
Performance Analysis of Array Database Systems
in Non-Uniform Memory Architecture

Simone Dominico, Eduardo C. de Almeida, Marco A. Z. Alves
Federal University of Paraná

(sdominico, eduardo, mazalves)@inf.ufpr.br

Jorge A. Meira
University of Luxembourg

jorge.meira@uni.lu

Abstract—Array Database Management Systems (Array
databases) support query processing over multi-dimensional
data. Data storage is implemented with non-linear structures to
mitigate the shortcomings of the relational model when dealing
with raw binary data, such as images, time series, and others. Due
to data-hungry nature of multi-dimensional data applications,
array databases must ideally provide a linear speedup when
using a multi-processing system. When dealing with Non-Uniform
Memory Access (NUMA) machines, array databases may require
massive data movement across the nodes resulting in a severe per-
formance impact, depending on the user operation. In this paper,
we analyze the performance impact of the NUMA architecture in
the SAVIME and SciDB array databases running five different
well-known static thread pinning strategies. Our experiments
showed a maximum speedup of these different strategies by 2.49x
for SAVIME and up to 1.40x for SciDB. We also observed that
these static strategies only yield 48% from the potential speedup
(and 26% of the energy reduction), opening a new research topic.

Index Terms—NUMA, Array databases, Thread placement.

I. INTRODUCTION

Relational Database Management Systems (RDBMSs) are
widely used in many applications due to the efficient storage
scheme provided by the relational model, which allows re-
ducing the storage space and easing data maintenance. This
model also allows users to combine and fetch data flexibly by
using a declarative query language. However, the relational
model is not ideal for storing and analyzing scientific data
due to its limitations and incompatibility to work directly
with the data format generated in scientific simulations and
experiments (i.e., data array) [1], [2]. The incompatibility
between the array and the relational model requires a series
of data transformations to execute queries in order to analyze
scientific data [3].

Array databases implement multidimensional data models
to serve many data-hungry applications that do not fit the
traditional relational model, such as scientific simulations, data
exploration, machine learning, biological structures, to name
but a few [4], [5]. Usually, such areas quickly produce large bi-
nary data volumes to be processed and analyzed at once. Array
query languages provide specific multidimensional operations,
such as geometric and linear algebra operations (e.g., data
slices, array transpose, addition, subtraction, opposite array)
and use parallelism to reduce query response time.

This work was partially supported by the Serrapilheira Institute (grant
number Serra-1709-16621), CAPES and CNPq (Brazilian Government).

At the same time, high performance systems use NUMA
architectures to leverage the high number of CPU cores within
the same shared memory. In NUMA, the memory access
latency can vary depending on the address being accessed (e.g.
access to near or far-away computing nodes). In this scenario
both, RDBMSs and Array databases may present different
performance depending on how query threads are pinned and
how data mapping occurs across the nodes.

Query processing models used by array databases are similar
to the ones used by RDBMS. For example, SAVIME [6] uses
the materialization query model, whereas SciDB [3] uses the
iterator query model. Besides, by default, the array databases
rely on the Operating System (OS) to map query threads
to CPU cores, as observed in traditional RDBMS. The OS
uses load balance strategies to spread the threads all over
the cores, without considering specific characteristics of the
interaction between operations running in the database and the
multi-core processor architecture. However, previous work on
RDBMS [7] observed that the OS attempts to load balance
between NUMA nodes generated a negative impact on perfor-
mance, once the data locality unawareness of the OS increased
the interconnection traffic between nodes. Eventually, one
could ask if this negative impact holds when using NUMA
architecture to support other database systems models.

