
February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

HIGH LATENCY AND CONTENTION ON SHARED L2-CACHE

FOR MANY-CORE ARCHITECTURES

MARCO A. Z. ALVES‡, HENRIQUE C. FREITAS† and PHILIPPE O. A. NAVAUX‡

‡Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS),

Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.

†Institute of Informatics, Pontif́ıcia Universidade Católica de Minas Gerais (PUC Minas),

Av. Dom José Gaspar, 500, Belo Horizonte, Minas Gerais, 30535-901, Brazil.

Received October 2009

Revised April 2010

Communicated by J. Dongarra

ABSTRACT

Several studies point out the benefits of a shared L2 cache, but some other properties

of shared caches must be considered to lead to a thorough understanding of all chip
multiprocessor (CMP) bottlenecks. Our paper evaluates and explains shared cache bot-

tlenecks, which are very important considering the rise of many-core processors. The

results of our simulations with 32 cores show low performance when L2 cache memory

is shared between 2 or 4 cores. In these two cases, the increase of L2 cache latency and
contention are the main causes responsible for the increase of execution time.

Keywords: Shared cache memory, Many-core processor, Performance evaluation

1. Introduction and Motivation

Parallel processing in current multi-core processors uses the cache memory in order

to achieve high performance. Although shared cache memory is a good approach

for intra-chip communication (shared variables), for many-core processors there are

another alternative based on networks-on-chip (message passing). Comparing these

two types of communication, the major issue is the performance of each approach. In

this paper, the main questions are the following: When is the shared cache memory

a bottleneck? What is the performance impact when more than one core shares the

same cache memory?

Commercial multi-core processor design points out to shared L2 and L3 caches

[18], [11]. In addition, these processors present the on-chip interconnection as an

important mechanism to access the cache. However, these current processors have

a small number of processing cores, i.e., two, four and eight cores.

In accordance with the advantages to program a multi-core architecture based

on shared memory [5], and the doubts about the performance of the intra-chip

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

message-passing model through a Network-on-Chip (NoC) [6], several researchers

suggest the use of shared cache memory as the alternative for a large number of

cores, since all cores need to access the same physical memory [14], [16]. Moreover,

the NoC [4][7] for a large number of cores is still under evaluation for the next

generation of processors.

Even with the related work as presented in the next section, and other studies

that describe the importance of a good organization of cache memory to achieve

high performance, there is no consensus. However, it is important to notice that the

related studies does neither address the high latency of shared cache memory for

a large number of cores, nor models the contention due to the restricted number

of ports on the shared cache; both have a high impact on the final performance.

Hence, the main motivation of this paper is to evaluate shared cache memory by

taking into account the latency and contention.

Therefore, the main goal of this paper is to evaluate different memory orga-

nizations, varying the number of cores sharing the cache, for a large number of

processing cores, in order to identify bottlenecks and to measure the impact on the

performance. In addition, there are contributions to the methodology and to the

simulation based on cache features that have not been widely discussed in related

work: the memory latency, which depends on the memory size and the number of

ports; and the contention due to the restricted number of cache access ports.

This paper is organized into the following sections: Related Work, Workload,

Contention Modeling, Simulation Setup Evaluation, Simulation Proposal, Experi-

mental Results, Conclusions and Future Work, and Acknowledgement.

2. Related Work

Related studies [16], [15], [14], [19] evaluated the cache performance of systems with

a large number of processing cores by executing multiple threads at the same time.

Marino [14] used a system consisting of 32 cores, varying the number of cores sharing

the L2 cache between one, two and four. The results showed better performance for

all benchmarks when increasing the number of cores sharing the same L2 cache.

On the other hand, the work of Zahran [19] compared private and shared L1 and

L2 cache memories and came to the conclusion that private caches result in faster

performance.

Our previous work [3] compared a private L2 cache with a L2 cache shared

between two cores, taking into account that the shared cache was twice as big as

the private cache, resulting in an increased cache latency. The results show that

irregular data access applications perform faster with the shared cache, even with

the increase of the cache latency. Moreover, the results showed that it is possible

to share the cache without performance losses, by increasing the L2 cache line size.

However, the weakness of this previous work is that memory port contention was

not modeled and just one and two cores per cache were evaluated.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

3. Workload

In order to evaluate the cache of our simulated many-core processor, we used a

workload based on a subset of NAS (Numerical Aerodynamic Simulation) Parallel

Benchmark (NPB), version 3.3 [10], using OpenMP implementations to distribute

the workload across 32 threads. A small input data set (the W size) of the work-

load was compiled with the Sun Studio C and Fortran compilers with the -fast

optimization. For the simulation, the following benchmarks from the NPB suite

were used:

• BT.W - To solve 3D compressible Navier-Stokes equations with an implicit

algorithm. Based on Alternating Direction Implicit (ADI) finite differences

solver where the resulting system is Block-Tridiagonal, which is solved se-

quentially along each dimension. 2.7 MB

• CG.W - Conjugate Gradient method used to compute the smallest eigen-

value of a large, sparse, unstructured matrix. Exercising unstructured grid

computations and communications. 13.7 MB

• MG.W - Multigrid V-cycle method used to solve the 3D scalar Poisson

equation. The algorithm works between coarse and fine grids. It exercises

both short and long distance data movement. 55.7 MB

• EP.W - Embarrassingly Parallel benchmark, which generates pairs of Gaus-

sian random. Aiming to establish the reference point for peak performance

of a given platform. 1.3 MB

• SP.W - Computational Fluid Dynamics (CFD) application similar to BT.

