
Enhancing Energy Efficiency using Efficient Parallel Programming Techniques ∗

Marco A. Z. Alves, Márcia C. Cera, João V. F. Lima,
Nicolas Maillard, and Philippe O. A. Navaux

Universidade Federal do Rio Grande do Sul (UFRGS), Informatics Institute
Av. Bento Gonçalves, 9500 - Porto Alegre, Rio Grande do Sul, 91501-970, Brazil

{mazalves, marcia.cera, joao.lima, nicolas, navaux}@inf.ufrgs.br

Abstract

Currently, large-scale parallel architectures include pro-
cessors with increasing number of cores. They are high pro-
cessing power systems and consequently large energy con-
sumers. Thus, energy consumption becomes a relevant is-
sue on High Performance Computing with many hardware
level initiatives to allow energy saving. In software level,
the adoption of efficient parallel algorithms can also con-
tribute to save energy, since they are able to better explore
the parallel architecture features. This paper aims to show
the impact of algorithms choices on energy consumption.
In this sense, we will analyze the use of energy of different
high performance implementations in a real scenario. We
conclude that green computing issues can be supplied by
adopting efficient parallel programming techniques.

1 Introduction

Nowadays, high performance computing uses aggressive
techniques in order to obtain parallelism on multiple levels:
on the instruction level using pipelines and superscalarity
with Out-Of-Order execution (OOO) [25]; on the thread and
process level using multi-core machines and even clusters
of many multi-core nodes. However, instruction level paral-
lelism (ILP) techniques such as deep pipelines, larger OOO
execution windows, frequency increase, and others [12, 26],
have less room due to walls of wire-delay problems, power
consumption [5], and ILP extraction problems [1].

Considering this high performance scenario, processors
with increasing number of cores became the most likely
way to the industry to continue delivering more powerful
processors on each new generation. The focus changed
from the instruction parallelism to the thread and process
parallelism [27]. Multi-core processors are built with cores
simpler than traditional single cores [21], leading the pos-

∗This work was partially supported by CAPES and CNPq.

sibility of putting more cores on the same physical silicon
area. This complexity reduction on the cores is also benefi-
cial for the power constraints inside of the chip.

Power consumption is becoming very relevant consid-
ering that many companies and research centers use large-
scale clusters with lots of cores. In this context, each tech-
nique that leads to power consumption reduction has great
impact on the final system consumption. Thus, new proces-
sors begin to present frequency scaling options, auto sub-
systems power off and others techniques to ensure that ma-
chines will spend energy on demand.

However, such energy saving techniques do make sense
only if High Performance Computing (HPC) programmers
use efficient algorithms even for the simpler tasks where
performance is not the main constraint. Hence, parallel
programming is the key to leverage the energy efficiency.
Many recent studies describe the Explicit Task Parallelism
paradigm as a technique to extract parallelism of the algo-
rithms at runtime [2, 17, 23]. It allows parallel applications
to adapt their behavior and unfold the parallelism on de-
mand; consequently, they improve resource utilization as
well as energy consumption.

Our study aims to show the importance of HPC on the
green computing context, showing that the programmer has
a major role on the energy consumption in current and fu-
ture parallel architectures. Some experiments are presented
in order to illustrate the correlation between energy con-
sumption and performance on parallel machines.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the current hardware level techniques aim-
ing at energy efficiency. Afterward, there is an overview of
the efficient parallel programming techniques in Section 3.
Section 4 describes the architectural environment, the par-
allel programming techniques and applications tested. The
experimental results are exposed and analyzed in Section 5.
Section 6 presents our final remarks and conclusions, as
well as our future works perspectives.

1

2 Energy Efficiency Context

Embedded system architects are very familiar with low
power budget systems designs; however, power constraint
arrived on general purpose systems. This change, among
other factors, relies that on the past the sole focus was on
the processing power and associated equipment spending,
while infrastructure (including power, cooling and data cen-
ter space) was always assumed available. But, today, the in-
frastructure is becoming a limiting factor that can determine
how and if IT equipment can be deployed [28]. In this new
scenario with given peak power budget, different level ap-
proaches have been studied in order to match performance
and power for future general purpose systems.

