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Abstract 

 
Several research works point out to share L2 cache for two or more cores. Their main goals are to improve the data 

access through shared addresses. However, it is hard to define the best organization and sharing model, since shared 

cache can improve the performance of sharing data, but it can also increase the number of conflict and misses. In this 

way, shared cache needs more study and evaluation considering different workloads. Therefore, the objective of this pa-

per is to investigate the impact of multiple processing cores sharing different organizations of L2 cache. Based on these 

organizations, a set of scientific parallel applications is evaluated in order to tune the best cache organization on a simu-

lated 32-core chip. Results point out to the increase of the final performance varying L2 cache organization with the in-

crease of the L2 line size, which achieves better results than cache size. Moreover, applications with memory random 

access increase its performance just varying the L2 cache sharing. 

 

 

 

1 Introduction 

Currently, researchers have changed the focus on proces-

sor architectures from traditional parallel techniques 

[1][2][3][4][5] as pipelining, superscalarity and multi-

threading to multi-core and many-core approaches. In or-

der to exploit the Thread Level Parallelism (TLP), new ar-

chitectures based on multi-core processors can improve the 

response time on desktops and server computers running 

different threads from one or more applications on several 

processing cores. For this reason, those traditional parallel 

techniques have been simplified and coupled with the new 

generation of multi-core processors. 

In a superscalar pipeline [2], besides the instruction execu-

tion divided on stages, it is possible to compute more than 

one instruction per cycle. This behavior is supported by 

some characteristics, such as: diversity of functional units, 

reduction of data dependence and others. Hence, supersca-

lar processors are capable of increasing the performance 

speedup due to the high level of instruction parallelism. 

The multithreading support [4][5] is a well-known tech-

nique that focuses on coarse-grain parallelism based on 

instruction stream (thread) level, increasing the thread 

throughput. There are some different types of TLP tech-

niques, as follows: Simultaneous Multithreading (SMT), 

Blocked Multithreading (BMT), and Interleaved Multith-

reading (IMT). All of them work with more than one ac-

tive thread, varying the number of threads in execution and 

the switching policy. 

However, due to the innovative on the integration technol-

ogy, which leads to an increase on the number of transis-

tors per chip, the multi-core and many-core chips are alter-

natives to improve the data parallelism support and 

throughput. Multi-core architectures [6][7][8][9][10] im-

prove performance of multithreaded applications, and also 

reduce the total power dissipation. For this reason, they are 

good solutions for several physics problems as wire size, 

scalability and others. 

On multi-core architecture, the processor has a native par-

allelism to support several threads based on several cores. 

This native parallelism is different from traditional tech-

niques (for instance, SMT) that add complexity on a pipe-

line. For instance, on SMT technique, the processing cores 

are emulated on a superscalar architecture. Besides, due to 

the increase on the number of resources on the chip (inte-

gration technology), the next generations of many-core 

chips can also incorporate some superscalar techniques in 

order to increase not just the Thread Level Parallelism 

(TLP) but also the Instruction Level Parallelism (ILP). 

At this point, and considering a large number of threads 

executing on several processing cores, what is the memory 

subsystem organization? What is the performance of work-

loads? For a specific workload, can its behavior point out 

to specific cache memory organization? 

Nowadays, commercial multi-core processors show differ-

ent memory organizations from model to model, without a 

very clear strategy. For instance, one can find processors 

with private L2 caches or shared L2 cache, and also shared 

multi-sliced cache. Therefore, the definition of cache or-

ganization for next multi-core and many-core generations 

is an open problem, and it has great impact on the perfor-

mance of different application types. 

Focusing on problems related to cache memory organiza-

tion on many-core chip processors, the objective of this 

paper is to investigate the impact of multiple processing 

cores sharing the L2 cache. Simulation tools and well-

known parallel workloads are used in order to define rela-

tion between application and shared L2 cache memory. 

This paper is organized into the following sections: Sec-

tion 2 describes related works, Section 3 presents evalua-

tion method, simulation model and workload description, 
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Section 4 presents the proposed experiments and shows 

results, and finally Section 5 describes conclusions and fu-

ture works. 

