
Investigation of Shared L2 Cache on Many-Core Processors
Marco A. Z. Alves, Informatics Institute, Universidade Federal do Rio Grande do Sul, Brazil

Henrique C. Freitas, Informatics Institute, Universidade Federal do Rio Grande do Sul, Brazil

Philippe O. A. Navaux, Informatics Institute, Universidade Federal do Rio Grande do Sul, Brazil

Abstract

Several research works point out to share L2 cache for two or more cores. Their main goals are to improve the data

access through shared addresses. However, it is hard to define the best organization and sharing model, since shared

cache can improve the performance of sharing data, but it can also increase the number of conflict and misses. In this

way, shared cache needs more study and evaluation considering different workloads. Therefore, the objective of this pa-

per is to investigate the impact of multiple processing cores sharing different organizations of L2 cache. Based on these

organizations, a set of scientific parallel applications is evaluated in order to tune the best cache organization on a simu-

lated 32-core chip. Results point out to the increase of the final performance varying L2 cache organization with the in-

crease of the L2 line size, which achieves better results than cache size. Moreover, applications with memory random

access increase its performance just varying the L2 cache sharing.

1 Introduction

Currently, researchers have changed the focus on proces-

sor architectures from traditional parallel techniques

[1][2][3][4][5] as pipelining, superscalarity and multi-

threading to multi-core and many-core approaches. In or-

der to exploit the Thread Level Parallelism (TLP), new ar-

chitectures based on multi-core processors can improve the

response time on desktops and server computers running

different threads from one or more applications on several

processing cores. For this reason, those traditional parallel

techniques have been simplified and coupled with the new

generation of multi-core processors.

In a superscalar pipeline [2], besides the instruction execu-

tion divided on stages, it is possible to compute more than

one instruction per cycle. This behavior is supported by

some characteristics, such as: diversity of functional units,

reduction of data dependence and others. Hence, supersca-

lar processors are capable of increasing the performance

speedup due to the high level of instruction parallelism.

The multithreading support [4][5] is a well-known tech-

nique that focuses on coarse-grain parallelism based on

instruction stream (thread) level, increasing the thread

throughput. There are some different types of TLP tech-

niques, as follows: Simultaneous Multithreading (SMT),

Blocked Multithreading (BMT), and Interleaved Multith-

reading (IMT). All of them work with more than one ac-

tive thread, varying the number of threads in execution and

the switching policy.

However, due to the innovative on the integration technol-

ogy, which leads to an increase on the number of transis-

tors per chip, the multi-core and many-core chips are alter-

natives to improve the data parallelism support and

throughput. Multi-core architectures [6][7][8][9][10] im-

prove performance of multithreaded applications, and also

reduce the total power dissipation. For this reason, they are

good solutions for several physics problems as wire size,

scalability and others.

On multi-core architecture, the processor has a native par-

allelism to support several threads based on several cores.

This native parallelism is different from traditional tech-

niques (for instance, SMT) that add complexity on a pipe-

line. For instance, on SMT technique, the processing cores

are emulated on a superscalar architecture. Besides, due to

the increase on the number of resources on the chip (inte-

gration technology), the next generations of many-core

chips can also incorporate some superscalar techniques in

order to increase not just the Thread Level Parallelism

(TLP) but also the Instruction Level Parallelism (ILP).

At this point, and considering a large number of threads

executing on several processing cores, what is the memory

subsystem organization? What is the performance of work-

loads? For a specific workload, can its behavior point out

to specific cache memory organization?

Nowadays, commercial multi-core processors show differ-

ent memory organizations from model to model, without a

very clear strategy. For instance, one can find processors

with private L2 caches or shared L2 cache, and also shared

multi-sliced cache. Therefore, the definition of cache or-

ganization for next multi-core and many-core generations

is an open problem, and it has great impact on the perfor-

mance of different application types.

Focusing on problems related to cache memory organiza-

tion on many-core chip processors, the objective of this

paper is to investigate the impact of multiple processing

cores sharing the L2 cache. Simulation tools and well-

known parallel workloads are used in order to define rela-

tion between application and shared L2 cache memory.

This paper is organized into the following sections: Sec-

tion 2 describes related works, Section 3 presents evalua-

tion method, simulation model and workload description,

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

Section 4 presents the proposed experiments and shows

results, and finally Section 5 describes conclusions and fu-

ture works.

2 Related Works

Due to the next generation of many-core processors, the

memory bandwidth is an important issue. Hence, some re-

lated works from Borkar [11] and Loh [12] point out to

three-dimension stacked memory integration as a potential

solution. However, to achieve high performance on chip, it

is important to evaluate the shared cache memories, since

they are the first alternative and level before the 3D shared

memory. For this reason, there are several research works

focusing on shared cache memories, the influence of appli-

cation types, and their impact on performance, as follows:

On the research presented by Marino [13], the main goal is

to evaluate the performance of shared L2 caches focusing

on sharing versus size. In this way, two approaches were

modeled: L1 and L2 private caches, and L1 private with

L2 shared caches. The total number of processing cores

was 32, and the cache size was modified from 1Mbytes to

4Mbytes. In order to verify the performance of all architec-

ture combinations, the SPLASH benchmark composed of

Ocean, Raytrace, Volrend, and others was executed and

evaluated. The main conclusion is related to better speedup

sharing L2 cache than private L2 caches increasing the

speed up to 32 cores.

In the same way, the work from Jaleel et al. [14] describes

an evaluation of shared cache memory, but focusing on the

last cache level and parallel bioinformatics workloads. Ac-

cording to the paper results, the main characteristic of

these workloads is the high data sharing by up to 95%. For

this reason, the goal of the paper is to identify the impact

of shared caches to increase the performance. The main

conclusion is related to the increase of shared cache size

proportionally to sharing behavior of applications. Moreo-

ver, multiple and private caches reduce the data-sharing

behavior, and consequently, the performance.

The research work from Hsu et al. [15] shows many-core

processors as a trend, and points out the cache hierarchy as

a problem in order to support a large number of cores and

threads. The main goal is to identify the effect of L2 and

L3 caches, considering the different sizes and instruction

addresses prefetch. The evaluation methodology focuses

on on-line transaction processing benchmark (TPC-C),

MPI in heterogeneous scenarios and private versus shared

caches. The main results show that shared cache can pro-

vide better space efficiency and code prefetching improves

performance, but it is not enough to reduce the gap with

shared caches.