In this paper, we evaluate the performance of array data-
bases executing in a NUMA architecture. We use multiple
well-known static thread pinning strategies to measure poten-
tial improvements in query performance. As far as we know,
we are the first to evaluate such impact on Array databases.
In our experiments, we have chosen the SAVIME and SciDB
state-of-the-art systems that implement a multidimensional
array data model from scratch (i.e., no adaptations to the
relational model). Our main contributions in this paper are:
Traditional techniques comparison: We analyze the speedup
and energy impact of five different thread pinning strategies for
NUMA systems when executing SAVIME and SciDB. Using
different strategies we could observe a maximum speedup
of 2.49× (2.09× less energy) with 5× less remote memory
accesses for SAVIME. For SciDB, we observed a speedup of
up to 1.40× (1.47× less energy) and reduction on the remote
memory access by 4.1×.
Maximum performance analysis: We show that traditional
techniques for distributing threads across NUMA cores are
still far from a perfect point of improvement. Our experiments



show that, on average, 52% performance and 74% energy
improvements are still available to be collected by newer and
improved techniques.

II. ARRAY DATABASE SYSTEMS

In this section, we briefly describe the data model of Array
databases and the query operator to slice multidimensional
data that we used in our evaluations.

The array data model represents data using n named dimen-
sions, and each of them has contiguous indexes. The multiple
dimensions simplify the data access and analysis through
different views. In this model, each cell belonging to the array
contains attributes with the same data type. Figure 1 illustrates
the array data model with three dimensions being respectively
latitude, longitude, and year1. The values are accessible
through a set of indexes. Experts can quickly analyze, in the
example of Figure 1, the change in temperature over the years.

54.4

68

40.8

54.4

54.4

40.8

40.8

54.4

54.4

40.8

54.4

54.4

68

54.4

68

54.4

68

54.4

68

40.8

40.8

54.4

40.8

54.4

54.4

54.4

68

68

54.4

68

40.8

68

54.4

54.4

68

68

54.4

40.8

54.4

40.8

68

68

68

54.4

54.4

68

68

54.4

Yea
r

Longitude

L
at

itu
de

Fig. 1: Model of a multidimensional array: temperature on
many latitudes, and longitudes over the years.

Along with the array data model concept, a wide range of
Array database has emerged, such as RasdMan [8], Array-
Store [9], SciDB [3], SciQL [10] and SAVIME [6]. In this
paper, we focus on two full-stack databases, SAVIME [6]
and SciDB [3]. They implemented the array model from
scratch without adaptations in the relational model. In scalable
multi-processing machines, this allows the distribution of data
chunks on separated machine nodes. Chunk is a physical
representation of an array, and both systems split the arrays
into chunks according to the stored data types. The chunk
size and format depend on the density of the array. For dense
arrays, all the chunks will have the same size. On the other
hand, when arrays are sparse, chunks may have different sizes
and formats. Non-regular chunks (i.e. sparse arrays) are prone
to be non-uniformly distributed, causing penalties in query
processing.

Querying an Array database extracts data from arrays using
nested functions calls. Chunks are pipelined through query
operators. The array data structure makes faster access to a
set of cells using the indexes. Also, if a query frequently uses
a chunk for faster access, the chunk is kept in memory [11].

The SAVIME and SciDB databases support an Array Func-
tional language (AFL) with a series of operators defined as

1geoserver.geo-solutions.it/edu/en/multidim/netcdf/netcdfbasics.html

functions [2], [5]. In this paper, we focus on the operator
classified by SciDB as the selection operator. The same ope-
ration has different names in the Array database. In SAVIME
is subset, and in SciDB, it is subarray. From this point, we
refer to both operations as subarray. The subarray operator
uses dimension indexes to fast data access, in both SAVIME
and SciDB, it selects data in a range. The subarray operator
creates a copy of the data within a range.

Array databases implement subarray operators in different
ways. SAVIME finds cells between the range using the filter
and generates many chunks with different sizes as a result.
SciDB decodes the compressed binary data for the chunks and
redistributes data to produce a new chunking configuration for
the results that are within the range of interest. The subarray
is a simple operation in an array data model. However,
according to the query selectivity, we may require processing
all the chunks.

Considering that Array database systems must use multiple
threads to provide scalable performance, in the next section we
present the NUMA architecture and its interference on such
multi-threaded systems.

III. NUMA ARCHITECTURES

NUMA architecture is a common design to provide high
throughput with a unified memory view. Ideally, these archi-
tectures provide high performance by maximizing computing
power and data sharing. Such characteristics suit perfectly to
support an Array database.