2 Related Works 

Due to the next generation of many-core processors, the 

memory bandwidth is an important issue. Hence, some re-

lated works from Borkar [11] and Loh [12] point out to 

three-dimension stacked memory integration as a potential 

solution. However, to achieve high performance on chip, it 

is important to evaluate the shared cache memories, since 

they are the first alternative and level before the 3D shared 

memory. For this reason, there are several research works 

focusing on shared cache memories, the influence of appli-

cation types, and their impact on performance, as follows: 

On the research presented by Marino [13], the main goal is 

to evaluate the performance of shared L2 caches focusing 

on sharing versus size. In this way, two approaches were 

modeled: L1 and L2 private caches, and L1 private with 

L2 shared caches. The total number of processing cores 

was 32, and the cache size was modified from 1Mbytes to 

4Mbytes. In order to verify the performance of all architec-

ture combinations, the SPLASH benchmark composed of 

Ocean, Raytrace, Volrend, and others was executed and 

evaluated. The main conclusion is related to better speedup 

sharing L2 cache than private L2 caches increasing the 

speed up to 32 cores. 

In the same way, the work from Jaleel et al. [14] describes 

an evaluation of shared cache memory, but focusing on the 

last cache level and parallel bioinformatics workloads. Ac-

cording to the paper results, the main characteristic of 

these workloads is the high data sharing by up to 95%. For 

this reason, the goal of the paper is to identify the impact 

of shared caches to increase the performance. The main 

conclusion is related to the increase of shared cache size 

proportionally to sharing behavior of applications. Moreo-

ver, multiple and private caches reduce the data-sharing 

behavior, and consequently, the performance. 

The research work from Hsu et al. [15] shows many-core 

processors as a trend, and points out the cache hierarchy as 

a problem in order to support a large number of cores and 

threads. The main goal is to identify the effect of L2 and 

L3 caches, considering the different sizes and instruction 

addresses prefetch. The evaluation methodology focuses 

on on-line transaction processing benchmark (TPC-C), 

MPI in heterogeneous scenarios and private versus shared 

caches. The main results show that shared cache can pro-

vide better space efficiency and code prefetching improves 

performance, but it is not enough to reduce the gap with 

shared caches. 

The work from Zahran [16] describes the importance of 

memory hierarchy and coherency protocols. The evalua-

tion methodology is based on a trace-driven simulator 

called CHESS (Cache Hierarchy Estimator using Scalable 

Simulator) and the benchmark suite was SPLASH, the 

same one used by Marino [13]. In this case, the programs 

evaluated were the following: Barnes, Water and MP3D. 

The environment was designed to simulate 1, 2, 4 and 8 

processing cores. However, the results point out to better 

performance of memory system when L1 and L2 private 

caches are used in accordance with a good coherency pro-

tocol for L2 level. 

In this paper we show some problems related to shared 

cache memories depicting the reduction of performance, 

considering different cache organizations and cache para-

meters such as: cache size, associativity, line size and 

some considerations about physical size. Moreover, our 

proposal takes into account the importance of memory la-

tencies on many-core processors, which are not mentioned 

in related works. Consequently, our goal is to investigate 

performance limits, but mainly, to evaluate cache architec-

ture configurations and present when a sharing achieves 

high or low performance, coupled with a parameter analy-

sis in order to achieve best performance. To achieve these 

results, we used OpenMP based parallel applications from 

NAS parallel benchmark (NPB) [17] that represents a large 

set of scientific application behaviors. 

3 Evaluation Method 

Performance evaluation is required at every stage in the 

life cycle of a computer system, including its design and 

manufacturing [18]. On design of processor architecture 

some different evaluation techniques can be used, but the 

appropriate selection of techniques, performance metrics 

and workloads are very important to compare architectural 

and organizational changes. In terms of performance eval-

uation, three models must be considered: analytical, simu-

lation and measurement. 

For a general-purpose computer architecture evaluation 

with complex memory organization, simulations offer 

good features needing neither prototyping nor analytical 

formulations, which use to be imprecise and hard to model. 

Thus, for our study, all the evaluations were made using 

simulation techniques. 

3.1 Simulation Model 

The simulation environment used was Simics from Virtu-

tech AB [19], which was chosen because it is a full-system 

simulator platform at the instruction set level. Thus, the 

results of execution time are based on executed instruc-

tions and execution cycles. Executed instructions and stall 

cycles generated by each architecture component gives the 

number of cycles. 