The work from Zahran [16] describes the importance of

memory hierarchy and coherency protocols. The evalua-

tion methodology is based on a trace-driven simulator

called CHESS (Cache Hierarchy Estimator using Scalable

Simulator) and the benchmark suite was SPLASH, the

same one used by Marino [13]. In this case, the programs

evaluated were the following: Barnes, Water and MP3D.

The environment was designed to simulate 1, 2, 4 and 8

processing cores. However, the results point out to better

performance of memory system when L1 and L2 private

caches are used in accordance with a good coherency pro-

tocol for L2 level.

In this paper we show some problems related to shared

cache memories depicting the reduction of performance,

considering different cache organizations and cache para-

meters such as: cache size, associativity, line size and

some considerations about physical size. Moreover, our

proposal takes into account the importance of memory la-

tencies on many-core processors, which are not mentioned

in related works. Consequently, our goal is to investigate

performance limits, but mainly, to evaluate cache architec-

ture configurations and present when a sharing achieves

high or low performance, coupled with a parameter analy-

sis in order to achieve best performance. To achieve these

results, we used OpenMP based parallel applications from

NAS parallel benchmark (NPB) [17] that represents a large

set of scientific application behaviors.

3 Evaluation Method

Performance evaluation is required at every stage in the

life cycle of a computer system, including its design and

manufacturing [18]. On design of processor architecture

some different evaluation techniques can be used, but the

appropriate selection of techniques, performance metrics

and workloads are very important to compare architectural

and organizational changes. In terms of performance eval-

uation, three models must be considered: analytical, simu-

lation and measurement.

For a general-purpose computer architecture evaluation

with complex memory organization, simulations offer

good features needing neither prototyping nor analytical

formulations, which use to be imprecise and hard to model.

Thus, for our study, all the evaluations were made using

simulation techniques.

3.1 Simulation Model

The simulation environment used was Simics from Virtu-

tech AB [19], which was chosen because it is a full-system

simulator platform at the instruction set level. Thus, the

results of execution time are based on executed instruc-

tions and execution cycles. Executed instructions and stall

cycles generated by each architecture component gives the

number of cycles.

According to the goal of this paper, Simics was configured

to model some cache organizations in order to evaluate the

performance of parallel workloads. The simulation model

presented in Figure 1 is an extension of the built-in g-

cached model [20], which instantiates some special Simics

components:

•Id-Splitter: To separate data between instruction and data

cache.

•Splitter: Module to define the cache size, line size and

other characteristics.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

•Trans-Staller: Simple device used to simulate all the

memory latencies.

Moreover, in order to respect all cache configurations and

maintain a consistent state during the simulations some

coherence parameters were defined such as:

•Snooper: Snooper MESI-based coherence protocol.

•Higher Level Caches: Parameter to ensure coherence be-

tween multiple levels on cache memory hierarchy.

3.2 NPB Workload

Application benchmarks are composed of representative

subset of application functions of well-known algorithms.

Thus, benchmarks are generally described in terms of

functions to be performed. In this paper, the workload

NPB (NAS Parallel Benchmark) [17] was used for all

evaluations. This benchmark consists of a set of applica-

tions where each one represents different kernel of numer-

ical methods described in details in Table 1. The NPB

workload is based on version 3.3, implemented with

OpenMP with W class size and compiled with SunStudio

11 using -fast performance parameter.

4 Cache Sharing Experiments and

Results

This section presents the results obtained from NPB work-

load applications running on Solaris 10 operating system

on the modeled experiments. For this reason all the results

are from application simulation with operational system

influence. The results were based on five executions of

each experiment, (approximately two months of simulation

time) where each experiment was executed once previous-

ly in order to warm-up the cache and reduce transient ef-

fects as cold start effects [21]. The executions were made

sequentially in order to add non-determinism between the

executions on the simulation environment [22].

The modeled parameters on Simics were based on a chip

multiprocessor featured in 45 nm integration technology

and the main memory built on 65 nm technology. The

main memory and the cache memories have multiple ports

and it does not represent any contention in order to inves-

tigate only the impact of shared cache. The latency values

were obtained from CACTI [23] memory modeling tool

version 5.3.

Figure 1 Model for cache memory simulation on the Sim-

ics with details of coherence protocol.

Table 1 NAS Parallel Benchmark applications [17].

Name Description Memory

Usage

BT.W To solve 3D compressible Navier-Stokes equations with an implicit algorithm. Based on Alternating

Direction Implict (ADI) finite differences solver where the resulting system are Block-Tridiagonal,

which are solved sequentially along each dimension.

2.7 MB

CG.W Conjugate Gradient method used to compute the smallest eigenvalue of a large, sparse, unstructured

matrix. Exercising unstructured grid computations and communications.

13.7 MB

MG.W Multigrid V-cycle method used to solve the 3D scalar Poisson equation. The algorithm works be-

tween coarse and fine grids. It exercises both short and long distance data movement.

55.7 MB

EP.W Embarrassingly Parallel benchmark, which generates pairs of Gaussian random. Aiming to establish

the reference point for peak performance of a given platform.

1.3 MB

SP.W Computational Fluid Dynamics (CFD) application similar to BT. The problem is based on a Beam-

Warming approximate factorization that decouples in 3D. The resulting Scalar Pentadiagonal system

is solved sequentially along each dimension.

8.7 MB

LU.W Simulated CFD application that uses symmetric successive over-relaxation (SSOR) method to the

system resulting from finite-difference discretization of Navier-Stokes equations in 3D by splitting

into block Lower and Upper triangular systems.

6.6 MB

IS.W Test Integer Sort operation that is important in particle method codes. This code exercises both integ-

er speed and communication performance.

3.4 MB

FT.W Computational kernel of a 3D Fast Fourier Transform (FFT) method. FT performs three 1D FFT, one

for each dimension.

20 MB

UA.W Unstructured Adaptive benchmark, which exercises irregular and continually changes memory ac-

cesses measuring its effect.