The problem is based on a Beam-Warming approximate factorization that

decouples in 3D. The resulting Scalar Pentadiagonal system is solved se-

quentially along each dimension. 8.7 MB

• LU.W - Simulated CFD application that uses symmetric successive over-

relaxation (SSOR) method based on finite-difference discretization of

Navier-Stokes equations in 3D by splitting into block Lower and Upper

triangular systems. 6.6 MB

• IS.W - Test Integer Sort operation that is important in particle method

codes. This code exercises integer and communication performance. 3.4 MB

• FT.W - Computational kernel of a 3D Fast Fourier Transform (FFT)

method. FT performs three 1D FFT, one for each dimension. 20 MB

• UA.W - Unstructured Adaptive benchmark, which exercises irregular and

continually memory accesses measuring its effect. 16.3 MB

4. Contention Modeling

Even with the ability of full-system simulation and detailed parameterization, the

Simics simulator does not model the contention caused by a restricted number of

access ports in any memory level. Thus, the following analytical equations were used

to model the port contention of the L2 cache in order to evaluate the experiments.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

In the following formulas, j is the number of available L2 caches, k is the number

of L1 caches connected to each L2 cache, p is the number of ports. The latency of

the crossbar, which connects the L1 to the L2 cache is LXbar1, the latency of the

crossbar which connects the L2 to the main memory is LXbar2. The latency to access

the L1 cache, L2 cache and main memory are LL1, LL2 and LRAM , respectively.

The basic formula for modeling the total execution time (TTotal) is given in

Equation 1.

TTotal = TMax Inst + TL2 Write Back + TL2 Misses + TL1 Hits + T
p
L1 Misses (1)

The overall time spent to execute the instructions (TMax Inst) is defined by

the processor which executed the biggest number of instructions, as described in

Equation 2.

TMax Inst = Max

{

⋃

32

i=1

P
i
Instructions

}

(2)

The time required to execute the write-back operation for all the L2 caches

(TL2 Write Back) appears in Equation 3.

TL2 Write Back =

j
∑

i=1

L2
i
Write Back · (LXbar2 + LRAM) (3)

The time spent to access the main memory during L2 cache misses (TL2 Misses)

is described in Equation 4.

TL2 Misses =

j
∑

i=1

L2
i
Misses · (LXbar2 + LRAM) (4)

The time consumed by the L1 cache hits (TL1 Hits) is presented in Equation 5.

TL1 Hits = Max

{

⋃

32

i=1

L1
i
Hits

}

· (LL1) (5)

To calculate the total time spent during the L1 cache misses (T p
L1 Misses), it is

necessary to consider the amount of ports on L2 cache. Thus, three formulas were

developed, with 1 port (T 1
L1 Misses), 2 ports (T 2

L1 Misses) and 4 ports (T 4
L1 Misses)

in order to model the organizations evaluated in the experiments.

The Equation 6 calculates the time spent during L1 cache misses (T 1
L1 Misses)

for the L2 cache with 1 port.

T
1

L1 Misses = Max

∑

k

i=1

L1
i
Misses;

∑

2k

i=k+1

L1
i
Misses; . . . ;

∑

32

i=32−k

L1
i
Misses

· (LL1 + LXBar1 + LL2)(6)

The Equation 7 represents the time spent during L1 cache misses, consid-

ering each L2 cache with 2 ports (T 2
L1 Misses). The equation uses the function

Fn(L1Begin, L1End) that returns the n-th higher value of data misses among the

L1 caches (L1Begin) and (L1End). For example, the function F 2
Misses(L1

1, L14) must

return the second higher number of misses among the first four L1 caches.

Considering a L2 cache with 2 access ports, it would not be fair to consider the

2 highest numbers of L1 cache misses on the same port. Thus, for each L2 cache,

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

we assigned the L1 caches with the highest and lowest number of L1 cache misses

to one port, and the other two L1 caches to the other port. Then, after obtaining

the number of accesses to each port of the L2 cache, we calculate the time spent

during L1 cache misses using the port with the highest number of cache misses.

T
2

L1 Misses
= Max

F
1(

⋃

k

i=1
L1i

Misses
) + F

4(
⋃

k

i=1
L1i

Misses
);

F
2(

⋃

k

i=1
L1i

Misses
) + F

3(
⋃

k

i=1
L1i

Misses
);

F
1(

⋃

2k
i=k+1

L1i
Misses

) + F
4(

⋃

2k
i=k+1

L1i
Misses

);

F
2(

⋃

2k
i=k+1

L1i
Misses

) + F
3(

⋃

2k
i=k+1

L1i
Misses

);

.

.

.

F
1(

⋃

32
i=32−k

L1i
Misses

) + F
4(

⋃

32
i=32−k

L1i
Misses

);

F
2(

⋃

32
i=32−k

L1i
Misses

) + F
3(

⋃

32
i=32−k

L1i
Misses

);

· (LL1 + LXBar1 + LL2)(7)

The Equation 8 calculates the time spent during L1 cache misses (T 4
L1 Misses

)

for the L2 cache with 4 ports.

T
4

L1 Misses
= Max

{

⋃

32

i=1

L1
i

Misses

}

· (LL1 + LXBar1 + LL2) (8)

5. Simulation Setup Evaluation

According to Gibson, et al. [8] a simulation model needs to be validated against real

machines in order to ensure reliable results for hypothetical architectures. Although

Simics is widely used by the community, this section shows a comparison between

a real machine and simulation results validating the simulation setup for the next

sections.