According to the goal of this paper, Simics was configured 

to model some cache organizations in order to evaluate the 

performance of parallel workloads. The simulation model 

presented in Figure 1 is an extension of the built-in g-

cached model [20], which instantiates some special Simics 

components: 

•Id-Splitter: To separate data between instruction and data 

cache. 

•Splitter: Module to define the cache size, line size and 

other characteristics. 
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•Trans-Staller: Simple device used to simulate all the 

memory latencies. 

Moreover, in order to respect all cache configurations and 

maintain a consistent state during the simulations some 

coherence parameters were defined such as: 

•Snooper: Snooper MESI-based coherence protocol. 

•Higher Level Caches: Parameter to ensure coherence be-

tween multiple levels on cache memory hierarchy. 

3.2 NPB Workload 

Application benchmarks are composed of representative 

subset of application functions of well-known algorithms. 

Thus, benchmarks are generally described in terms of 

functions to be performed. In this paper, the workload 

NPB (NAS Parallel Benchmark) [17] was used for all 

evaluations. This benchmark consists of a set of applica-

tions where each one represents different kernel of numer-

ical methods described in details in Table 1. The NPB 

workload is based on version 3.3, implemented with 

OpenMP with W class size and compiled with SunStudio 

11 using -fast performance parameter. 

4 Cache Sharing Experiments and 

Results 

This section presents the results obtained from NPB work-

load applications running on Solaris 10 operating system 

on the modeled experiments. For this reason all the results 

are from application simulation with operational system 

influence. The results were based on five executions of 

each experiment, (approximately two months of simulation 

time) where each experiment was executed once previous-

ly in order to warm-up the cache and reduce transient ef-

fects as cold start effects [21]. The executions were made 

sequentially in order to add non-determinism between the 

executions on the simulation environment [22]. 

The modeled parameters on Simics were based on a chip 

multiprocessor featured in 45 nm integration technology 

and the main memory built on 65 nm technology. The 

main memory and the cache memories have multiple ports 

and it does not represent any contention in order to inves-

tigate only the impact of shared cache. The latency values 

were obtained from CACTI [23] memory modeling tool 

version 5.3. 

 

Figure 1   Model for cache memory simulation on the Sim-

ics with details of coherence protocol. 

Table 1   NAS Parallel Benchmark applications [17]. 

Name Description Memory 

Usage 

BT.W To solve 3D compressible Navier-Stokes equations with an implicit algorithm. Based on Alternating 

Direction Implict (ADI) finite differences solver where the resulting system are Block-Tridiagonal, 

which are solved sequentially along each dimension. 

2.7 MB 

CG.W Conjugate Gradient method used to compute the smallest eigenvalue of a large, sparse, unstructured 

matrix. Exercising unstructured grid computations and communications. 

13.7 MB 

MG.W Multigrid V-cycle method used to solve the 3D scalar Poisson equation. The algorithm works be-

tween coarse and fine grids. It exercises both short and long distance data movement. 

55.7 MB 

EP.W Embarrassingly Parallel benchmark, which generates pairs of Gaussian random. Aiming to establish 

the reference point for peak performance of a given platform. 

1.3 MB 

SP.W Computational Fluid Dynamics (CFD) application similar to BT. The problem is based on a Beam-

Warming approximate factorization that decouples in 3D. The resulting Scalar Pentadiagonal system 

is solved sequentially along each dimension. 

8.7 MB 

LU.W Simulated CFD application that uses symmetric successive over-relaxation (SSOR) method to the 

system resulting from finite-difference discretization of Navier-Stokes equations in 3D by splitting 

into block Lower and Upper triangular systems. 

6.6 MB 

IS.W Test Integer Sort operation that is important in particle method codes. This code exercises both integ-

er speed and communication performance. 

3.4 MB 

FT.W Computational kernel of a 3D Fast Fourier Transform (FFT) method. FT performs three 1D FFT, one 

for each dimension. 

20 MB 

UA.W Unstructured Adaptive benchmark, which exercises irregular and continually changes memory ac-

cesses measuring its effect. 

16.3 MB 
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4.1 Experiment 1: Base Experiment 

The proposed experiment is based on a CMP (Chip Multi-

processor) with 32 cores. Each core has its own L1 cache 

with variations on L2 Cache. On the first model, 1Core/L2, 

each core has its own L2 cache. The second model, 

2Cores/L2, each group of 2 cores shares one L2 Cache. 