Considering the multi-core chips, the works from Isci
[15] and Sartori [24] propose dynamic techniques to global
CMP (Chip Multiprocessor) monitoring, control and man-
agement of the power. They estimate the application be-
havior across different operating modes, preventing instan-
taneously that the power exceed the peak budget. Thus, the
authors can dynamically control the power consumption of
all cores inside of the chip in order to achieve high perfor-
mance with low energy consumption.

About future many-core chips, the work from Woo [29]
takes power and energy into account to predict the design
of many-core processors. The paper suggests a many-core
alternative, featuring many small and energy-efficient cores
integrated with a full-blown processor, in order to achieve
high energy efficiency. Once many-core processors aim to
join tens of cores, as the Intel tera-scale project processor
with 80 cores and 3D stacked memory [3], thermal prob-
lems shall arrive together with power challenges [20]. In
context, more than reducing the total power consumption,
the systems will need to reduce the total heat dissipation.
Huang’s [13] paper shows the relevance of the theme, pre-
senting a study about temperature-aware design for many-
core processors and investigating the relationship between
core size and on-chip hot spot temperature. It concludes
that with the same power density, smaller cores are cooler
than larger cores due to a spatial low-pass filtering effect of
temperature.

On the cluster level, the study presented by Khargharia
[16] addresses the power consumption on high performance
servers platform. In this study, the processor and/or the
memory subsystem are dynamically reconfigurated to suit
the application resource requirements.

On cloud computing scale, we can also cite works which
aims to improve energy savings. For instance, Duy [8]
presents a Green Scheduling Algorithm which is a predictor
based on neural network for energy saving in Cloud com-
puting.

By the presented works it is notable that many advances
on power consumption techniques have been proposed on

processors, cluster and cloud levels. These researches
clearly affect the final system energy consumption; how-
ever, the programmer has its contribution on the overall en-
ergy consumption, which is discussed in our paper. Next
section presents some programming approaches that will be
evaluated with focus on the energy consumption.

3 Efficient Parallel Programming

Besides the initiatives described in the previous section,
which are focused on hardware, there is an increasing in-
terest in energy-efficient applications, i.e. those are able to
provide an efficient use of the energy. The development
of energy-efficient applications is directly related to HPC,
since high performance techniques improve the application
execution and, consequently, save energy. In this section,
we will discuss about current parallel programming tech-
niques and their use for energy-efficient programming.

Recent studies take advantage of the Explicit Task
Parallelism programming paradigm to allow the extrac-
tion of parallelism on demand [2, 17, 23]. According
to this paradigm, the programs are structured as abstract
tasks, which are generated at runtime, unfolding the par-
allelism on demand. The programmers basically identify
independent units of work (abstract tasks), dependencies
among them, and the runtime scheduler balances the work-
load [19]. Moreover, this paradigm is efficient to deal with
irregular problems, in which the workload depends on the
input data and can vary during the execution. Due to its
adaptive nature, we believe that the explicit tasks paral-
lelism can support energy-efficient applications.

Aiming to provide high performance in multi-core archi-
tectures, several shared-memory programming interfaces
or languages support the explicit tasks parallelism, e.g.,
Cilk [17], OpenMP 3.0 [2] and Intel Threading Building
Blocks (TBB) [23]. These APIs attend the explicit task par-
allelism offering means to define abstract tasks, to synchro-
nize tasks solving dependencies among them, and to sched-
ule the dynamic tasks on-the-fly.

While Cilk represents tasks as procedures (the keyword
spawn generate dynamic tasks), OpenMP uses a block of
instructions (defined by the task construct), and TBB uses
instances of a task class (deriving from tbb::task abstract
class). The dependencies among tasks are expressed as bar-
riers using keywords in Cilk (sync) and OpenMP (taskwait),
whereas TBB allows synchronization with either the block-
ing style (similar to Cilk) or the continuation style (asyn-
chronous standby). Cilk and TBB scheduling is based on
Work Stealing (an idle thread chooses randomly another to
steal some workload), while OpenMP includes several sim-
ple strategies and is still under development.