The rest of the paper, simulates next generations of many-core processors with

32 cores which prototypes are not available for evaluation. Thus, in this section a

simulation modeling an 8 core processor is compared against a real machine with

2 processors Intel Harpertown, which is a quad-core processor. The general cache

parameters were chosen based on the this Intel Harpertown, which also represents

the cache configuration of a wide range of processors. A list of fixed parameters of

the real machine and the values modeled in the experiments is shown in Table 1.

Comparing the simulation parameters and the real machine configuration, be-

sides the not available information about the real processor, it is notable that

some simulation parameters are different from the real machine, as the pipeline,

out-of-order execution, instruction set architecture and others parameters varies.

But in this paper, we do not intent to validate the core microarchitecture, just to

demonstrate that our simulation results are comparable to a real machine execu-

tion, meaning that our simulation results fits with the reality and correspond to the

same behavior of a real machine.

For our comparisons the NAS parallel benchmark parallelized using OpenMP

were executed on both, real machine and simulation. For all the 9 applications of

the NPB suite, 5 executions were made varying between 1, 4, and 8 threads. The

problem size and compilation parameters for the workload are the same used on

the rest of the paper. In order to compare the impact of our formulas presented

on section 4, the results present the simple simulation results (without analytical

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Table 1. Real machine and simulation parameters.

Element Parameter Real Machine Simulation Model

Processing Non-memory IPC Varies 1.0
Core Pipeline Yes Not modeled

Out-Of-Order Yes Not modeled
Processors 2x Xeon 5405 1x UltraSparc III+
Cores 2x 4 cores 8 cores
Instruction set Intel x86 64 Sparc V9
Frequency 2 GHz 2 GHz
Integration technology 45 nm 45 nm

Interconnection Type N/A Cross-Bar
Latency N/A 2 Cycles

L1 Cache Replace and write policy N/A LRU with write-through
Memory Integration technology 45 nm 45 nm

Memory size (Instruction) 32 KB 32 KB
Memory size (Data) 32 KB 32 KB
R/W data latency N/A 1.29 ns = 3 cycles
Associativity 8-way set associative 8-way set associative
Line size 64 Bytes 64 Bytes

L2 Cache Organization 1 L2 shared by 2 cores 1 L2 shared by 2 cores
Memory Replace and write policy N/A LRU with write-back

Integration technology 45 nm 45 nm
Memory size 6 MB 6 MB
R/W latency 1 Port N/A 5.43 ns = 11 cycles
R/W latency 2 Ports N/A 8.47 ns = 17 cycles
Associativity 24-way set associative 24-way set associative
Line size 64 Bytes 64 Bytes
Data coherency protocol N/A MESI based on snooping

Main Size 8 GBytes 1 GBytes
Memory R/W latency N/A 38 ns = 78 cycles

Integration technology 65 nm 65 nm

formulas), and the estimates considering the L2 cache with 1 and 2 R/W access

ports (1P and 2P respectively).

The first results comparing the real machine to the system simulated with an 8

core processor is presented in the Figure 1 showing the execution time for real and

simulation executions for all the application running sequentially. Figure 2 presents

the execution time running 4 threads. The execution time for 8 threads is presented

in Figure 3.

Fig. 1. Execution time for 1 thread running on real machine and simulated.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Fig. 2. Execution time for 4 threads running on real machine and simulated.

Fig. 3. Execution time for 8 threads running on real machine and simulated.

Results show that simulation overestimates the execution time from 2.5 to 3.6

times more than the real machine execution. But, as the simulations with 1P and

2P keep the factor of overestimation, about 4.5 times slower reducing the variation

in 30%, for all the applications, we can conclude that our formulas improved the

results, making the applications results perform with similar trends.

The difference of the execution time can be explained by the differences between

the real machine configuration and simulation parameters. The processor simple

model simulated on Simics, as cited on the beginning, does not simulate pipeline,

superscalarity and out-of-order execution which would improve the performance

results. Furthermore, the real machine uses the Intel x86 64 ISA while the simulator

model the Sun Sparc V9 ISA, which shall lead to different results from the real

machine. This ISA difference can lead to an important question about the choice of

the Sun Sparc processor on our simulations, an the answer is that Simics provides

more flexibility using Sun Sparc architecture, supporting a larger number of cores

on chip-multiprocessor models with this ISA.

This simulation setup evaluation is important to check the simulation behavior

results [8] [12], even with this simplified processor model simulated, the execution

time comparison between the simulation and the real machine shows that our simu-

lation results correspond to the same real behavior, which indicates that the relevant

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

performance effects on the simulation are the same as those on the real machine,

what is easily seen on the results plot. Moreover, the execution time results can be

improved with the contention model enhancing the execution time trends.

6. Simulation Proposal

The evaluation of computer systems [9] can be done with three different techniques:

analytical modeling, simulation, or measurement. Measurements can only be done

if a similar system is implemented. As prototypes based on 32 cores processor with

shared cache memories are not available for evaluation, just the analytical model

and the simulation are alternatives. Thus, in this paper simulation and analytical

models were used to evaluate and compare characteristics of cache organization.

Virtutech Simics [13] is a full-system simulator at the instruction set level which

measures execution time based on the number of instructions executed and the

number of stall cycles caused by the latency of all components.

Table 2. Modeled simulation parameters.

