16] modeling a multi-core proces-
sor with a 16 MB Last-Level Cache (LLC). Values greater than
1 (as in the figure detail) indicate performance improvement
for NDP over the traditional processing architecture. In this
experiment, we compare elements in an integer array. This
application was executed in an x86 architecture and also using
an IMA approach [15]. To understand the cache influence, we
vary the number of interactions over the array and the total
array size. Besides, to understand the bandwidth utilization,
we also vary the number of threads used on the x86 approach.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1
x

2
x

4
x

8
x

1
6

x

1
x

2
x

4
x

8
x

1
6

x

1
x

2
x

4
x

8
x

1
6

x

1
x

2
x

4
x

8
x

1
6

x

1
x

2
x

4
x

8
x

1
6

x

Data Reuse

1 Thread

Data Reuse

2 Threads

Data Reuse

4 Threads

Data Reuse

8 Threads

Data Reuse

16 Threads

Sp
ee

d
u

p

1MB 4MB 16MB 64MB

0

1

2

3

1x 2x 4x 8x 16x

Data Reuse

8 Threads

Fig. 1: NDP performance compared to traditional x86.

Results of Figure 1 indicate that applications with a small
memory footprint (i.e., smaller than LLC) or high data reuse
benefit from the cache hierarchy. Programmers should thus
execute these on traditional processors. Conversely, applica-
tions with big memory footprints (i.e., greater than LLC size)
and low data reuse are the best candidates to migrate to NDP.
Therefore, certain application domains are notably suitable for
NDP as presented below.

Neural Network: Widely used for pattern recognition and
data classification, Neural Network algorithms rely on massive
computation over a vast dataset to train model parameters
and classify data. The main operation executed is the product
of each layer’s activation values and connection weights. It
happens from input to output layer (i.e., forward-propagation).

These algorithms also update the weights’ values of each
layer’s connection from output to input layer (i.e., back-
propagation). During the training phase, these operations are
executed several times for each instance in a dataset and
repeated for a few epochs. Thus, depending on dataset size,
these algorithms can behave as a data stream, presenting
low performance and low energy efficiency on traditional
architectures.

Researchers have used Static Random Access Memory
(SRAM) technology to perform IMA in a more familiar
technology to fully optimize Neural Network (NN), mainly
using binary or ternary neural networks due to the reduced
storage capacity. Ando et al., Takamaeda-Yamazaki et al.
[17, 18] augment SRAM to efficiently process binary and
ternary neural networks, splitting SRAM into lower words
(weights from input neurons) and upper words (weights to
output neurons) and organizing them into NDP for specialized
chips. Eckert et al. [19] propose Neural Cache, a design that
adds logic to bit-line peripherals in LLC SRAM arrays to
provide bit-serial Functional Units (FUs) for NN computation.
Wang et al. [20] extend Neural Cache by adding techniques
to leverage sparsity-awareness, NN redundancy, and add new
efficient compute algorithms for binary and ternary neural
networks. Yin et al. [21] part from the same base idea as
Neural Cache, but enable more scalability by using XNOR-
Accumulate operations to enable activation of multiple SRAM
rows, double buffers to hide in-memory reprogramming laten-
cies, and additional peripheral logic for multi-bit activation.
Ramanathan et al. [22] propose the BFree, a bit-line free LUT-
based NDP in SRAM subarrays that allows reconfigurable
precision and NN layout. Long et al. [23] further optimize
NN for these architectures, showcasing their potential for
practical usage with LeNet, AlexNet, VGGNet, and ResNet
Convolutional Neural Network (CNN) architectures. Aga et al.
[24] implement the Compute Cache architecture by adding bit-
line computing to support vector processing over large data
operands. The authors redesigned memory caches to ensure
bit-line operand locality to provide NCA.

Although SRAM offers a promising approach in terms of
performance, most of the work that popularized NDP uses
DRAM technology for large-scale neural networks. Liu et al.
[25], Azarkhish et al. [26], Schuiki et al. [27], and Thottethodi
et al. [28] accelerate CNNs in an NDP architecture with
additional full cores. For instance, Liu et al. [25] implements
programmable ARM-based cores in the 3D-Stacked memory’s
logic layer, and there are a few functions that are loaded and
offloaded to these cores. Gao et al. [29] employ a set of in-
memory ARM cores, Translation Look-aside Buffer (TLB)
and virtual memory schemes to allow cores to communicate
through a vault router by sharing the physical address with
the Central Processing Unit (CPU) host. Azarkhish et al. [26]
and Schuiki et al. [27] implemented modules composed of
multiple RISC-V cores, each one with local cache and Direct
Memory Access (DMA), these cores control smaller Process-
ing Elements (PEs). Besides, the authors also connect multiple
Hybrid Memory Cubes (HMCs), so they can communicate

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 3

between themselves. Thottethodi et al. [28] also implements
full-cores in 3D-Stacked memory’s logic layer, each one with
local memory, register file, pipeline, cache, and prefetcher
buffers. Gao et al. [30] implement processing cores composed
of Arithmetic Logic Units (ALUs) and a register file attached
to each vault. These cores are implemented in-memory, share
a global buffer, and communicate through a dedicated network
to enable parallelism. More focused in communication, Min
et al. [31] accelerate a Deep Neural Network (DNN), and Gao
et al. [30], Gao et al. [29], and Oliveira et al. [32] accelerate
NN in NDP architectures. Min et al. [31] implement vaults’
communication with Network-on-Chip (NoC) technology to
allow for higher parallelism. Besides, it also schedules and
divides functions between the vaults.

Using FUs integration near the Dynamic Random Access
Memory (DRAM), Oliveira et al. [32] implement the Neuron
In-Memory (NIM), a module composed of a register bank,
reconfigurable FUs, and a sequencer that are attached to each
vault to simulate biologically meaningful NN. Cordeiro et al.
[33] propose the Vector-In-Memory Architecture (VIMA),
a IMA processor focused on executing Machine Learning
algorithms. It is based on HMC, and it is compound by a small
cache memory and vector FUs in the logic layer that execute
large vector instructions to exploit data reuse and achieve
higher performance. Other proposals accelerate convolutional
and binary neural networks considering NDP in a conventional
DRAM, by adding logic ports and bitwise operations such as
Li et al. [34], citealldeng2019lacc, Sim et al. [35], Deng et al.
[36], and Cadambi et al. [37]. Li et al. [34], Deng et al. [36],
and Deng et al. [38] implement reconfigurable circuits inside
the memory. Sim et al. [35] and Cadambi et al. [37] execute
partial computations to achieve better performance during NN
layer computations. Sim et al. [35] adds extra digital blocks
to the peripheral area of a DRAM, while Cadambi et al. [37]
implements a set of interconnected PEs with local memory
caches to implement NDP.

In recent years, as the promise of efficient memristor physi-
cal implementations comes closer to reality, several researchers
started proposing the use of Resistive random-access memory
(ReRAM) for neural networks due to the efficient imple-
mentation of dot product operation using memristor crossbar
arrays. Chi et al. [39] propose PRIME, a ReRAM main
memory architecture where a subset of the memory arrays are
configured either for neural network inference acceleration or
memory storage. Cheng et al. [40] improve PRIME proposing
the TIME architecture that adds peripheral circuits to support
training and weight update, along with variability-free and
gradual writing to reduce the number and impact of writes to
the memristors. Shafiee et al. [41] propose the ISAAC, an in-
situ analog arithmetic crossbar to efficiently accelerate DNN
inference using dot product replacing traditional computation
with an efficient, deep pipeline. Song et al. [42] improve
on ISAAC proposing the PipeLayer, which enables training
DNNs, simplifying the pipeline to reduce the penalty of bub-
bles, and using spike-based data input and output to eliminate
signal conversions. Haj-Ali et al. [43] extend the MAGIC

architecture [44] to support complex operations, enabling
image-processing tasks. Gupta et al. [45] propose the FELIX,
a purely in-cell 1-cycle logic implementation, along with bit
line segmentation to further increase parallelism and use the
derived complex operations for image classification. Imani
et al. [46] propose the mechanism called FloatPIM, imple-
menting floating-point representation and operations through
bitwise NOR memristor operations on digital store, eliminat-
ing signal conversions and providing better performance and
inference accuracy over the PipeLayer and ISAAC. Kwon
et al. [47] present the mechanism called FIMDRAM, which
proposes integrating an engine capable of large vector oper-
ations to the DRAM, thus exploiting bank-level parallelism
and achieving performance up to 4× superior processing
bandwidth in comparison to an off-chip device. Lee et al.
[48] present the architecture Similarity Search Associative
Memory (SSAM), an accelerator for similarity search applied
to K-Nearest Neighbors (KNN) search, which outperforms
Graphics Processing Unit (GPU)- and Field-Programmable
Gate Array (FPGA)-based alternatives in terms of throughput
and energy efficiency. Drebes et al. [49] propose the TC-CIM,
a fully automatic, end-to-end compilation framework based on
tensor comprehensions and loop tactics that enables the users
to exploit NDP transparently. The goal is to provide NCA
interface based in different memory technologies to accelerate
machine learning kernels.

Finally, Angizi et al. [50] compare analog and digital im-
plementations of near-cell accelerator designs. They conclude
ReRAM offers the smallest area, SRAM offers the lowest
latency, and Spin-Transfer Torque Random-Access Memory
(STT-RAM) offers the lowest energy consumption when con-
sidering NCA implementations.

Graph Traversing / Pointer Chasing: Efforts in different
fields of computer architecture have been made to speed up
data structure operations for big data workloads. A graph is a
conventional data structure that can store the data value and
represent the relationships among data. To abstract a graph,
we have G = (V,E), where V denote vertex and E the edges
from a set of G. When processing a graph, the main problems
are random access leading to a poor access locality in the cache
memories and unbalance in the workloads when using multiple
processing units. Considering that graphs represent relations
between elements, depending on the way algorithms traverse
the vertexes, different memory access patterns may occur,
leading to highly irregular accesses. Such irregularity leads
to bandwidth degradation between CPU-DRAM, with poor
usage of cache memory. Several graph applications require the
accessed data to determine the following pointer address to be
accessed, forming a serially dependent chain of loads called
pointer chasing. Finally, due to graphs’ natural irregularity,
applications that rely on such data structures suffer from
unbalance and race conditions when parallelism is present.