16.3 MB

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

4.1 Experiment 1: Base Experiment

The proposed experiment is based on a CMP (Chip Multi-

processor) with 32 cores. Each core has its own L1 cache

with variations on L2 Cache. On the first model, 1Core/L2,

each core has its own L2 cache. The second model,

2Cores/L2, each group of 2 cores shares one L2 Cache.

The same occurs to 4Cores/L2, 8Cores/L2 16Cores/L2 and

32Cores/L2, where 4, 8, 16 and 32 cores share the same L2

cache, respectively. Figure 2 illustrates all the base simu-

lation models used as experiment on this section.

The parameters modeled on the Simics are presented in

Table 2, where the latencies for all components were ob-

tained by CACTI as explained previously.

The execution speedup from the base experiment is pre-

sented in Figure 3 showing that just two applications (CG

and UA) had its performance increased as more cores

share the same cache. The other applications had in gener-

al its performance degraded regarding the increase on the

number of cores sharing the L2 cache. It is important to

notice that 2Cores/L2 organization had its performance

increased just in 3 of 9 cases (BT, CG and UA). The SUM

item in the plot represents the speedup based on the sum of

execution time of all applications. The sums show degra-

dations in performance by organization, where 2Cores/L2

had 0.02%, 4Cores/L2 had 1.56%, 8Cores/L2 had 4.66%,

16Cores/L2 had 6.06%, and 32Cores/L2 had 5.99% of de-

gradation in the final performance, related to 1Core/L2 or-

ganization.

Considering the applications CG and UA, which had in-

creased performance up to 32Cores/L2 and analyzing its

descriptions, it is possible to identify that the characteristic

of unaligned access is the main reason for their perfor-

mance speedup. These applications access data randomly,

and so, they decrease the number of address conflicts as

the cache memory is shared.

Figure 2 Cache memory organizations modeled on the

base experiment.

Figure 3 Speedup with base point on 1Core/L2 comparing different L2 cache memory organizations classified by application

and SUM which represents sequential execution of all applications.

Table 2 Modeled components parameters for the base experi-

ment.

Component Parameter Value

Chip

Multiprocessor

SO Solaris 10

32 Cores UltraSparcIII+

Execution In-Order

Frequency 2 GHz

CPI 1.0

Cache L1

Size 32 KB+32 KB

Line Size 32 B

Set Associative 2 Ways

Feature Size 45 nm

R/W Latency 2 Cycles

Interconnection Latency 2 Cycles

Replacement LRU

Write Policy Write-Through

Write Allocation No

Cache L2

Slice Size 1 MB / 32MB

Line Size 64 B

Set Associative 8 Ways

Feature Size 45 nm

R/W Latency 4 Cycles

Interconnection Latency 4 Cycles

Replacement LRU

Write Policy Write Back

Write Allocation Yes

Coherence Protocol MESI Snooper

Main

Memory

Size 1 GB

Feature Size 65 nm

R/W Latency 78 Cycles

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

3

0
.9

7

0
.9

5

0
.9

7

1
.0

0

1
.0

0

0
.9

9

1
.0

0

0
.9

9

1
.0

0 1
.0

4

0
.9

7

0
.9

5

0
.9

6 0
.9

9

0
.9

8

0
.9

7

1
.0

1

0
.9

8

0
.9

9

1
.0

2

0
.9

5

0
.9

5

0
.8

9

0
.9

9

0
.9

7

0
.8

2

1
.0

2

0
.9

51
.0

0

1
.0

6

0
.9

5

0
.9

1

0
.8

6

0
.9

6

0
.9

6

0
.7

3

1
.0

6

0
.9

4

0
.9

7

1
.1

5

0
.9

7

0
.8

9

0
.8

6 0
.8

9

0
.9

0

0
.7

0

1
.1

6

0
.9

4

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

BT CG MG EP SP LU IS FT UA SUM

S
p

e
e

d
u

p

Application

1Core/L2 2Cores/L2 4Cores/L2 8Cores/L2 16Cores/L2 32Cores/L2

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

The L2 cache miss results are verified by MPKI (cache

misses per kilo instructions) metric that were used in order

to represent the impact of cache misses on the execution

by showing the ratio between misses and instructions.

Figure 4 presents the numbers of L2 MPKI which de-

creases on BT, CG, IS and UA applications. From the first

configuration 1Core/L2 to 2Core/L2 the reductions were

-3.53%, -18.90%, -1.84% and -7.35%, respectively. From

the first configuration 1Core/L2 to 4Core/L2, the reduction

where obtained just for CG (-0.30%) and UA (-7.36%).

In order to investigate other possible factors that should

have impact on the improvement of performance for CG

and UA applications, the last metric analyzed was Ex-

ecuted Instructions, which can decrease as more balanced

the application is, since the processor will be less idle ex-

ecuting operating system tasks. Figure 5 shows the num-

ber of executed instructions for each organization per ap-

plication. From the first organization (1Core/L2) to the last

(32 Cores/L2), the applications CG, MG, IS and UA in-

creased the number of executed instructions in 44.93%,

4.93%, 0.08% and 42.85%, respectively. For BT, EP, SP,

LU and FT applications, the reduction on execution steps

were: -0.13%, -2.75%, -3.25%, -13.42% and -27.40%, re-

spectively.

Considering the L2 cache sharing, it is supposed to lead

the system to a decrease on cache misses, as the cores can

easily access shared variables. However, as more cores

share the same L2 cache, their address conflicts tend to in-

crease. In the same way, applications with random memo-

ry access characteristics can still have advantage in the

shared L2 cache organizations.

Consequently, one can observe that all applications of

NAS benchmark suite have different memory usage cha-

racteristics, and because of this, it is important to evaluate

and identify the correct behavior of each application to

achieve the highest performance.

According to the negative results obtained on this first ex-

periment, some other experiments were planned in order to

evaluate the application performance with some different

L2 cache parameters, but still considering the shared L2. In

this way, the next sections present results for 2Cores/L2

using different parameters as increase on the cache size,

improvement on the number of ways set associativity and

line size for the modeled L2 cache.

Figure 4 Number of L2 MPKI (cache misses per kilo instructions) for different L2 cache memory organizations per applica-

tion, from the first experiment.

Figure 5 Number of executed instructions (operating system and applications) for evaluated cache memory organizations on

the base experiment separated by application. The SUM represents all applications together.