Processing Core Non-memory IPC 1.0
Pipeline Not modeled
Cores 32 cores - UltraSparc III+
Instruction set Sparc V9
Frequency 2 GHz
Integration technology 45 nm

Interconnection Type Cross-Bar
Latency 2 Cycles

L1 Cache Memory Replace and write policy LRU with write-through
Integration technology 45 nm
Memory size 32 KB (instruction) + 32 KB (data)
R/W instruction latency 0 ns = 0 cycles
R/W data latency 0.74 ns = 2 cycles
Associativity 2-way set associative
Line size 32 Bytes
Dynamic energy 0.038 nJ
Static power 0.024 W
Occupied area 0.228mm

2

L2 Cache Memory Data mapping mode Set associative
Replace and write policy LRU with write-back
Integration technology 45 nm
R/W Latency Modeled using Cacti
Data coherency protocol MESI based on snooping

Main Memory Size 1 GByte
R/W latency 38 ns = 78 cycles
Integration technology 65 nm
Dynamic energy 21.125 nJ
Static power 0.091 W
Occupied area 739.540mm

2

A 32-core processor was modeled based on the UltraSparc-III+ architecture,

with the Solaris 10 operating system installed. Table 2 summarizes the modeled

components and their parameters used on the simulations. The clock frequency

chosen is not the main issue to be investigated, but it must be defined to model the

penalty cycles for all the components throughout the memory hierarchy.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Since different memory organizations were simulated, the parameters of the L2

cache memory modeled for each specific experiment are shown in the beginning of

each result section. These parameters were used to calculate the memory latency

for each experiment by using the CACTI [17] memory modeling tool.

7. Experimental Results

This section presents four experiments, varying the cache sharing, cache size, asso-

ciativity and line size as described bellow.

• Experiment 1 - Cache sharing: Evaluating the different cache organizations

while keeping the total amount of cache constant.

• Experiment 2 - Cache size: Evaluating the different cache organizations

with different total amounts of cache.

• Experiment 3 - Cache associativity: Evaluating the different cache organi-

zations with twice L2 cache associativity.

• Experiment 4 - Cache line size: Evaluating the different cache organizations

with twice L2 cache line size.

For the proposed experiments, some different cache organizations were evalu-

ated. The naming scheme adopted for the results is presented in Figure 4. It consists

of the number of cores per cache and the number of communication ports of each

cache. For example, the name of the organization with 4 cores per L2 cache and 2

ports is 4Cores/L2-2P.

Fig. 4. Processors and cache layout diagram.

Considering that Simics is a deterministic simulator, where all executions of

the same application launched from a checkpoint will return the same results, one

can conclude that only one measurement leads to a plausible result. However, it is

necessary to consider that the workload is not deterministic, i.e. small variations

in the initial state of the execution may lead to different execution paths. Thus, a

single execution of the experiment can lead to erroneous conclusions [1].

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Each application was executed 5 times sequentially to insert non-determinism

caused by interrupts and other operating system interferences. This number of rep-

etitions was determined by following the procedure outlined in [12]. Thus, after

doing a preliminary statistical analysis of the system behavior, 5 repetitions were

sufficient to keep our chosen confidence interval. Moreover, before measurements

were made, the workload was executed once to warm up the cache and therefore,

reduce transient effects [2].

In order to show that the results are reliable, the plots show the standard de-

viation, calculated using a confidence interval equal to 81.30% on the Student’s

t-distribution. In all experiments, the workload was executed by 32 threads running

in parallel.

7.1. Experiment 1 - Cache sharing

This first experiment aims to evaluate the influence of shared cache between multiple

cores. With the increase in the shared cache memory, the number of cache misses

tends to decrease, therefore, the parallel applications tend to share data faster. On

the other hand, the cache organizations in this experiment keep the total cache size

of the system constant. As a consequence, it increases the data access latency, power

consumption and physical area occupation. Table 3 shows the values modeled for

the cache memories on this first experiment.

Table 3. L2 Cache memories description for the first experiment.

Experiment 1 - Cache memory sharing
Sharing 1Core/L2 2Cores/L2 2Cores/L2 4Cores/L2 4Cores/L2 4Cores/L2
R/W Ports 1 1 2 1 2 4
Cache Size 1 MB 2 MB 2 MB 4 MB 4 MB 4 MB
Line Size 64 B 64 B 64 B 64 B 64 B 64 B
Associativity 8-way 8-way 8-way 8-way 8-way 8-way
R/W Time 1.22 ns 1.70 ns 2.41 ns 2.17 ns 3.17 ns 5.17 ns
R/W Latency 3 Cycles 4 Cycles 5 Cycles 5 Cycles 7 Cycles 11 Cycles
Dyn. Energy 0.63 nJ 1.03 nJ 1.75 nJ 1.53 nJ 2.41 nJ 3.75 nJ
Static Power 1.50 W 3.03 W 4.15 W 6.07 W 8.39 W 14.44 W
Area 9.87mm

2 20.85mm
2 63.78mm

2 42.58mm
2 129.85mm

2 386.63mm
2

The first result is shown in Figure 5, which displays the graphic with values

of execution cycles, lost cycles caused by data misses stalls in L1 cache, speedup

and percentage of lost cycles due to faults in the L1 cache considering the total

time for the experiment execution. Regarding this first result, we can see that the

organization 1Core/L2-1P has the best performance, and also presents the least

amount of lost cycles waiting for data from the L2 cache, which represent slightly

more than 15% of the workload runtime.

However, comparing all the organizations evaluated, we can see that the reduced

number of ports created more lost cycles than the increase of memory access latency.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Therefore, it becomes clear that memory port contention will have a big impact

on the systems’ final performance.

Fig. 5. Execution results for the first experiment.

The graphic presented in Figure 6 shows estimated values for energy and total

power consumption of the memory system. It is possible to see that the 1Core/L2-

1P, 4cores/L2-2P and 4Cores/L2-1P organizations show the lowest energy consump-

tion. The energy consumption of the 2Cores/L2-2P and 4cores/L2-4P organizations,

both having 32 ports, are the highest due to the high number of ports inside each

cache bank, 2 and 4 respectively.