In distributed-memory systems, explicit task parallelism
features are achieved in KAAPI (Kernel for Adaptative,

Asynchronous Parallel and Interactive programming) [9].
KAAPI tasks are function calls (generated by fork), which
returns no value except through the access of a global ad-
dress space called global memory. The dependencies are
solved accessing shared objects on the global memory.
KAAPI scheduling also is based on Work Stealing, but it
was adapted to distributed-memory context: several local
stealing are performed before request remote ones.

The standard parallel API for HPC in distributed-
memory is the MPI (Message-Passing Interface) [10]. It is
an interface that allows inter-processes communications, in
which are defined issues about point-to-point and collective
communications, as well as organization of the programs
such as groups and topologies of the processes and com-
munications contexts. Since the definition of MPI-2 [11],
it specifies the dynamic process creation feature, in which
new processes can be spawned at runtime providing some
flexibility to the MPI applications. This feature can be ex-
plored to adaptive MPI applications with a behavior close
to that achieved by explicit task parallel applications. In the
next section, we will explain how an adaptive behavior can
be reached in MPI applications.

4 Proposed Evaluations

This paper aims to analyze the impact of algorithmic
choices on energy consumption. In this sense, we moni-
tor the power consumption of latest generation multi-core
processors that implements energy saving techniques in the
hardware level, as described in Section 4.1. For the soft-
ware level, the parallel programming techniques as well as
the test applications are described in Section 4.3.

4.1 Architecture and Monitoring Issues

In order to evaluate the energy consumption relating it
with the performance, we describe here the multi-core envi-
ronment used for the measures. One Dell PowerEdge R710
node was adopted, containing 12 GB DDR3 memory, and
2 Intel Nehalem processors model Xeon E5530 2.4 GHz
manufactured in 45 nm technology. They are quad-core
processors with each core support up to 2 threads running
in parallel using the simultaneous multi-threading (SMT)
technique, each processor has a maximum amount of power
TDP (thermal design power) of 80 Watts. The nodes use
Linux Ubuntu 10.04 operating system (kernel 2.6.32-21-
server #32-Ubuntu SMP) with GCC 4.4.3 and Open MPI
1.4a1r22335.

This Nehalem processor model controls power consump-
tion using the Intel Turbo Boost technology [14], which
enables higher performance through the availability of in-
creased core frequency. This technology is the materializa-
tion of studies of dynamic power monitoring and control

such as those presented on Section 2. This technique is ac-
tivated under some configurations and workloads, and when
the processor is operating below rated power, temperature,
and current specification limits. A Nehalem processor can
have just few cores activated, but all active cores in the pro-
cessor will operate at the same frequency. Even at frequen-
cies above the base operating frequency, all active cores will
run at the same frequency and voltage. Although the knowl-
edge of the system evaluated is important, our proposal is
not to study some determined technology but evaluate the
new processors techniques in order to show the impact of
the parallel programming performance.

We measure the power consumption of nodes through
the iDRAC6 (Integrated Dell Remote Access Card) [7] sys-
tems management hardware and software solution. It pro-
vides remote management capabilities, crashed system re-
covery, and power control functions. After enabled, the
iDRAC provides access to system information and status of
component. To obtain the system information, the free-ipmi
software was installed. IPMI (Intelligent Platform Manage-
ment Interface) specification is a standard which defines a
set of common interfaces to a computer system enabling
the system administrators to monitor the system health and
manage the system. Using the IPMI to access the iDRAC
we were able to monitor the power consumption of the en-
tire system.

4.2 Parallel Programming Techniques

We verify the impact of efficient parallel programming
techniques by four different ways to implement adaptive so-
lutions to a target problem. To illustrate the approaches, we
will show their use to solve the Fibonacci calculation prob-
lem. It returns the ith element in the Fibonacci sequence
(0, 1, 1, 2, 3, 5, 8, 13, ...) in which each element is the sum
of the previous two.