The same occurs to 4Cores/L2, 8Cores/L2 16Cores/L2 and 

32Cores/L2, where 4, 8, 16 and 32 cores share the same L2 

cache, respectively. Figure 2 illustrates all the base simu-

lation models used as experiment on this section. 

The parameters modeled on the Simics are presented in 

Table 2, where the latencies for all components were ob-

tained by CACTI as explained previously. 

The execution speedup from the base experiment is pre-

sented in Figure 3 showing that just two applications (CG 

and UA) had its performance increased as more cores 

share the same cache. The other applications had in gener-

al its performance degraded regarding the increase on the 

number of cores sharing the L2 cache. It is important to 

notice that 2Cores/L2 organization had its performance 

increased just in 3 of 9 cases (BT, CG and UA). The SUM 

item in the plot represents the speedup based on the sum of 

execution time of all applications. The sums show degra-

dations in performance by organization, where 2Cores/L2 

had 0.02%, 4Cores/L2 had 1.56%, 8Cores/L2 had 4.66%, 

16Cores/L2 had 6.06%, and 32Cores/L2 had 5.99% of de-

gradation in the final performance, related to 1Core/L2 or-

ganization. 

Considering the applications CG and UA, which had in-

creased performance up to 32Cores/L2 and analyzing its 

descriptions, it is possible to identify that the characteristic 

of unaligned access is the main reason for their perfor-

mance speedup. These applications access data randomly, 

and so, they decrease the number of address conflicts as 

the cache memory is shared. 

 

 

Figure 2   Cache memory organizations modeled on the 

base experiment. 

 
Figure 3   Speedup with base point on 1Core/L2 comparing different L2 cache memory organizations classified by application 

and SUM which represents sequential execution of all applications. 

Table 2   Modeled components parameters for the base experi-

ment. 

Component Parameter Value 

Chip 

Multiprocessor 

SO Solaris 10 

32 Cores UltraSparcIII+ 

Execution In-Order 

Frequency 2 GHz 

CPI 1.0 

Cache L1 

Size 32 KB+32 KB 

Line Size 32 B 

Set Associative 2 Ways 

Feature Size 45 nm 

R/W Latency 2 Cycles 

Interconnection Latency 2 Cycles 

Replacement LRU 

Write Policy Write-Through 

Write Allocation No 

Cache L2 

Slice Size 1 MB / 32MB 

Line Size 64 B 

Set Associative 8 Ways 

Feature Size 45 nm 

R/W Latency 4 Cycles 

Interconnection Latency 4 Cycles 

Replacement LRU 

Write Policy Write Back 

Write Allocation Yes 

Coherence Protocol MESI Snooper 

Main  

Memory 

Size 1 GB 

Feature Size 65 nm 

R/W Latency 78 Cycles 
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The L2 cache miss results are verified by MPKI (cache 

misses per kilo instructions) metric that were used in order 

to represent the impact of cache misses on the execution 

by showing the ratio between misses and instructions.  

Figure 4 presents the numbers of L2 MPKI which de-

creases on BT, CG, IS and UA applications. From the first 

configuration 1Core/L2 to 2Core/L2 the reductions were    

-3.53%, -18.90%, -1.84% and -7.35%, respectively. From 

the first configuration 1Core/L2 to 4Core/L2, the reduction 

where obtained just for CG (-0.30%) and UA (-7.36%). 

In order to investigate other possible factors that should 

have impact on the improvement of performance for CG 

and UA applications, the last metric analyzed was Ex-

ecuted Instructions, which can decrease as more balanced 

the application is, since the processor will be less idle ex-

ecuting operating system tasks. Figure 5 shows the num-

ber of executed instructions for each organization per ap-

plication. From the first organization (1Core/L2) to the last 

(32 Cores/L2), the applications CG, MG, IS and UA in-

creased the number of executed instructions in 44.93%, 

4.93%, 0.08% and 42.85%, respectively. For BT, EP, SP, 

LU and FT applications, the reduction on execution steps 

were: -0.13%, -2.75%, -3.25%, -13.42% and -27.40%, re-

spectively. 