In terms of energy consumption, having one cache per core, or increasing the

shared memory while reducing the total number of ports of the system is best.

Fig. 6. Memory subsystem total energy and power consumption for the first experiment.

The area occupied by the L2 cache for the different organizations and num-

ber of ports is shown in Figure 7. We note that only organizations 1Core/L2-1P,

2Cores/L2-1P and 4Cores/L2-1P maintain a reasonable area occupation. In the

other cases, the occupied area is up to three times bigger due to the increase in the

number of ports per cache bank.

In terms of performance, the best organizations are 1Core/L2-1P, 2Cores/L2-

2P and 2Cores/L2-1P. In terms of energy consumption, the best organizations are

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Fig. 7. Occupied area for L2 cache memory on the first experiment.

1Core/L2-1P, 4Cores/L2-2P and 4Cores/L2-1P. In terms of the occupied area, the

best organizations are 1Core/L2-1P, 2Cores/L2-1P and 4Cores/L2-1P. Combining

these results, the organization with the most advantages is the 1Core/L2-1P.

7.2. Experiment 2 - Cache size

The second experiment aims to evaluate the influence of the shared L2 cache size

among multiple cores. For this experiment three cache sizes were chosen: 1, 2 and

4 MBytes. Instead of keeping the total size of the L2 cache in the system constant

like in the first experiment, each L2 cache has the same size but the number of L2

caches varies with each organization. Thus, the total amount of L2 cache memory

varies with each organization.

This experiment evaluates two parameters on the performance: One, increasing

the number of cores sharing the L2 cache while reducing the total amount of the L2

cache; Two, increasing the total amount of L2 cache. In the first case, the system

can share data faster between the cores, but the number of cache misses tends to

increase. The cache latency will stay constant, except when changing the number

of ports. In the second case, the number of cache misses tends to decrease while the

cache latency increases.

Considering the large number of results of this experiment, this section is divided

into three subsections, one for each cache size evaluated (1, 2 and 4 MBytes).

7.2.1. L2 cache size 1 MByte

In this section, the L2 cache was set to 1 MByte. Based on the organizations to be

evaluated, Table 4 shows the values modeled for the L2 cache.

The graphic in Figure 8 presents the results for 1 MB per L2 cache. For compari-

son, the graphic shows the result from the first experiment (organization 1Core/L2-

1P-1Exp) as well. The best organization in terms of performance is 1Core/L2-1P.

2Cores/L2-2P and 2Cores/L2-1P are the second and third, respectively.

In this experiment, the total number of stall cycles due to L1 cache misses

increases as the number of cores sharing the L2 cache increases. Furthermore, in-

creasing the contention (4Cores/L2-1P) performs worse than increasing the latency

combined with increasing the number of ports (4Cores/L2-4P).

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Table 4. L2 Cache memories description for the second experiment (1 MB per cache).

Experiment 2 - cache size 1 MB
Sharing 1Core/L2 2Cores/L2 2Cores/L2 4Cores/L2 4Cores/L2 4Cores/L2
R/W Ports 1 1 2 1 2 4
Cache Size 1 MB 1 MB 1 MB 1 MB 1 MB 1 MB
Line Size 64 B 64 B 64 B 64 B 64 B 64 B
Associativity 8-way 8-way 8-way 8-way 8-way 8-way
R/W Time 1.22 ns 1.22 ns 1.83 ns 1.22 ns 1.83 ns 2.78 ns
R/W Latency 3 Cycles 3 Cycles 4 Cycles 3 Cycles 4 Cycles 6 Cycles
Dyn. Energy 0.63 nJ 0.63 nJ 1.01 nJ 0.63 nJ 1.01 nJ 1.84 nJ
Static Power 1.50 W 1.50 W 2.28 W 1.50 W 2.28 W 3.99 W
Area 9.87mm

2 9.87mm
2 31.51mm

2 9.87mm
2 31.51mm

2 109.14mm
2

Fig. 8. Results for the second experiment running with a cache size of 1 MByte.

Figure 9 presents energy and power consumption results of the memory system

modeled. The consumption depends on two factors: the total L2 cache size and

the number of L2 cache ports. The lowest energy consumption is achieved with

the organizations 4Cores/L2-1P, 2Cores/L2-1P and 4Cores/L2-2P. These results

show that to balance the increase in energy consumption due to the increase on the

number of ports, the total amount of cache memory should be reduced.

Fig. 9. Memory subsystem total energy and power consumption for the second experiment with

1 MB cache size.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Figure 10 presents results for the L2 cache area occupation. As the power con-

sumption results already indicated, the organizations with the smallest area occupa-

tion are 4Cores/L2-1P, 2Cores/L2-1P and 4Cores/L2-2P, emphasizing the physical

impact of the amount of cache ports on the system. Thus, it is good to reduce the

cache sharing from 4Cores/L2-1P to 2Cores/L2-1P, which has twice as much cache

memory.

Fig. 10. Occupied area for L2 cache memory with 1 MB cache size.

7.2.2. L2 cache size 2 MBytes

In this section, the L2 cache was set to 2 MBytes. Based on the organizations to be

evaluated, Table 5 shows the values modeled for the L2 cache.

Table 5. L2 Cache memories description for the second experiment (2 MB per cache).

