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Abstract

Process placement is a technique widely used on parallel machines with
heterogeneous interconnects to reduce the overall communication time. For
instance, two processes which communicate frequently are mapped close
to each other. Finding the optimal mapping between threads and cores in
a shared-memory environment (for example, OpenMP and Pthreads) is an
even more complex task due to implicit communication. In this work, we
examine data sharing patterns between threads in different workloads and
use those patterns in a similar way as messages are used to map processes
in cluster computers. We evaluated our technique on a state-of-the-art multi-
core processor and achieved moderate improvements in the common case and
considerable improvements in some cases, reducing execution time by up to
45%.
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1. Introduction

Due to limits on instruction-level parallelism, high power
consumption and wire-delay problems of sequential cores,
the multi-core architecture is the current choice for high-
performance processors. The prediction is that for the next
chip generations the number of cores will increase drastically,
going from multi-core to many-core [1].

Due to the increase in the number of cores, finding the
optimal mapping between threads and cores gets more com-
plex because it is an NP-hard problem [2]. Usually, graphs are
used to represent both architecture and application behavior. In
environments where message-passing is the main paradigm to
build parallel programs (such as cluster computers), construct-
ing the task graph where vertices represent communication is
straightforward. In a previous work [3], it was shown that
optimizing thread placement in cluster computers using multi-
core machines improves performance. The communication
pattern is obtained by monitoring the messages, which contain
information about sender and receiver, and using them to
calculate the amount of data exchanged between tasks.

However, the thread placement approach for cluster comput-
ers has to be adapted to be used in shared memory applica-
tions. In such applications, the communication is not explicit.

Therefore, monitoring data accesses is the only way to analyze
the interaction between threads and the demands on cache
memory. In multi-core systems, there are three objectives in
optimizing thread placement:

Better use of interconnects
Make better use of interconnects, i.e. reduce off-chip
traffic by using intra-chip interconnects which have a
higher bandwidth and lower latency.

Reducing invalidation misses
Cache misses that happen when data which is already in
the cache is evicted by some other data are called inval-
idation misses. A common situation in shared-memory
programs is to have one thread writing to an area of
memory and another reading from the same area. In
an invalidation-based cache coherency protocol, such as
MESI, this can cause one thread to successively invalidate
the cache lines of the other thread. The objective is
to reduce invalidation misses which happen when two
private caches hold the same data and are continuously
invalidated by the respective other cache.

Reducing compulsory misses
Cache misses that would not happen if there was no
competition for the same cache are called compulsory
misses. In shared-memory programs, two or more mem-
ory hungry threads will evict cache lines from each other
if they share a cache, causing compulsory misses. If
they access the same group of addresses, those cache
lines would not be evicted. The objective is to reduce
competition for cache lines between cores that share a
cache.

Our goals in this work are to investigate whether data sharing
based thread placement has an influence on performance and to
evaluate techniques to place threads. To achieve these goals,
we used simulation tools and tests on real machines with a
variety of benchmarks. Our focus is to optimize the use of
memory hierarchies and interconnects, but not the optimization
of the usage of the execution units when threads share them.

Existing approaches, such as [4] and [5], analyze cache
statistics gathered throughout the execution, therefore mak-
ing them dependent on the architecture. In our study we
observed the memory accesses of each thread, regardless of
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cache parameters (such as line size and associativity), thus
separating the program’s behavior from the architecture. We
implemented a new mechanism to transform memory accesses
from different threads to communication patterns and used
them to place threads that share data on cores that share levels
of cache, thereby matching the program’s behavior with the
cache organization of the architecture.

In the experiments, using our thread mapping algorithms,
the execution time was reduced by up to 45% while also
reducing the variance. The reduction of variance is important
because it helps to predict the execution time.

The remainder of this document is organized as follows:
In Section 2, we present a motivation for optimizing thread
placement on multi-core by using a producer/consumer bench-
mark. We explain the way traces are converted to a sharing
metric and the algorithms used to place threads in Section
3. In Section 4, the evaluation methodology, the multi-core
architecture and the tools we used are presented. Results of
our tests are shown and analyzed in Section 5. In Section
6, related work is discussed. Finally, Section 7 summarizes
conclusions and outlines future work.

2. Motivation

In this section, the significant influence of the thread place-
ment strategy on the performance of multi-core systems is
shown. We introduce a new technique which we call data
sharing based thread placement and motivate its use with a
synthetic producer/consumer benchmark.

