Energy Efficient Last Level Caches
via Last Read/Write Prediction

Abstract—The size of the Last Level Caches (LLC) in multi-
core architectures is increasing, and so does their power consump-
tion. However, a lot of this power is wasted on unused or invalid
cache lines. For dirty cache lines, the LLC waits until the line
is evicted to be written back to memory. Additionally, dirty lines
compete with read requests (prefetch and demand), increasing
pressure on the memory controller. This paper proposes a Dead
Line and Early Write-Back Predictor (DEWP) to improve the
energy efficiency of the LLC. DEWP early evicts dead cache
lines with an average accuracy of 94%, and only 2% false
positives. DEWP also allows scheduling dirty lines for early
eviction, allowing earlier write-backs. Using DEWP over a set
of single and multi-threaded benchmarks, we obtain an average
of 61% static energy savings (while maintaining the performance)
for inclusive and non-inclusive LLCs.

I. INTRODUCTION

Chip Multiprocessors (CMPs) have become the de facto
standard processor design. Chip manufacturers are increasing
the number of cores per chip and the amount of on-chip
memory to improve application performance. Additionally,
power dissipation has become one of the major concerns for
computer architects. As researchers have pointed out [5] the
amount of resources that can be simultaneously powered in a
chip is limited.

In order to increase the energy efficiency in current CMPs,
cache memories need to be taken into consideration. According
to [14], the amount of power consumed by cache memories in
Niagara, Niagara2, Xeon (Tulsa) and Alpha 21364 processors
corresponds to an average of 15% of the total chip power. To
reduce it, researchers [1], [19] have proposed several prediction
mechanisms to keep only useful information in the cache.

However, previous approaches do not take into account
that modified or dirty cache lines remain turned on for long
periods of time, wasting energy while they could be evicted
early. The gains can be increased even for dirty cache lines, by
performing an early write-back to the memory. Thereby, energy
consumption, as well as pressure on the memory controller, can
be reduced. Lee et al. [12] early write-back dirty lines at the
LRU position, but their proposal still consumes a lot of energy
by not evicting the line when the last write operation occurs.
Using a perfect mechanism, we show that turning off invalid
lines and dead lines can save 82% of static energy from the
Last Level Cache (LLC) on average (see Section II).

This paper proposes the Dead Line and Early Write-Back
Predictor (DEWP) mechanism, consisting of a last read/write
predictor operating at the cache line granularity.

The last read prediction aims to save energy by turning off
dead or invalid cache lines. The last write prediction performs
early write-backs of dirty cache lines to main memory, since

these lines will not be modified anymore. Both last read and
last write predictions detect whenever a line receives its last
access, prioritizing those lines for early eviction.

The last read predictor uses the access history to predict
when a cache line becomes dead and can be turned off. The
data is considered dead whenever the cache line receives its
last read before it gets evicted or invalidated.

The last write predictor allows dirty cache lines to be early
written back when it detects the last write operation, reducing
the pressure on the memory controller between read and writes
during bursts of requests. Furthermore, performing the early
write-back of dirty lines also enables those lines to be turned
off whenever a last read is predicted.

Both predictors reduces cache pollution, prioritizing the
eviction of completely dead lines. All the cache lines that
would be normally evicted from the LLC by the replacement
policy are considered completely dead since their last access.
By early evicting completely dead lines, cache lines that are
still alive can stay longer inside the cache.

We make the following contributions:

e  We propose DEWP, a last read/write predictor for the
Last Level Cache on CMPs.

e  Using the last read predictor, we turn-off cache lines
after they receive the last read before the line gets
evicted.

e Using the last write predictor, we early write-back
the dirty cache lines after they receive the last write,
reducing the pressure in the memory controller.

e Combining both prediction results, the mechanism
detects the last access to a cache line, marking it for
early eviction, thus, improving the cache utilization.

e  We evaluate DEWP, correctly predicting 94% of the
LLC accesses, with only 2% of false positives. This
translates into 61% of static cache energy savings and
2% of performance improvements when averaged over
SPEC-CPU2006, SPEC-OMP2001 and NAS-NPB.

II. MOTIVATION
A. Sensitivity to Early Write-back

Dirty cache lines remain in the cache until they are evicted
by another line request. However, they can be sent to write-
back earlier when the last write operation is detected [19].
When predicting the last write operation, a dirty cache line
is available for write-back earlier. Thus, the time window to
write it back to memory becomes longer, reducing pressure
to the memory controller. Additionally, by using a last write
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Fig. 1. Normalized performance of a perfect early write-back system with no write-back contention on a 8 core CMP.
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Fig. 2. Application speedup through LLC size sensitivity with 8§ MB (baseline), 16 MB and 32 MB.

predictor, dirty lines can be evicted earlier, thereby increasing
the potential cache capacity.