4.2.1 Explicit Tasks with TBB

We chose TBB to implement an explicit task parallelism
application because it has a task scheduler based on Work
Stealing [4]. It maps tasks to native threads for the most effi-
cient usage of the underlying hardware, aiming to minimize
memory demands and cross-thread communication. Hence,
the runtime takes responsibility of scheduling for locality
and load balancing.

As TBB tasks are abstract user-defined classes, our tests
implement an unit of work as a class derived from the ab-
stract class tbb::task. An initial task has the entire prob-
lem N and it divides the work in d other tasks, thus cre-
ating d new task objects of dN/de size by the method
tbb::task::spawn. This approach is similar to the recursive
Divide and Conquer strategy, but its usage on a different
programming strategy is straightforward.

Figure 1 shows an implementation of the Fibonacci with
TBB. The user-defined FibTask derives from task. If the n is
less than a threshold, the computation is made sequentially
(locally on the object). Otherwise, two new dynamic tasks
are generated to compute n− 1 and n− 2 respectively. The
forker waits for children results (spawn and wait for all),
sums them and returns.

class FibTask: public task {
public:
const long n;
long* const sum;
FibTask(long n_, long* sum_) :
n(n_), sum(sum_)

{}
task* execute() {
if(n < CutOff) {

*sum = SerialFib(n);
} else {
long x, y;
FibTask& a =

*new(allocate_child()) FibTask(n-1,&x);
FibTask& b =

*new(allocate_child()) FibTask(n-2,&y);
set_ref_count(3);
spawn(b);
spawn_and_wait_for_all(a);

*sum = x+y;
}
return NULL;
}
};

Figure 1. Fibonacci C++ code using TBB:
the user-defined FibTask class that devives
from task, dynamic tasks are generated until
reaches the CutOff.

4.2.2 OpenMP Task Region

We also chose OpenMP to implement explicit task paral-
lelism because it is a standard API for shared-memory plat-
forms. An OpenMP task is a block of instructions, perhaps
containing calls to another task block. Consequently, the
parallelism can be unfolded during runtime. The created
tasks synchronize using the taskwait construct, suspending
the current task until all its children tasks have completed.

Figure 2 illustrates the explicit task parallelism in
OpenMP. To each value of the n, two new tasks are dynam-
ically generated (task construct) to compute n−1 and n−2
respectively. The taskwait ensures that the parent execution
will only continue when the children results are available.

4.2.3 MPI Dynamic Processes

MPI tasks can be explicitly created as processes using
the MPI Comm spawn primitive. The standard does not

int fib(int n) {
if (n < 2) return n;
else {

int x, y;
#pragma omp task shared(x)
{ x = fib(n-1); }
#pragma omp task shared(y)
{ y = fib(n-2); }
#pragma omp taskwait
return(x + y);

}
}

Figure 2. Fibonacci C code using OpenMP:
task directive creates tasks dynamically.

specify mapping schemes, and each MPI implementation
can provide different approaches to distribute dynamic
processes between the available processing elements [6,
22, 18]. The dependencies are explicit and specified by
message-passing among processes without any restriction.
Since MPI tasks can be dynamically created and synchro-
nized, MPI-2 enables the development of programs with
a structure closer to the explicit task paradigm, but for
distributed-memory environments.

The MPI explicit task approach generates tasks dynami-
cally until a threshold (stop condition). It increases the grain
size of each new MPI process generated but the programmer
has to establish the threshold level. Although the simplicity
of a stop condition to control grain size, it has no guarantee
of efficiency on different systems. Indeed, a large number
of processes may affect performance as processors become
oversubscribed. In this paper, we propose two approaches
to optimize task creation: lazy and adaptive.

In Lazy, whenever tasks must be dynamically generated,
the forker process (or the parent) will keep with some work
to compute locally. To illustrate this, consider that two new
tasks must be created, using the Lazy approach the par-
ent will spawn a new process to compute one task and the
other will compute locally. The local computation is imple-
mented as a recursive call; furthermore, local and remote
computations are synchronized through message-passing.
Figure 3 illustrates the Lazy approach solving the Fibonacci
problem. Notice that we take advantage of an unblocking
received while the local computations are performed, and
we suppress the MPI Comm spawn parameters for the sake
of space.