NUMA systems are typically formed by multi-core pro-
cessors grouped in nodes that share the memory with non-
uniform access latency. NUMA architecture has node-to-node
communications links, which provide high bandwidth with
separate memory controllers per node. In these NUMA nodes,
multiple cache levels and memory sharing schemes among the
nodes compose the memory hierarchy. Each of the referred
nodes can access both local memory bank and remote memory
banks from neighboring nodes (see Figure 2).

Core
0/20

Core
2/22

Core
4/24

Core
6/26

Core
8/28

Core
10/30

Core
12/32

Core
14/34

Core
16/36

Core
18/38

L3 Cache - 14 MB

Core
1/11

Core
3/13

Core
5/25

Core
7/27

Core
9/29

Core
11/31

Core
13/33

Core
15/35

Core
17/37

Core
19/39

L3 Cache - 14 MB

DRAM DDR-4DRAM DDR-4

Memory ControllerMemory Controller

Fig. 2: Example of a NUMA architecture with 2-nodes in-
spired on Intel Xeon Silver 4114.

NUMA effects can cause significant performance problems.
Considering that different data and thread allocation within
a NUMA system may provide different latencies, it becomes
essential to analyze such mapping for each specific application.



Previous research proposed several thread pinning strategies
to provide high performance depending on the application
behavior [12]–[19].

Nonetheless, the critical task of mapping the threads over the
available NUMA-cores is usually OS managed. For example,
Linux focus on thread mapping in a load balance approach.
Also, the OS allocates memory pages next to the node in which
the first access to the page occurs. Altogether, the first-touch
can be exploited to initialize parallel data between NUMA
nodes. If threads are moved to maintain load balance, the
standard OS strategy will not be the best scenario, and it
will also affect the Array database performance. Since the
query processing threads move around different NUMA nodes,
the OS generates unnecessary thread migration and latency
penalties due to remote data access. The result is a potentially
significant impact on Array database performance.

Thus, our challenge is pinning threads on specific cores to
benefit from the local memory, and to avoid the migration
caused by OS attempts to keep load balance.

A. Thread Pinning Strategies
We now present five well known thread pinning strategies

that are used in our experiments. Hence, we aim to analyze
the impact of these strategies when compared to the baseline
(i.e. OS scheduling strategy). We use for Savime and SciDB,
OpenMP (version 4.5) [20] thread affinity and taskset2 re-
spectively, to pinning threads.

DRAM DRAM

C0 C1

LLC

t1 t2

t4t3
C2 C3

LLC

(a) Compact (b) Sparse

DRAM DRAM

C0 C1

LLC

C2 C3

LLC

t1 t2t3 t4

(c) Shared

DRAM DRAM

C0 C1

LLC

C2 C3

LLC

t1 t2 t3t4

Fig. 3: Compact, Sparse and shared thread pinning strategies
on a two NUMA node with four threads.

Baseline: To provide a commonly used baseline, we decided
to measure the OS thread pinning performance without user
interference. The OS uses a load balance to distribute threads
over all the NUMA nodes, to maximize the usage of cores.

Strategy 1 - Compact: In Figure 3(a) we present the
compact strategy. The thread pinning follows the order of
threads creation and only uses one NUMA node. This strategy
can provide workload benefits with high data reuse. However,
data size is bounded to the memory available on the node.

Strategy 2 - Sparse: The sparse strategy distributes the
threads equally among the nodes, one thread per node. For

2https://man7.org/linux/man-pages/man1/taskset.1.html

instance, t1 is allocated in node 0, t2 in node 1, and so on,
as we show in Figure 3(b). Hence, our goal is to measure
the performance when scattering the threads in the nodes and
pinning them in one core.

Strategy 3 - Shared: The shared strategy aims to pin sets
of threads that work on the same chunk to a single NUMA
node. These threads share the Last-Level Cache (LLC) node,
as shown in Figure 3(c). We use this strategy to analyze if
data reuse has a positive impact on minimizing the effects of
the NUMA architecture.