Considering the L2 cache sharing, it is supposed to lead 

the system to a decrease on cache misses, as the cores can 

easily access shared variables. However, as more cores 

share the same L2 cache, their address conflicts tend to in-

crease. In the same way, applications with random memo-

ry access characteristics can still have advantage in the 

shared L2 cache organizations.  

Consequently, one can observe that all applications of 

NAS benchmark suite have different memory usage cha-

racteristics, and because of this, it is important to evaluate 

and identify the correct behavior of each application to 

achieve the highest performance.  

According to the negative results obtained on this first ex-

periment, some other experiments were planned in order to 

evaluate the application performance with some different 

L2 cache parameters, but still considering the shared L2. In 

this way, the next sections present results for 2Cores/L2 

using different parameters as increase on the cache size, 

improvement on the number of ways set associativity and 

line size for the modeled L2 cache. 

 

Figure 4   Number of L2 MPKI (cache misses per kilo instructions) for different L2 cache memory organizations per applica-

tion, from the first experiment. 

 

Figure 5   Number of executed instructions (operating system and applications) for evaluated cache memory organizations on 

the base experiment separated by application. The SUM represents all applications together. 
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4.2 Experiment 2: Cache Size 

This experiment considers an increase on the cache size of 

each slice of the 2Core/L2 organization, thus, analyzing 

the impact of this increase on the final performance and 

cache misses. Notice that this increase on slice size for 

2Cores/L2 (2 MB per slice, total of 32 MB) is very useful 

in order to compare with the first experiment which uses 

32MB and 16MB on the total cache size for 1Core/L2 

(1MB per slice) and 2Cores/L2 (1MB per slice) respective-

ly. The changes on modeled parameters are presented on 

Table 3, where one can see that read/write latency in-

creased in 1 cycle from the base experiment once cache 

size increased from 1MB to 2 MB on each cache slice. 

Considering the change on cache size all workloads were 

executed for 2Cores/L2 with 2MB each slice of L2 cache. 

The speedup results are presented in Figure 6 comparing 

the base experiment with the cache size experiment; the 

speedup was calculated with the base point on 1Core/L2 

from the first experiment. Considering the increase on the 

cache size, the performance obtained had a degradation of 

less than 1% comparing to the 1Core/L2 modeled with 1 

MB. This happened, mainly, because the increase on the 

cache size leads to a reduction on cache misses, which 

does not pay for the increase on its access time penalty that 

increased. Therefore, all L1 access to L2 now has this 

overhead. 

The number of L1 and L2 cache misses per kilo instruc-

tions and L1 lost stall cycles for this experiment can be ob-

served in Figure 7. One can observe the L2 cache MPKI 

variation from 1Core/L2 with cache slice of 1MB to 

2Core/L2 with cache slice of 2MB was -8.16% for BT, -

33.15% for CG, -1.22% for MG, -20.28% for EP, 1.68% 

for SP, -14.34% for LU, -14.22% for IS, -5.66% for FT, 

and -16.40% for UA. The increase on the stalled cycles 

caused by the latency for the data access on the L2 cache 

increased the stall time from 1Core/L2 with 1MB cache 

slice to 2Core/L2 with 2MB cache slice of 20.67% for BT, 

21.01% for CG, 24.46% for MG, 16.21% for EP, 24.57% 

for SP, 20.98% for LU, 25.66% for IS, 24.92% for FT, and 

22.63% for UA. 

For this reason, the number of L2 cache misses should de-

crease to lead a system to pay for the cost of the increase 

on the data access latency for L2 cache. 

 4.3 Experiment 3: Associativity 

In this experiment the number of ways on the set associa-

tivity of L2 cache was doubled for all cache slices compar-

ing to the first experiment. Table 4 shows values for L2 

cache parameters modeled on this experiment. One can see 

the increase on the read and write latency modeled by 

CACTI and caused by the increase on the associativity. 

After modeled the parameters, the experiment was ex-

ecuted using 2Cores/L2 organization for all workloads. 

The speedup results comparing with the base experiment is 

shown in Figure 8. Using the base point 1Core/L2 for 

speedup calculus, there is a total reduction of -3.46% on 

performance occurred as the associativity was doubled, 

and noticing that when the associativity increases the tem-

poral locality is improved. 