0
.7

9

3
.1

1 4
.5

0

0
.8

4

1
.1

6

0
.8

8

3
.0

0

2
.0

0

1
.9

1

1
.3

2

0
.7

6

2
.5

3

6
.2

0

3
.3

9

1
.5

4

0
.9

1

2
.9

4

2
.2

8

1
.7

7

1
.4

8

0
.8

1

3
.1

0

6
.5

0

3
.3

7

1
.9

6

0
.9

6

3
.3

0

2
.7

6

1
.7

7

1
.6

8

0
.8

0

5
.0

8 6
.3

6

3
.3

6

3
.2

4

1
.1

0

3
.4

1

5
.1

4

2
.1

5

2
.3

8

1
.0

0

5
.2

7 6
.4

0

3
.1

4

3
.7

8

1
.2

8

3
.7

5

1
1

.2
9

2
.9

7

2
.8

8

1
.5

1

5
.9

5 6
.7

8

3
.0

6 3
.9

3

1
.6

5

5
.2

5

1
2

.2
8

3
.9

5

3
.2

2

0

2

4

6

8

10

12

14

BT CG MG EP SP LU IS FT UA SUM

L
2

 M
P

K
I:

 M
is

se
s

/
 K

il
o

 I
n

st
ru

ct
io

n

Application

1Core/L2 2Cores/L2 4Cores/L2 8Cores/L2 16Cores/L2 32Cores/L2

3
.9

6
9

E
+

1
0

1
.1

1
1

E
+

1
0

5
.3

1
6

E
+

0
9

6
.0

4
2

E
+

0
9 1

.9
8

9
E
+

1
1

1
.2

0
6

E
+

1
1

1
.2

6
7

E
+

0
9

3
.2

2
2

E
+

0
9

1
.1

7
4

E
+

1
1

5
.0

4
E
+

1
1

3
.9

5
0

E
+

1
0

1
.0

8
6

E
+

1
0

5
.2

1
0

E
+

0
9

5
.5

8
2

E
+

0
9

2
.0

2
5

E
+

1
1

1
.2

0
6

E
+

1
1

1
.2

7
2

E
+

0
9

3
.2

1
8

E
+

0
9

1
.1

7
7

E
+

1
1

5
.0

6
E
+

1
1

3
.9

3
8

E
+

1
0

1
.0

4
0

E
+

1
0

5
.1

3
8

E
+

0
9

5
.5

7
1

E
+

0
9

2
.0

0
8

E
+

1
1

1
.2

1
6

E
+

1
1

1
.2

8
3

E
+

0
9

3
.3

7
4

E
+

0
9

1
.1

6
4

E
+

1
1

5
.0

4
E

+
1

1

4
.0

0
8

E
+

1
0

9
.8

4
8

E
+

0
9

5
.3

0
3

E
+

0
9

5
.5

7
3

E
+

0
9

2
.0

5
7

E
+

1
1

1
.2

1
5

E
+

1
1

1
.3

0
7

E
+

0
9

4
.3

4
4

E
+

0
9 1

.1
1

9
E

+
1
1

5
.0

6
E
+

1
1

3
.9

4
6

E
+

1
0

9
.1

5
3

E
+

0
9

5
.3

2
8

E
+

0
9

5
.9

8
7

E
+

0
9

2
.0

9
9

E
+

1
1

1
.2

6
6

E
+

1
1

1
.2

8
6

E
+

0
9

4
.2

4
2

E
+

0
9 1

.0
0

0
E

+
1
1

5
.0

2
E

+
1

1

3
.9

7
E

+
1

0

7
.7

1
E
+

0
9

5
.0

7
E
+

0
9

6
.2

1
E

+
0

9

2
.0

6
E
+

1
1

1
.3

9
E
+

1
1

1
.2

7
E

+
0

9

4
.4

4
E

+
0

9 8
.2

2
E

+
1

0

4
.9

2
E
+

1
1

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

BT CG MG EP SP LU IS FT UA SUM

E
x

e
cu

te
d

 I
n

st
ru

ct
io

n
s

Application

1Core/L2 2Cores/L2 4Cores/L2 8Cores/L2 16Cores/L2 32Cores/L2

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

4.2 Experiment 2: Cache Size

This experiment considers an increase on the cache size of

each slice of the 2Core/L2 organization, thus, analyzing

the impact of this increase on the final performance and

cache misses. Notice that this increase on slice size for

2Cores/L2 (2 MB per slice, total of 32 MB) is very useful

in order to compare with the first experiment which uses

32MB and 16MB on the total cache size for 1Core/L2

(1MB per slice) and 2Cores/L2 (1MB per slice) respective-

ly. The changes on modeled parameters are presented on

Table 3, where one can see that read/write latency in-

creased in 1 cycle from the base experiment once cache

size increased from 1MB to 2 MB on each cache slice.

Considering the change on cache size all workloads were

executed for 2Cores/L2 with 2MB each slice of L2 cache.

The speedup results are presented in Figure 6 comparing

the base experiment with the cache size experiment; the

speedup was calculated with the base point on 1Core/L2

from the first experiment. Considering the increase on the

cache size, the performance obtained had a degradation of

less than 1% comparing to the 1Core/L2 modeled with 1

MB. This happened, mainly, because the increase on the

cache size leads to a reduction on cache misses, which

does not pay for the increase on its access time penalty that

increased. Therefore, all L1 access to L2 now has this

overhead.

The number of L1 and L2 cache misses per kilo instruc-

tions and L1 lost stall cycles for this experiment can be ob-

served in Figure 7. One can observe the L2 cache MPKI

variation from 1Core/L2 with cache slice of 1MB to

2Core/L2 with cache slice of 2MB was -8.16% for BT, -

33.15% for CG, -1.22% for MG, -20.28% for EP, 1.68%

for SP, -14.34% for LU, -14.22% for IS, -5.66% for FT,

and -16.40% for UA. The increase on the stalled cycles

caused by the latency for the data access on the L2 cache

increased the stall time from 1Core/L2 with 1MB cache

slice to 2Core/L2 with 2MB cache slice of 20.67% for BT,

21.01% for CG, 24.46% for MG, 16.21% for EP, 24.57%

for SP, 20.98% for LU, 25.66% for IS, 24.92% for FT, and

22.63% for UA.