In order to show the potential benefit of a perfect last write
predictor, Figure 1 shows the performance improvement of a
system with no write-back operations to memory normalized
to a conventional CMP with write-back. This way, we show
the potential of performing write-back operations without
interfering to read requests in the memory controller. Since
most data accesses tend to occur in bursts [19], reducing
memory pressure during those bursts is a key for memory
performance.

Figure 1 shows an average 5% performance improvement
for single threaded benchmarks (SPEC-CPU2006) and 21%
for multi-threaded benchmarks (SPEC-OMP2001 and NAS-
NPB). As expected, multi-threaded applications present higher
performance gains due to their higher memory pressure.

B. Sensitivity to LLC Capacity

Cache capacity is a performance limitation for many
benchmarks. In order to show the potential benefit of a dead
line predictor, we perform a design space exploration with
different LLC cache sizes to demonstrate the sensitivity to
cache capacity for the benchmarks used in this paper.

Figure 2 shows the speedup obtained by increasing the LLC
cache size. In this experiment, the baseline LLC is an 8 MB
cache compared to a 16 MB and 32 MB LLC. In order to
evaluate the LLC capacity sensitivity of all benchmarks, the
LLC latency is maintained for all the configurations.

Benchmarks with a large working set such as NAS-NPB, or
with a great amount of memory operations, such as libquantum
or mcf, benefit more from a larger cache. A successful dead line
predictor would eliminate cache pollution, by early evicting
dead lines and therefore virtually increase the cache capacity.
Such a predictor would increase performance of benchmarks
with bigger working sets and it would decrease leakage for
other benchmarks by turning off unused cache lines of the
large LLC.

C. Energy Savings in LLC

The LLC static energy usage can account for more than
50% of the total energy consumption of the LLC [13]. Fig-
ure 3 shows the maximum theoretical static energy savings
considering that cache lines could be turned off after their
last access or whenever the cache line becomes invalid. For
this experiment, we consider a perfect mechanism without any
overhead in terms of energy consumption.

Figure 3 shows an average of 80% energy reduction for all
benchmarks evaluated. The results show that benchmarks with
higher energy savings are those which receive the least amount
of accesses per cache line on average. These benchmarks have
a low data reuse ratio and therefore offer higher opportunities
for energy savings. For instance, the sphinx3 benchmark has a
high cache line reuse ratio, with more than 50% of the cache
lines accessed more than 16 times before the line gets evicted.
Therefore, this benchmark shows small energy savings with a
perfect mechanism.

On average, more than 90% of the LLC lines of the
evaluated benchmarks receive only one access before the line
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Fig. 3. Maximum static energy saving considering a perfect last access predictos

gets evicted, enabling high potential energy gains for all the
benchmarks, since a large part of the LLC lines are dead on
arrival.

D. Overall Potential Benefits

The previous three subsections have shown the poten-
tial benefits of a perfect dead line predictor in terms of
performance, sensitivity to LLC capacity and static energy
consumption. First, we showed performance improvements
of up to 21%, second, we detected benchmarks with high
sensitivity to the LLC capacity, and finally, for all suites we
showed the potential average static energy saving of 80%.
All the experiments above show the potential benefits of the
mechanism proposed in this paper.

I1I.

DEWP is a Dead Line and Early Write-back Predictor to
detect last read and write accesses to LLC cache lines. DEWP
uses recent access information stored in an Access History
Table (AHT) to predict usage patterns. The combination of
traditional gated Vpp circuit techniques [17] and DEWP
allows to power off cache lines once they are predicted dead,
therefore saving static energy.

DEAD LINE AND EARLY WRITE-BACK PREDICTOR

A. Overview of the Mechanism

Figure 4 shows for a set of LLC cache lines the structures
required to build DEWP. These structures are: 1) cache line
metadata which adds information for every cache line in the
LLC, and; 2) An Access History Table (AHT) that stores the
prediction information for the LLC. The cache line metadata
guides the cache line predictions. Each cache metadata line
includes the following fields:

An On/Off flag to indicate if the cache line is switched
on or off;

A Train flag to indicate if accesses to the cache line
should update the pattern in the AHT;

A Read Usage counter to store the number of read
accesses the cache line is predicted to receive before
it becomes dead;

An Read Overflow bit to indicate if the predicted
number of read accesses exceeds the maximum value
the Read Usage counter can hold. If set, the cache
line remains powered until the line is evicted;

r using an 8 MB LLC.