In the Adaptive approach, the goal is to guide the dy-
namic task creation (MPI processes) to take into account
the number of processing elements (processors or cores)
available. This is achieved by adding a second stop con-
dition in dynamic tasks creation, which checks the number
of already running tasks against the number of processing
elements. The dynamic creation stops when all processing

int mpi_fib(int n) {
if (n < 2) return n;
else {
MPI_Comm_spawn("mpi_fib", n-1, &child);
MPI_Irecv(&x, child, &req);
y = mpi_fib(n-2);
MPI_Wait(req);
return (x + y);
}
}

Figure 3. Fibonacci C code using MPI - Lazy
approach: in each recursion level, one task
is spawned dynamically (MPI Comm spawn)
while the other is computed locally.

elements have received a task, and from this moment on,
all further tasks are computed locally, i.e. computed as re-
cursive calls. Figure 4 shows the Adaptive approach in the
Fibonacci calculation. Dynamic MPI tasks are generated
until their number is less than the number of processing
elements, after that, the computation is performed locally
through recursive calls.

int mpi_fib(int n) {
if (n < 2) return n;
else {
if (curr_UE < nb_PE){
MPI_Comm_spawn("mpi_fib", n-1, &child[0]);
MPI_Comm_spawn("mpi_fib", n-2, &child[1]);
MPI_Recv(&x, child[0]);
MPI_Recv(&y, child[1]);
} else {
x = mpi_fib(n-1);
y = mpi_fib(n-2);
}
return x + y;
}
}

Figure 4. Fibonacci C code using MPI -
Adaptive approach: tasks are dynamically
spawned until the current number of pro-
cesses (curr UE) is less than the number of
processing elements (nb PE).

4.3 Test Applications

The approaches described above were used to implement
two test applications: a Merge sort sorting algorithm and a
matrix multiplication, as described in the following.

4.3.1 Mergesort

Merge sort is a well-known recursive sorting algorithm. Our
parallel implementation works as the sequential version,
where recursive calls are replaced by tasks generation. It di-
vides an initial input of size N in two smaller parts of sizes
dN/2e for each task. Then, it recursively calls itself un-
til a threshold from which the sequential algorithm is used.
The conquer phase merges the results of two children and
returns to the upper level. Although the OpenMP and TBB
merge sort implementations use shared-memory arrays for
input and output numbers, the MPI versions use message
passing for send the input to each new task. The experi-
ments used n random numbers as input.

4.3.2 Matrix Multiplication

In matrix multiplication, the target problem is to compute
the multiplication of two matrices A and B with n × n
elements each, storing the results in a matrix Cn×n. We
implemented a recursive solution following the traditional
algorithm, multiplying row by column. The input matrices
A and B are partitioned in two halves each, in such a way
that four new dynamic tasks are generated per level in the
dividing phase. Each dynamic task will compute one quad-
rant of the Cn×n. The recursive task creation stops when
a threshold is reached, and then the sequential multiplica-
tion is computed. In the conquer phase, the results of the
children are merged and sent to the upper level. The input
matrices A and B are composed by random elements.

5 Experimental Results

Based on the methodology presented in the previous sec-
tion, the results for the matrix multiplication and merge sort
execution are presented in this section. The input of ma-
trix multiplication was two matrices with 8, 192 × 8, 192
random elements each, and the threshold was 512 elements.
The merge sort sorted 500, 000, 000 random elements with
a threshold of 1, 000, 000.

Figure 5 shows the power consumption along the exe-
cution time for the implementations of matrix multiplica-
tion and merge sort, as well as the target approaches. We
organize the power consumption results by sets of 10 exe-
cutions in two different scenarios: 1by1 that separates each
execution in an interval of 4 minutes, aiming to verify the
peak of consumption achieved by each application; and
sequentially in which all 10 executions are executed one
after another, and only after the last execution a 4 minutes
wait is performed. All our executions were in parallel using
16 cores.