Consider a processor with four cores, where each pair of
cores shares a L2 cache. If two threads sharing data are placed
on cores that do not share the cache, the overall execution time
tends to be higher than when they run on cores which share
the cache, because a slower (in terms of both latency and
bandwidth) interconnect will be used.

To estimate the impact of thread placement on the ex-
ecution time and cache misses, we developed a synthetic
producer/consumer benchmark using the OpenMP API which
consists of two pairs of threads, each pair having a writer and
a reader thread. The writer thread writes N times a vector of
K integers and the reader thread reads each element of that
vector. The vector is protected by a lock so that a reader thread
only accesses the vector after it has been written to.

When using a multi-core machine with four cores, each two
sharing an L2 cache, it is easy to find the best and worst
placement in terms of cache sharing. A best configuration,
where each pair of threads can make use of the shared L2
cache; and a worst configuration, where each pair of threads
is running on cores that do not share the L2 cache.

We ran the synthetic benchmark in a simulator to observe
execution time and cache statistics. For the simulations we
used Virtutech Simics [6], a full system simulator on the
instruction set level. We simulated with a focus on two types
of cache misses: on cache misses due to invalidation and
on compulsory cache misses. The parameters we used for
these two configurations are presented in Table 1. In order

Focus on Focus on
invalidation misses compulsory misses

Vector size 256 KByte 4 MByte
Number of integers 65536 1048576in the vector (K)
Number of 100 10iterations (N )

TABLE 1. Parameters of the synthetic benchmark
configurations

Focus on Focus on
invalidation misses compulsory misses

best case worst case best case worst case
Average execu- 2.576 s 3.086 s 4.156 s 5.127 s
tion time
Speedup 19.8% 23.4%
L2 cache misses 1.5% 91.2% 5.7% 98.5%
MESI 3928 417496 14539 589890invalidations

TABLE 2. Results of the synthetic benchmark in Simics.

to compare the number of cache misses between the best and
the worst configuration, we modeled the cache layout for the
Simics virtual machine based on the Intel Xeon 5405, a quad-
core processor which has 6 MByte L2 cache shared between
each pair of cores. The cache and memory latencies were
calculated using the CACTI memory modeling tool [7].

The results in Table 2 show that optimizing the thread place-
ment improves the execution time and reduces the number of
cache misses and MESI invalidations greatly.

3. Data Sharing Metric and Placement Algo-
rithms

To be able to place threads according to the amount of data
sharing between them, a metric which quantifies this sharing is
needed. In this section, we introduce a new metric and propose
two new thread placement algorithms using it.

3.1. Communication Matrix and Data Sharing Met-
ric

We propose to use the number of accesses to the same
memory locations by two threads as a metric for how much
two threads access shared data. We constructed a matrix with
this metric for each pair of threads, referred to in the rest of the
paper as a communication matrix. To simplify the generation
of the matrix, we did not make a distinction between read
and write memory accesses, nor did we collate the number of
accesses to the same memory address.

The communication matrix is generated as follows: First,
collect the number of memory accesses (both reads and writes)
to each address for every thread. Then, calculate the data
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Thread 0 1 2 3 4 5 6 7ID
0 2.1 2.1 4.4 4.7 2.1 2.1 1.9
1 2.1 2.1 2.1 2.1 3.2 2.1 1.9
2 2.1 2.1 2.1 4.8 3.5 2.1 1.9
3 4.4 2.1 2.1 2.2 2.3 2.2 3.1
4 4.7 2.1 4.8 2.2 4.7 4.1 2.2
5 2.1 3.2 3.5 2.3 4.7 6.9 3.1
6 2.1 2.1 2.1 2.2 4.1 6.9 2.4
7 1.9 1.9 1.9 3.1 2.2 3.1 2.4

TABLE 3. Example of a communication matrix.

sharing for each pair of threads by adding up the number of
accesses to the same addresses by the thread pair.

For each workload, we generated a communication matrix
with the memory access traces generated in the simulation.
An example of a communication matrix for the advection
workload is shown in Table 3. Each table cell contains the
number of accesses to equal memory addresses by two threads,
in millions. The advection workload will be described in more
detail in section 4.3.

Generating the communication matrix through simulation
is slow and not practical for users due to the need for a
system simulation tool. For these reasons, we suggest that the
application vendor provides the communication matrix with
the application.