Strategy 4 - Petri net: In this strategy, we use the same
strategy presented in [7]. The dynamic mechanism implements
an abstract model based on the Petri net. The goal of this
mechanism is to maintain a local optimal number of cores
to tackle the current database workload. The authors model
performance states that must be satisfied to trigger the allo-
cation of cores in the NUMA architecture. The assumption is
that a minimum number of cores maintain performance. The
primary metric to achieve the optimal number of cores is the
CPU load.

Strategy 5 - Random: Here, the Array database threads
are pinned randomly through the cores in all NUMA nodes.
We generated 20 random allocations to verify if workloads
have different behaviors. We tried to avoid identical core
pinning, as in the compact and sparse strategies, when the
threads are pinned in the same corresponding cores. The
random strategy intends to identify if there is a thread pinning
that improves performance compared to the other strategies
evaluated. Results only show the best case concerning this
strategy.

IV. EXPERIMENTAL EVALUATION

We now evaluate the performance of SAVIME and SciDB
Array databases in a NUMA architecture using the previously
described strategies of thread pinning.

The NUMA machine used in our experiments has two nodes,
each node with an Intel Xeon Silver 4114 (with Skylake
microarchitecture). Each Xeon socket has ten cores with
private L1(I+D) cache (32 KB), private L2 cache (1 MB),
and a shared L3 cache (14 MB). The two NUMA nodes are
interconnected by a Quick Path Interconnect (QPI) [21] link
4.x with 21.5 GB/S bandwidth. The machine includes 128 GB
DDR-4 main memory and 14 TB of disk running the Ubuntu
OS in version 18.04.01 LTS for SAVIME and 14.04.6 LTS
for SciDB. The different OS versions were used according
to the Array database documentation. We run an unmodified
Linux kernel, version 4.15.0−121−generic. To measure the
hardware performance, we used the Intel Performance Counter
Monitor (PCM) [22]. We used the SAVIME version (v.1.0) and
SciDB version (v.19.11.5).

In our experiments, we set the maximum number of threads
available for query execution to 20, which corresponds to the
number of available physical cores. The workload has dense
array based on data from the HPC4e BSC seismic bench-
mark [23]. We present the results considering the average over
10 executions for each thread pinning strategy and baseline.



100 1000 5000 10000 15000 20000 25000
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

0

1

2

3

Strategy

S
pe

ed
up

SAVIME SciDBNumber of chunks

Fig. 4: Performance comparison of subarray operator in 1 GB database using different numbers of chunks in Array database.

100 1000 5000 10000 15000 20000 25000

S
A

V
IM

E
S

ciD
B

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Strategy

D
R

A
M

 A
cc

es
s 

(G
B

)

local remote
Number of chunks

Fig. 5: Remote and local memory accesses in subarray operation in a 1 GB database using different numbers of chunks in
Array database.

A. Subarray Operation Analysis

We focus our analysis on the subarray operator. The
subarray operator picks a data subset of a multidimensional
array. This operator was chosen due to its simple memory
access behavior. Such behavior moves large amounts of data
in such a way that might have a great influence on NUMA
systems. Besides, this operator has considerable application,
since it is ones of the most studied one [2], [24]. This
operation has a coalescing memory access pattern, and no
cache data reuse due to its streaming data behavior. Thus, this
memory access pattern generates a poor use of the memory

hierarchy in NUMA architecture. Processing of subarray
operation by several threads in parallel leads to data movement
between NUMA nodes and a direct impact on Array database
performance.

1) Impact of the number of chunks: This subsection focuses
on the impact of NUMA architecture in an Array database for
multiple numbers of chunks in a dataset of 1 GB. It means
that, whenever we increase the number of chunks, the size of
each chunk decreases.

Figure 4 depicts the results for SAVIME and SciDB in terms
of speedup per amount of chunks when using different thread



EQ HFC HMC HSC LFC LMC LSC
C
om
pa
ct

S
pa
rs
e

S
ha
re
d

P
et
ri
N
et

R
an
do
m

C
om
pa
ct

S
pa
rs
e

S
ha
re
d

P
et
ri
N
et

R
an
do
m

C
om
pa
ct

S
pa
rs
e

S
ha
re
d

P
et
ri
N
et

R
an
do
m

C
om
pa
ct

S
pa
rs
e

S
ha
re
d

P
et
ri
N
et

R
an
do
m

C
om
pa
ct

S
pa
rs
e

S
ha
re
d

P
et
ri
N
et

R
an
do
m

C
om
pa
ct

S
pa
rs
e

S
ha
re
d

P
et
ri
N
et

R
an
do
m

C
om
pa
ct

S
pa
rs
e

S
ha
re
d

P
et
ri
N
et

R
an
do
m

0

1

2

3

Strategy

S
pe
ed
up

SAVIME SciDBSelectivity

Fig. 6: Performance comparison of subarray operator in a 50 GB database varying the operator selectivity in Array database.

pinning strategies compared to the OS scheduler (baseline).
We can observe that some thread pinning strategies improve
Array database performance. We notice that results associate
the best performance to a larger number of chunks. This means
that, when the threads work in a smaller chunk, exploiting
spatial locality. Consequently, there is a higher thread pinning
impact, which leads to, in this case, the best results.

Regarding the different thread pinning strategies we can see
that random strategy provides the most significant improve-
ments. The random strategy shows the best result among
the 20 random configurations that were tested. In the case
of random strategy reached a maximum acceleration of up
to 2.55× in SAVIME and 1.87× in SciDB. This result
indicates the need for a dynamic approach because, among
some random thread pinning, we found better performance
in relation to the other static strategies. For example, the shared
strategy achieves 47% of maximum performance.

Figure 5 shows the results of remote and local memory
access during the execution of a subarray operator. The local
memory access has lower latency compared to the remote
memory access. It means that the higher the number of local
memory access, the lower are NUMA effects on the Array
database. The variation in total access to DRAM memory
through the use of thread pinning strategies shows that not all
strategies have achieved a good use of cache memories. This
creates a need to search for data in DRAM more times, and
with greater latency. To better understand the relation between
the speedup and the DRAM accesses results, please observe
the 100 number of chunks (left most set on the figures). We can
see a clear relationship between the total number of DRAM
accesses and the final performance. It happens due to the
high latency for getting data from DRAM memories, and it
indicates a poor use of cache memories. Besides, the rise in the
number of remote accesses plays a second hole in reducing the

final speedup. The amount of remote accesses also indicates
how well the scheduler pinned the threads on NUMA cores.

It is noticeable the performance scaling when the amount of
chunks increases in the subarray operation. This means that,
by using smaller chunk sizes, the thread pinning can efficiently
exploit the NUMA architecture. Here, we can observe in
Figure 5 remote accesses. The random strategy shows a
reduction in remote access of 4.9× for SAVIME chunks and
3.5× for SciDB.

On the other hand, observing the compact strategy, the
thread pinning showed variations in speedup, delivering the
worst performance compared to the baseline (which does not
pin threads). When looking at the remote and local accesses in
Figure 5, we notice that compact strategy reduced the number
of remote access for SAVIME by 50%. The reason is that, the
subarray operation performs chunks most of the time, and
each thread performs different chunks. This fact increases the
probability of having many chunks being processed by threads
at the same time, which also increase the contention on cache
memories. Another relevant result is that PetriNet did not
show as much acceleration as we observed in an RDBMS.
PetriNet helps the OS allocating cores through the evaluation
of CPU load. Unlike an RDBMS, the CPU load in the Array
database maintained a high CPU usage [25]. Consequently,
PetriNet allocated all the cores of the NUMA architecture.

2) Impact of Selectivity: We now evaluate the impact of
different query selectivity using a 50 GB dataset. To conduce
this evaluation, we used a fixed number of 210 chunks. Here,
we expected faster executions as we increased the selectivity,
and only a small fraction of data should be gathered. We
evaluated high (70%) and low (20%) selectivity queries on
three chunk setups. Using just one chunk (HSC and LSC), on
20% of the chunks (HFC and LFC), on all chunks (HMC and
LMC). We also present the exact query (EQ) with a subarray.