Experiment 2 - Cache memory size - 2 MB
Sharing 1Core/L2 2Cores/L2 2Cores/L2 4Cores/L2 4Cores/L2 4Cores/L2
R/W Ports 1 1 2 1 2 4
Cache Size 2 MB 2 MB 2 MB 2 MB 2 MB 2MB
Line Size 64 B 64 B 64 B 64 B 64 B 64 B
Associativity 8-way 8-way 8-way 8-way 8-way 8-way
R/W Time 1.70 ns 1.70 ns 2.41 ns 1.70 ns 2.41 ns 3.96 ns
R/W Latency 4 Cycles 4 Cycles 5 Cycles 4 Cycles 5 Cycles 8 Cycles
Dyn. Energy 1.03 nJ 1.03 nJ 1.75 nJ 1.03 nJ 1.75 nJ 2.47 nJ
Static Power 3.03 W 3.03 W 4.15 W 3.03 W 4.15 W 7.16 W
Area 20.85mm

2 20.85mm
2 63.78mm

2 20.85mm
2 63.78mm

2 192.99mm
2

The graphic in Figure 11 presents the results for 2 MB per L2 cache. The best

organization in terms of performance is 1Core/L2-1P as a consequence of a balance

between reducing cache misses in the L2 cache and increased latency. Note that

just increasing the total cache size, without changing the cache sharing, led to an

increase of the performance.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Fig. 11. Results for the second experiment running with a cache size of 2 MBytes.

The graphic in Figure 12 shows the values of energy and power consumption for

this second experiment. We can note that there is an increase of energy consumption

in the same organization that had a performance improvement, since the system

has doubled the memory size the power consumption also is doubled, as observed

by comparing the organization 1Core/L2-1P-1Exp of the first experiment.

Fig. 12. Memory subsystem total energy and power consumption for the second experiment with

2 MB cache size.

The area occupation for the L2 cache memory system is shown in Figure 13.

Predictably, the physical size of the caches also doubled in comparison to the first

experiment.

Fig. 13. Occupied area for L2 cache memory with 2 MB cache size.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

7.2.3. L2 cache size 4 MBytes

In this section, the L2 cache was set to 4 MBytes. Based on the organizations to be

evaluated, Table 6 shows the values modeled for the L2 cache.

Table 6. L2 Cache memories description for the second experiment (4 MB per cache).

Experiment 2 - Cache memory size 4 MB
Sharing 1Core/L2 2Cores/L2 2Cores/L2 4Cores/L2 4Cores/L2 4Cores/L2
R/W Ports 1 1 2 1 2 4
Cache Size 4 MB 4 MB 4 MB 4 MB 4 MB 4 MB
Line Size 64 B 64 B 64 B 64 B 64 B 64 B
Associativity 8-way 8-way 8-way 8-way 8-way 8-way
R/W Time 2.17 ns 2.17 ns 3.17 ns 2.17 ns 3.17 ns 5.17 ns
R/W Latency 5 Cycles 5 Cycles 7 Cycles 5 Cycles 7 Cycles 11 Cycles
Dyn. Energy 1.53 nJ 1.53 nJ 2.41 nJ 1.53 nJ 2.41 nJ 3.75 nJ
Static Power 6.07 W 6.07 W 8.39 W 6.07 W 8.39 W 14.44 W
Area 42.58mm

2 42.58mm
2 129.85mm

2 42.58mm
2 129.85mm

2 386.63mm
2

The results in Figure 14 show the balance between the cache size and the ac-

cess latency. For 1Core/L2-1P, the system has 4 times more L2 cache memory in

comparison to the 1Core/L2-1P-1Exp from the first experiment. However, the per-

formance is equivalent, although there was a reduction in the rate of data misses,

there was also an increase in the access latency, so performance did not increase.

Fig. 14. Results for the second experiment running with a cache size of 4 MBytes.

The energy and power consumption is shown in Figure 15. We can see the extra

cost of increasing the cache size by four, the energy consumption of the organization

1Core/L2-1P was 4 times as high as of the same organization in the first experiment.

The L2 cache area occupation illustrated in Figure 16 shows a high variation as

we change the amount of L2 cache memory and the number of ports as in the two

previous experiments.

With the evaluations of this second experiment with 1, 2 and 4 MB per L2 cache,

we can conclude that, the increase of memory size can increase the performance.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Fig. 15. Memory subsystem total energy and power consumption for the second experiment with

4 MB cache size.

Fig. 16. Occupied area for L2 cache memory with 4 MB cache size.

However, this increase of memory size should be done with caution, since the

increase of cache size by four times does not result in a performance gain, but it

always results in a higher energy consumption and higher total area occupation.

Thus increasing the cache size may lead to better performance in some cases but

factors as energy consumption, occupied area and access latency must be considered

as well.

7.3. Experiment 3 - Cache associativity

The increase on L2 cache associativity in this third experiment aims to evaluate the

influence of temporal locality on cache memory, besides the reduction of the cache

misses due to address conflicts, which are inherent in increasing the associativity.

This experiment, like the first one, keeps the total cache size constant at 32

MBytes for all organizations evaluated, only changing the associativity from 8-way

to 16-way. The parameters modeled for the L2 cache in this third experiment are

described in Table 7.

The results of the third experiment are shown in Figure 17. In this graph, the

performance of the organization 1Core/L2-1P is similar to the same organization

from the first experiment. The second best organization is 2Cores/L2-2P, which is

2% faster than the same organization in the first experiment.

Figure 18 presents the values for energy and power consumption. The 4Cores/L2-

2P and 1Core/L2-1P organizations have the lowest power consumption, although

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Table 7. L2 Cache memories description for the third experiment.