In this example, the number of data accesses to the same
memory area by threads 5 and 6 was 6.9 million, by threads
2 and 7 it was 1.9 million. Therefore, it would be better in
terms of sharing to place threads 5 and 6 on two cores which
share the cache than threads 2 and 7.

To compare different thread placements in terms of data
sharing, we propose a data sharing metric. The motivation for
this metric was to quantify the sharing through caches in a
given thread placement. We define this metric as follows: For
each cache in the architecture, find all the threads which can
share data through this cache. Then, add up the sharing from
the communication matrix for all pairs of threads which can
share data on this cache. Finally, add up this metric for all
the caches in the architecture. This metric is a measure of
how much a certain thread placement can benefit from shared
caches. A higher metric means that more data can be shared
through the caches. This data sharing metric will be used by
the exhaustive search placement algorithm which we introduce
in section 3.2.1.

3.2. Placement Algorithms

In this section, we introduce the two different placement
algorithms we developed to optimize the thread placement
on the cores. These two algorithms use the communication
matrix described in the last section. In the experiments, we
will use the operating system scheduler as a reference for our
algorithms.

3.2.1. Exhaustive Search. An approach to find the best thread
placement in terms of data sharing is to try every possible
placement, which is done in this algorithm. It uses the data
sharing metric introduced in section 3.1. It works as follows:
First, generate all possible combinations of thread placements,
taking into account the symmetry of the architecture. This
has to be done only once for each CPU architecture and
number of threads. Then, calculate the data sharing metric
of each placement. Finally, choose the thread placement with
the highest data sharing metric.

The big disadvantage of this algorithm is that it is only
feasible for a small number of threads (≤ 16), because the
number of combinations is very high. In our tests, it took
about one hour to find the thread placement for 16 threads,
and we estimated that it would take years to find the placement
for 32 threads.

3.2.2. Heuristic Algorithm. A different approach to place
threads is the heuristic algorithm, which does not find the
best thread placement but has a constant execution time. It
places threads in pairs, which is motivated by the fact that
most architectures share cache in pairs as well.

The heuristic algorithm consists of two steps: First, order
all possible pairs of threads according to the amount of com-
munication between them, using the communication matrix.
Second, for each pair in the sorted list, put the two threads on
two cores which share the cache and remove the two threads
from the list.

The advantage of this algorithm is that it is very fast; typical
execution time is less than one second, even when placing
16 threads. On the other hand, it only considers pairs of
threads, not bigger groups. This leads to suboptimal behavior
when there are groups of three or four threads sharing lots
of memory accesses among themselves. Additionally, this
algorithm leads to an uneven distribution of threads when the
number of threads is not dividable by the number of cores;
this leads to an increase in execution time.

In the experiments, we compared the results when running
with the operating system scheduler with the results of the two
placement algorithms developed by us. The operating system
scheduler, the exhaustive search and the heuristic algorithm
are labeled as AUTO, EXH and HEUR respectively.

4. Methodology

For the evaluation of thread placement, we used a state-of-
the-art computer architecture, Intel Nehalem [8]. It is described
in this section. In addition, we explain how we generated the
memory access traces needed to find the data sharing patterns
and introduce the workloads used to measure the impact of
optimizing the thread placement.

4.1. Architecture

We used two physical Intel Core i7 processors, which are
based on the Intel Nehalem architecture. Each processor has
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Fig. 1. Intel Nehalem architecture

four cores and 8 MByte of L3 cache. Each core has 256 KByte
of L2 cache and is able to execute two threads in parallel
using simultaneous multithreading (SMT). The architecture is
depicted in Figure 1.

We ran the workloads with two threads to measure the
influence of sharing the cache on the performance. For two
threads, there are three possible configurations. Placing the
threads on different processors makes them unable to share
data through any cache. Placing the threads on the same core
enables them to share data through the L2 and L3 cache, but
makes them compete for resources on the core. Placing the
threads on the same processor, but not on the same core,
enables them to share data through the L3 but not the L2
cache.

In the result section, the thread placements for two cores
are labeled DIFF CPU, SAME CORE and SAME CPU
respectively. The workloads were compiled with GCC 4.3.3
and executed on Ubuntu 9.04 with the kernel version 2.6.28-
11.