For this reason, the number of L2 cache misses should de-

crease to lead a system to pay for the cost of the increase

on the data access latency for L2 cache.

 4.3 Experiment 3: Associativity

In this experiment the number of ways on the set associa-

tivity of L2 cache was doubled for all cache slices compar-

ing to the first experiment. Table 4 shows values for L2

cache parameters modeled on this experiment. One can see

the increase on the read and write latency modeled by

CACTI and caused by the increase on the associativity.

After modeled the parameters, the experiment was ex-

ecuted using 2Cores/L2 organization for all workloads.

The speedup results comparing with the base experiment is

shown in Figure 8. Using the base point 1Core/L2 for

speedup calculus, there is a total reduction of -3.46% on

performance occurred as the associativity was doubled,

and noticing that when the associativity increases the tem-

poral locality is improved.

Table 3 Modeled components parameters for the second

experiment regarding cache size.
Component Parameter Value

Cache L2

Slice Size / Total Size 2 MB / 32 MB

Line Size 64 B

Set Associative 8 Ways

R/W Latency 5 Cycles

Figure 6 Speedup calculated based on 1Core/L2 from base

experiment, comparing different L2 cache memory organiza-

tions classified by application and SUM which represents se-

quential execution of all applications.

Figure 7 Number of L2 MPKI (a), number of L1 MPKI (b)

and L1 lost stall cycles(c), comparing the second and first expe-

riment.

Table 4 Modeled components parameters for the third ex-

periment about associativity.
Component Parameter Value

Cache L2

Slice Size / Total Size 1 MB / 16 MB

Line Size 64 B

Set Associative 16 Ways

R/W Latency 6 Cycles

0
.7

9

3
.1

1 4
.5

0

0
.8

4

1
.1

6

0
.8

8 3
.0

0

2
.0

0

1
.9

1

0
.7

6 2
.5

3

6
.2

0

3
.3

9

1
.5

4

0
.9

1 2
.9

4

2
.2

8

1
.7

7

0
.7

2 2
.0

8

4
.4

5

0
.6

7

1
.1

8

0
.7

5 2
.5

7

1
.8

9

1
.6

0

0

2

4

6

8

L
2

 M
P

K
I

4
6

.7
7

4
5

.9
4

4
0

.3
5

2
6

.0
7

3
9

.4
3

2
8

.2
4

3
8

.0
6

9
2

.6
8

3
3

.7
1

4
6

.9
0

4
6

.2
5

4
0

.6
1

2
5

.6
7

3
9

.5
0

2
8

.3
0

3
8

.6
8

9
2

.8
4

3
3

.6
4

4
5

.6
9

4
5

.9
9

4
0

.6
8

2
5

.6
1

3
9

.0
0

2
7

.8
7

3
8

.6
5

9
3

.0
8

3
3

.7
7

0

20

40

60

80

100

L
1

 M
P

K
I

7
.4

2

2
.0

4

0
.8

6

0
.6

3

3
1

.3
8

1
3

.6
2

0
.1

9

1
.1

9

1
5

.8
3

9
.2

6

2
.5

1

1
.0

6

0
.7

2

3
9

.9
9

1
7

.0
7

0
.2

5

1
.4

9

1
9

.8
0

8
.9

6

2
.4

7

1
.0

7

0
.7

3

3
9

.0
9

1
6

.4
8

0
.2

4

1
.4

9

1
9

.4
1

0

20

40

BT CG MG EP SP LU IS FT UA

L1
 M

is
se

s
La

te
n

cy
(G

 C
y

cl
e

s)

(a)

(b)

(c)

1
.0

0

1
.0

2

0
.9

7

0
.9

4

0
.9

8

1
.0

0

1
.0

1

0
.9

9

1
.0

0

0
.9

9

0
.9

8

1
.0

3

0
.9

9

1
.0

1

0
.9

8

1
.0

0

1
.0

1

0
.9

9

1
.0

1

0
.9

9

0.92

0.94

0.96

0.98

1.00

1.02

1.04

BT CG MG EP SP LU IS FT UA SUM

S
p

e
e

d
u

p

Application

64B 8W 1MB 1Core/L2

64B 8W 1MB 2Cores/L2

64B 8W 2MB 2Cores/L2

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

Figure 9 shows the L1 and L2 MPKI, and the L1 stalled

cycles while accessing the L2 cache. According to L2

MPKI, there was an increase of 0.24% for BT, 36.64% for

MG, 281.60% for EP, 25.30% for SP, 3.86% for LU, and

14.27% for FT, and the applications CG, IS and UA ob-

tained an decrease of -18.15%, -1.22% and -6.56%, respec-

tively, comparing 1Core/L2 with 8-way set associativity

with 2Core/L2 16-way set associativity. According to L1

lost stall cycles, the increase was higher than the second

experiment, achieving 25.86% for BT, 22.42% for CG,

23.08% for MG, 14.93% for EP, 24.17% for SP, 23.14%

for LU, 25.29% for IS, 25.73% for FT, and 23.82% for

UA. Notice that in this case the data access time on the L2

cache was 6 cycles. Thus, once there was not high reduc-

tion on L2 cache misses it is clear that the system should

suffer speed degradation.

Related to the increase on associativity, the poor results on

L2 cache miss reduction were insufficient to pay for the

increase on L2 cache data access latency and it leaded a

system to suffer more lost stall cycles and thus the degra-

dation on the final performance.

4.4 Experiment 4: Line Size

Finally the impact of line size on the shared cache was

evaluated. Table 5 shows the parameters that were mod-

eled to execute all workloads on 2Cores/L2 organization.

The speedup results shown in Figure 10 are based on

1Core/L2 from the first experiment as the base architecture

for comparison. This increase on line size, which improves

the spatial locality, leaded the system to an improvement

on performance up to 1.95% comparing the 2Cores/L2

with 128B line size and 1Core/L2 with 64B line size.

Moreover, there is a higher increase of 2.46% comparing

2Cores/L2 with line size of 128B and 2Core/L2 using line

size of 64B.