Experiment 3 - Cache memory associativity
Sharing 1Core/L2 2Cores/L2 2Cores/L2 4Cores/L2 4Cores/L2 4Cores/L2
R/W Ports 1 1 2 1 2 4
Bank Size 1 MB 2 MB 2 MB 4 MB 4 MB 4 MB
Line Size 64 B 64 B 64 B 64 B 64 B 64 B
Associativity 16-way 16-way 16-way 16-way 16-way 16-way
R/W time 1.49 ns 1.66 ns 2.40 ns 2.25 ns 3.15 ns 5.01 ns
R/W Latency 3 Cycles 4 Cycles 5 Cycles 5 Cycles 7 Cycles 11 Cycles
Dyn. Energy 0.66 nJ 0.98 nJ 1.41 nJ 1.60 nJ 2.13 nJ 3.97 nJ
Static Power 1.46 W 3.02 W 4.08 W 6.62 W 8.17 W 14.19 W
Area 11.53mm

2 18.80mm
2 53.89mm

2 40.93mm
2 108.12mm

2 366.29mm
2

Fig. 17. Execution results for the third experiment.

the 4Cores/L2-2P organization takes more time to run the workload. This behavior

is due to the reduction of the number of L2 cache ports and the L2 cache misses.

Fig. 18. Memory subsystem total energy and power consumption for the third experiment.

Figure 19 shows the area occupation for the organizations evaluated in this sub-

section. Even with the lowest power consumption in this experiment, the 4Cores/L2-

2P organization occupies more area compared with the first organization.

We can conclude that increasing the associativity, it is possible to increase the

L2 cache sharing with lower performance losses than those presented in the first

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Fig. 19. Occupied area for L2 cache memory on the third experiment.

experiment. However, the organization 2Cores/L2-2P, which is the second fastest,

presents unfavorable results in terms of power consumption and area occupation.

7.4. Experiment 4 - Cache line size

The increase on the line size of the L2 cache proposed in this fourth experiment,

increases the spatial locality of data by getting bigger blocks from the main memory.

Thus, in this fourth experiment the line length was increased from 64 to 128 bytes,

as shown in Table 8.

Table 8. L2 Cache memories description for the fourth experiment.

Experiment 4 - Cache memory line size

Sharing 1Core/L2 2Cores/L2 2Cores/L2 4Cores/L2 4Cores/L2 4Cores/L2
R/W Ports 1 1 2 1 2 4
Bank Size 1 MB 2 MB 2 MB 4 MB 4 MB 4 MB
Line Size 64 B 64 B 64 B 64 B 64 B 64 B
Associativity 8-way 8-way 8-way 8-way 8-way 8-way
R/W Time 1.43 ns 1.59 ns 2.42 ns 2.18 ns 3.02 ns 4.99 ns
R/W Latency 3 Cycles 4 Cycles 5 Cycles 5 Cycles 7 Cycles 10 Cycles
Dyn. Energy 1.48 nJ 2.10 nJ 3.69 nJ 3.88 nJ 5.89 nJ 10.71 nJ
Static Power 1.47 W 2.89 W 4.05 W 5.90 W 7.79 W 14.09 W
Area 10.18mm

2 18.10mm
2 58.29mm

2 39.88mm
2 103.61mm

2 382.56mm
2

The results in Figure 20 show good performance for 1Core/L2-1P and

2Cores/L2-2P organizations, where the first organization achieves 7.9% speedup

over the first experiment (1Core/L2-1P-1Exp).

The Figure 21 shows that the power consumption of the L2 cache is very high

as we increase the number of ports and the cache sharing. This increase is caused

by the static power consumption, since the increase of the runtime of the workload

leads to more static power consumption. Only the 1Core/L2-1P, 2Cores/L2-1P and

2Cores/L2-2P organizations have a reasonable energy use.

The L2 cache area occupation is shown in Figure 22.As the number of cache

ports increases, the occupied area increases as well. Thus, only the organizations

with just one data access port present a reasonable area occupation.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

Fig. 20. Execution results for the fourth experiment.

Fig. 21. Memory subsystem total energy and power consumption for the fourth experiment.

Fig. 22. Occupied area for L2 cache memory on the fourth experiment.

The fourth experiment shows good results in terms of performance, power con-

sumption and occupied area, although the organization 1Core/L2-1P shows the best

results among all experiments evaluated. These results are caused by combining the

reduction of the cache miss rate with the low latency and low data contention.

Summing up the experimental results, we can see that the traditional techniques

(increasing the cache size, associativity, and line size) still have some performance

gains. However, all the shared cache organizations we tested performed worse than

the private caches, even when the traditional techniques were used. On the other

hand, systems with the requirement of low power consumption and occupied area

can benefit from shared caches.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

8. Conclusions and Future Work

Analyzing the current multi-core processors and the research about the shared cache

memory, it is impossible to identify a trend about cache sharing among the cores. In

this context, this article has a focus on the evaluation of shared L2 cache memory,

by simulating a 32 core processor. Thus, we evaluated the influence of the cache size,

the associativity, the block size in order to study the influence of these factors on

the shared L2 cache and consequently, on the performance of many-core processors.

Concerning the goal, this paper presented the gap missing in related work, by

modeling the latencies of cache memories, estimated by the Cacti tool, generating

data about the access latencies, power consumption and occupied area similar to

those in real systems. Furthermore, this work evaluates cache contention with a

different number of ports, which is not extensively discussed in other studies, thus

forming a more solid foundation for comparisons.