The plots show a high power consumption variation,
which is clear with the execution 1by1 showing the pro-
cessor rising its power consumption at each execution. This

110

160

210

260

0 500 1000 1500 2000 2500 3000

P
o

w
e

r
 (

W
)

MPI Adapt - Execution Time (s)

110

160

210

260

0 500 1000 1500 2000 2500 3000

P
o

w
e

r
 (

W
)

TBB - Execution Time (s)

110

160

210

260

0 500 1000 1500 2000 2500 3000

P
o

w
e

r
 (

W
)

OpenMP- Execution Time (s)

110

160

210

260

0 500 1000 1500 2000 2500 3000

P
o

w
e

r
 (

W
)

MPI Lazy - Execution Time (s)

(a) Matrix multiplication executing 1by1, with 4 minutes on idle interval
between the executions.

110

160

210

260

0 100 200 300 400 500 600

P
o

w
e

r
 (

W
)

MPI Lazy - Execution Time (s)

110

160

210

260

0 100 200 300 400 500 600

P
o

w
e

r
 (

W
)

MPI Adapt - Execution Time (s)

110

160

210

260

0 100 200 300 400 500 600

P
o

w
e

r
 (

W
)

TBB - Execution Time (s)

110

160

210

260

0 100 200 300 400 500 600

P
o

w
e

r
 (

W
)

OpenMP - Execution Time (s)

(b) Matrix multiplication executing sequentially 10 times with 4 minutes
on idle by the end of the executions.

110

160

210

260

0 500 1000 1500 2000 2500 3000

P
o

w
e

r
 (

W
)

MPI Lazy - Execution Time (s)

110

160

210

260

0 500 1000 1500 2000 2500 3000

P
o

w
e

r
 (

W
)

Adapt - Execution Time (s)

110

160

210

260

0 500 1000 1500 2000 2500 3000

P
o

w
e

r
 (

W
)

TBB - Execution Time (s)

110

160

210

260

0 500 1000 1500 2000 2500 3000

P
o

w
e

r
 (

W
)

OpenMP - Execution Time (s)

(c) Merge sort executing 1by1, with 4 minutes on idle interval between the
executions.

110

160

210

260

0 200 400 600 800

P
o

w
e

r
 (

W
)

MPI Lazy - Execution Time (s)

110

160

210

260

0 200 400 600 800

P
o

w
e

r
 (

W
)

MPI Adapt - Execution Time (s)

110

160

210

260

0 200 400 600 800

P
o

w
e

r
 (

W
)

TBB - Execution Time (s)

110

160

210

260

0 200 400 600 800

P
o

w
e

r
 (

W
)

OpenMP - Execution Time (s)

(d) Merge sort executing sequentially 10 times with 4 minutes on idle by
the end of the executions.

Figure 5. Matrix multiplication and merge sort executions using 1 processing node with 16 cores.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

MPI_Lazy

MPI_Adapt

TBB_Fork

OpenMP_Fork

MPI_Lazy

MPI_Adapt

TBB_Fork

OpenMP_Fork

M
at

ri
ce

s
M

u
lt

ip
lic

at
io

n
M

e
rg

es
o

rt

Energy Consumption (K Joules)

Power Consumption (W)

Execution Time (s)

Figure 6. Total of energy consumption and execution time for the different algorithms and implemen-
tations.

variation demonstrates the relevance of architectural tech-
niques to reduce the power and energy consumption, in this
case the Intel Power Boost technology. On sequentially
execution, the merge sort showed a power consumption
variation of every new execution. This is due to application
characteristic which leads to the load unbalance occurred at
the beginning and most at the end of the execution, where
just a few processes or threads continue executing.

It is also possible to note variations between differ-
ent implementations, where the matrix multiplication had
its lower peak of power consumption running the TBB
(238 W), OpenMP (252 W), MPI Adaptive (266 W), MPI
Lazy (259 W) implementations respectively. The merge
sort had its lower consumption executing the OpenMP
(217 W), TBB (245 W), MPI Adaptive (245 W), and MPI
Lazy (252 W) implementation respectively.