L1 MPKI and penalties for accessing the L2 cache and L2

MPKI are presented in Figure 11. The variation on the L2

cache misses and L1 misses with latency has leaded to an

increase on the final speedup. Comparing the 1Core/L2

from the base experiment with 2Core/L2 of this experi-

ment, the number of L2 MPKI reduced -35.29% for BT, -

41.70% for CG, -19.35% for MG, -23.13% for SP, -

37.51% for LU, -33.38% for FT, and -24.76% for UA as

the line size increased. For EP and IS there were an in-

crease of 106.20% and 87.24% respectively, but this in-

crease has no impact on the final performance.

Figure 8 Speedup calculated based on 1Core/L2 from base

experiment, comparing different L2 cache memory organiza-

tions classified by application and SUM which represents se-

quential execution of all applications.

Figure 9 Number of L2 MPKI (a), number of L1 MPKI (b)

and L1 lost stall cycles(c), comparing the third and first experi-

ment.

Table 5 Modeled components parameters for the fourth

experiment about line size.
Component Parameter Value

Cache L2

Slice Size / Total Size 1 MB / 16 MB

Line Size 128 B

Set Associative 8 Ways

R/W Latency 6 Cycles

Figure 10 Speedup calculated based on 1Core/L2 from base

experiment, comparing different L2 cache memory organiza-

tions classified by application and SUM which represents se-

quential execution of all applications.

0
.7

9

3
.1

1 4
.5

0

0
.8

4

1
.1

6

0
.8

8 3
.0

0

2
.0

0

1
.9

1

0
.7

6 2
.5

3

6
.2

0

3
.3

9

1
.5

4

0
.9

1 2
.9

4

2
.2

8

1
.7

7

0
.7

9 2
.5

5

6
.1

5

3
.2

1

1
.4

6

0
.9

1 2
.9

6

2
.2

8

1
.7

9

0

2

4

6

8

L
2

 M
P

K
I

4
6

.7
7

4
5

.9
4

4
0

.3
5

2
6

.0
7

3
9

.4
3

2
8

.2
4

3
8

.0
6

9
2

.6
8

3
3

.7
1

4
6

.9
0

4
6

.2
5

4
0

.6
1

2
5

.6
7

3
9

.5
0

2
8

.3
0

3
8

.6
8

9
2

.8
4

3
3

.6
4

4
8

.2
8

4
6

.7
3

4
0

.3
8

2
4

.6
0

3
9

.5
7

2
8

.2
6

3
9

.0
3

9
3

.9
0

3
4

.1
7

0

20

40

60

80

100

L
1

 M
P

K
I

7
.4

2

2
.0

4

0
.8

6

0
.6

3

3
1

.3
8

1
3

.6
2

0
.1

9

1
.1

9

1
5

.8
3

9
.2

6

2
.5

1

1
.0

6

0
.7

2

3
9

.9
9

1
7

.0
7

0
.2

5

1
.4

9

1
9

.8
0

9
.3

5

2
.5

0

1
.0

6

0
.7

2

3
8

.9
6

1
6

.7
7

0
.2

4

1
.5

0

1
9

.6
0

0

20

40

BT CG MG EP SP LU IS FT UA

L1
 M

is
se

s
La

te
n

cy
(G

 C
y

cl
e

s)

(a)

(b)

(c)

1
.0

0 1
.0

2

0
.9

7

0
.9

4

0
.9

8 1
.0

0

1
.0

1

0
.9

9

1
.0

0

0
.9

9

0
.9

4

1
.0

1

0
.9

4

0
.8

9

0
.9

6

0
.9

7

0
.9

7

0
.9

6 0
.9

8

0
.9

7

0.85

0.90

0.95

1.00

1.05

1.10

BT CG MG EP SP LU IS FT UA SUM

S
p

e
e

d
u

p

Application

64B 8W 1MB 1Core/L2

64B 8W 1MB 2Cores/L2

64B 16W 1MB 2Cores/L2

1
.0

0 1
.0

2

0
.9

7

0
.9

4

0
.9

8 1
.0

0

1
.0

1

0
.9

9

1
.0

0

0
.9

9

0
.9

7

1
.1

1

1
.0

7

0
.9

7

1
.0

2

1
.0

0

0
.9

1

1
.0

1

1
.0

6

1
.0

2

0.90

0.95

1.00

1.05

1.10

1.15

BT CG MG EP SP LU IS FT UA SUM

S
p

e
e

d
u

p

Application

64B 8W 1MB 1Core/L2

64B 8W 1MB 2Cores/L2

128B 8W 1MB 2Cores/L2

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

The L1 lost stalled cycles increased 17.56% for BT,

11.75% for CG, 16.27% for MG, 11.47% for EP, 17.82%

for SP, 19.63% for LU, 16.18% for IS, 23.02% for FT, and

14.79% for UA. Considering the sum of all these results,

there is a great reduction on L2 misses and a low increase

on L1 stall cycles leaded the system to an increase on the

final performance.

4.5 Summary

This section presents general comparisons among all expe-

riments presented on the previous sections. Figure 12

presents the speedup results for all experiments shown on

this paper, where one can see the bad results increasing the

cache size and associativity. However, according to line

size, an increase on the performance of 1.95% was

achieved, showing the great importance of increase the

spatial locality, which in our case had greater importance

than the increase on capacity of the L2 cache. Related to

the increase on the set associativity, which increases the

temporal locality, does the system leaded to bad results

once the allocation size of the cache had decreased, gene-

rating more cache misses. Considering the different expe-

riments, all of them leaded to an increase on access time

on L2 cache, in this way, it is very clear the importance of

having a good trade off between penalty time and cache

misses.

When the comparison comes to the L2 cache misses per

kilo instructions, presented in Figure 13, the increase on

the sharing cache (base experiment) and associativity

(third experiment) leads the MG and EP application to bad

results, causing a high L2 cache misses. Looking for these

specific applications, the cache size (second experiment)

showed to be the best solution to decrease the cache

misses. For 7 of 9 applications the increase on line size

(fourth experiment) leaded the system to a decrease on the

L2 cache misses showing the best choice for performance

when L2 cache is shared.

4.6 Physical Area Analysis

Since the parameters evaluated on the previous section

have an impact on the physic cache, this section considers

the physical cache values, comparing the different memory

implementations shown in this paper. Table 6 brings more

detailed cache values of all cache parameters modeled on

our experiments, showing values of Cache Physical Area,

matching these cache values to the modeled organizations.