EQ HFC HMC HSC LFC LMC LSC

S
A

V
IM

E
S

ciD
B

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

B
as

el
in

e
C

om
pa

ct
S

pa
rs

e
S

ha
re

d
P

et
ri

N
et

R
an

do
m

0

20

40

60

80

0

20

40

60

80

Strategy

D
R

A
M

 A
cc

es
s 

(G
B

)
local access remote access

Selectivity

Fig. 7: Remote and local memory accesses in subarray operation in a 50 GB database using different operator selectivity in
the Array database.

Figure 6 presents the speedup, whereas Figure 7 brings the
number of remote/local memory access. We noticed behavior
differences in the subarray operator when selectivity varied.
When the subarray operator has high selectivity, it needed
to retrieve a small part of the data. Yet, low selectivity
transferred more data in the memory hierarchy and generates
more access in DRAM. This process indicates that when a
there are many chunks and high selectivity, the data movement
can be high despite the increase in selectivity. Hence, thread
pinning guarantees more efficient use of the cache. Through
the analysis of high selectivity results, the NUMA architecture
presented a higher impact with queries that touched more
chunks, with 2.49× and 1.40× speedup in SAVIME and
SciDB, respectively. This occurred since the random thread
pinning strategy distributed the threads in such a way that it
caused less remote memory access (with a reduction of 5×
in SAVIME and 4.1× in SciDB). We can observe a decrease
in the number of total accesses to DRAM memory with the
use of the random strategy, and such reduction implies a
good use of cache memory. One of the characteristics of
subarray operation is low data reuse, which indicates that
the random strategy could find a balance in threads, and did
not compete for memory space in the NUMA architecture.
Nevertheless, the random strategy took advantage of the data
spatial location. Also, shared strategy only yield 48% from the
potential speedup achieved by the random strategy.

Notice that, when the query is in only one chunk the compact
strategy presented the best result with speedup of 1.84×
for SAVIME, with a query of high selectivity. In this case,
as the query uses only one chunk, all threads are working
in the same memory space. Therefore, these threads reuse
data already loaded by other threads. Also, our experimental
evaluation showed again that, when the number of chunks

increased, the compact strategy did not present a significant
acceleration, disregarding selectivity. The sparse and shared
strategies, on the other hand, showed similar speedup and
remote accesses to memory. The shared strategy tried to
pin similar threads that work under the same chunk together
in the same node. However, during the running query, each
thread changed chunks. This behavior makes the compact and
shared strategies similar because, from this moment on, the
shared strategy assumes the sparse behavior and data may
or may not be on same the NUMA node.

3) Energy evaluation: To measure the hardware perfor-
mance, we used the Intel PCM [22]. Intel PCM tool provides
the total power consumption of the main memory. Figure 8
shows the results of energy consumption in the DRAM
memory (normalized by baseline) regarding experiments with
50 GB. We can observe that the presented behavior is similar
to speedup results. The random strategy reduced DRAM
energy by 52% in SAVIME with high selectivity in many
chunks (HMC). However, the compact strategy increases
energy consumption in the same experiment (HMC). For
SciDB, the energy saving within the use of random strategy
was 31.86% with high selectivity in many chunks. The worst
result in SciDB was from the use of the compact strategy in
HMC.

4) NUMA effect on Array database: During our evaluations
of subarray operator, we notice that the number of chunks
has an impact on the Array database atop in the NUMA
architecture. The results imply that the higher the number
of chunks, the higher is data movement between the NUMA
nodes, which explained remote accesses variation. Moreover,
in our experiments, we used dense arrays, and the chunks
are mapped closer in memory. In this case, as expected, the
distribution of threads to all the NUMA nodes, performed



EQ HFC HMC HSC LFC LMC LSC

S
A

V
IM

E
S

ciD
B

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

C
om

pa
ct

S
pa

rs
e

S
ha

re
d

P
et

ri
N

et
R

an
do

m

0%

50%

100%

150%

0%

50%

100%

150%

Strategy

E
ne

rg
y 

C
on

su
m

pt
io

n

SAVIME SciDBSelectivity

Fig. 8: Energy consumption in DRAM with 50 GB database using different operator selectivity in the Array database.