To illustrate the efforts on graph domain, we show five state-
of-the-art mechanisms that couple NDP with pointer-chasing
capabilities, in both application and data-structure levels, using
DRAM technology. The Tesseract mechanism [51] aims to ac-

4 SANTOS et al.: Survey on Near-Data Processing: Applications and Architectures.

celerate large-scale graph processing workloads by exploring
the internal bandwidth of HMC with a set of 16 memory cubes.
A simple ARM processor was inserted into each memory vault
of all memory cubes (the whole mechanism has 512 ARM
processors). Hsieh et al. [52] present the In-Memory PoInter
Chasing Accelerator (IMPICA), to accelerate pointer-chasing.
The authors observed that linked lists and B-trees have sparse
memory access patterns, hurting performance by increasing
cache memory misses. The mechanism integrates two different
engines into the memory cube’s vaults. The authors Liu
et al. [53] presented a theoretical work to estimate gains when
executing concurrent pointer-chasing operations with NDP.
Their analytical module obtains estimates using the number of
atomic operations, the number of memory accesses, and the
maximum number of accesses the cache can deliver. Nai et al.
[54] propose a framework called GraphPIM that efficiently
utilizes NDP for graph computing by enabling instruction-
level NDP offloading for generic graph computing frame-
works with minor changes in both software and hardware.
The authors implement a NDP offloading unit in the host
processor. Thus, atomic operations bypass the cache hierarchy
and are sent directly to the IMA. The authors of [55] design a
NDP mechanism to accelerate linked-list applications. They
observed that simply offloading the computation near-data
did not significantly improve performance due to poor data
locality. Thus, they came up with two mechanisms, NDP-
aware data localization and batching, to take advantage of the
internal bandwidth provide by HMC devices.

Proposing architectures specialized for graph applications
using ReRAM, Song et al. [56] propose the GraphR, a NDP
based on ReRAM and a streaming-apply computation model.
It consists of ReRAM for storage and ReRAM crossbars for
graph processing, functioning as an out-of-core accelerator
given a specific pre-processing mapping. Huang et al. [57]
implement an heterogeneous NDP architecture using both
ReRAM and traditional logic, using a hardware-software co-
design to fully benefit from NDP.

Genome Sequencing/Pattern Matching: Widely used in
bioinformatics, genome sequencing involves several tasks re-
lated to identifying DNA sequences in samples, including
counting, alignment and sequence assembly. However, these
tasks are non-trivial due to the size of the datasets involved
and the characteristics of the application. For example, a
single DNA sample generates tens of millions of sequences
that must then be mapped to known datasets with billions
of sequences. Thus, genome sequencing tasks suffer from
memory-wall bottlenecks due to the massive amount of data
movement required. The same issue occurs with other big data
applications that similarly rely on pattern matching tasks, such
as network security and data mining, increasing the interest for
NDP to improve this application domain.

Two proposals use SRAM technology to execute efficient
matching algorithms. Sadredini et al. [58] discuss how existing
NDP pattern matching accelerators fail to use resources to
their fullest extent. The authors propose a general-purpose
pattern matching architecture called Impala that implements

efficient multi-stride NCA automata processing by addressing
these issues. Cali et al. [59] presented the GenASM, a frame-
work for approximate string matching designed for genome
sequence analysis and used to accelerate various steps in the
sequencing process. We also found two works that explore
DRAM technology. Angizi et al. propose the AlignS [60] using
Spin-Orbit Torque Magnetoresistive Random-Access Memory
(SOT-MRAM) and an assembler [61] using DRAM NCA
accelerators to aid DNA sequence alignment and assembly,
respectively. Huangfu et al. [62] created the NEST, a NDP
architecture that accelerates k-mer counting, which is another
important task in DNA sequencing processes. RAPID [63], on
the other hand, proposes an NCA memristor-based architecture
that also supports DNA alignment tasks considering a parallel
version of the state-of-the-art algorithm.

Computational Fluid Dynamics: Multiple areas from sci-
ence utilize applications that simulate Computational Fluid
Dynamics (CFD), solving, for instance, Navier-Stokes, Pois-
son’s equations, and also solving linear systems. Several
CFD algorithms utilize similar kernels, such as matrix-
multiplication and matrix convolution with stencils. This do-
main commonly use big arrays performing vector operations.

Zhu et al. [64] create the components called Logic-in-
Memory (LIM) to embed as a stack in HMC, underlying
the logic layer. Using their previously created specialized
custom logic cores [65], the authors enable efficient sparse
matrix multiplication, used in many graph applications, and
Fast Fourier Transform. Nair et al. [66] implemented the
AMC architecture based on HMC, and they incorporate on
its logic layer vector registers, a vector instruction set, predi-
cated execution, virtual addressing, and gather-scatter accesses
directly to memory. At the same time, it is connected directly
to the host processor, without the need for cache hierarchy
and hardware scheduling of instructions. Alves et al. [7] [67]
implement the Memory Vector eXtension (MVX), in which
a set of vector FUs are implemented inside the DRAM to
perform near-data computing, reducing the data movement
between the processor and main memory. The idea is to access
data directly in the sense amplifiers of the open rows and
operate it in the vector FUs implemented along an additional
register bank inside the DRAM. Alves et al. [15] proposed
the HMC Instruction Vector Extensions (HIVE) that integrates
vector units inside the HMC. The authors enable the vault
parallelism executing vector instructions in their IMA. Ahmed
et al. [68] proposed the PRIMO, a compiler to support NDP
architectures capable of offloading instructions and exploit
FUs automatically at compile-time, thus achieving a speedup
of up to 15× for the kernels tested.

Database: Analytical database workloads are a compelling
case for NDP. These workloads process many queries that
move large amounts of data between memory and computing
units to look for patterns and relationships and compute
aggregate values. Such algorithms pollute the cache memories
with dead-on-arrival data. An analytical query consists of a
chain of database operators that interact to generate the final
result. The most relevant group of operators are projection,

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 5

selection, join, and aggregation, corresponding to 90% of
execution time and memory usage on a traditional analytic
workload [69]. The majority of near-data approaches focused
on these operators to exploit the internals of NDP micro-
architectures. Traditionally, Database Management Systems
(DBMS) handle data in storage such as disk or Solid-State
Drive (SSD). Thus, Kim et al. [70] proposed a dedicated
scan-processor in the Flash memory controllers of an SSD to
execute the selection operator. Below we selected proposals
that use memory levels closer to the processor for the more
recent in-memory DBMS.

Mirzadeh et al. [71] proposed a near-memory join unit
inside the HMC to execute the radix-hash and parallel sort-
merge join algorithms. JAFAR [72] adds off-chip dedicated
hardware connected to the memory I/O buffer that serves as a
proxy between CPU and DRAM to filter data through selec-
tion predicates. Ambit [73] requires minor changes to adapt
current DRAM memories for bit-wise operations using NCA.
Tomé et al. [16] proposed the HMC Instruction Prediction
Extensions (HIPE) that takes advantage of the logic layer in
3D-stacked memories to perform near-data memory filters.
Santos et al. [74] propose the Reconfigurable Vector Unit
(RVU), which enables adaptive in-memory processing through
the reconfigurable vector processing units placed on the HMC.
Tiago Rodrigo Kepe and Alves [69] carried out a performance
analysis on database operators over 3D-memories and x86
processor, delivering helpful insights and distinguishing cases
to run the operators either near-data or in the traditional CPU.

Sun et al. [75] implement DBMS restriction, projection, and
aggregate operators in a ReRAM-based NDP. Through the ca-
pability of accessing the memristor crossbar in both directions,
they enable efficient analytic and transaction queries.

MapReduce: MapReduce (MR) is a programming model
for automatic parallel processing to extract information from
large files. It relies on two primitives: Map and Reduce,
inspired by Lisp and Haskell programming languages. The
map function classifies the dataset and produces a likely huge
intermediate set of key-value pairs. Typically, an MapReduce
(MR) framework distributes those intermediate sets around
processing units to perform the reduce phase. The Reduce
function groups the values that share the same key and
aggregates them. Multiple MR instances shall be needed to
compute the final result. Therefore, a single MR application
requires moving large amounts of data between memory and
computing units.

In our survey, we only found MapReduce accelerators that
use DRAM memory. NDCores [76] evaluated MR applications
over a chain of four 3D-stacked memories to explore data ac-
cess parallelism and the high memory bandwidth. The authors
also design data-sorting hardware to boost the sort phase of
MR frameworks [77]. Farmahini-Farahani et al. [78] propose
an NMA that stacks FU-based accelerators on top of com-
modity DRAM devices, connected through Through-Silicon
Vias (TSVs). It leverages the high parallelism and localized
memory accesses of MapReduce frameworks, reportedly con-
suming 46% less energy and achieving 1.67× the processor’s

performance implementing the same logic. Mondrian [79, 80]
implements an algorithm-hardware co-design using the 3D-
stacked memory for NDP of data analytics operators, which
also apply to the data partitioning and shuffling phase of
MapReduce. On the other hand, the Memory Channel Network
(MCN) [81] presents another perspective of NDP on a cluster
of servers. A MCN processor is integrated with a buffer device
on a memory to compute MR frameworks Hadoop and Spark.

Multiple Domains: Here we refer to proposals that employ
NDP to improve different applications, mainly comprehending
the applications explained above, such as Pattern Matching,
Graph Search, Hash, Matrix Multiplication, Neural Networks,
Image Processing, and other similar applications.

Some authors rely on DRAM memory approaches adding
full-cores or implementing near-cell circuitry to achieve better
computational performance. Devaux [82] present the UPMEM,
which adds full-cores alongside the main memory die, thus
avoiding most data movement and increasing energy effi-
ciency. Gao et al. [83] propose changing standard DRAM
memory controller by adjusting its operation timings, which
allows their solution to perform logical operations in parallel.
The strategy uses standard DRAM chips and forces them to
open multiple rows concurrently in quick succession. Xin et al.
[84] created the ELP2IM. This low power NCA architecture
uses DRAM sense amplifier states to implement operations
that reduce data movement within memory subarrays and
concurrent open rows, thus achieving high performance and
energy efficiency. Hajinazar et al. [85] present the SIMDRAM,
a general-purpose framework that enables implementation of
complex operations in DRAM-based NDP devices.