All the cache slices were modeled on CACTI as just one

banking cache memory leading to a reduction on the num-

ber of stall cycles waiting cache access.

But considering the physical size of the cache, it is clear

that the increase on the line size leads the system to a best

result of cache misses, decreasing both total physical area

and total number of cache misses comparing to the organi-

zation 1Core/L2 from base experiment. On the other hand,

the increase on slice size, leads to a great reduction of

cache misses, but with great cost on physical size. On a

many-core context this reduction on cache size is very im-

Figure 11 Number of L2 MPKI (a), number of L1 MPKI (b)

and L1 lost stall cycles(c), comparing the fourth and first experi-

ment.

Figure 12 Speedup calculated based on 1Core/L2 from base experiment, comparing different L2 cache memory organizations

classified by application and SUM, which represents sequential execution of all applications. Comparing the base experiment

with experiments varying cache size, associativity and line size.

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0 1
.0

2

0
.9

7

0
.9

4

0
.9

8 1
.0

0

1
.0

1

0
.9

9

1
.0

0

0
.9

9

0
.9

8

1
.0

3

0
.9

9

1
.0

1

0
.9

8

1
.0

0

1
.0

1

0
.9

9

1
.0

1

0
.9

9

0
.9

4

1
.0

1

0
.9

4

0
.8

9

0
.9

6

0
.9

7

0
.9

7

0
.9

6 0
.9

8

0
.9

7

0
.9

7

1
.1

1

1
.0

7

0
.9

7

1
.0

2

1
.0

0

0
.9

1

1
.0

1

1
.0

6

1
.0

2

0.85

0.90

0.95

1.00

1.05

1.10

1.15

BT CG MG EP SP LU IS FT UA SUM

S
p

e
e

d
u

p

Application

64B 8W 1MB 1Core/L2 64B 8W 1MB 2Cores/L2 64B 8W 2MB 2Cores/L2

64B 16W 1MB 2Cores/L2 128B 8W 1MB 2Cores/L2

0
.7

9

3
.1

1 4
.5

0

0
.8

4

1
.1

6

0
.8

8 3
.0

0

2
.0

0

1
.9

1

0
.7

6 2
.5

3

6
.2

0

3
.3

9

1
.5

4

0
.9

1 2
.9

4

2
.2

8

1
.7

7

0
.5

1 1
.8

2 3
.6

3

1
.7

4

0
.8

9

0
.5

5

5
.6

2

1
.3

3

1
.4

4

0

2

4

6

8
L

2
 M

P
K

I

4
6

.7
7

4
5

.9
4

4
0

.3
5

2
6

.0
7

3
9

.4
3

2
8

.2
4

3
8

.0
6 9

2
.6

8

3
3

.7
1

4
6

.9
0

4
6

.2
5

4
0

.6
1

2
5

.6
7

3
9

.5
0

2
8

.3
0

3
8

.6
8 9
2

.8
4

3
3

.6
4

4
6

.0
6

4
9

.3
6

4
1

.9
5

2
5

.2
2

3
9

.3
2

2
8

.0
1

3
9

.6
0 9
7

.5
1

3
4

.7
3

0

20

40

60

80

100

120

L
1

 M
P

K
I

7
.4

2

2
.0

4

0
.8

6

0
.6

3

3
1

.3
8

1
3

.6
2

0
.1

9

1
.1

9

1
5

.8
3

9
.2

6

2
.5

1

1
.0

6

0
.7

2

3
9

.9
9

1
7

.0
7

0
.2

5

1
.4

9

1
9

.8
0

8
.7

3

2
.2

8

1
.0

0

0
.7

0

3
6

.9
7

1
6

.2
9

0
.2

2

1
.4

7

1
8

.1
7

0

20

40

BT CG MG EP SP LU IS FT UA

L1
 M

is
se

s
La

te
n

cy

(G
 C

y
cl

e
s)

(a)

(b)

(c)

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

portant, since all the saved space can be used to increase

the number of cores and interconnections.

4 Conclusions

Due to the application performance, the cache memory or-

ganization for next generation of many-core processors is

not very clear. This paper evaluated some cache memory

organizations in order to investigate the L2 cache sharing

impact on a 32-core processor.

 On the base experiment each L2 cache slice had just 1 MB

even with more cores sharing the same L2 cache. Once

these variations on the organization do not resulted on a

good performance, the cache size, associativity and line

size were changed and modeled on the point that base ex-

periment showed the first reduction on speedup.

Spotting future architectures, the results show that as more

cores share the same L2 cache, the performance may be

degraded even for just 2 cores sharing the same L2. How-

ever, our evaluations presented that line size helped on re-

duction of -32% on cache misses, increased the system

performance on 2% for NPB workload, even reducing

-50% the total amount of memory from 32MB to 16MB.

Besides, there is a reduction on the total area of cache in

-27%, increasing space for processor cores or on-chip in-

terconnections.

Finally, due to characteristic of random access, the appli-

cations achieve a good reduction on cache misses, since

the number of address conflicts tends to decrease and, on

the other hand, the communication using shared cache

tends to be improved.

Our future works focus on the extension of the cache shar-

ing study analyzing the impact of shared cache on Non-

Uniform Cache Architectures (NUCA) on scientific paral-

lel applications for many-core architectures.

4 Acknowledgment

This project is supported by CNPq (National Counsel of

Technological and Scientific Development - Brazilian

Government).

5 References

[1] J. L. Hennessy and D. A. Patterson, Computer Archi-

tecture: A Quantitative Approach. Elsevier, Inc., Unit-

ed States of America, fourth edition, 2007.

[2] J. E. Smith, G. S. Sohi, “The Microarchitecture of Su-

perscalar Processors”, IEEE, v. 83, No. 12, pp.1609-

1624, 1995.

[3] Stallings, W., Computer Organization and Architec-

ture, Pearson / Prentice Hall, 2002.

[4] T. Ungerer, et al., “A Survey of Processors with Ex-

plicit Multithreading”, ACM Computing Surveys, Vo-

lume 35, Issue 1, pp.29-63, March 2003

Table 6 Physical area analysis considering different cache organizations and parameters.