The high power consumption for the applications imple-
mented with MPI can be explained in part due to higher
cost from the MPI processes compared with the OpenMP
or TBB threads, and part by the network usage. In the case
of network usage, even using the shared memory implemen-
tation of the OpenMPI, the dynamic process creation does
not support shared memory; thus, the new processes created
dynamically use TCP message communication, increasing
the overall power consumption.

Other explanation to the high power consumption peak
for the MPI Lazy is due to its high number of process cre-
ated in order to parallelize the problem, showing the impor-
tance of picking the right algorithm for each problem.

The power variation between each execution can indi-
cate that performance evaluation using these new architec-
tures may be affected by these automatic variations on the
architecture, adding more noise to the measures. Although
this is an interesting topic, we will leave this performance
evaluation topic aside for a future work.

The summary results for matrix multiplication and
merge sort running 10 times sequentially are shown on

Figure 6. It has the total energy consumption for the differ-
ent implementations together with the average power con-
sumption and the execution time. Within the plots it is pos-
sible to compare the execution time among the experiments,
in which OpenMP and TBB achieved the best performance
thanks to their scheduling optimizations. These two imple-
mentations also had the lower total energy consumption.

Although this relation between lower execution time and
lower energy consumption may seem obvious, the results
presents that sometimes the system can behave in a differ-
ent way. As in the case of matrix multiplication with MPI
Adaptive, it is possible to see the overhead caused in part by
the higher cost from the MPI process and the network com-
munication, leading the MPI Adaptive to spent 9.1% more
energy just to execute 0.6% more time than the TBB. This
difference in the rate which energy has been consumed is
presented by the Power Consumption metric in the plot.

It is important to explain that we choose to evaluate the
message passing interface on a single multi-core node be-
cause it is a simplification of a cluster scenario, whose TBB
and OpenMP will not fit on this distributed-memory archi-
tecture. However, we have shown that MPI implementa-
tions brings an extra power and energy consumption to the
multi-core node, and it indicates that a hybrid programming
model shall be used in order to achieve both high perfor-
mance and low power/energy consumption.

6 Conclusion

Concerning the large-scale clusters of machines, all the
energy saved is beneficial for the entire cooling system
which will need to dissipate less heat, for the total power
consumption, and to the environment. Thus, it is clear that
computer architects have key role on the power consump-
tion. However, programmers can also help to reduce the
total energy consumption with more intelligent algorithms
on parallel applications.

Due to the topic relevance, our measures showed the im-
pact of parallel applications on the current processors en-
ergy consumption. The results presented up to 47% of en-
ergy saved for the merge sort algorithm using the TBB im-
plementation. For the matrix multiplication, gains of 30%
were achieved using the OpenMP implementation.

Moreover, we presented that depending on the imple-
mentation, the system will vary the power consumption,
leading to different energy consumptions. Thus, the expec-
tations that longer execution time leads to a more energy
consumed can be wrong for some cases, revealing that pro-
grammers need to start looking both performance and power
consumption to best application choose.

Moreover, future performance evaluations on power
aware multi-core and many-cores shall considers the warm-
up time in order to obtain reliable performance results.

Future works focus on the both architectural and pro-
gramming improvements in order to achieve lower power
consumption by the architecture and lower energy con-
sumption by the parallel applications. Evaluations about
the new power save technologies on the performance eval-
uations are also considered as future work. Moreover, a
more extensive evaluation on homogeneous and heteroge-
neous cluster of machines is important, in order to analyze
the tendency of hybrid programming for these scenarios.

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock
rate versus IPC: The end of the road for conventional mi-
croarchitectures. ACM SIGARCH Computer Architecture
News, 2000.

[2] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang. The
design of OpenMP tasks. Transactions on Parallel and Dis-
tributed Systems, 2009.

[3] M. Azimi, N. Cherukuri, D. N. Jayasimha, A. Kumar, and
P. Kundu. Integration challenges and tradeoffs for tera-scale
architectures. Intel Technology Journal, 11, 2007.