Jain et al. [86] propose the STT-CiM, an IMA design
that uses STT-RAM. The authors explore the possibility
of enabling word lines simultaneously and computing data
directly in the memory cells improving performance and
energy efficiency. Xie et al. [87] propose a set of logical
and arithmetic operations implemented on ReRAM and also a
novel multiplication algorithm that can also be implemented
on their solution. Their results suggest a 46% speedup in
comparison to the state-of-the-art ReRAM alternative.

Summary: In order to get a complete picture of NDP
for different application domains, Table I summarizes the
application domains and architecture dimensions. We classify
each proposal using a different application domain according
to 4 areas: Accelerator’s distance from the data, memory tech-
nology, processing model, and programming/offload model.
Each category from these areas is further explained in the
following sections.

First, we can observe that Machine Learning is the appli-
cation domain that received the most attention up to date.
Second, we could even observe that authors that were focusing
on other domains such as CFD or MapReduce, now are
focusing their efforts on Machine Learning (ML). We can also
observe that all these domains have in common low data reuse.
However, only the graph processing/pointer chasing domain
focus on non-coalescent memory access.

We could observe that most NCA proposals focus on

6 SANTOS et al.: Survey on Near-Data Processing: Applications and Architectures.

TABLE I: Applications and architecture dimensions.

Domain Papers
Accelerator Placement Memory Technology Architecture Model Offload Model
Near- In- Near- Full Func. Near- FPGA/ Host Not
Cell Mem. Mem. SRAM DRAM ReRAM Proc. Unit Cell CGRA ASIC Trigger Inst. Routine Binary Def.

Neural
Network

[39] 2016 x x x x
[41] 2016 x x x x
[24] 2017 x x x x
[34] 2017 x x x x
[40] 2017 x x x x
[42] 2017 x x x x
[19] 2018 x x x x
[36] 2018 x x x x
[35] 2018 x x x x
[43] 2018 x x x x
[45] 2018 x x x x
[20] 2019 x x x x
[21] 2019 x x x x
[38] 2019 x x x x
[46] 2019 x x x x
[22] 2020 x x x x
[23] 2020 x x x x
[49] 2020 x x x x
[37] 2010 x x x x
[29] 2015 x x x x
[17] 2017 x x x x
[32] 2017 x x x x
[30] 2017 x x x x
[25] 2018 x x x x x x
[26] 2018 x x x x x
[27] 2018 x x x x x
[48] 2018 x x x x
[28] 2018 x x x x
[31] 2019 x x x x
[47] 2021 x x x x
[33] 2021 x x x x

Graph /
Pointer
Chasing

[56] 2018 x x x x
[57] 2020 x x x x
[51] 2015 x x x x
[55] 2016 x x x x x
[52] 2016 x x x x
[54] 2017 x x x x

Genetics

[63] 2019 x x x x
[58] 2020 x x x x
[61] 2020 x x x x
[62] 2020 x x x x
[59] 2020 x x x x

Comput.
Fluid

Dynamics

[64] 2013 x x x x
[65] 2013 x x x x
[67] 2015 x x x x
[7] 2015 x x x x
[66] 2015 x x x x
[15] 2016 x x x x
[68] 2019 x x x x

Data
Base

[73] 2017 x x x x
[75] 2017 x x x x
[71] 2015 x x x x
[74] 2017 x x x x
[16] 2018 x x x x
[69] 2019 x x x x
[72] 2015 x x x x

Map
Reduce

[76] 2014 x x x x
[78] 2015 x x x x
[77] 2015 x x x x
[79] 2017 x x x x
[80] 2018 x x x x
[81] 2018 x x x x

Multiple
Domains

[86] 2018 x x x x
[87] 2019 x x x x
[84] 2020 x x x x
[85] 2021 x x x x
[88] 2016 x x x x
[82] 2019 x x x x
[83] 2019 x x x x
[89] 2014 x x x x

Total 70 papers 29 31 10 9 47 14 13 13 31 2 14 29 13 28 2

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 7

providing a particular functionality for the application, which
means that it is likely that such mechanisms will not receive
the complete application offloading.

In our analysis we could observe that multiple proposals
claims to perform near-data processing using NAND-Flash
technology [90, 91, 92, 93, 94, 95, 96]. However, most
proposals merely used the full processor with cache memory
already coupled next to the flash memory. Such proposals were
not considered in the table because we understand that these
accelerators are too distant from data, not even closer to the
NAND-Flash’s memory controller.

We found no CFD or graph accelerator using SRAM
technology. The reduced storage capacity constrains the size
of applications that can leverage such specialized hardware.

III. NEAR DATA TAXONOMY

As aforementioned in Section II, near-data architectures
have emerged aiming to accelerate a myriad of applications.
In the last decades, these architectures have evolved in several
flavors. Due to their intent to achieve high efficiency, different
characteristics related to distance from the data, memory tech-
nology adopted and processing model applied, programming
model supported and code offloading mechanisms are few from
many that can be observed.

NDP generally aims to mitigate the memory-wall problem
by taking advantage of the memory’s internally available
bandwidth. In addition, NDP focuses on reducing the costs
caused by the transferring of data between processing units and
main memory (i.e., DRAM), as such movement is a significant
bottleneck and source of inefficiency for computer systems [3].
By adopting this approach, it is possible to improve overall
performance and energy efficiency.

To allow processing mechanisms to speedup and increase
efficiency on applications as cited in Section II, different Near-
Data Accelerators (NDAs) can be placed at distinct points de-
pending on memory technology and hierarchy, and application
target. Figure 2 illustrates our taxonomy that classifies all the
NDP proposals regarding their data distance.

Near-Cell Accelerators (NCA): NCA approaches position
the accelerators within the memory cells, either by modifying
them or by taking advantage of their analog behavior to
compute data while transferring data via internal buses toward
sense amplifiers. This approach has been experimented on
typical DRAM-based memories [34, 35, 36, 38, 61, 62, 73].
Also, new memory technologies (e.g., ReRAM, STT-RAM)
have been gaining space due to its inherent capacity to process
data [39, 41, 40, 42, 43, 46, 56, 57, 60, 63, 75, 86, 87].
Figure 2c illustrates how close to the data this type of acceler-
ator can be found. The main advantage of this approach is to
thoroughly reduce data movement, since it operates inside the
memory as close as possible to the memory cells. Therefore,
it can explore the maximum internal bandwidth, achieving
near-optimal energy efficiency in data transfer. However, by
being that close to the memory cells, it is limited to few
operations, such as OR, AND, COPY [83, 97]. To support
complex operations (e.g., ADD, MUL), in-cell’s approach

demands either additional hardware or a special data layout
that stores data in a columnar way [19, 83, 98].

In-Memory Accelerators (IMA): Accelerators are placed
within memory devices on the same silicon piece, either
by placing logic between memory layers [47], or by taking
advantage of the 3D-stacked integration technologies to ac-
commodate NDP capabilities on the logic layer. Consider-
ing Single Data Rate (SDR) and Double Data Rate (DDR)
memories, several techniques were proposed to process data
inside these memories by integrating the processing logic into
the DRAM row-buffers. However, integrating processing logic
inside the traditional SDR or DDR memories is a challenging
task, because logic circuits fabricated in DRAM-optimized
process technology are much slower than similar circuits in
a logic-optimized process technology [99]. Recently, several
proposals take advantage of 3D integration technologies to
insert a custom logic in a layer of DRAM devices. In both
2D and 3D scenarios, we could observe full-core integration
proposals [26, 25, 27, 28, 29, 37, 48, 51, 66, 76, 81, 82, 89].
A different approach is to move only the functional units near-
data. Several proposals [7, 15, 16, 32, 33, 52, 68, 69, 74, 79,
80] instead of the full processors integration, they add only
logical and arithmetic units near-data, enabling large vector
processing. Other proposals integrate fine and coarse grain
reconfigurable logic inside a logic layer [78, 88]. Finally, sev-
eral proposals integrate custom Application-Specific Integrated
Circuits (ASICs) able to accelerate only specific applications
[25, 26, 27, 30, 31, 47, 64, 65, 71].

Figure 2b illustrates where this type of NDP element is
commonly placed. This type of NDP aims to leverage the
internal memory bandwidth, but this type may have more
area and power dissipation since it is placed on a logic layer.
The main advantage of these approaches are to obtain data
straight from the row-buffers. The row-buffers offer large
data parallelism which can feed multiple processing elements.
Such proposals does not require off-chip data transfers which
consumes time and energy. They relies on wider data buses of
TSVs to transfer data between the memory device and the
processing logic [100, 101]. However, by being that close
to the memory array present limitations in terms of power
consumption and heat dissipation, as well as limited area. Such
limitations cannot be neglected by the architects, especially
when their proposals implements full-processors, complex
cache hierarchies, on a logic layer within the 3D-chip.

Near-Memory Accelerator (NMA): Accelerators are
placed outside the memory devices in a different silicon die,
either by placing logic next to the device using an interposer
or off-chip interconnections [52, 54, 72, 76, 77, 78, 79, 80,
81, 89, 102, 103, 104]. Nevertheless, some proposals may also
propose to add logic inside the memory controller inside the
processor. Hashemi et al. [103] propose to migrate instructions
to the functional units inside the memory controller to fast
solve data dependency in long dependency chains, reducing
thus the average memory stalls. Figure 2b illustrates where
this type of NDP element is commonly placed. This type
of NDP aims to reduce the memory hierarchy latency. Such

8 SANTOS et al.: Survey on Near-Data Processing: Applications and Architectures.

. . .

Host Processor

Near-Memory
Accelerator

(a) Near-Memory Accelerators

In-Memory
Accelerator

. . .

Host Processor

(b) In-Memory Accelerators

Near-Cell
Accelerator

. . .

Host Processor

(c) Near-Cell Accelerators

Fig. 2: Most common types of NDP. The blue blocks represent storage cells, green blocks represent logic layer (for 3D
designs) or the sense amplifier (for 2D designs) and the arrows are the interconnection to outside the memory chip.

proposals present less constraints in terms of area and energy.
However, these proposals may suffer from latency and energy
consumption for off-chip communications.

IV. NEAR-DATA TECHNOLOGY AND ARCHITECTURES

Although there are a wide variety of accelerators that adopt
the same principles of approaching logic and data, these
designs are delineated by the adopted memory technology
and architecture. In this section we focus on the memory
technology and architectures generally used for NDP. In the
next section we will discuss the NDParchitecture itself.