According to the results of the experiments, shared cache imposes several re-

strictions on access latency, power and area occupation to increase the number of

ports on the system. On the other hand, when using fewer ports, the experiments

show a bottleneck to access the cache memory. A performance gain occurs only

with the increase of the cache size (+0.20%) and increase of the cache line size

(+7.90%). Moreover, in the worst case of port reduction 4Core/L2-1P, generating

high contention on cache memory, the best technique evaluated was the increase

on line size, which increases performance and reduces power consumption and area

occupation.

The experiments show the importance of integrating the cache memory organi-

zation and the physical design in order to obtain the best trade-off between perfor-

mance, power consumption and occupied area.

Considering the metrics evaluated, it became clear that well-known techniques

that used to increase the system performance through enlargement of the cache size

or associativity will not achieve good performance results for the newer integration

technologies. Thus innovation on the cache architecture is necessary in order to

ensure high performance for the next generation of many-core processors.

As future work we consider to extend the work to more levels in the cache in

order to get specific conclusions about the addition of a level in a memory hierarchy.

In addition, studies evaluating the next generation of cache memory architecture are

very important, e.g. studies about non-uniform cache architecture are promising,

which is also a focus for future work.

Acknowledgement

We would like to thank Matthias Diener, Felipe L. Madruga and the anonymous

reviewers for their comments and suggestions. This work was supported in part by

CNPq (Brazilian Government).

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

February 25, 2011 10:35 WSPC/INSTRUCTION FILE
S0129626411000096

References

[1] Alameldeen, A. R., Mauer, C. J., Xu, M., Harper, P. J., Martin, M. M., Sorin, D. J.,
Hill, M. D., and Wood, D. A., Evaluating non-deterministic multi-threaded commer-
cial workloads, Computer Architecture Evaluation using Comercial Workloads (2002).

[2] Alameldeen, A. R. and Wood, D. A., Variability in architectural simulations of multi-
threaded workloads, in Proceedings HPCA: Int. Symp. on High-Performance Com-

puter Architecture (2003), pp. 7–18.
[3] Alves, M. A. Z., Freitas, H. C., and Navaux, P. O. A., Investigation of shared l2

cache on many-core processors, in Proceedings Workshop on Many-Core (VDE Verlag
GMBH, Berlin, 2009), ISBN 978-3-8007-3133-6, pp. 21–30.

[4] Benini, L. and Bertozzi, D., Network-on-chip architectures and design methods, Com-

puters and Digital Techniques 152 (2005) 261–272.
[5] Chapman, B., The challenge of providing a high-level programming model for high-

performance computing, in High-Performance Computing: paradigm and infrastruc-

ture, eds. Yang, L. T. and Guo, M., chapter 2 (Wiley Press, 2005), pp. 21–50.
[6] De Micheli, G. and Benini, L., Networks on Chips: Technology and Tools (Morgan

Kaufmann, 2006).
[7] Freitas, H. C., Santos, T. G. S., and Navaux, P. O. A., Design of programmable

noc router architecture on fpga for multi-cluster nocs, Electronics Letters 44 (2008)
969–971.

[8] Gibson, J., Kunz, R., Ofelt, D., Horowitz, M., Hennessy, J., and Heinrich, M., FLASH
vs.(simulated) FLASH: Closing the simulation loop, ACM SIGPLAN Notices 35

(2000) 49–58.
[9] Jain, R., The art of computer systems performance analysis: techniques for experi-

mental design, measurement, simulation, and modeling (J. Wiley, New York, USA,
1991).

[10] Jin, H., Frumkin, M., and Yan, J., The openmp implementation of nas parallel bench-
marks and its performance, in Technical Report: NAS-99-011 (1999).

[11] Kongetira, P., Aingaran, K., and Olukotun, K., Niagara: a 32-way multithreaded
sparc processor, IEEE Micro 25 (2005) 21–29.

[12] Lilja, D. J., Measuring Computer Performance (Cambridge University Press, Cam-
bridge, 2004).

[13] Magnusson, P. et al., Simics: A full system simulation platform, IEEE Computer

Micro 35 (2002) 50–58.
[14] Marino, M. D., 32-core cmp with multi-sliced l2: 2 and 4 cores sharing a l2 slice, in

Proceedings SBAC-PAD: Int. Symp. on Computer Architecture and High Performance

Computing (IEEE, 2006), pp. 141–150.
[15] Marino, M. D., L2-cache hierarchical organizations for multi-core architectures, in

Proceedings ISPA: Int. Symp. on Parallel and Distributed Processing and Applications

(IEEE, 2006), pp. 74–83.
[16] Nayfeh, B. A., Olukotun, K., and Singht, J. P., The impact of shared-cache clus-

tering in small-scale shared-memory multiprocessors, in Proceedings HPCA: Second

Int. Symp. on High-Performance Computer Architecture (IEEE, 1996), ISBN 0-8186-
7237-4, pp. 74–84.

[17] Shyamkumar Thoziyoor and Naveen Muralimanohar and Norman P. Jouppi, Cacti
5.0, HP Laboratories (2007).

[18] Sinharoy, B., Kalla, R. N., Tendler, J. M., Eickemeyer, R. J., and Joyner, J. B., Power5
system microarchitecture, IBM Journal of Research and Development 49 (2005).

[19] Zahran, M. M., On cache memory hierarchy for chip-multiprocessor, SIGARCH Com-

puter Architecture News 31 (2003) 39–48.

Electronic version of an article published in Parallel Processing Letters

v. 21, issue 1, 2011, p. 85-106

http://dx.doi.org/10.1142/S0129626411000096 © copyright World Scientific Publishing Company [http://www.worldscientific.com]