[4] R. D. Blumofe and C. E. Leiserson. Space-efficient schedul-
ing of multithreaded computations. SIAM Journal on Com-
puting, 1998.

[5] S. Borkar. Design challenges of technology scaling. IEEE
Micro, 1999.

[6] M. C. Cera, G. P. Pezzi, E. N. Mathias, N. Maillard, and
P. O. A. Navaux. Improving the Dynamic Creation of Pro-
cesses in MPI-2. European PVM/MPI Users Group Meeting,
2006.

[7] Dell Inc. Integrated delltm remote access controller 6
(idrac6) version 1.0. Dell User Guide, 2009.

[8] T. V. T. Duy, Y. Sato, and Y. Inoguchi. Performance eval-
uation of a green scheduling algorithm for energy savings
in cloud computing. Int. Symposium on Parallel Distributed
Processing, Workshops, 2010.

[9] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: A thread
scheduling runtime system for data flow computations on

cluster of multi-processors. Int. Workshop on Parallel Sym-
bolic Computation, 2007.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, Cambridge, Massachusetts, 1994.

[11] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2 Advanced
Features of the Message-Passing Interface. The MIT Press,
Cambridge, Massachusetts, 1999.

[12] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Elsevier, USA, 4th edition, 2007.

[13] W. Huang, M. Stant, K. Sankaranarayanan, R. Ribando, and
K. Skadron. Many-core design from a thermal perspective.
Design Automation Conference, 2008.

[14] Intel Corporation. Intel turbo boost technology in intel core
microarchitecture (nehalem) based processors. Intel White
Paper, November 2008.

[15] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and
M. Martonosi. An analysis of efficient multi-core global
power management policies: Maximizing performance for
a given power budget. Int. Symp. on Microarchitecture,
MICRO-39, 2006.

[16] B. Khargharia, S. Hariri, and M. Yousif. Autonomic power
and performance management for computing systems. Clus-
ter Computing, 2008.

[17] C. E. Leiserson. The Cilk++ concurrency platform. Annual
Design Automation Conference, 2009.

[18] J. V. F. Lima and N. Maillard. Online mapping of MPI-2
dynamic tasks to processes and threads. Int. Journal of High
Performance Systems Architecture, 2009.

[19] T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns
for Parallel Computing. Software Patterns Series. Addison
Wesley, 2004.

[20] V. Natarajan, A. Deshpande, S. Solanki, and A. Chan-
drasekhar. Thermal and power challenges in high perfor-
mance systems. 2008.

[21] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson,
and K. Chang. The case for a single-chip multiprocessor.
Int. Symp. on Architectural Support for Programming Lan-
guages and Operating Systems, 1996.

[22] G. P. Pezzi, M. C. Cera, E. Mathias, N. Maillard, and P. O. A.
Navaux. On-line Scheduling of MPI-2 Programs with Hier-
archical Work Stealing. Int. Symp. on Computer Architec-
ture and High Performance Computing, 2007.

[23] J. Reinders. Intel Threading Building Blocks: Outfitting
C++ for Multi-core Processor Parallelism. O’Reilly & As-
sociates, Inc., Sebastopol, USA, 2007.

[24] J. Sartori and R. Kumar. Three scalable approaches to im-
proving many-core throughput for a given peak power bud-
get. Urbana, 51:61801.

[25] J. E. Smith and G. S. Sohi. The microarchitecture of super-
scalar processors. 1995.

[26] W. Stallings. Computer Organization and Architecture: De-
signing for Performance. Prentice Hall, 4th edition, 1996.

[27] T. Ungerer, B. Robic, and J. Silc. Multithreaded processors.
British Computer Society, 2002.

[28] D. Wang and S. Teradata. Meeting green computing chal-
lenges. Int. Symp. on High Density packaging and Microsys-
tem Integration. (HDP), 2007.

[29] D. Woo and H. Lee. Extending Amdahl’s Law for energy-
efficient computing in the many-core era. Computer, 2008.