A. Memory Technologies and Volatility

Memories can be implemented based on different technolo-
gies and purpose of use, hence typically they are classified as
volatile and non-volatile.

Volatile memories, such as SRAM and DRAM-based mem-
ories, usually are near to the host processors storing temporary
data. These technologies are widely present in modern com-
puter systems and are the essence of their memory hierarchy.
Furthermore, these memory technologies have changed little
in recent decades, benefiting only from the shrinkage provided
by the manufacturing technology evolution (i.e., currently
5 nm for SRAM and 10 nm for DRAM). Figures 3a and 3b
illustrates the differences between these memory cells.

T1 T2

T3 T4

T5
T6

Vdd

Word Line

Bit

Line
GND

(a) SRAM Cell

T1

C1

GND

Bit

Line

Word Line

(b) DRAM Cell

Bit

Line

Vdd
T1

Word Line

MR1

(c) ReRAM Cell

Fig. 3: Circuit of the different memory cells technologies.

The major NDP proposals are coupled with these mem-
ory technologies, 66% of related work present on Table I
relies on DRAM-based technology, mainly due to their well-
understood technology and manufacturing processes. Among
volatile memories, DRAM-based devices are the most com-
mon for NDP implementation, due to their density, and the

TABLE II: Memory technologies comparison.

SRAM DRAM ReRAM
Maturity Product Product Early Dev.
Cell Size > 100 F 2 6 − 8 F 2 > 5 F 2

Read Lat. < 10ns 10 − 60ns 10 − 100ns
Write Lat. < 10ns 10 − 60ns 10 − 100ns
Dyn. Energy* > 1pJ 2pJ 0.02pJ
Stat. Power Yes Yes No
Endurance** > 1015 > 1015 > 1012

Volatile Yes Yes No

* Energy per bit access. ** Number of accesses.
Data extracted from Perez et al. [105]

large amount of data that can be directly accessed by those
accelerators. Moreover, as these modules are separated from
the processor, they may have fewer constraints, which allow
more room to be explored as an independent device module.

Non-Volatile memories, on the other hand, (i.e., ReRAM,
Performance Counter Monitor (PCM), STT-RAM, NAND
Flash) differ from volatile memories in that they retain data af-
ter powering off. Moreover, these memories have a significant
density when compared to volatile memories. For instance, the
size of a SRAM cell is 100 F 2 (5 nm), while a ReRAM cell
is 4 F 2 (22 nm) (Table II). Thus, for applications that demand
vast volumes of data, it is interesting to avoid data movement
from these non-volatile memories to volatile memories and
then to the processor’s core. Figure 3c illustrates memory cells
used for ReRAM devices (transistor and memristor).

Although many new non-volatile technologies have emerged
in the last decades, ReRAM have appeared as the most
prominent for NCA adoption, since memristors’ inherent char-
acteristics allow between-cells computation. In these cases,
NCA designs coupled with non-volatile memories can take
advantage of data movement reduction to improve overall
efficiency, 20% of related work present on Table I relies on
ReRAM-based technology with NCA.

B. Memory Architectures and NDP

To better explore the available memory technologies, mem-
ory cells are arranged in a determined architecture, which
adopts distinct techniques to allow large bandwidth, and to
provide the highest performance. Commonly, memory cells
comprises matrices that can be accessed by row. Matrices can
be grouped to form banks, and a set of banks can be placed

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 9

to form a device. This technique can be applied for many
memory technologies, from SRAMs to the new ReRAM.

Figure 2 illustrates a modern DRAM-based memory de-
vice designed in a 3D-stacked fashion. However, regardless
the architecture and integration method adopted, all modern
memories comprise many memory banks that can be accessed
concurrently, hence mitigating the memory cells’ latencies and
improving parallel data access.

In a NDP implementation, proposals try to directly access
these large matrices to improve bandwidth, computing over
large portions of data and avoiding data movement, then
improving performance and overall efficiency. NDPproposals
have explored many memory architectures. In the literature,
SRAM-based NDP proposals mostly aim to insert logic capa-
bilities to the host’s cache memories or to the host’s memory
controllers [17, 19, 20, 21, 22, 23, 24, 58, 59, 103, 106]. This
work modify the cache hierarchy trying to avoid moving data
from the main memory and cache memories to the host’s core.

In case of typical 2D DDR DRAM-based modules, NDP
designers have placed either entire cores alongside memory
devices [81, 82], or placed customized logic units to exploit
large vector accesses [7, 67, 72], or explored the internal
analog mechanisms by changing the memory access pattern
[34, 62, 73, 83, 84, 85, 97].

With the advent of 3D-stacked technologies, NDP designs
was leveraged by the idea of integrating logic and memory
on the same chip. The most well-known 3D-stacked memory
commercial examples are HMC [10] and High Bandwidth
Memory (HBM) [11]. These architectures stack DRAM layers
and a logic layer that can implement memory controllers, or
a Physical Layer (PHY) to properly connect external links to
the memory cells. The communication between all memory
layers and the logic layer is done through TSV, a vertical
path that can cross all and provide seamless access from
any to any layer. Originally, HMC [10, 107], was the first
commercial memory able to present a NDP integrated to
the memory. HMC integrates memory controllers within its
logic device (on per memory vault [107, 108]). Additionally,
each memory controller has a special set of FUs able to
compute arithmetic and logic operations over up 16 Bytes
[109]. Recently, Samsung’ HBM presented the HBM-PIM
[47], a NDP integrated to a HBM module. It comprises of
several sets of FUs placed within each memory bank in each
layer, which means that for a device consisted of 4 memory
layers and 32 vaults (or channels) with 32 banks per layer,
128 independent NDP are available [47].

Both 3D-stacked memory architectures largely increase
bandwidth, as shown in Table III, which may be limited by
the host’s capacities and links. Therefore, the insertion of NDP
within these devices can exploit the huge internal bandwidth
and improve overall performance and efficiency for many
applications (Section II). In the literature, many proposals have
relied on 3D integration technology. Similar to NDP on typical
DDR memory modules, 3D-stacked memories are also target
for NDP of different flavors [15, 16, 25, 26, 27, 28, 29, 30,
31, 32, 33, 35, 36, 47, 48, 64, 65, 66, 68, 69, 71, 74, 76, 79,

80, 88, 110], which will be discussed on Section V.
Nonetheless, non-volatile memories also adopt matrices

organization to increase the bandwidth. For instance, in case
of memristors, a crossbar connects many memory cells, thus
allowing to access an entire row at once. On these memory
devices, the large the row is, the bigger will be the theoretical
processing capabilities, since the computation is done by
accessing multiple distinct rows [39, 41, 40, 42, 43, 45, 46,
49, 56, 57, 60, 63, 75, 86, 87]

In general, NDP architectures primarily take advantage of
the internally available memory bandwidth, thus theoretically,
memories capable of large bandwidth allows NDP to achieve
highest performance and overall efficiency. To illustrate the
difference between memory technologies and architectures,
Table III presents information characteristic of typical memo-
ries used in NDP studies and implementations.

TABLE III: DRAM architectures comparison.

Memory Maximum Maximum Energy JEDEC
Name Bandwidth Speed* Usage Compliant
DDR 3.2 GB/s 0.4 GT/s 257.13 pJ/b Yes
DDR2 6.4 GB/s 0.8 GT/s 121.44 pJ/b Yes
DDR3 14.9 GB/s 1.8 GT/s 64.70 pJ/b Yes
DDR4 25.6 GB/s 3.2 GT/s 38.67 pJ/b Yes
DDR5 41.6 GB/s 5.2 GT/s N.A. Yes
HMC 320 GB/s 2.5 GT/s 10.82 pJ/b No
HBM1 128 GB/s 1.2 GT/s N.A. Yes
HBM2 256 GB/s 2.0 GT/s N.A. Yes
HBM2** 310 GB/s 2.4 GT/s N.A. Yes
HBM2e 410 GB/s 3.2 GT/s N.A. Yes

* Data rate/pin. ** From 2018.

V. NDP’S ARCHITECTURE MODEL

There have been several solutions presented in the literature
for the memory-wall problem by adopting processing near or
in memory. Despite the similar objective, NDP designs possess
fundamentally different approaches [111]:

A. Full-Stack Processor

These NDP proposals bring entire CPU-like units to the
memory chip. While taking advantage of more common
programming models and data coherence mechanisms, these
solutions face substantial constraints from power and area in
the memory chips [112]. The solutions proposed in [25, 51, 79,
82, 89, 110] added full general-purpose cores to the logic layer.
In traditional CPU-like accelerators (e.g., General Purpose
Processor (GPP), GPU, Tensorflow), although the performance
is commonly measured from the processing logic’s point of
view, the LLC is the default data entry point, making it the
main bottleneck in terms of on-chip bandwidth [113, 114].
For instance, using a full GPP or GPU as a memory logic
elevates the complexity of the design and does not intrinsically
solve the main problems faced with NDP integration, namely
programming model, virtual address translation, and cache
coherence, as these challenges are objectives in many studies
[115, 116, 117]. Moreover, the costs in terms of power and
area are severe, being an actual limiting factor [112].

10 SANTOS et al.: Survey on Near-Data Processing: Applications and Architectures.

B. Simple Functional Units

Implementing simple FUs within memory modules, either
in same memory PCB or by taking advantage of 3D-stacking
integration, is an approach that can allow to access the inter-
nally available memory bandwidth. A set of FUs can work in
a Single Instruction Multiple Data (SIMD) manner, therefore
exploiting SIMD operations to extract highest bandwidth.
Computational-RAM (C-RAM) [9] proposed adding multiple
functional units alongside the DRAM’s sense amplifiers, thus
allowing computation at the bit level. This strategy appeared
in 1990’s, however it had significant requirements such as
controlling and powering new processing elements according
to DRAM sub-array activation patterns, adding a large number
of functional units [118], and expecting the operating system
to maintain a very specific mapping of the data used by appli-
cations. The main challenge for this work was the integration
between logic and memory.