A Write Usage counter to store the number of write
accesses the cache line is predicted to receive before
it gets evicted;

An Write Overflow bit to indicate if the predicted
number of write accesses exceeds the maximum value
the Write Usage counter can hold. If set, the cache line
is not be sent to early write-back;

An Early Evict flag to indicate if the line should be
queued to be evicted earlier after its last predicted
access; and

An AHT Pointer linking a cache line to its respective
entry in the AHT.

The AHT is indexed by the program counter (PC) of
the memory instruction that caused the cache miss and the
requested cache line offset (byte within the line) of the address.
The PC-offset combination has been shown to provide high
accuracy and high coverage of patterns even with moderately
sized AHTs [4] [9] [18].

An entry in the AHT includes:

e A Pointer flag indicating that a cache line has a pointer

to that specific AHT entry;
A Read counter;
An Read Overflow bit,

o A Write counter;

An Write Overflow bit.

The usage counters and overflow bits inside the AHT are
identical to those in the cache line metadata.

B. Operations of DEWP

The main operations performed by DEWP are triggered by
the following cache operations:

Cache Line Miss: The AHT is searched for an entry matching
the PC and offset of the instruction that caused the miss. For an
AHT hit, the mechanism copies the AHT’s read/write counters
and overflow bits into the cache metadata and resets the train
and early evict flags. In the case of an AHT miss, the train flag
is set, and all usage counters and overflow bits are reset in the
cache metadata. The AHT resets the read/write counters and
overflow bits and evicts the LRU entry to make room for the
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Fig. 4. Additions to the LLC required by DEWP.

new pattern (AHT line). An AHT pointer is created linking
the cache metadata and the new entry. Because the train flag
is set, future accesses to this line update the counters only in
the AHT. In order to avoid multiple lines updating the same
AHT entry, the point flag is used to inform if another cache
line is already linked to that entry. In this case, the new link
is not created.

Tag Hit and Data Turned On: If the train flag is disabled,
the read usage counter in the metadata is decremented and the
cache line is turned off if its read usage counter and overflow
bit are zero. The AHT will only be updated when the train
flag is enabled. The AHT to be updated is determined by the
pointer in the metadata.

Tag Hit and Data Turned Off: The requested cache line
is brought into the cache and its read overflow bit is set.
If the cache metadata has a valid pointer to an AHT entry,
the train flag is enabled and the mechanism increments the
corresponding usage counter in the AHT entry.

Cache Line Eviction: If the cache line contains a valid link
to an AHT pointer, the pointer flag must be disabled in the
corresponding AHT. Also, if the read/write usage counters in
the metadata is non-zero (indicating that the cache line was
accessed less than the predicted number of times), the usage
counter in the AHT entry is updated by decrementing the
counter by the non-zero value.

Cache Line Invalidation: If the write usage counter is zero, it
means that the last write was mispredicted. In this case, similar
to the tag hit and data turned off case, the write overflow bit is
set. If the cache metadata has a valid pointer to an AHT entry,
the train flag is enabled, so future writes increment the write
usage counter. Moreover, the cache line is turned off until it
receives valid data.

Cache Line write-back: Similar to what happens during a
tag hit and data turned on case, the write usage counter is
decremented and the cache line is sent to early eviction in the
case its write usage counter and overflow bit are zero. The
AHT is only updated when the train flag is enabled. The AHT
to be updated is determined by the pointer in the metadata. If
the cache line was turned off, it is turned on again.

The proposed mechanism does not modify the coherence
protocol at all. The protocol states are kept untouched even
when the cache line is turned off. The tag store is always kept
turned on.

C. Augmenting the Cache Replacement Policy

We also use our mechanism to improve the traditional
LRU cache replacement policy by prioritizing lines that have

the early evict flag set. This flag is set when the train flag
is disabled and the read/write usage counters and overflow
bits indicate that the cache line already received the predicted
number of reads and writes.

Evicting dead lines early before they actually become
victims (being at the LRU position, for example) can reduce
the cache miss ratio by letting the alive lines stay longer in
the cache [2].

Although we gave examples with the LRU replacement
policy, other policies could also be easily modified to take
advantage of our mechanism.