4.2. Memory Access Traces

To be able to place threads, we have to find the data
sharing patterns between the threads. We obtained these pat-
terns by using Simics, running the workloads in a simulated
UltraSPARC machine. We used special instructions provided
by Simics (called magic instructions) to register the threads
created by the workload with the simulation environment and
enable the simulator to track the memory accesses of each
thread. The memory accesses were recorded to a file, which
was then processed with the algorithm described in section
3.1 to generate a communication matrix. Since simulation in
Simics is very slow, we used much smaller problem sizes for
the simulations than for execution on the real machine.

4.3. Workloads

In order to analyze the impact of thread placement, we
selected a group of parallel programs with different paralleliza-

Benchmark Problem size Memory Parallelization
usage API

LU 3072*3072 75 MByte Pthreadsmatrix

FFT 67108864 3.0 GByte Pthreadscomplex doubles
Advection 400*400 grid 1.1 GByte OpenMP
Dedup File of 1 GByte 1.9 GByte Pthreads
Streamcluster 16384 points 10 MByte Pthreads

TABLE 4. Properties of the workloads.

tion schemes and data sharing behaviours. Two well known
scientific benchmarks, two emerging applications and a kernel
from a weather forecasting model were used. All workloads
were compiled with the default compiler flags specified in their
respective makefiles.

From the SPLASH2 benchmark suite [9], the LU kernel
was used. It contains the factorization of a dense matrix as a
lower triangular and an upper triangular matrix. The matrix
is divided into blocks and these are distributed among the
threads. We used the two available versions: contiguous (each
block is allocated contiguously) and non-contiguous.

Also from SPLASH2, the parallel version of the complex
1-D FFT algorithm was chosen. It shows all-to-all commu-
nication throughout the calculation. Since the inter-thread
communication graph is not easily separated in clusters, thread
placement is not intuitively beneficial.

Dedup from the PARSEC benchmark suite [10] is a kernel
that implements a technique called deduplication to compress
a datastream. In its parallel phase, it uses three pipeline stages
to divide the work. This means that the number of threads
created is three times greater than the number indicated when
running the program. Because of that, we did not run Dedup
with just two threads (this mapping is impossible) and with
the exhaustive search placement (exhaustive search unable to
complete in realistic run time).

As another emerging problem from the PARSEC benchmark
suite, Streamcluster solves the online clustering, which is a
data mining problem. An important characteristic is that it is
memory bound for small input sizes.

Advection [11] is a part of the Brazilian Regional At-
mospheric Modeling System, a weather forecast program. It
uses finite difference methods to compute scalar and vector
fields interaction. Basically, the work is evenly divided by the
number of threads and they access common memory zones.

In Table 4 the problem size, which describes the input
data, and the memory usage for each benchmark is shown.
The memory usage varies between 10 MByte and 3 GBytes,
indicating different cache utilization scenarios. In the case of
Streamcluster, the application data fits into the cache almost
completely. However, in the other cases, the application data
is much bigger than the cache. The memory usage of all
workloads was small enough to fit into the main memory of
the test machines.
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Fig. 2. Results for one and two threads on Intel Nehalem
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Fig. 3. Results for eight threads on Intel Nehalem

5. Results and Analysis

In this section we present the results of our experiments and
analyze them.We analyzed first the performance difference of
running two threads on two cores with and without a shared
cache. Then, we analyze the results of our proposed approach
for 8 and 16 threads, comparing them to the operating system
scheduler. During the tests, we observed that the operating
system scheduler did not change the mapping of the threads
during a run of a workload. We show both the average
execution time of 50 runs and the confidence interval for a
confidence level of 90% in a Student’s t-distribution.

Figure 2 shows the results for 1 and 2 threads. As expected,
when the two threads are running on the same core, the
performance decreases drastically because the threads are
competing for execution units. The other thread placements
perform roughly twice as fast as running with just one thread.
The results for the automatic scheduling are very close to
the results with optimized thread placement, which suggests
that the OS scheduler is aware of this performance problem
and does not schedule two threads on the same core unless
necessary.

Figure 3 shows the result for 8 threads running on Intel
Nehalem. In this configuration, we achieved the biggest per-
formance increases in our tests. All benchmarks except FFT
show a significant reduction in execution time, Streamcluster
reducing it by 45% while also reducing the variance.