In the 2010’s, mainly due to the advent of 3D-stacking
integration, this approach reappeared as a better fit for power
and area constrained devices. However, this type of NDP
requires innovative solutions for programming models, cache
coherence, and virtual memory support [115, 116, 117]. Many
works [7, 15, 16, 32, 52, 67, 68, 69, 72, 74, 79, 80], proposed
the use of custom FU-like logic to exploit the bandwidth of
memories. However, all of these works rely heavily on host-
side hardware modifications for integration, hence presenting
a severe limitation, as no current system can natively support
such NDP. Several authors avoid tackling these requirements
by reserving memory space exclusively for the NDP devices,
changing the logical memory type (e.g., uncacheable) fully
bypassing cache hierarchies, or explicitly neglecting virtual-
memory and data coherence [79, 82].

C. Computing in-Memory Cells

The most disruptive approach to overcome the memory-wall
is to think of the memory as a computational device. This
approach takes advantage of the memory’s analog circuitry
to process data by allowing multiple cells to be accessed si-
multaneously, then computing while transferring data between
the memory cells and the sense-amplifiers. In the DRAM
memory, this is accomplished by sharing capacitor charges.
[36, 73, 83, 85, 97]. In the same way, new technologies (e.g.,
ReRAM and STT-RAM) use electrical resistance, exploiting
Kirchhoff’s Law, to compute on stored data [19, 24, 34, 39,
41, 42, 49, 56, 84, 86, 87].

Similarly to the simple FUs, this solution also require
modifications on host’s side to provide instructions offloading
(Instruction Set Architecture (ISA) extension, memory con-
trollers must be aware of the new memory functionalities),
cache coherence and virtual memory support [83, 85, 115].
Moreover, since some of these proposals rely on not yet
commercially available technology, and others require heavy
modifications on the host or in connections to the memory
cells, there are gaps in solutions for data coherence, code
offloading, and virtual memory.

D. FPGA/CGRA

Although area and power constraints are important lim-
itations for NDP designs, some works experiment placing
FPGA and Coarse-Grain Reconfigurable Array (CGRA) in
memory [78, 88, 119, 120]. This class of programmable arrays
can allow the implementation of on-demand logical units,
hence theoretically providing near-optimal hardware-software
coupling for certain applications.

To keep general-purpose complaint, these approach require
similar concerns present on simple FU implementation, since
they need to keep data coherent between host and accelerator,
as well as the accelerator must have a solution to support vir-
tual memory. Additionally, by adopting programmable arrays,
it is necessary to emit the bitstream, which is the file that
describe the hardware to be configured. For this, a efficient
solution also must be provided.

E. Specialized Accelerators

ASIC and Specialized Units are usually provided to com-
pute determined class of application, for example to efficiently
compute certain classes of neural networks, or for operate over
huge graphs [17, 25, 26, 27, 30, 31, 47, 54, 59, 64, 65, 71, 77].
In the literature, some works provide specialized hardware to
compute such applications. Although these NDP may adopt
similar hardware as presented in previous sections (i.e., FUs),
in these cases, general-purpose compatibility and similar issues
are left aside. Since they are intended to specialized systems,
these types of NDP avoid workarounds to keep cache coher-
ence, virtual memory support, and usually do not consider
overheads any modifications on the host.

VI. PROGRAMMING MODEL AND CODE OFFLOADING

The programming model depends directly on the NDP
design, since each type requires different code generation and
code offloading strategies.

A. Host Triggers Instructions

The NCA designs exploit the memories’ inherent capa-
bilities, while IMA may reserve area and power budget for
execution units. Both approaches usually cannot afford com-
plex mechanisms such as those present in superscalar, out-of-
order processors (e.g., large fetch, multiple-instruction decode,
and reordering buffers stages), as well as virtual to physical
memory address translation. Therefore, such approaches must
rely on code emission directly from the host processor. For
such, the host processor must support the NDP ISA, thus
requiring modifications to the host as aforementioned in Sec-
tion V. Moreover, since the host is responsible for triggering
all instructions, the binary will present a host and accelerator
instruction mix. In these cases, two main approaches can be
highlighted:

Manual code generation: may use intrinsics explicitly
written by the programmer [121]. This approach allows for
fine control of the generated code, giving specific instructions
to the compiler that must appear in the final binary. The
proposal presented in [121] is inspired by Intel Intrinsics [122],

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 11

a library available in C language with a set of routines. When
a program calls a routine from this library, it embeds its
internal assembly x86 code directly in the compiler to opti-
mize the execution. Thus, these routines allow low-level code
optimization, including code vectorization, and the adoption of
SIMD instructions. Nevertheless, vendors create and distribute
intrinsic libraries accordingly to the ISA extension available
inside each processor.

Automatic code generation: relies on compiler support to
automatically generate code. The compiler must tackle the
instruction offloading decision and automatically optimize the
code for a given architecture. When code involves two or more
dependent or independent ISAs, the compiler back-end must
be aware of the host and the NDP’s ISA and their relationship
to provide the correct instruction sequence. In the literature,
several proposals address NDP offloading decisions, while
others deal with hardware exploitation.

Regarding offloading decisions, Hadidi et al. [123] presents
Compiler-Assisted InstRuction-level Offloading (CAIRO), a
compiler to support native HMC instructions [109]. In CAIRO,
the IMA instructions offloading candidates are decided by the
number of cache misses, bandwidth savings, and the overhead
of host atomic instructions respectively. These decisions are
taken offline because it requires a cache profiling tool to record
the traces of previous execution of applications. Moreover,
each version of an application needs to be compiled, profiled,
and then analyzed by CAIRO. After these steps, the HMC-
atomic instructions are included if found suitable.

Ahmed et al. [68] proposed Processing-In-Memory cOm-
piler (PRIMO), a complete compiler support for NDP, includ-
ing both the offloading and architecture-oriented optimization
steps. In PRIMO, both the offloading and exploitation of FUs
happens automatically at compile time. PRIMO is intended
for hardware exploitation without the burden of using pragma
or directive-based approach, and its instruction footprint is
comparable to the footprint of a native AVX-512 code.

B. Function or Binary Migration

NDP designs that adopt full-processors [25, 51, 79, 82,
89, 110], can take advantage of traditional programming
models, and they can be supported by libraries to provide code
offloading and communication between host and accelerators.
These designs usually rely on well-known libraries such as
Open Multi-Processing (OpenMP), Compute Unified Device
Architecture (CUDA).

For exploiting NDP hardware, Asynchronous Memory
Compiler (AMC) is presented by Nair et al. [66], which adopts
a directive-based approach. A program annotated to run on
parallel systems with OpenMP 4.0 directives is analyzed to
discover which parts will run on the AMC. AMC can also
exploit complete vector units and pipeline features present
on the accelerator lanes to derive an effective schedule of
instructions for each lane.

Similarly, the work from Hsieh et al. [124] presents Trans-
parent Offloading and Mapping (TOM), which is a compiler-
based solution that allows computation offloading to multiple

3D-stacked memories in a GPU-based system. This approach
is concerned about the amount of code that will be sent
to the GPU’s main memory. In TOM, instruction blocks
with potential for maximum memory savings are initially
identified. It then decides whether the selected candidates shall
be offloaded based on runtime system conditions. TOM is
based on CUDA annotated code.

Further, Khaldi and Chapman [125] present a new com-
piler pass called Bandwidth-Critical Data Analysis (BCDA)
for detecting code dealing with bandwidth critical data to
allocate data to HBM. The allocation calls are transformed
into specific HBM allocation calls which are transparent to the
user. This solution is automatic in the manner that malloc calls
are changed to memkind alloc for memory bandwidth bound
codes. Although the work of Khaldi and Chapman [125] is
intended for automatic data organization, its technique relies
on special functions, which requires programmer attention.
Moreover, this work is not concerned with code offloading,
and hence it is limited to a more generic NDP interface.

Another work that relies on the function offloading model
is HBM-PIM [47]. It demands all memory to be stopped,
reconfigured, and then the host processor is responsible for
sending the code snippet or the addresses from where the
code will be computed by the IMA. This code is previously
annotated since several restrictions must be considered, such
as data sharing between many NDP units, hence requiring a
specific Application Programming Interface (API).

C. Hardware Driven

Another approaches rely on in-flight instruction offloading,
by monitoring code behavior, or hardware metrics (e.g., cache
misses). In Hashemi et al. [103], the proposal aims to migrate
instructions to the NDP placed within the memory controller
for execution as soon as source data arrives from DRAM.
This technique adopts a mix of ISA extension and metrics
monitoring. This migration technique allows to minimize
dependent cache miss latency by 20%.

VII. RELATED WORK

In this section, we summarize the relevant surveys on
NDP from the last six years, between 2014 and 2020. The
first relevant survey published by Balasubramonian et al.
[126] presents key insights captured by the organizers and
keynote speakers of the first near-data processing workshop
organized during the 46th MICRO conference. The authors’
first argument for the resurgence of NDP is the limitation of
current architectures to continue shrinking transistor sizes and
increasing the number of cores. The second argument from the
authors for NDP is the development of technologies that enable
or facilitate NDP, such as 2.5D or 3D die stacking technology
that enables easy integration of logic and memory layers.
Besides, distributed software frameworks, such as MapReduce,
create easy support and demand for such architectures. These
frameworks already address challenging NDP software issues,
such as data layout, scheduling, and fault tolerance. At the
same time, it provides ready-to-use software that requires

12 SANTOS et al.: Survey on Near-Data Processing: Applications and Architectures.

efficient architectures, sparking the interest in the hardware
industry to provide such needs. Finally, the industry has
shown maturity in heterogeneity handling in recent years with
research on GPUs and ARM’s big.LITTLE, which provides
an excellent background to support NDP accelerators.

Since this publication, applications ranging from genome
string processing to database management systems have all
found successful implementations in NDP [29, 59, 63, 69, 127,
128, 129], which increasingly motivates the move to a NDP-
enabled architecture. All the potential shown by such pro-
posals motivated the creation of commercially available NDP
architecture, such as the UPMEM’s [82] and the Samsungs’
NDP-enabled HBM for artificial intelligence1. This rise of
NDP hardware led the current research focuses on improving
programming models and usability [117] so that NDP can be
used by any programmer.