Exp. Organization Total

Logical

Size

Slice

Logical

Size

Associativity Line Size Normalized

Physical

Area

Total

Physical

Area

Slice

Physical

Area

Latency Penalty Normalized

Cache

Misses

1st 1Core/L2 32MB 1MB 8 Ways S.A. 64 Bytes 100% 230.08mm2 7.19mm2 1.6 ns 4 Cycles 100%

1st 2Cores/L2 16MB 1MB 8 Ways S.A. 64 Bytes 50% 115.04mm2 7.19mm2 1.6 ns 4 Cycles 112%

2nd 2Cores/L2 32MB 2MB 8 Ways S.A. 64 Bytes 78% 180.48mm2 11.28mm2 2.1 ns 5 Cycles 89%

3rd 2Cores/L2 16MB 1MB 16 Ways S.A. 64 Bytes 50% 117.44mm2 7.34mm2 2.6 ns 6 Cycles 108%

4th 2Cores/L2 16MB 1MB 8 Ways S.A. 128 Bytes 73% 169.92mm2 10.62mm2 2.6 ns 6 Cycles 68%

Figure 13 Number of L2 MPKI (cache misses per kilo instructions) for different L2 cache memory organizations per applica-

tion comparing all experiments.

0
.7

9

3
.1

1

4
.5

0

0
.8

4

1
.1

6

0
.8

8

3
.0

0

2
.0

0

1
.9

1

0
.7

6

2
.5

3

6
.2

0

3
.3

9

1
.5

4

0
.9

1

2
.9

4

2
.2

8

1
.7

7

0
.7

2

2
.0

8

4
.4

5

0
.6

7 1
.1

8

0
.7

5

2
.5

7

1
.8

9

1
.6

0

0
.7

9

2
.5

5

6
.1

5

3
.2

1

1
.4

6

0
.9

1

2
.9

6

2
.2

8

1
.7

9

0
.5

1

1
.8

2

3
.6

3

1
.7

4

0
.8

9

0
.5

5

5
.6

2

1
.3

3

1
.4

4

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

BT CG MG EP SP LU IS FT UA

L
2

 M
P

K
I:

 M
is

se
s

/
 K

il
o

 I
n

st
ru

ct
io

n

Application

64B 8W 1MB 1Core/L2

64B 8W 1MB 2Cores/L2

64B 8W 2MB 2Cores/L2

64B 16W 1MB 2Cores/L2

128B 8W 1MB 2Cores/L2

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

[5] T. Ungerer, et al., “Multithreaded Processors”, The

Computer Journal, British Computer Society, v. 45, n.

3, p. 320-348, 2002.

[6] B. Sinharoy, et al., “POWER5 system microarchitec-

ture”, IBM J. RES. & DEV, Vol.49 No. 4/5 Ju-

ly/September 2005

[7] K. Olukotun, et al., “The Case for a Single-Chip Mul-

tiprocessor”, International Conference on Architectur-

al Support for Programming Languages and Operating

Systems (ASPLOS), pp.2-11, October 1996.

[8] L. A. Barroso, et al., “Piranha: a scalable architecture

based on single-chip multiprocessing” - 27th Interna-

tional Symposium on Computer Architecture (ISCA),

pp.282–293, 2000.

[9] P. Kongetira, et al., “Niagara: a 32-way multithreaded

Sparc processor”, IEEE MICRO, v. 25, Issue 2, p. 21-

29, March-April 2005.

[10] R. Kumar, et al., “Heterogeneous chip multiproces-

sors”, IEEE Computer, v. 38, Issue 11, p. 32-38, No-

vember 2005.

[11] S. Borkar, “Thousand Core Chips: A Technology

Perspective”, ACM Annual Conference on Design

Automation, pp.746-749, 2007.

[12] G. H. Loh, “3D-Stacked Memory Architectures for

Multi-Core Processors”, IEEE International Sympo-

sium on Computer Architecture, pp.453-464, 2008.

[13] M. D. Marino, “L2-cache hierarchical organizations

for multi-core architectures”, International Sympo-

sium on Parallel and Distributed Processing and Ap-

plications (ISPA), Sorrento, Italy, pp.74-83, 2006.

[14] A. Jaleel, M. Mattina, B. Jacob, “Last Level Cache

(LLC) Performance of Data Mining Workloads on a

CMP: A Case Study of Parallel Bioinformatics Work-

loads”, IEEE international Symposium on High-

Performance Computer Architecture, pp.88-98, 2006.

[15] L. Hsu, et al., “Exploring the Cache Design Space for

Large Scale CMPs”, ACM SIGARCH Computer Ar-

chitecture News, Vol. 33, No, 4, pp. 24-33, September

2005.

[16] M. M. Zahran, “On cache memory hierarchy for

chip-multiprocessor”, ACM SIGARCH, Vol. 31, Issue

1, pp.39-48, 2003.

[17] H. Jin, M. Frumkin, and J. Yan, “The OpenMP Im-

plementation of NAS Parallel Benchmarks and its Per-

formance”, In NAS Technical Report NAS-99-011,

NASA Ames Research Center, 1999.

[18] R. Jain, The art of computer systems performance

analysis. J. Wiley, New York, 1991.

[19] P. S. Magnusson, M. Christensson, J. Eskilson, et al.,

“Simics: A full system simulation platform”, IEEE

Computer Micro, 2002.

[20] Virtutech, “Simics 3.0 – User Guide for Unix”, Revi-

sion 1376, http://www.simics.net, 2007

[21] A. R. Alameldeen, C. J. Mauer, M. Xu, et al. “Eva-

luating non-deterministic multi-threaded commercial

workloads”. Computer Architecture Evaluation using

Comercial Workloads, 2002.

[22] A. R. Alameldeen and D. A. Wood “Variability in

architectural simulations of Multi-threaded Work-

loads”. International Symposium on High Perfor-

mance Computer Architecture (HPCA), February

2003.

[23] S. Thoziyoor, J. H. Ahn, M. Monchiero, et al. "A

Comprehensive Memory Modeling Tool and Its Ap-

plication to the Design and Analysis of Future Memo-

ry Hierarchies," ISCA 35th International Symposium

on Computer Architecture vol., no., pp.51-62, 21-25

June 2008

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on April 13,2021 at 14:44:48 UTC from IEEE Xplore. Restrictions apply.