Table 3   Modeled components parameters for the second 

experiment regarding cache size. 
Component Parameter Value 

Cache L2 

Slice Size / Total Size 2 MB / 32 MB 

Line Size 64 B 

Set Associative 8 Ways 

R/W Latency 5 Cycles 

 

Figure 6   Speedup calculated based on 1Core/L2 from base 

experiment, comparing different L2 cache memory organiza-

tions classified by application and SUM which represents se-

quential execution of all applications. 

 

Figure 7   Number of L2 MPKI (a), number of L1 MPKI (b) 

and L1 lost stall cycles(c), comparing the second and first expe-

riment. 

Table 4   Modeled components parameters for the third ex-

periment about associativity. 
Component Parameter Value 

Cache L2 

Slice Size / Total Size 1 MB / 16 MB 

Line Size 64 B 

Set Associative 16 Ways 

R/W Latency 6 Cycles 
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Figure 9 shows the L1 and L2 MPKI, and the L1 stalled 

cycles while accessing the L2 cache. According to L2 

MPKI, there was an increase of 0.24% for BT, 36.64% for 

MG, 281.60% for EP, 25.30% for SP, 3.86% for LU, and 

14.27% for FT, and the applications CG, IS and UA ob-

tained an decrease of -18.15%, -1.22% and -6.56%, respec-

tively, comparing 1Core/L2 with 8-way set associativity 

with 2Core/L2 16-way set associativity. According to L1 

lost stall cycles, the increase was higher than the second 

experiment, achieving 25.86% for BT, 22.42% for CG, 

23.08% for MG, 14.93% for EP, 24.17% for SP, 23.14% 

for LU, 25.29% for IS, 25.73% for FT, and 23.82% for 

UA. Notice that in this case the data access time on the L2 

cache was 6 cycles. Thus, once there was not high reduc-

tion on L2 cache misses it is clear that the system should 

suffer speed degradation.  

Related to the increase on associativity, the poor results on 

L2 cache miss reduction were insufficient to pay for the 

increase on L2 cache data access latency and it leaded a 

system to suffer more lost stall cycles and thus the degra-

dation on the final performance. 

4.4 Experiment 4: Line Size 

Finally the impact of line size on the shared cache was 

evaluated. Table 5 shows the parameters that were mod-

eled to execute all workloads on 2Cores/L2 organization. 

The speedup results shown in Figure 10 are based on 

1Core/L2 from the first experiment as the base architecture 

for comparison. This increase on line size, which improves 

the spatial locality, leaded the system to an improvement 

on performance up to 1.95% comparing the 2Cores/L2 

with 128B line size and 1Core/L2 with 64B line size. 

Moreover, there is a higher increase of 2.46% comparing 

2Cores/L2 with line size of 128B and 2Core/L2 using line 

size of 64B. 

L1 MPKI and penalties for accessing the L2 cache and L2 

MPKI are presented in Figure 11. The variation on the L2 

cache misses and L1 misses with latency has leaded to an 

increase on the final speedup. Comparing the 1Core/L2 

from the base experiment with 2Core/L2 of this experi-

ment, the number of L2 MPKI reduced -35.29% for BT, -

41.70% for CG, -19.35% for MG, -23.13% for SP, -

37.51% for LU, -33.38% for FT, and -24.76% for UA as 

the line size increased. For EP and IS there were an in-

crease of 106.20% and 87.24% respectively, but this in-

crease has no impact on the final performance. 

 

Figure 8   Speedup calculated based on 1Core/L2 from base 

experiment, comparing different L2 cache memory organiza-

tions classified by application and SUM which represents se-

quential execution of all applications. 

 

Figure 9   Number of L2 MPKI (a), number of L1 MPKI (b) 

and L1 lost stall cycles(c), comparing the third and first experi-

ment. 

Table 5   Modeled components parameters for the fourth 

experiment about line size. 
Component Parameter Value 

Cache L2 

Slice Size / Total Size 1 MB / 16 MB 

Line Size 128 B 

Set Associative 8 Ways 

R/W Latency 6 Cycles 

 

Figure 10   Speedup calculated based on 1Core/L2 from base 

experiment, comparing different L2 cache memory organiza-

tions classified by application and SUM which represents se-

quential execution of all applications. 
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The L1 lost stalled cycles increased 17.56% for BT, 

11.75% for CG, 16.27% for MG, 11.47% for EP, 17.82% 

for SP, 19.63% for LU, 16.18% for IS, 23.02% for FT, and 

14.79% for UA. Considering the sum of all these results, 

there is a great reduction on L2 misses and a low increase 

on L1 stall cycles leaded the system to an increase on the 

final performance. 