The survey from Singh et al. [130] analyzes and organizes
the NDP proposals using four distinct classes: (i) Computation
in-Memory; (ii) Processing Near Heterogeneous Memory; (iii)
Processing Near Storage-Class Memory, and; (iv) Processing
Near Main-Memory. A subdivision is made depending on type
of implementation: (a) programmable; (b) fixed functions or;
(c) reconfigurable computation. The authors identify that the
main challenges of NDP are two, first, in providing support
for virtual memory and cache coherence which is heavily
neglected in the proposals. Another challenge is the lack
of compatibility between processor ISA and NDP ISA. The
proposals miss information regarding the interaction between
the host and the NDP and most do not address the code gen-
eration for NDP ISA. Moreover, the authors attempt to define
a design space exploration for NDP, performing application
characterization and performance evaluation to estimate the
potential of NDP. They conclude that higher cache miss ratios
imply increased benefits from NDP.

Mutlu et al. [131] survey’s makes a major distinction
considering Processing Using Memory (PUM) and Processing
In-Memory (PIM). PUM refers to techniques that use the
current DRAM substrate or new memory technology substrates
to perform specialized functions with minimal changes, adding
no logic to the substrate. These techniques focus on data
initialization, data movement, and basic boolean logic opera-
tions. PIM refers to research on additional logic near or inside
memory modules that aim to provide high-bandwidth and low
latency for specific instructions, functions, or applications.
Thus, the authors Du Nguyen et al. [132] have a similar
classification, although they focus on the programming model
aspect of this classification. The authors conclude that it is still
unclear which granularity of NDP provides the best trade-off.
Coarser granularities are harder to program and are usually
application-specific but allow much more efficient memory
usage. Meanwhile, finer granularities such as instructions can
seamlessly replace current instructions through the compiler
but require more communication and overhead. Besides, it

1https://news.samsung.com/global/samsung-develops-industrys-first-high-
bandwidth-memory-with-ai-processing-power

might generate hard-to-tackle problems in cache coherence
and virtual memory.

In contrast to other surveys, Du Nguyen et al. [132] includes
NCA model. Their classification takes into account three met-
rics: (i) where the computation is performed; (ii) the memory
technology, and; (iii) the computation parallelism. The first
metric generates four classes: Computation In-Memory Array
or Periphery (CIM-A / CIM-P), Computation Out-of-Memory
Near or Far (COM-N / COM-F). The distinction made here
between Computation In-Memory (CIM) and Computation
Out-of-Memory (COM) is analogous to the one made by
Mutlu et al. [131]. The second metric could generate multiple
classes due to the varied number of memory technologies
(SRAM, DRAM, ReRAM, Magnetoresistive Random-Access
Memory (MRAM), PCM, STT-RAM, etc), but the authors
distinguish only ”charge-based” and ”non-charge based” mem-
ories. Lastly, the third metric, the computation parallelism,
further divides NDP research into three classes: task par-
allelism, data parallelism, or instruction parallelism, which
can be otherwise seen as programming models. The authors
indicate the infeasibility of NCA for SRAM, defending thus
the emerging technologies such as memristors for the next
NCA architectures. The authors also note several gaps in the
classification under which they were not able to find any work
and thus present a direction for several works in NDP.

Considering these previous surveys we could notice the
main conclusions regarding NDP are:
• The best memory technology for NDP is still unclear;
• Most architectures require specific changes to the code;
• The programming and interface must evolve to support
adaptive scheduling, data mapping, and access/sharing control;
• Few researches provide answers for virtual memory and
cache coherence support, which still an issue;
• Interconnection between the NDP units is often neglected;
• 3D stacking requires novelty in heat sinks, as computing
units will increase energy drastically;
• Infrastructure to assess benefits and feasibility must be
improved. Very few tool-flow are open source, and usually,
these are restricted to specific architectures;

TABLE IV: Survey comparison

NDP Memory Processing Offload Application
Architectures Techs. Model Model Domain

Singh et al. [130] x x x x
Du Nguyen et al. [132] x x
Mutlu et al. [131] x x x
Ours x x x x x

Considering the multiple surveys over the NDP theme, we
compare their primary focus on Table IV. The first survey is
not cited in this table as their focus was primarily to share
their insights from the first near-data processing workshop.

We could observe on the previous surveys that as NDP
research evolves, so does the classification that applies to the
results of such efforts. We believe the classification proposed
in this present survey adequately categorizes and encom-
passes most, if not all, current NDP research. The two main

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 13

distinguishing features of NDP proposals are computation
location (NCA, IMA or NMA) and computation granularity
(basic operations through instructions, specialized functions,
or generic processing for any application). Furthermore, the
”using memory” category proposed by Mutlu et al. [131] is
safely addressed by the computation granularity of specialized
functions. We also propose a more descriptive categorization
of memory technologies that reflect current NDP research
tendencies, along with classification for the offloading models
commonly used.

VIII. CONCLUSIONS

This survey intended to collect and highlight the most
notable work presented in recent years, providing insights
from the main application domains and also introducing a new
taxonomy for Near-Data Processing (NDP).

The presented taxonomy classifies NDP work in Near-Cell
Accelerators (NCA), In-Memory Accelerators (IMA) or Near-
Memory Accelerator (NMA), according to the accelerator
placement in relation to the memory it is coupled. NCA
proposals started to flourish after 2016 along with the rise of
Resistive random-access memory (ReRAM) proposals. Both
were enabled by advances in the signal sensing logic of mem-
ory technologies. Nevertheless, IMA started to appear three
years earlier with the advent of 3D integration technologies.

We could observe that the main application domain being
recently migrated for NDP is Machine Learning (ML), in
particular the neural networks, where most of the proposals are
using NCA. Moreover, we noticed that several authors working
with Computational Fluid Dynamics (CFD), MapReduce, and
other domains are now researching on ML proposals.

Regarding memory technologies, although most initiatives
still use Dynamic Random Access Memories (DRAMs),
ReRAM approaches have been gaining strength in the last
few years. Besides, Static Random Access Memory (SRAM)
models are less frequent and limited mainly by their low
storage capabilities.

Observing the proposals, we could observe a lack of in-
frastructure for programming most of the NDP architectures.
Moreover, no standard programming models are available.
Even commercially available products are still in their infancy
in terms of Application Programming Interfaces (APIs) and
programming support.

ACKNOWLEDGEMENTS

This work was partially supported by FAPERGS, CAPES,
CNPq and Serrapilheira Institute (grant number Serra-1709-
16621).

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory
wall: implications of the obvious,” SIGARCH Computer
Architecture News, 1995.

[2] A. Nowatzyk, F. Pong, and A. Saulsbury, “Missing the
memory wall: The case for processor/memory integra-
tion,” in Int. Symp. on Computer Architecture (ISCA),
1996.

[3] D. P. Zhang, N. Jayasena et al., “A new perspective
on processing-in-memory architecture design,” in SIG-
PLAN Workshop on Memory Systems Performance and
Correctness, 2013.

[4] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simulta-
neous multithreading: Maximizing on-chip parallelism,”
in Int. Symp. on Computer Architecture (ISCA), 1995.

[5] A. Cristal, O. J. Santana et al., “Toward kilo-instruction
processors,” Trans. on Architecture and Code Optimiza-
tion (TACO), 2004.

[6] T.-F. Chen and J.-L. Baer, “Reducing memory latency
via non-blocking and prefetching caches,” ACM SIG-
PLAN Notices, 1992.

[7] M. A. Alves, P. C. Santos et al., “Saving memory
movements through vector processing in the dram,” in
Int. Conf. on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), 2015.

[8] D. Patterson, T. Anderson et al., “A case for intelligent
ram,” IEEE Micro, 1997.

[9] D. G. Elliott, M. Stumm et al., “Computational ram:
Implementing processors in memory,” IEEE Design &
Test of Computers, 1999.

[10] Hybrid Memory Cube Consortium, “Hybrid
memory cube specification 2.1,” 2014,
http://www.hybridmemorycube.org/.

[11] H. Jun, S. Nam et al., “High-bandwidth memory (hbm)
test challenges and solutions,” IEEE Design & Test,
2017.

[12] J. V. Olmen, A. Mercha et al., “3D stacked IC demon-
stration using a through silicon via first approach,” in
Int. Electron Devices Meeting, 2008.

[13] E. Lehtonen and M. Laiho, “Stateful implication logic
with memristors,” in Int. Symp. on Nanoscale Architec-
tures (ISNA), 2009.

[14] T. M. Taha, R. Hasan et al., “Exploring the design space
of specialized multicore neural processors,” in Int. Joint
Conference on Neural Networks (IJCNN), 2013.

[15] M. A. Z. Alves, M. Diener et al., “Large vector exten-
sions inside the hmc,” in Design, Automation & Test in
Europe Conf. & Exhibition (DATE), 2016.

[16] D. G. Tomé, P. C. Santos et al., “HIPE: HMC instruction
predication extension applied on database processing,”
in Design, Automation & Test in Europe Conf. &
Exhibition (DATE), 2018.

[17] K. Ando, K. Ueyoshi et al., “Brein memory: A single-
chip binary/ternary reconfigurable in-memory deep neu-
ral network accelerator achieving 1.4 tops at 0.6 w,”
Journal of Solid-State Circuits, 2017.

[18] S. Takamaeda-Yamazaki, K. Ueyoshi et al., “Acceler-
ating deep learning by binarized hardware,” in Asia-
Pacific Signal and Information Processing Association
Annual Summit and Conf. (APSIPA ASC), 2017.

[19] C. Eckert, X. Wang et al., “Neural cache: Bit-serial
in-cache acceleration of deep neural networks,” in Int.
Symp. on Computer Architecture (ISCA), 2018.

14 SANTOS et al.: Survey on Near-Data Processing: Applications and Architectures.

[20] X. Wang, J. Yu et al., “Bit prudent in-cache acceleration
of deep convolutional neural networks,” in Int. Symp.
on High Performance Computer Architecture (HPCA),
2019.

[21] S. Yin, Z. Jiang et al., “Vesti: Energy-efficient in-
memory computing accelerator for deep neural net-
works,” Trans. on Very Large Scale Integration (VLSI)
Systems, 2019.

[22] A. K. Ramanathan, G. S. Kalsi et al., “Look-up table
based energy efficient processing in cache support for
neural network acceleration,” in Int. Symp. on Microar-
chitecture (MICRO), 2020.

[23] Y. Long, E. Lee et al., “Q-pim: A genetic algorithm
based flexible dnn quantization method and application
to processing-in-memory platform,” in Design Automa-
tion Conf. (DAC), 2020.

[24] S. Aga, S. Jeloka et al., “Compute caches,” in Int. Symp.
on High Performance Computer Architecture (HPCA),
2017.

[25] J. Liu, H. Zhao et al., “Processing-in-memory for
energy-efficient neural network training: A heteroge-
neous approach,” in Int. Symp. on Microarchitecture
(MICRO), 2018.

[26] E. Azarkhish, D. Rossi et al., “Neurostream: Scalable
and energy efficient deep learning with smart memory
cubes,” Trans. on Parallel & Distributed Systems, 2018.

[27] F. Schuiki, M. Schaffner et al., “A scalable near-
memory architecture for training deep neural net-
works on large in-memory datasets,” arXiv preprint
arXiv:1803.04783, 2018.

[28] M. Thottethodi, T. Vijaykumar et al., “Millipede: Die-
stacked memory optimizations for big data machine
learning analytics,” in Int. Parallel and Distributed
Processing Symp. (IPDPS), 2018.

[29] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-
data processing for in-memory analytics frameworks,”
in Parallel Architecture and Compilation (PACT), 2015.

[30] M. Gao, J. Pu et al., “Tetris: Scalable and efficient
neural network acceleration with 3d memory,” ACM
SIGOPS Operating Systems Review, 2017.

[31] C. Min, J. Mao et al., “Neuralhmc: an efficient hmc-
based accelerator for deep neural networks,” in Asia
and South Pacific Design Automation Conf. (ASPDAC),
2019.

[32] G. F. Oliveira, P. C. Santos et al., “Nim: An hmc-
based machine for neuron computation,” in Int. Symp.
on Applied Reconfigurable Computing (ARC), 2017.

[33] A. S. Cordeiro, S. R. dos Santos et al., “Machine
learning migration for efficient near-data processing,” in
Int. Conf. on Parallel, Distributed and Network-Based
Processing (PDP), 2021.

[34] S. Li, D. Niu et al., “Drisa: A dram-based reconfig-
urable in-situ accelerator,” in Int. Symp. on Microarchi-
tecture (MICRO), 2017.

[35] J. Sim, H. Seol, and L.-S. Kim, “Nid: processing binary
convolutional neural network in commodity dram,” in

Int. Conf. on Computer-Aided Design (ICCAD), 2018.
[36] Q. Deng, L. Jiang et al., “Dracc: a dram based acceler-

ator for accurate cnn inference,” in Design Automation
Conf. (DAC), 2018.

[37] S. Cadambi, A. Majumdar et al., “A programmable
parallel accelerator for learning and classification,” in
Int. Conf. on Parallel architectures and Compilation
Techniques (PACT), 2010.

[38] Q. Deng, Y. Zhang et al., “Lacc: Exploiting lookup
table-based fast and accurate vector multiplication in
dram-based cnn accelerator,” in Design Automation
Conf. (DAC), 2019.

[39] P. Chi, S. Li et al., “Prime: A novel processing-in-
memory architecture for neural network computation in
reram-based main memory,” ACM SIGARCH Computer
Architecture News, 2016.

[40] M. Cheng, L. Xia et al., “Time: A training-in-memory
architecture for memristor-based deep neural networks,”
in Design Automation Conf. (DAC), 2017.

[41] A. Shafiee, A. Nag et al., “Isaac: A convolutional neu-
ral network accelerator with in-situ analog arithmetic
in crossbars,” ACM SIGARCH Computer Architecture
News, 2016.

[42] L. Song, X. Qian et al., “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in Int. Symp.
on High Performance Computer Architecture (HPCA),
2017.

[43] A. Haj-Ali, R. Ben-Hur et al., “Not in name alone: A
memristive memory processing unit for real in-memory
processing,” IEEE Micro, 2018.

[44] S. Kvatinsky, D. Belousov et al., “Magic—memristor-
aided logic,” Trans. on Circuits and Systems, 2014.

[45] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and
energy-efficient logic in memory,” in Int. Conf. on
Computer-Aided Design (ICCAD), 2018.

[46] M. Imani, S. Gupta et al., “Floatpim: In-memory ac-
celeration of deep neural network training with high
precision,” in Int. Symp. on Computer Architecture
(ISCA), 2019.

[47] Y.-C. Kwon, S. H. Lee et al., “25.4 a 20nm 6gb
function-in-memory dram, based on hbm2 with a
1.2tflops programmable computing unit using bank-
level parallelism, for machine learning applications,” in
Int. Solid-State Circuits Conf. (ISSCC), 2021.

[48] V. T. Lee, A. Mazumdar et al., “Application codesign
of near-data processing for similarity search,” in Int.
Parallel and Distributed Processing Symp. (IPDPS),
2018.

[49] A. Drebes, L. Chelini et al., “Tc-cim: Empowering
tensor comprehensions for computing-in-memory,” in
Int. Workshop on Polyhedral Compilation Techniques
(IMPACT), 2020.

[50] S. Angizi, Z. He et al., “Accelerating deep neural
networks in processing-in-memory platforms: Analog
or digital approach?” in Computer Society Annual Sym-
posium on VLSI (ISVLSI), 2019.

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 15

[51] J. Ahn, S. Hong et al., “A scalable processing-in-
memory accelerator for parallel graph processing,” in
Int. Symp. on Computer Architecture (ISCA), 2015.

[52] K. Hsieh, S. Khan et al., “Accelerating pointer chasing
in 3d-stacked memory: Challenges, mechanisms, evalu-
ation,” in Int. Conf. on Computer Design (ICCD), 2016.

[53] Z. Liu, I. Calciu et al., “Concurrent data structures for
near-memory computing,” in Symp. on Parallelism in
Algorithms and Architectures (SPAA), 2017.

[54] L. Nai, R. Hadidi et al., “Graphpim: Enabling
instruction-level pim offloading in graph computing
frameworks,” in Int. Symp. on high performance com-
puter architecture (HPCA), 2017.

[55] B. Hong, G. Kim et al., “Accelerating linked-list traver-
sal through near-data processing,” in Proceedings of the
2016 International Conference on Parallel Architectures
and Compilation, 2016, pp. 113–124.

[56] L. Song, Y. Zhuo et al., “Graphr: Accelerating graph
processing using reram,” in Int. Symp. on High Perfor-
mance Computer Architecture (HPCA), 2018.

[57] Y. Huang, L. Zheng et al., “A heterogeneous pim
hardware-software co-design for energy-efficient graph
processing,” in Int. Parallel and Distributed Processing
Symp. (IPDPS), 2020.

[58] E. Sadredini, R. Rahimi et al., “Impala: Algorithm/ar-
chitecture co-design for in-memory multi-stride pattern
matching,” in Int. Symp. on High Performance Com-
puter Architecture (HPCA), 2020.

[59] D. S. Cali, G. S. Kalsi et al., “Genasm: A high-
performance, low-power approximate string matching
acceleration framework for genome sequence analysis,”
in Int. Symp. on Microarchitecture (MICRO), 2020.

[60] S. Angizi, J. Sun et al., “Aligns: A processing-in-
memory accelerator for dna short read alignment lever-
aging sot-mram,” in Design Automation Conf. (DAC),
2019.

[61] S. Angizi, N. A. Fahmi et al., “Pim-assembler: A
processing-in-memory platform for genome assembly,”
in Design Automation Conf. (DAC), 2020.

[62] W. Huangfu, K. T. Malladi et al., “Nest: Dimm based
near-data-processing accelerator for k-mer counting,” in
Int. Conf. On Computer Aided Design (ICCAD), 2020.

[63] S. Gupta, M. Imani et al., “Rapid: A reram processing
in-memory architecture for dna sequence alignment,”
in Int. Symp. on Low Power Electronics and Design
(ISLPED), 2019.

[64] Q. Zhu, T. Graf et al., “Accelerating sparse matrix-
matrix multiplication with 3d-stacked logic-in-memory
hardware,” in High Performance Extreme Computing
Conf. (HPEC), 2013.

[65] Q. Zhu, B. Akin et al., “A 3d-stacked logic-in-memory
accelerator for application-specific data intensive com-
puting,” in Int. 3D Systems Integration Conf. (3DIC),
2013.

[66] R. Nair, S. F. Antao et al., “Active memory cube:
A processing-in-memory architecture for exascale sys-

tems,” IBM Journal of Research and Development,
2015.

[67] M. A. Alves, P. C. Santos et al., “Opportunities and
challenges of performing vector operations inside the
dram,” in Int. Symp. on Memory Systems (MEMSYS),
2015.

[68] H. Ahmed, P. C. Santos et al., “A compiler for au-
tomatic selection of suitable processing-in-memory in-
structions,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2019.

[69] E. C. d. A. Tiago Rodrigo Kepe and M. A. Z.
Alves, “Database processing-in-memory: An experi-
mental study,” in Proc. VLDB Endow., 2019.

[70] S. Kim, H. Oh et al., “Fast, energy efficient scan inside
flash memory ssds,” in Int. Workshop on Accelerating
Data Management Systems Using Modern Processor
and Storage Architectures (ADMS VLDB), 2011.

[71] N. Mirzadeh, Y. O. Koçberber et al., “Sort vs. hash join
revisited for near-memory execution,” in 5th Workshop
on Architectures and Systems for Big Data (ASBD
2015), no. POST TALK, 2015.

[72] S. L. Xi, A. Augusta et al., “Beyond the wall: Near-
data processing for databases,” in Int. Workshop on Data
Management on New Hardware (DaMoN), 2015.

[73] V. S. et al., “Ambit: in-memory accelerator for bulk bit-
wise operations using commodity DRAM technology,”
in Int. Symp. on Microarchitecture (MICRO), 2017.

[74] P. C. Santos, G. F. Oliveira et al., “Operand size
reconfiguration for big data processing in memory,”
in Design, Automation & Test in Europe Conf. &
Exhibition (DATE), 2017.

[75] Y. Sun, Y. Wang, and H. Yang, “Energy-efficient sql
query exploiting rram-based process-in-memory struc-
ture,” in Non-Volatile Memory Systems and Applications
Symp. (NVMSA), 2017.

[76] S. H. Pugsley, J. Jestes et al., “NDC: analyzing the im-
pact of 3d-stacked memory+logic devices on mapreduce
workloads,” in Int. Symp. on Performance Analysis of
Systems and Software (ISPASS), 2014.

[77] S. H. Pugsley, A. Deb et al., “Fixed-function hardware
sorting accelerators for near data mapreduce execution,”
in Int. Conf. on Computer Design (ICCD), 2015.

[78] A. Farmahini-Farahani, J. H. Ahn et al., “Nda: Near-
dram acceleration architecture leveraging commodity
dram devices and standard memory modules,” in Int.
Symp. on High Performance Computer Architecture
(HPCA), 2015.

[79] M. Drumond, A. Daglis et al., “The mondrian data
engine,” in Int. Symp. on Computer Architecture (ISCA),
2017.

[80] M. Drumond, A. Daglis et al., “Algorithm/architecture
co-design for near-memory processing,” Operating Sys-
tems Review, 2018.

[81] M. Alian, S. W. Min et al., “Application-transparent
near-memory processing architecture with memory
channel network,” in Int. Symp. on Microarchitecture

16 SANTOS et al.: Survey on Near-Data Processing: Applications and Architectures.

(MICRO), 2018.
[82] F. Devaux, “The true processing in memory accelera-

tor,” in Hot Chips Symp., 2019.
[83] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “Compute-

dram: In-memory compute using off-the-shelf drams,”
in Int. Symp. on Microarchitecture (MICRO), 2019.

[84] X. Xin, Y. Zhang, and J. Yang, “Elp2im: Efficient and
low power bitwise operation processing in dram,” in
Int. Symp. on High Performance Computer Architecture
(HPCA), 2020.

[85] N. Hajinazar, G. F. Oliveira et al., “Simdram: a frame-
work for bit-serial simd processing using dram,” in
Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021.

[86] S. Jain, A. Ranjan et al., “Computing in memory
with spin-transfer torque magnetic ram,” Trans. on Very
Large Scale Integration (VLSI) Systems (TVLSI), 2018.

[87] L. Xie, H. Cai, and J. Yang, “Real: Logic and arith-
metic operations embedded in rram for general-purpose
computing,” in Int. Symp. on Nanoscale Architectures
(NANOARCH), 2019.

[88] M. Gao and C. Kozyrakis, “Hrl: Efficient and flexible
reconfigurable logic for near-data processing,” in Int.
Smyp. on High Performance Computer Architecture
(HPCA), 2016.

[89] D. Zhang, N. Jayasena et al., “Top-pim: Throughput-
oriented programmable processing in memory,” in Int.
Symp. on High-performance Parallel and Distributed
Computing (HPDC), 2014.

[90] D. Tsirogiannis, S. Harizopoulos et al., “Query process-
ing techniques for solid state drives,” in SIGMOD Int.
Conf. on Management of Data, 2009.

[91] G. Graefe, S. Harizopoulos et al., “Designing database
operators for flash-enabled memory hierarchies,” IEEE
Data Eng. Bull., 2010.

[92] S. Boboila, Y. Kim et al., “Active flash: Out-of-core data
analytics on flash storage,” in Symp. on Mass Storage
Systems and Technologies, 2012.

[93] D. Tiwari, S. Boboila et al., “Active flash: towards
energy-efficient, in-situ data analytics on extreme-scale
machines,” in USENIX conference on File and Storage
Technologies, 2013.

[94] J. Do, Y.-S. Kee et al., “Query processing on smart
ssds: Opportunities and challenges,” in ACM SIGMOD
International Conference on Management of Data, ser.
SIGMOD, 2013.

[95] K. Park, Y. Kee et al., “Query processing on smart ssds,”
Data Eng. Bull., 2014.

[96] J. Do, I. L. Picoli et al., “Better database cost/perfor-
mance via batched I/O on programmable SSD,” VLDB
Journal, 2021.

[97] V. Seshadri, Y. Kim et al., “Rowclone: Accelerating data
movement and initialization using dram,” arXiv preprint
arXiv:1805.03502, 2018.

[98] M. F. Ali, A. Jaiswal, and K. Roy, “In-memory low-cost
bit-serial addition using commodity dram technology,”

Trans. on Circuits and Systems (TCS), 2020.
[99] B. Jacob, D. Wang, and S. Ng, Memory systems: cache,

DRAM, disk. Morgan Kaufmann, 2010.
[100] M. Wei, M. Snir et al., “A near-memory processor

for vector, streaming and bit manipulation workloads,”
Dept. of Computer Science, UIUC, Tech. Rep., 2005.

[101] A. Farmahini-Farahani, J. H. Ahn et al., “Drama: An
architecture for accelerated processing near memory,”
Computer Architecture Letters (CAL), 2014.

[102] O. Kocberber, B. Grot et al., “Meet the walkers acceler-
ating index traversals for in-memory databases,” in Int.
Symp. on Microarchitecture (MICRO), 2013.

[103] M. Hashemi, E. Ebrahimi et al., “Accelerating de-
pendent cache misses with an enhanced memory con-
troller,” in Int. Symp. on Computer Architecture (ISCA),
2016.

[104] A. J. Awan, M. Brorsson et al., “Micro-architectural
characterization of apache spark on batch and stream
processing workloads,” in Int. Conf. on Big Data and
Cloud Computing (BDCloud), 2016.

[105] T. Perez, N. L. V. Calazans, and C. A. De Rose,
“System-level impacts of persistent main memory using
a search engine,” Microelectronics Journal, 2014.

[106] A. J. Awan, M. Ohara et al., “Identifying the potential
of near data processing for apache spark,” in Int. Symp.
on Memory Systems (MEMSYS), 2017.

[107] J. Jeddeloh and B. Keeth, “Hybrid memory cube new
dram architecture increases density and performance,”
in Symp. on VLSI Technology (VLSIT), 2012.

[108] J. Pawlowski, “Hybrid memory cube (hmc),” Hot Chips,
2011.

[109] Hybrid Memory Cube Consortium, “Hybrid
memory cube specification rev. 2.0,” 2013,
http://www.hybridmemorycube.org/.

[110] A. Boroumand, S. Ghose et al., “Google workloads
for consumer devices: Mitigating data movement bot-
tlenecks,” in Int. Conf. on Architectural Support for
Programming Languages and Operating Systems (AS-
PLOS), 2018.

[111] G. H. Loh, N. Jayasena et al., “A processing in memory
taxonomy and a case for studying fixed-function pim,”
in Workshop on Near-Data Processing (WoNDP), 2013.

[112] J. a. P. Lima, P. C. Santos et al., “Design space explo-
ration for pim architectures in 3d-stacked memories,” in
Computing Frontiers (CF), 2018.

[113] P. C. Santos, M. A. Alves et al., “Exploring cache size
and core count tradeoffs in systems with reduced mem-
ory access latency,” in Int. Conf. Parallel, Distributed,
and Network-Based Processing (PDP). IEEE, 2016.

[114] A. Shahab, M. Zhu et al., “Farewell my shared llc! a
case for private die-stacked dram caches for servers,”
Int. Symp. on Microarchitecture (MICRO), 2018.

[115] P. C. Santos, J. P. Lima et al., “Solving datapath issues
on near-data accelerators,” in Int. Embedded Systems
Symp. (IESS), ser. IESS ’19, September 2019.

[116] P. C. Santos, J. P. C. de Lima et al., “A technolog-

Journal of Integrated Circuits and Systems, vol. 16, n. 2, 2021 17

ically agnostic framework for cyber-physical and iot
processing-in-memory-based systems simulation,” Mi-
croprocessors and Microsystems (MICPRO), 2019.

[117] P. C. Santos, B. E. Forlin, and L. Carro, “Providing plug
n’play for processing-in-memory accelerators,” in Asia
and South Pacific Design Automation Conf. (ASP-DAC),
2021.

[118] D. Lee, Y. Kim et al., “Tiered-latency dram: A low
latency and low cost dram architecture,” in Int. Symp.
on High Performance Computer Architecture (HPCA),
2013.

[119] K. Kara, D. Alistarh et al., “Fpga-accelerated dense
linear machine learning: A precision-convergence trade-
off,” in Int. Symp. on Field-Programmable Custom
Computing Machines (FCCM), 2017.

[120] G. Singh, M. Alser et al., “Fpga-based near-memory ac-
celeration of modern data-intensive applications,” IEEE
Micro, 2021.

[121] A. S. Cordeiro, T. R. Kepe et al., “Intrinsics-hmc: an au-
tomatic trace generator for simulations of processing-in-
memory instructions,” Symp. Sistemas Computacionais
de Alto Desempenho (WSCAD), 2017.

[122] C. Lomont, “Introduction to intel advanced vector ex-
tensions,” Intel White Paper, 2011.

[123] R. Hadidi, L. Nai et al., “Cairo: A compiler-assisted
technique for enabling instruction-level offloading of
processing-in-memory,” Trans. on Architecture and
Code Optimization (TACO), 2017.

[124] K. Hsieh, E. Ebrahimi et al., “Transparent offloading

and mapping (tom) enabling programmer-transparent
near-data processing in gpu systems,” SIGARCH Com-
puter Architecture News, 2016.

[125] D. Khaldi and B. Chapman, “Towards automatic hbm
allocation using llvm: a case study with knights land-
ing,” in Workshop on the LLVM Compiler Infrastructure
in HPC (LLVM-HPC), 2016.

[126] R. Balasubramonian, J. Chang et al., “Near-data pro-
cessing: Insights from a micro-46 workshop,” IEEE
Micro, 2014.

[127] Y. Long, T. Na, and S. Mukhopadhyay, “Reram-based
processing-in-memory architecture for recurrent neural
network acceleration,” Trans. on Very Large Scale In-
tegration (VLSI) Systems (TVLSI), 2018.

[128] A. Boroumand, S. Ghose et al., “Conda: Efficient cache
coherence support for near-data accelerators,” in Int.
Symp. on Computer Architecture (ISCA), 2019.

[129] C. Sudarshan, J. Lappas et al., “An in-dram neural
network processing engine,” in Int. Symp. on Circuits
and Systems (ISCAS), 2019.

[130] G. Singh, L. Chelini et al., “A review of near-memory
computing architectures: Opportunities and challenges,”
in Conf. on Digital System Design (DSD), 2018.

[131] O. Mutlu, S. Ghose et al., “A modern primer on pro-
cessing in memory,” arXiv preprint arXiv:2012.03112,
2020.

[132] H. Du Nguyen et al., “A classification of memory-
centric computing,” Journal on Emerging Technologies
in Computing Systems (JETCS), 2020.