IV. METHODOLOGY

For our mechanism, experimental evaluation showed that
using 2 bits in the read and write usage counter covers more
than 95% of the LLC lines. This means that those lines receive
less than 4 accesses before their eviction. In our experiments,
we used 512 entries per AHT which proved to be enough to
generate accurate results.

To maintain the metadata information, 2 bytes per cache
line were added, which represents an overhead of 2.9% of the
total cache size, assuming a tag size of 32 bits.

For the AHT, using only 16 bits to store the least significant
part of the PC demonstrated to be enough to obtain accurate
results. Moreover, since most of the accesses are aligned
inside the cache line in sub-blocks of 8 bytes, only 3 bits
are necessary to maintain the sub-block accessed inside the
cache line (instead of using the full offset).

The total size of the AHT used in our experiments is
2.6 KB per LLC bank, which represents less than 0.25% of
the total LLC size. Each AHT is organized as an 8 way set-
associative cache in order to reduce the conflicts and increase
the accuracy of the predictions.

A. Simulation Environment

We use an in-house cycle-accurate x86 processor simulator
for our evaluation. Table I shows the baseline configuration for
the processor, cache memory and the main memory system.

For our evaluation, we use a total of 43 benchmarks
from 3 different suites: all (12 integer and 17 floating-point)
from the SPEC-CPU2006 suite, (7 parallel) from the SPEC-
OMP2001 suite, and (7 parallel) from the NAS-NPB-3.3.1
[3] suite. The SPEC-CPU2006 benchmarks were run using
the reference input set, the SPEC-OMP2001 benchmarks were
run using the Medium-ref input set and NBP-OMP using size
the A input set. Each benchmark from SPEC-CPU2006 was



TABLE 1. BASELINE SYSTEM CONFIGURATION.

2 GHz; 8 cores, in-order front-end and commit;
14 stages (3-fetch, 3-decode, 3-rename, 2-dispatch, 3-commit);
16 bytes fetch block size, fetch up to 6 instructions

000 Decode and commit up to 5 instructions;
Execution | Rename/dispatch/execute up to 5 micro instructions;

Cores 18-entry fetch buffer, 28-entry decode buffer, 168-entry ROB;
3-alu, 1-mul. and 1-div. integer units (1-3-20 cycle);
1-alu, 1-mul. and 1-div. floating-point units (5-5-20 cycle);
1-load and 1-store functional units (1-1 cycle);
MOB entries: 64-read and 36-write;

Branch |1 branch per fetch; 8 parallel in-flight branches;
Predictor |4 K-entry 4-way set-associative, LRU policy BTB;
Two-Level PAs predictor; 16 K-entry BHT, 2-bits prediction;

L1 32 KB, 8-way, 2-cycle; 64 bytes line size; LRU policy;
Data MSHR entries: 4-request, 6-write-back, 2-prefetch;
Cache | Stride Prefetcher: 2-degree, 64-strides table;

L1 32 KB, 8-way, 2-cycle; 64 bytes line size; LRU policy;
Inst. MSHR entries: 4-request, 2-prefetch;
Cache | Stride Prefetcher: 2-degree, 64-strides table;

L2 Private 256 KB, 8-way, 4-cycle; 64 bytes line size; LRU policy;
Cache | MSHR entries: 8-request, 12-write-back, 4-prefetch;
Stream Prefetcher: 2-degree, 16 prefetch distance, 128-streams;

Shared 8 MB (8-banks), 1 MB per bank;
L3 16-way, 10-cycle; 64 bytes line size; LRU policy;

Cache | Inclusive LLC; MOESI coherence protocol;
MSHR entries: 32-request, 32-write-back;
Bi-directional ring interconnection;
DRAM | On-chip DRAM controller, Open-row first policy, 4-channels;

Controller | 8 DRAM banks per channel, 8 KB row buffer per bank;
and Bus | DDR3, 8 burst length at 2:1 frequency ratio;
9-9-9-28 cycles CAS, RP, RCD and RAS latency;

run for a representative 200M instruction slice which was
selected with Pinpoints [16]. The parallel benchmarks (SPEC-
OMP2001 and NPB-OMP) where run with 8 threads, executing
the parallel region from one time step of each benchmark. All
benchmarks were compiled for x86-64, using GCC 4.6.3 or
GFORTRAN 4.6.3 with the -O3 option.

B. Modeling Energy Consumption

In order to increase the energy efficiency of the LLC, we
turn off the data array part of the cache line using gated Vpp
circuit techniques, as in [17]. Gated Vpp techniques use a
transistor to gate the supply voltage (Vpp) of the cache SRAM
cells.

In order to model the static energy savings using the DEWP
predictor, we model both the baseline cache architecture and
our proposed mechanism with CACTI 6.5 [15] at 32 nm
technology. We model tag and data power consumption.

Since our proposed mechanism requires extra metadata, the
cache lines were also modeled with the extra bits necessary.
We also consider that the metadata and the tag array are always
turned on. The additional energy consumption of the AHTsS is
not modeled due to its negligible impact.

V. EVALUATION
A. Prediction Accuracy

To analyze the accuracy of our mechanism, every time an
LLC line is invalidated, due to a processor write operation or a
cache eviction, we classify the line as: training, overprediction,
correct prediction and underprediction.

The training classification corresponds to the lines used
to train a new pattern. The overprediction refers to the case
that the cache line could be turned off/written back earlier.
The correct prediction means that the line was correctly turned
off/written back. The underprediction means that the cache line
was read after predicted to be dead or it received a write after
it was written back.

Notice that under predictions can hurt the performance,
by early evicting alive lines and thus generating extra cache
misses for those lines that have a clean copy of the data, and
also generate extra write-backs for dirty lines.

Figure 5 presents the accuracy results for our mechanism.
They show that DEWP requires an average of 1% to train the
mechanism, overpredicts 3%, underpredicts 2% and correctly
predicts 94%.

B. Static Energy

The cache energy efficiency is increased by using our
mechanism to turn off dead and invalid lines. Moreover, our
mechanism will implicitly cause further energy savings by
reducing the execution time of the applications.

The results in Figure 6 are shown in terms of static
energy savings at the LLC normalized to the baseline using
an inclusive cache hierarchy. DEWP achieves on average a
61% energy savings compared to the baseline.

Figure 7 presents the results for a non-inclusive cache
using our predictor. For most of the benchmarks, the energy
savings achieved are very similar to the inclusive LLC results.
Comparing the results achieved by the mechanism to the the-
oretical results in Section II, we find that in most of the cases
our energy savings are not as high as the perfect mechanism
suggests. However, the energy savings was considerable for all
benchmarks, reaching up to 91% in the case of namd, with the
smallest saving for sphinx3 at about 22%.

C. Performance Evaluation

Our mechanism can influence the execution time of an
application in different ways. DEWP can increase the perfor-
mance with early evictions of dead lines, enabling more virtual
space in the LLC cache, while early write-backs of last written
lines can potentially reduce the memory controller contention.
On the other hand, our mechanism can hurt the performance
by causing extra cache misses because of underpredictions.

The performance influence of our mechanism can also
vary if the LLC is inclusive or non-inclusive. This happens
because, whenever our mechanism predicts a cache line as
dead and prioritizes that line for early eviction, if the LLC is
inclusive, the early eviction will evict the line from the other
cache levels of the system as well. On the other hand, if the
LLC has a non-inclusive policy, the early eviction will only
affect the LLC. Furthermore, extra cache misses caused by
underpredictions of our mechanism would be alleviated in a
non-inclusive LLC because the data might still be available in
other cache memories (L1 and L2).

Figure 8 shows the execution time of our mechanism nor-
malized to the baseline using an inclusive LLC configuration.
We can observe that in most of the cases, the performance
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Fig. 7. Energy savings using DEWP in non-inclusive LLC.

gains correlate with the sensitivity study presented in Section II
and the prediction accuracy results. However, some bench-
marks, such as swim and sp, had a performance degradation,
because our predictor failed to recognize some cache access
patterns.

The results shown in Figure 9 are relative to our mechanism
and the baseline running with a non-inclusive LLC. For some
benchmarks, such as applu, wupwise and IS, the relative gains
of our mechanism are less than the gains with an inclusive
LLC. This is because the non-inclusive baseline achieved a
higher performance for these applications, due to the larger
effective cache size.

On average, the performance was improved by 2%, which
shows that despite saving a lot of energy, the performance was
not negatively impacted.

VI. RELATED WORK

The following subsections describe the most significant
work in cache line behavior prediction.

A. Line Usage Predictors

Chen et al. [4] proposed a Spatial Pattern Predictor (SPP)
to predict cache line usage patterns. The mechanism uses
the program counter (PC) and the referenced data offset to
correlate historical data about line usage in order to predict
future usage patterns of L1 cache lines. The goal of this
technique is to reduce leakage energy by bringing into the
cache just those sectors predicted to be useful. The authors also
introduce a prefetching technique to bring only the predicted
spatial patterns for contiguous groups of up to 512 bytes. Lee
et al. [12] propose to perform an early write-back operation
of cache lines that reach the LRU position, while DEWP uses
a predictor that detects the last write operation much earlier.
Also, their evaluation is limited to single threaded benchmarks,
while we broadly study the impact of our predictor for single
and multithreaded workloads.

B. Counter Based Dead Line Predictor

Kharbutil et al. [8] present two counter-based mechanisms
(AIP and LvP). The paper indicates that the Live-time Predic-
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Fig. 9. Performance using DEWP in non-inclusive LLC

tor (LvP) delivers higher accuracy with less complexity. LvP
records the number of accesses to a cache line and predicts
the line as dead when the access counter reaches a certain
threshold. The mechanism uses a hash of the PC which caused
the cache miss to index into a table that stores the history of the
number of accesses to previously evicted lines. The mechanism
is used to identify dead lines early, and also to bypass dead-
on-arrival cache lines.

C. Trace Based Dead Line Predictors

Lai et al. [10] [11] introduce the Last-Touch Predictor
(LTP) which uses an execution trace to predict the last touch to
a cache line. The mechanism generates a signature based on a
trace of instructions that access a cache line. By matching the
current signature with previously stored signatures that lead to
dead cache lines, the mechanism can predict when a given line
becomes dead. The goal of this work is to allow the lines to
self-invalidate when their last access is detected.

Kahn et al. [7] propose a Skewed Dead Block Predictor
(SDP) to predict dead lines and use these lines as a virtual
victim cache. This skewed predictor is very similar to the LTP
mechanism but uses two global tables indexed by different
hash functions to reduce the impact of conflicts between them.

D. Time Based Dead Line Predictors

Kaxiras et al. [6] present a cache decay mechanism which
that uses theories from competitive algorithms to create a time-
based strategy. They exploit long dead periods by turning off

cache lines during such periods. This approach aims to reduce
leakage power dissipated by the cache. Once the algorithm
indicates that a decay interval on the order of thousands of
cycles arrives, a hierarchical counter mechanism is adopted to
reduce the bits required for the counters per cache line.

Abella et al. [1] introduce the Inter- Access Time per
Access Count (IATAC) mechanism to predict and turn off
dead lines with the objective of reducing L2 cache leakage
energy. This mechanism predicts a cache line to be dead when
it detects that the line has not received any accesses for a period
greater than the average time between different accesses. The
mechanism keeps track of the average time between accesses in
a global table. Our mechanism does not require the broadcast
signals from all the cache lines to detect dead lines, and they
only predict last read operations.

E. Last Write Predictor

Wang et al. [19] propose a Last Write Predictor (LWP)
to predict whenever the cache line receives its last write.
The prediction mechanism uses three tables with a skewed
organization similar to the SDP mechanism to detect the last-
written blocks and store pointers of these blocks into a last-
write buffer. The objective of this mechanism is to make the
last-write blocks available for the main memory scheduling
before the line gets evicted. They require a complex internal
simulator while our predictor is much simpler and cheaper in
terms of storage/area.

None of the previous approaches take into account that



dirty lines remain turned on for long periods of time, wasting
energy while these lines could be evicted early. Thereby,
energy can be saved and memory contention reduced. Our
work introduces a mechanism that performs the prediction
of last read, last write and last access on a cache line basis,
exploring the energy savings achievable by turning off invalid
and dead lines, and performing early write-backs.

VII.

In this paper, we introduced the DEWP mechanism to
optimize the energy efficiency by keeping only alive data in
the LLC. Our mechanism achieves this by predicting access
patterns of the cache lines. Using this information, DEWP is
able to turn off the cache lines as soon as their data becomes
dead, to write-back early dirty cache lines after their last
write operation happens and also to reduce cache pollution by
prioritizing the eviction of completely dead cache lines. DEWP
works independently of the cache replacement algorithm and
it does not modify the cache coherence protocol.

CONCLUSIONS

The DEWP mechanism requires a low storage size over-
head to achieve accurate predictions (94% correct predictions
and only 2% of under predictions). DEWP achieves a 61%
energy reduction on average compared to the baseline. The
execution time is reduced by 2% on average for single-threaded
and multi-threaded applications. DEWP saves 74% of the
potential savings that a perfect (oracle) mechanism would
achieve. Additionally, DEWP achieves very similar results
in terms of energy and performance for inclusive and non-
inclusive LLCs.
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