4.5 Summary 

This section presents general comparisons among all expe-

riments presented on the previous sections. Figure 12 

presents the speedup results for all experiments shown on 

this paper, where one can see the bad results increasing the 

cache size and associativity. However, according to line 

size, an increase on the performance of 1.95% was 

achieved, showing the great importance of increase the 

spatial locality, which in our case had greater importance 

than the increase on capacity of the L2 cache. Related to 

the increase on the set associativity, which increases the 

temporal locality, does the system leaded to bad results 

once the allocation size of the cache had decreased, gene-

rating more cache misses. Considering the different expe-

riments, all of them leaded to an increase on access time 

on L2 cache, in this way, it is very clear the importance of 

having a good trade off between penalty time and cache 

misses. 

When the comparison comes to the L2 cache misses per 

kilo instructions, presented in Figure 13, the increase on 

the sharing cache (base experiment) and associativity 

(third experiment) leads the MG and EP application to bad 

results, causing a high L2 cache misses. Looking for these 

specific applications, the cache size (second experiment) 

showed to be the best solution to decrease the cache 

misses. For 7 of 9 applications the increase on line size 

(fourth experiment) leaded the system to a decrease on the 

L2 cache misses showing the best choice for performance 

when L2 cache is shared. 

4.6 Physical Area Analysis 

Since the parameters evaluated on the previous section 

have an impact on the physic cache, this section considers 

the physical cache values, comparing the different memory 

implementations shown in this paper. Table 6 brings more 

detailed cache values of all cache parameters modeled on 

our experiments, showing values of Cache Physical Area, 

matching these cache values to the modeled organizations. 

All the cache slices were modeled on CACTI as just one 

banking cache memory leading to a reduction on the num-

ber of stall cycles waiting cache access. 

But considering the physical size of the cache, it is clear 

that the increase on the line size leads the system to a best 

result of cache misses, decreasing both total physical area 

and total number of cache misses comparing to the organi-

zation 1Core/L2 from base experiment. On the other hand, 

the increase on slice size, leads to a great reduction of 

cache misses, but with great cost on physical size. On a 

many-core context this reduction on cache size is very im-

 

Figure 11   Number of L2 MPKI (a), number of L1 MPKI (b) 

and L1 lost stall cycles(c), comparing the fourth and first experi-

ment. 

 

Figure 12    Speedup calculated based on 1Core/L2 from base experiment, comparing different L2 cache memory organizations 

classified by application and SUM, which represents sequential execution of all applications. Comparing the base experiment 

with experiments varying cache size, associativity and line size. 
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portant, since all the saved space can be used to increase 

the number of cores and interconnections. 

4 Conclusions 

Due to the application performance, the cache memory or-

ganization for next generation of many-core processors is 

not very clear. This paper evaluated some cache memory 

organizations in order to investigate the L2 cache sharing 

impact on a 32-core processor. 

 On the base experiment each L2 cache slice had just 1 MB 

even with more cores sharing the same L2 cache. Once 

these variations on the organization do not resulted on a 

good performance, the cache size, associativity and line 

size were changed and modeled on the point that base ex-

periment showed the first reduction on speedup. 

Spotting future architectures, the results show that as more 

cores share the same L2 cache, the performance may be 

degraded even for just 2 cores sharing the same L2. How-

ever, our evaluations presented that line size helped on re-

duction of -32% on cache misses, increased the system 

performance on 2% for NPB workload, even reducing         

-50% the total amount of memory from 32MB to 16MB. 

Besides, there is a reduction on the total area of cache in     

-27%, increasing space for processor cores or on-chip in-

terconnections. 

Finally, due to characteristic of random access, the appli-

cations achieve a good reduction on cache misses, since 

the number of address conflicts tends to decrease and, on 

the other hand, the communication using shared cache 

tends to be improved. 

Our future works focus on the extension of the cache shar-

ing study analyzing the impact of shared cache on Non-

Uniform Cache Architectures (NUCA) on scientific paral-

lel applications for many-core architectures. 
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