by the OS scheduler, led to an underuse of the architecture’s
full potential by the Array database. We conclude, therefore,
that it is not the best scenario for Array database. Also, the
thread pinning strategies provide lower energy consumption
when presented best results in speedup. Finally, based on the
experimental evaluation results, we can observe that simple
thread pinning strategies provide moderate speedup, but the
results obtained with the random strategy indicated the need
for more sophisticated strategies for an Array database. Also,
the finding best thread mapping is a difficult and complex task,
since workload in Array database has different with patterns
of memory access. The thread mapping and cannot directly be
observed using a simple random strategy without incurring a
high probe time and many combinations.

V. RELATED WORK

The impact of NUMA architecture on performance have
motivated several recent works in different areas. In computer
architecture, these researches employ different thread mapping
techniques to minimize the effects of NUMA architecture
and study the effects of NUMA under different views of
architecture. For instance, the work presented in [12]–[18],
[26] focuses on thread placement techniques based on mem-
ory access patterns and communication cost between nodes.
However, these studies analyze generic applications without
considering the specific operation that each application is
running.

Researches that mitigate the effects of NUMA architecture
in database systems gain momentum in the database research
community. These researches have mainly focused on RDBMS
on particular query operators or thread/data placement. In [27],
[28] the authors present techniques to improve the performance
of join in the NUMA architecture by directing the operation

threads on specific NUMA nodes to mitigate the effects of the
data movement.

There is related work focusing on thread/data placement use
different techniques to designate the threads on the NUMA
node where the data is allocated. In [29] Online Transaction
Processing (OLTP) threads are pinned in hardware islands
created through different separations of NUMA architecture
nodes. In [30]–[35] both works focus in data partitioning, the
data is allocated on the NUMA nodes and the threads are
positioned statically where the data is allocated.

In contrast, other work [36], [37] use hardware configura-
tions to mitigate the effects of NUMA architecture. New kernel
to query processing with custom thread allocation policies are
also proposed [38]. Besides, the proposal of a new database
scheduler to control the dispatching of query fragments, is
called “morsels” [39]. The “morsels” are statically pinned in
specific cores to take advantage of the data location and avoid
data movement between nodes.

In work [7], the authors present a multi-core allocation
technique that reduced the effects of the NUMA architecture
on RDBMS, reducing the number of cores that the OS could
use to allocate the threads. A similar strategy presented by [33]
uses OS policies to designate the number of resources needed
and creates a communication between the OS and the RDBMS
in execution.

Considering the database work, we observed that the main
focus is RDBMS. In contrast, our research investigates the
impact of the NUMA architecture on Array database. Also, we
analyzed whether thread placement improves the performance
of Array database on NUMA architectures. The reason why
related approaches may not provide benefits for an Array
database is related to the type of workload and operations
performed that differ from a RDBMS.



VI. CONCLUSIONS AND FUTURE WORK

Based on the fact that RDBMS and Array database adopt
similar strategies when using multi-thread parallelism, only the
former has been extensively studied in terms of performance
behavior when using NUMA architectures. In this paper, we
evaluated the speedup and energy consumption impact of
NUMA in two Array databases, SAVIME, and SciDB.

By using different thread pinning strategies on the evaluated
Array databases, we showed how each strategy behaved.
Our results support that NUMA architecture severly affects
performance of subarray operation in a Array database.
Furthermore, we conclude that traditional techniques are still
far from the maximum possible gains. Although several studies
show results for traditional RDBMS [7], [27]–[33], [33]–
[39]. As far as we know, we are the first to study the NUMA
architecture effects in Array database.

Our next steps include understanding NUMA effects in other
Array database operators and designing an array database
scheduler that finds the best thread pinning.

REFERENCES

[1] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani, “Parallel data
analysis directly on scientific file formats,” in Proc. ACM SIGMOD Int.
Conf. on Manag. of Data, 2014, pp. 385–396.

[2] H. Lustosa and F. Porto, “SAVIME: A multidimensional system
for the analysis and visualization of simulation data,” CoRR, vol.
abs/1903.02949, 2019.

[3] P. G. Brown, “Overview of scidb: large scale array storage, processing
and analysis,” in Proc. ACM SIGMOD Int. Conf. on Manag. of data,
2010, pp. 963–968.

[4] P. Baumann and S. Holsten, “A comparative analysis of array models
for databases,” in Database theory and application, bio-science and bio-
technology, 2011, pp. 80–89.

[5] S. Kim, S. G. Sohn, T. Kim, J. Yu, B. Kim, and B. Moon, “Selective
scan for filter operator of scidb,” in Proceedings of the 28th Int. Conf.
on Scientific and Statistical Database Manag., 2016, pp. 1–4.

[6] H. Lustosa, N. Lemus, F. Porto, and P. Valduriez, “Tars: An array model
with rich semantics for multidimensional data,” in Proc. of the ER Forum
2017 and the ER 2017 Demo Track, 2017, pp. 114–127.

[7] S. Dominico, E. C. de Almeida, J. A. Meira, and M. A. Z. Alves, “An
elastic multi-core allocation mechanism for database systems,” in IEEE
34th Int. Conf. on Data Eng. (ICDE), 2018, pp. 473–484.

[8] P. Baumann, P. Furtado, R. Ritsch, and N. Widmann, “The rasdaman
approach to multidimensional database management,” in ACM Symp. on
Applied Computing, 1997, pp. 166–173.

[9] E. Soroush, M. Balazinska, and D. Wang, “Arraystore: a storage manager
for complex parallel array processing,” in Proc. ACM SIGMOD Int.
Conf. on Manag. of data, 2011, pp. 253–264.

[10] Y. Zhang, M. Kersten, and S. Manegold, “Sciql: array data processing
inside an rdbms,” in Proc. ACM SIGMOD Int. Conf. on Manag. of Data,
2013, pp. 1049–1052.

[11] L. Gerhardt, C. Faham, and Y. Yao, “Accelerating scientific analysis
with scidb,” Journal of Physics: Conf. Series, vol. 664, no. 7, 2015.

[12] E. H. M. da Cruz, M. A. Z. Alves, A. Carissimi, P. O. A. Navaux, C. P.
Ribeiro, and J.-F. Méhaut, “Memory-aware thread and data mapping
for hierarchical multi-core platforms,” Int. Journal of Networking and
Computing, vol. 2, no. 1, pp. 97–116, 2012.

[13] E. H. Cruz, M. Diener, L. L. Pilla, and P. O. Navaux, “Hardware-assisted
thread and data mapping in hierarchical multicore architectures,” ACM
Trans. on Archit. and Code Optimization, vol. 13, no. 3, pp. 1–28, 2016.

[14] F. Song, S. Moore, and J. Dongarra, “Analytical modeling and optimiza-
tion for affinity based thread scheduling on multicore systems,” in Int.
Conf. on Cluster Computing and Workshops, 2009, pp. 1–10.

[15] B. Lepers, V. Quéma, and A. Fedorova, “Thread and memory placement
on numa systems: Asymmetry matters,” in Proc. of the 2015 USENIX
Conf. on Usenix Annual Technical Conf., 2015, pp. 277–289.

[16] P. Virouleau, F. Broquedis, T. Gautier, and F. Rastello, “Using data
dependencies to improve task-based scheduling strategies on numa
architectures,” in Euro-Par 2016, 2016, pp. 531–544.

[17] G. C. Chasparis, M. Rossbory, and V. Janjic, “Efficient dynamic pinning
of parallelized applications by reinforcement learning with applications,”
in Euro-Par 2017, 2017, pp. 164–176.

[18] I. Sánchez Barrera, M. Moretó, E. Ayguadé, J. Labarta, M. Valero,
and M. Casas, “Reducing data movement on large shared memory
systems by exploiting computation dependencies,” in Int. Conf. on
Supercomputing, 2018, pp. 207–217.

[19] M. