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Abstract
Processing-in-Memory (PIM) or Near-Data Accelerator (NDA) has been recently

revisited to mitigate the issues of memory and power wall, mainly supported by the

maturity of 3D-staking manufacturing technology, and the increasing demand for

bandwidth and parallel data access in emerging processing-hungry applications.

However, as these designs are naturally decoupled from main processors, at least

three open issues must be tackled to allow the adoption of PIM: how to offload

instructions from the host to NDAs, since many can be placed along memory; how

to keep cache coherence between host and NDAs, and how to deal with the internal

communication between different NDA units considering that NDAs can commu-

nicate to each other to better exploit their adoptions. In this work, we present an

efficient design to solve these challenges. Based on the hybrid Host-Accelerator

code, to provide fine-grain control, our design allows transparent offloading of NDA

instructions directly from a host processor. Moreover, our design proposes a data

coherence protocol, which includes an inclusion-policy agnostic cache coherence

mechanism to share data between the host processor and the NDA units, trans-

parently, and a protocol to allow communication between different NDA units. The

proposed mechanism allows full exploitation of the experimented state-of-the-art

design, achieving a speedup of up to 14.69 compared to a AVX architecture on

PolyBench Suite, using, on average, 82% of the total time for processing and only

18% for the cache coherence and communication protocols.
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1 Introduction

In the last years, mainly due to the arising of big data workloads, machine learning

and data-intensive algorithms, modern applications have demanded different flavors

of accelerators. Meanwhile, supported by 3D-stacking technologies, 3D-stacked

memories have emerged enabling improvements on memory bandwidth, energy

efficiency, and chip capacity, aiming to mitigate the memory wall effects widely

increased by the numerous accelerators present on modern embedded systems. In

this context, Near-Data Accelerator (NDA) or Processing-in-Memory (PIM) studies

have been leveraged by both the requirements of data-intensive workloads and the

emergence of 3D-stacked memories. Moreover, supported by the integration of

logical and memory layers, such as found in the Hybrid Memory Cube (HMC) [14]

and High Bandwidth Memory (HBM) [28], more sophisticated and efficient PIM

designs have emerged.

PIM techniques intend to mitigate the memory bottleneck by processing data

near to, or directly on main memory, which mainly avoids data movements via off-

chip buses and trough complex cache hierarchies, hence avoiding unnecessary cache

pollution, reducing energy consumption and improving performance. Ideally, an

efficient PIM architecture must be able to take advantage of the internal bandwidth

available on 3D-stacked memories, which can provide at least 320 GB/s [14, 28].

Moreover, the logic design must fit within the logic layer area and power constraints

of 3D-stacked memories [10, 21]. Past studies, such as [16, 26, 27], have analyzed

how different PIM logic designs exploit the huge bandwidth provided by 3D-

stacked memories, as well as how much area and power they require.

From those studies, it is depicted that the most suitable PIM logic designs require

a massive amount of simple Functional Units (FUs) to efficiently benefit from the

available bandwidth. Consequently, to achieve high performance (TFLOPs), while

still matching power and area budgets [10, 16], the PIM design needs to move from

typical processor’s front-end and sophisticated Instruction Level Parallelism (ILP)

and Thread Level Parallelism (TLP) hardware techniques, leaving room for FUs and

register files. Therefore, the adoption of FU-centric and reduced logic approaches

relies on fine-grain instruction offloading [2].

Although several works present solutions for the instruction-level offloading

issue [4, 8, 15, 17], they lack solving three inherent challenges that comes with this

approach: how data is kept coherent between host and PIM and between multiple

computing units within 3D-stacked memory, and how to allow communication

between many PIM units that are necessary to take advantage of the available

resources [16]. The solutions present in the literature demand specialized extra

hardware while they limit the generality of cache memories [4], isolate memory

address between different processing elements and restrict the parallelism

exploitation of 3D-stacked memories [12], and do not support Translation Look-

aside Buffer (TLB) and virtual memory [8]. Moreover, the communication between

different PIM units is neglected in previous studies available in the literature, which

prevents the generality of applications, high-performance exploitation, and efficient

utilization of available resources.
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The present work aims to provide resources for the adoption of FU-centric PIM

architectures, such as those presented in [16, 19, 24, 25]. Therefore, this work

focuses on solving the aforementioned main issues to allow a transparent offloading

of PIM instructions directly from the host processor without incurring performance

overhead to the Central Processing Unit (CPU). Furthermore, our PIM architecture

design proposes a data coherence protocol that includes not only a mechanism to

share data between the host processor and PIM units transparently, but also among

several in-memory functional units-based processors. Thus, our design addresses

programmability and cache coherence issues to reduce programmers’ effort in

designing applications to be executed in PIM architectures. Moreover, a complete

explanation of how our mechanism handles both the Host-PIM and PIM–PIM

communication is shown. We compare the present approach with the optimal

oracle-based case, showing that our PIM approaches to solving instruction

offloading, data coherence, and communication can get close to the optimal

scenario.

This work is organized as follows: Sect. 2 highlights previous and state-of-the-art

PIMs approaches while summarizes their mechanisms to support the adoption of

each design. Section 3 gives a brief overview of the case study. Our approach is

present in Sect. 4. The results are present on Sect. 5, and the conclusions on Sect. 6.

2 State-of-the-Art Solutions

Although allowing interference in CPU’s designs may minimize the effort to

programmers, i.e. by allowing Instruction Set Architecture (ISA) extensions in

traditional processors [2, 25], it opens up new challenges, such as deciding between

host and PIM instructions at compiling time or at running time, how to keep

coherence among PIM devices and host processor, and how to manage commu-

nication between different PIM units while keeping data coherence among them.

2.1 Offloading PIM Instructions

Two main ways of performing code offloading are highlighted in the literature: fine-

grain offloading and coarse-grain offloading. In the former way, PIM instructions

are seen as individual operations and issued one by one to fixed-function PIM logic

from CPU [4, 6, 15, 17, 19, 25]. In the coarse-grain instruction offloading approach,

an application can be seen as having an entire or partial PIM instruction kernel as

presented in [5, 12, 24, 29]. Coarse-grain approaches often have portions of code

that should execute as PIM instructions surrounded with macros (like PIM-begin

and PIM-end as seen in [8, 12]). From the CPU side, when it fetches a PIM

instruction, it sends the instruction’s Program Counter (PC) to a free PIM core, and

the assigned core begins to execute starting from this given PC. Later, when the PIM

unit finishes its execution, the CPU is notified about its completion [3, 4, 8, 12].

Thus, these ways of performing PIM instruction offloading provide the illusion that

PIM operations are executed as if they were host processor instructions [4].

Considering that PIM instructions also perform load and store operations, these
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instructions require some mechanism to perform address translation. There are three

common ways to treat this in state-of-art PIM architectures. The first one is to keep

the same virtual address mapping scheme used by the CPU and Operating System

(OS) [4]. In this way, some works may also adopt traditional multi-threading

techniques (MPI, OpenMP, CUDA) [18, 23, 29]. However, this approach demands

full-core implementation, which can present a critical overhead in terms of area and

power [16]. Another approach is to have split addressing spaces for each PIM unit

[12], although it demands each PIM instance to have its virtual address mapping

components. The last way is to utilize only physical addresses on PIM instructions

[8], but it has some critical drawbacks such as memory protection, software

compatibility, and address mapping management schemes.

2.2 Keeping Coherence

After the offloading handler addresses a given PIM instruction, it may have to

perform load/store operations and consequently have memory addresses shared

along with other PIM instances or even CPUs. To cope with this data coherence

problem, some designs opt for not offer a solution in hardware, requiring the

programmer to explicit manage coherence or mark PIM data as non-cacheable

[3–5, 13]. In other approaches [8], the coherence is kept within the first data cache

level of each PIM core taking use of a MESI [20] protocol directory inside the

Dynamic Random Access Memory (DRAM) logic layer. In this solution, coherence

stats are updated only after the PIM kernel’s execution: PIM cores send a message

to the main processor informing it all the accessed data addresses. The main

memory directory is checked, and if there is a conflict, the PIM kernel rolls back its

changes, all cache lines used by the kernel are written back into the main memory,

and the PIM device restarts its execution. Other methodologies use protocols based

on single-block-cache restriction policy [4], which utilizes last level cache tags. To

guarantee coherence, special PIM memory fence instructions (pfence) must

surround shared memory regions code. On [4], to allow PEI (PIM Enable

Instructions) operations, a special module called PEI Management Unit (PMU)

maps the read and written addresses by all PIM elements using a read-write lock

mechanism and monitors the cache blocks accesses issuing requests for back-

invalidation (for writing PEIs) or back-writeback (for reading PEIs). Although this

design modifies the last level cache and limits its access, the advantage of this

design is that PEI instructions access the Translation Look-aside Buffer (TLB) as

normal load/store instructions. Alternatively, some PIM designs put caches, TLB

and Memory Management Unit (MMU) within each memory vault to perform

addressing translations [12]. In this case, cache coherence is maintained by a three-

step protocol: The Streaming Machine (SM) that requested the instruction

offloading pushes all memory update traffic from itself to memory before it sends

the offloading request. Second, the memory stack SM invalidates its private data

cache. Third, memory stack SM sends all its modified data cache lines to the SM

Graphic Processing Unit (GPU) that subsequently gets the latest version of data

from memory.
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2.3 Managing Communication

Each PIM exposes an interface to the host CPU and, due to the absence of a standard

model or even a protocol for this interface, most current works in the field of PIM

research adopt their models to implement and handle CPU-PIM and PIM-PIM

communication. Since PIM units are commonly seen by host CPU as co-processors,

Host-PIM communication is treated in the literature by taking use thememory channel

to pass instructions/commands from CPU to PIM units [4, 8, 12]. Some PIM

approaches do not have communication among units. In these cases, there is not PIM-

PIM communication because they either have separated memory chips and do not

perform computation over external memory addresses [12], or they have fixed address

ranges without sharedmemory locations [17]. In other works, where there is PIM-PIM

communication, it is managed by MESI-based modified protocols in a similar way

which Multi-Processor System-on-Chip (MPSoC) do [4]. Similarly, by adopting

traditional protocols (e.g. OpenMP), it is possible to share memory, and therefore

communicate through it. However, a performance penalty must be considered since

the shared memory, in this case, is the main memory (typically DRAM).

3 A NDA Architecture for a Case Study

State-of-the-art NDA designs have been presented in the literature. The work

presented in [1] allows cache memory to compute binary logic operations, which

requires the offloading of instruction from the processor-host side, and also data

coherence treatments as the proposed mechanism can be implemented in any cache

level. The authors of [17] propose the use of the native PIM presented in theHMC [14]

to accelerate graph algorithms. The HMC is the first 3D-stacked memory to specify

atomic commands to perform read-update-write in-memory operations on data using

16 byte operands. However, the HMC design does not consider any solution for the

instruction offloading and cache coherence issues. Similarly, [19, 24, 25] show PIM

designs to exploit data-level parallelism by providing vector processing units in

memory, also relying on instruction offloading. Additionally, the PIM presented in

[19, 24, 25] sharememory spacewith host, which require data coherencemechanisms.
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In a sequence of proposals, this work focuses on a design that provides high

compute bandwidth by augmenting existing CPU data-path with FUs placed in the

logic layer of the HMC. As described in [16], the micro-architecture called

Reconfigurable Vector Unit (RVU) [25] meets power and area constraints given by

HMC while providing the maximum processing bandwidth when compared to other

recent 3D-stacked PIM proposals [3, 9, 11, 26]. The RVU architecture consist of FU

sets distributed along the 32 vaults within an HMC module, each vault containing a

register bank with 8x256 bytes, 32 multi-precision floating-point/integer FU and a

Finite State Machine (FSM). The RVU ISA is a subset of Intel’s Advanced Vector

Extensions (AVX) that contains arithmetic, logic, data transfer, and in-vector data
reordering operations. As described in [16], most of the computing unit area is

occupied by multi-precision floating point FUs which make possible to achieve a

peak compute power of 8 TFLOPS.

The RVU ISA is based on operand size reconfiguration to create instructions with

variable vector width within a RVU instance, that is operands varying from 4 Bytes

to 256 Bytes. However, it is also capable of inferring large vectors by aggregating

neighbor instances and create instructions ranging from 256 Bytes to 8 kBytes

[19, 24, 25]. Each RVU instance can request a region of memory from another

memory vault or even request an entire register from a distinct instance using the

internal logic-layer communication path. Hence accessing all memory space

without restrictions. Moreover, as RVU augments the CPU data-path, native host

instructions and PIM instructions are expected to happen in the same binary and use

the same address space. Listing 1 illustrates this behavior, where it is possible to

notice that both host (x86) and PIM (RVU) instructions are explicitly accommo-

dated in the same code. In this example, the assembly code shown highlights RVU

code using the PIM prefix, followed by vector operation size (i.e., 256 Bytes),

operation (e.g., LOAD, VADD), element-operand size (e.g. BYTE, WORD,

DWORD, QWORD), and finally the RVU internal registers. This type of code

generation can be automated, and the compiler must be aware of the PIM

architecture, as presented in [2].

4 Proposed Mechanism

The goal of this paper is to provide an efficient implementation of host-Near-Data

Accelerator (NDA) interface, thus allowing the transparent utilization of 3D-stacked

memory bandwidth with the lowest possible performance overhead. Figure 1

illustrates the proposed datapath to overcome the challenges concerning instruction-

level offloading, data coherence, and the intercommunication model used inside the

3D-stacked device, and the next sections will detail its purpose.

4.1 Instruction Offloading

The instruction-level or fine-grain offloading is convenient for FU-centric accel-

erators, since the application execution flow can remain in the host CPU by only

including a dedicated ISA for accelerator’s operations. Here, we consider an
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arbitrary ISA-extension for triggering NDA operations, and also for allowing

binaries to be composed of both host CPU and NDA instructions. Hence, the host

CPU has to fetch, decode and issue instructions transparently to the near-memory

logic without or with minimal timing overhead.

In our modeling, we built the case study ISA upon the x86 ISA, and we use a

two-step decoding mechanism to perform fine-grain instruction offloading to NDA:

host CPU and NDA sides. The modules present in any host CPU, such as TLB, page

walker, and even host registers can be reused by CPU and NDA instructions without

incurring any limitation or additional hardware. For instance, memory access

instructions, such as PIM_LOAD and PIM_STORE, rely on the host address

translation mechanism (from Address Generation Unit (AGU) to TLB), which

prevents hardware duplication in NDA logic, keeping software compatibility and

memory protection. Thus, the host-side interface seamlessly supports register-to-

register and register-to-memory instructions in the near-memory logic, and also

register-to-register instructions between host CPU and NDA logic.

The first step to perform instruction offloading consists of decoding an NDA

instruction in the host CPU. Part of the instruction fields in the NDA ISA can be

used to read from or write to host registers, and to calculate the memory addresses

using any host addressing method. In the meantime, other instruction fields are used

to NDA-specific features, such as physical registers of NDA logic, operand size,

vector width and so on, which are encapsulated into the NDA machine format in the

execution stage.

In the host CPU pipeline, all NDA instructions are seen as store instructions,

which are issued to the Load-Store Queue (LSQ) unit. This characteristic allows

each NDA to be addressed at compile time (memory mapped), and therefore

properly dispatched to the correct NDA within a vault controller. The NDA
Instruction Dispatcher unit illustrated in Fig. 1 represents the modifications made in

the LSQ to support the instruction-level offloading. As NDA instructions are sent as

regular packets to the memory system, they are addressed by the destination NDA

unit and an architecture-specific flag is set in the packet to differ it from typical read

Fig. 1 Overview of the proposed datapath for efficient utilization of NDA logic. The orange boxes
represent the additional modules required by the proposed mechanisms. The NDA units distributed along
memory vaults is represented by the blue boxes. (Colour figure online)
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and write requests. When the packet arrives at the vault controller, the second step

of the offloading mechanism takes place on the memory side: the instruction fields

are extracted from the packet and decoded by the NDA FSM, where data will be

finally be transferred or modified. By using this methodology, we decouple NDA

logic from the host interface and, thus, the NDA logic can be easily extended

without implying in modifications either to the host CPU or the host-NDA interface.

Further, the NDA Instruction Dispatcher unit is also responsible for violation

checking between native and NDA load/store requests. An exclusive offloading port

connects the LSQ to the host memory controller directly. The NDA instructions are

dispatched in a pipeline fashion at each CPU cycle, except for the memory

instructions that need its data to be updated in the main memory and invalidated in

the cache memories to keep data coherent, which is detailed in Subsection 4.2.

4.2 Cache Coherence Support for NDA

Cache coherence in near-data architectures must not only keep shared data between

cache hierarchy and processors, but also between cache memories and main

memory with processing logic, since both NDA and host instructions may have

access to a shared memory, which is typically a DRAM. However, traditional

coherence mechanisms (e.g., Modified, Owned, Exclusive, Shared, Invalid

(MOESI) protocol), may not be sufficient to keep coherence in NDA because such

protocols will require intense traffic of snooping messages in a narrower

communication channel, which may be a source of bandwidth and time overhead.

To minimize this overhead, and to maintain coherence with a fine-grain protocol,

we delegate the offloading decision to the compiler so that it can minimize data

sharing. Hence, the coherence mechanism proposed in this work invalidates only

conflicting memory region of the cache hierarchy at running time.

The proposed cache coherence mechanism behavior is illustrated in Figure 2, and

it works as follows: Before sending a memory access instruction (illustrated as PIM
LOAD 256B from address 0x200), the LSQ unit emits a flush request of the

corresponding NDA memory operand size (256 Bytes) targeting the same address

of the memory operation (0x200). The flush request is divided according to the

cache line size, and it is sent to the data cache memory port. The operation size can

range from 4 Bytes to 8 KBytes [2, 25]), and considering a cache line size of

64 Bytes, 4 flush operations are required to flush 256 Bytes of data, as illustrated in

Fig. 2. The flush request is sent to the first level data cache and then it is forwarded

to the next cache level until it arrives at the last level cache, where the request is

transmitted back to the LSQ unit. At each cache level, a specific hardware module

interprets the flush request and triggers lookups for cache blocks within the address

range of the NDA memory access instruction that originated the flush request. If

there are cache blocks affected, they will either cause a writeback or an invalidate
command that is enqueued in the write-buffer and finally, the flush request is

enqueued. It is important to notice that the proposed mechanism maintains

coherence between a single-core host and NDA. However, for multi-core host CPUs

emitting instructions to NDAs, we need an existing cache coherence, (e.g. MOESI),

to be in charge of keeping data shared coherent between the hosts. After the last
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flush operation is flagged as done, the NDA Instructions Dispatcher allows the NDA
instruction to follow its way towards the main memory. This way, the PIM

instruction and the in-cache data will follow in-order towards the main memory,

which ensures data coherence.

4.3 NDA Instructions and Data Racing Management

Since host CPU and NDA instructions share the same address space, it is likely that

data race within the 3D-stacked memory occurs. Also, the host may request data

whose target vault is not the same as the vault where the data is being processed by a
PIM instruction. Excluding the interference of requests from the host CPU, a code

region that triggers multiple NDA instances is prone to have a data race between

requests from distinct instances. Moreover, PIM instructions can use registers and

memory addresses from distinct vaults to achieve high performance, however these

behaviors also increase the chances of data racing. Additionally, a single instruction

may trigger multiple PIM units at once, which requires efficient control over

internal communication. Therefore, leaving data racing unmanaged can potentially

cause data hazards, incorrect results, and unpredictable application behavior. For

this reason, a data racing protocol is required to keep requests ordered and

synchronized.

We consider a crossbar switching tree as an implementation of the interconnec-

tion network used in the logic layer of a 3D-stacked memory. This network is not

only used for a request coming from the host CPU, but also requests made from one

vault to another, which are called here as intervault requests. On top of that, we

implemented a protocol for solving coherence and data racing of host-NDA and

NDA-NDA communication using an acquire-release transaction approach. To

enable the proposed communication, we define three commands to use within the

intervault communication subsystem: memory-write and memory-read, and regis-
ter-read requests. These requests can be used with either acquire or release flag and

they carry a sequence number related to the original NDA instruction, which allows

maintaining the ordering of the requests.

Fig. 2 Cache Coherence Protocol - Example for a 256 Bytes PIM LOAD instruction
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NDA Instruction and Data Racing Manager module is highlighted in Fig. 1,

which allows the PIM architecture to synchronize and keep the order of memory

requests as soon as the host CPU or NDA instructions arrive in the NDA logic.

4.3.1 Intervault Communication

As aforementioned, PIM instructions may require data from different memory

vaults to better use the available resources. For instance, Fig. 3 illustrates the

sequence of operations for allowing a PIM_LOAD instruction that arrives in the

vault 0, to access data from the vault 2. In short, when an NDA instruction is

dispatched from the LSQ unit, it crosses the HMC serial link and arrives at the Data

Racing Manager (shown in Fig. 1). In this module, the acquire memory-read or

acquire memory-write requests are generated for memory access instruction, or

acquire register-read requests for modifying instructions involving registers from

different vaults. In case of memory access the acquire memory-read is generated for

LOAD instructions, and it is sent to the source vault. For STORE instructions, the

acquire memory-write is generated, and this command is sent to the destination
vault. Similarly, instructions that demand two sources require two acquire
commands that are sent to the source vaults, while the destination vault is

responsible for the release commands.

Finally, when the NDA instruction is decoded in the NDA FSM, its LSQ unit

generates a memory-write, memory-read or register-read request with a release flag.
In the target vault controller, the release request will either unlock the register-read
instruction in the NDA’s Instruction Queue or remove a blocking request from the

memory buffer, according to the instruction type. Thus, the NDA execution flow can

continue without any data hazard. Internally, the NDA Instruction and Data Racing
Manager submodule called Instruction Splitter is responsible for identifying the

source address/register according to instructions.

Fig. 3 Intervault communication protocol example for a 256 bytes PIM LOAD
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As another example, the instruction presented in Listing 2 is a vector ADD where

the PIM placed within vault 0 requires data from registers belonging to PIMs within

vault 10 and vault 28, respectively. In this case, two acquire register-read
commands are dispatched from NDA Instruction and Data Racing Manager (to

PIM_10 and PIM_28), and the original instruction is sent to the destination PIM.

4.3.2 Big Vector Instructions Support

Taking advantage of the intervault protocol, it is possible to provide resources for

big vector instructions that can operate all PIM units at once.

Listing 3: Example of a Big Vector PIM ADD Instruction

PIM_8192B_VADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_3, PIM_0-31_R8192B_2

Considering the case study presented in Section 3, each PIM unit manages

256 Bytes, and within an environment of 32 vaults up to 8192 Bytes of data can be

accessed in parallel fashion [2, 25]. As illustrated in Listing 3, it is possible to

trigger 8192 Bytes at once with the same instruction. In this case, 32 PIM units need

to be triggered, concurrently. For this, the NDA Instruction and Data Racing
Manager splits the original instruction into 32 sub-instructions. Each sub-instruc-

tion must be delivered to the correct NDA unit (source and destination) to keep

processing consistence and data coherence. Hence, it is possible to adopt the same

protocol illustrated in Figure 3, and similarly to the case of the instruction in

Listing 2, it is possible to trigger many sub-instructions as necessary to support big

vector instructions. This means that several acquire and release commands may be

generated to allow the allocation of the demanded resources.

5 Experimental Setup and Results

In this section, we present the methodology used to evaluate our mechanism and

results.

5.1 Evaluation Setup

In order to accurate our simulation, we have implemented all the mechanisms

mentioned in Section 4 on the NDA framework presented in [24], which comprises

a GEM5-based simulator [7], and an automation compiler tool for NDA software

development [2, 24]. Further, we use a subset of the PolyBench benchmark suite to

evaluate the impact of the proposed architecture in most of scientific kernel
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applications [22]. Also, to show the impact on performance caused by the proposed

mechanisms, we compare the case study against a General Purpose Processor (GPP)

with the largest vector capacity available (AVX-512). This way, we can analyze

how much performance is hindered due to cache coherence and intervault
communication. Table 1 summarizes the setup simulated.

5.2 Performance Results

Figure 4 presents the execution time results for small kernels, which is decomposed

into three regions. The bottom blue region represents the time spent only computing

the kernel within the in-memory logic. The red region highlighted in the middle

depicts the cost of inter-vault communication, while the top green region represents

the cost to keep cache coherence. It is important to notice that the blue region also

represents the lowest possible execution time, which occurs when no penalties are

inferred by the intervault communication (red region) and cache coherence (green

region) mechanisms.

In Figure 4, the vecsum kernel shows that more than 70% of the time is spent in

cache coherence and internal communication, while only 30 % of the time is

actually used for processing data. Although most of the vecsum kernel is executed in

NDA, hence the data remains in the memory device during all execution time and

no hits (writeback or clean eviction) should be seen in cache memories, there is a

fixed cost for lookup operations to prevent data inconsistency. Regarding the

matrix-multiplication and dot-product kernels in Figure 4, the impact of flush
operations is amortized by the lower ratio of NDA memory access per NDA

modification instructions.

Since the flush operation generally triggers lookups to more than one cache block

addressed by an NDA instruction, the overall latency will depend on each cache-

Table 1 Baseline and design system configuration

Intel Skylake Microarchitecture

4GHz; AVX-512 Instruction Set Capable; L3 Cache 16MB

8GB HMC; 4 Memory Channels

HMC

HMC version 2.0 specification

Total DRAM Size 8GBytes - 8 Layers - 8Gbit per layer

32 Vaults - 16 Banks per Vault; 4 high speed Serial Links

RVU

1GHz; 32 Independent Functional Units; Integer and Floating-Point Capable

Vectorial Operations up to 256Bytes per Functional Units

32 Independent Register Bank of 8x256Bytes each

Latency (cycles): 1-alu, 3-mul. and 20-div. integer units

Latency (cycles): 5-alu, 5-mul. and 20-div. floating-point units

Interconnection between vaults: 5 cycles latency
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level lookup latency. Also, for each flush request dispatched from the LSQ, all cache

levels will receive the request forward propagation, but it is executed sequentially

from the first-level to last-level cache. Only improvements in lookup time or

reduced cache hierarchy would impact in the performance of flush operations. On

the other hand, inter-vault communication penalty generally has little impact on the

overall performance. For the transposed matrix-multiplication kernel, it is possible

to see the effect of a great number of register-read and mem-read to different vaults
inherent to the application loop.

Figure 5 shows the PolyBench runtime for the PIM case study over the GPP

AVX-512 baseline. Regarding flush operations and inter-vault as costs that could be

avoided, the blue region (bottom region in Figure 5) represents the time dispended

by the PIM to compute logic/arithmetic operations, which is inherent to the PIM

design. On the other hand, the red region (top region) represents the time consumed

by the proposed mechanisms to keep cache coherence and allow communication

between different memory vaults and PIM units.

In general, considering the presented mechanisms, the PIM can achieve

performance improvements between 2.5� (jacobi-2D) and 14.6� (jaboci-1D) over
the baseline (AVX-512). For jacobi-2D, 82% of the execution time is used for

computation, and hence only 18% for cache coherence and inter-vault communi-

cations. As an opposite example, for applications syrk, syrk2k and bicg, it is possible
to achieve speedup of 13�, 13.6� and 12.5�, respectively. However, int these

cases, the proposed mechanisms use between 52% and 54% of the execution time to

keep cache coherence and allow inter-vault communication.

Therefore, our proposal provides a competitive advantage in terms of speedup in

comparison to other HMC-instruction-based NDA setups. For instance, the proposal

presented in [17] relies on uncacheable data region, hence no hardware cost is

introduced. However, it comes with a cost in how much performance can be

extracted when deciding if a code portion must be executed in the host core or in

NDA units. Besides, the speculative approach proposed in [8] has only 5% of

performance penalty compared to an ideal NDA, but the performance can

profoundly degrade if rollbacks are frequently made, which will depend on the

Fig. 4 Execution time of common kernels to illustrate the costs of Cache Coherence and Inter-vault
communication
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application behavior. Also, another similar work [4] advocates locality-aware NDA

execution to avoid flush operations and off-chip communication. However, they do

not consider that large vectors in NDA can amortize the cost of cache coherence

mechanism even if, eventually, the host CPU has to process scalar operands on the

same data region.

6 Conclusions and Future Work

In this paper, we presented an efficient approach to solve both offloading of

instructions, keep data coherence, and manage communication in PIM architectures.

Based on the hybrid Host-PIM style, our mechanism transparently allows offloading

of PIM instructions directly from a host processor without incurring overheads. The

proposed data coherence protocol offers programmability and cache coherence

resources to reduce programmers and compilers’ effort in designing applications to

be executed in PIM architectures. This work presents an acquire-release commu-

nication protocol to cope with distributed PIM units requirements. The experiments

show that our mechanism can accelerate applications up to 14.6� compared to a

AVX architecture, while the penalty due to cache coherence and communication

represents an average percentage of 18% over the ideal PIM. In future work, we

intend to improve the design presented, aiming at reducing the costs of offloading

and cache coherence, allowing the adoption of PIM with zero-cost latency. Also, we

expect to analyze a broader range of applications using our proposed data-path.
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