Running with 16 threads, the results as presented in Figure
4 are different. Optimizing the thread placement actually
increases the execution time of dedup, while the LU and FFT
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Fig. 4. Results for 16 threads on Intel Nehalem

benchmarks show no difference in performance. Advection
and Streamcluster have an improvement of about 10% and
25%, respectively. Additionally, the performance of all bench-
marks is about the same or even worse than when running with
8 threads. The reason for this behaviour is that the threads are
starting to compete for the execution units on the cores.

To summarize, optimizing thread placement on Intel Ne-
halem decreased execution time and variance in almost all
our tests. However, increasing the number of threads from 8
to 16 has no benefits and can actually lead to worse results.

6. Related Work

In our previous work [3], a process mapping technique for
clusters of multi-core processors was presented using MPI
traces in order to identify the communication pattern. The
impact of placing threads on multi-core is analyzed in com-
bination with placing threads on clusters. Motivated by those
results, we extended this approach to multi-core architectures
and shared memory.

The MPI Process Placement toolset from Chen et al. [12]
aims to find the optimized mapping automatically using a
profile-guided approach for SMP clusters and multiclusters,
where the communication among the processes is much more
easy to obtain because it is made explicit by the MPI prim-
itives. The key difference between this work and ours is the
way we obtain the communication patterns by monitoring the
application in a simulated environment.

The work from Thekkath and Eggers [13] evaluates the
impact of thread placement on multithreaded architectures
using placement algorithms fed by trace-driven simulators,
but despite the potential of this technique, no performance
improvements were achieved due to the memory access pat-
terns of the applications. We used real machines as a testbed
which take into account the dynamic behaviour of parallel
application, such as lock contention. Moreover we showed
improvements in execution time in the Intel Nehalem archi-
tecture.

Tam, Azimi and Stumm [4] used performance monitoring
units to detect sharing patterns among threads running on
a multiprocessor architecture. Even with the performance
improvements, the authors show that it is possible to increase
the performance even more by using hand optimization. The
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study of Klug et al. [5] presents a framework that uses the
hardware counters in order to find the best thread placement on
multi-core machines. These two approaches are tightly coupled
to the architecture, while ours is less dependent. In our study
we observed the memory accesses of each thread, regardless
of cache parameters (for example, line size and associativity),
thus separating the program’s behavior from the architecture.

Broquedis et al. [14] introduce the hwloc framework which
gathers hardware information and exposes it. As a demon-
stration, they use it change hardware affinities in parallel
applications to improve the performance of OpenMP and
MPI applications. When using OpenMP, not the memory
accesses, but the structure of the program is used, leading
to good results. However, the application used creates more
than 100,000 threads which is an uncommon situation, while
we evaluated a diverse set of workloads with more common
configurations.

7. Conclusions and Future Work

This work presents an approach to improve execution time
of parallel workloads by placing threads according to their
communication patterns. In order to find the communication
patterns, we executed each workload in a simulator to generate
memory access traces and used these traces to place the threads
with two different algorithms. Our approach was evaluated
by comparing execution times when running with optimized
placement and the operating system scheduler.

Our tests show that there are two factors affecting thread
placement: the cache architecture of the processor and the data
sharing properties of the workloads. The cache architecture
of the processor had the biggest influence. Optimizing thread
placement on Intel Nehalem can improve data sharing on the
L1 and L2 cache, and, since we are running with two physical
processors, on the L3 cache as well. Therefore, execution time
was reduced in almost all cases. The data sharing properties
of the workloads influenced performance improvements sig-
nificantly on Intel Nehalem, where it is boosted between 5%
in the case of FFT and 45% in the case of Streamcluster. The
reason for this difference is the communication pattern of the
workloads: FFT has an all-to-all communication, while the
threads of Streamcluster communicate in a pipeline.

To summarize, our results on Intel Nehalem show that
execution time can be reduced greatly in a wide variety of
workloads by optimizing thread placement. Furthermore, our
experiments showed that the heuristic algorithm has a similar
performance benefit as the exhaustive search algorithm with a
drastically lower run time.

For the future, we intend to use the temporal characteristics
of the memory accesses to place threads dynamically, i.e.,

to change the placement during the runtime of the workload
according to temporal changes in the communication patterns.
One step further, we intend to evaluate the possibility of
moving optimized thread placement into the Linux kernel,
thereby making it completely transparent and removing the
need to execute the workloads in a simulator beforehand.
Additionally, we will evaluate more placement algorithms.
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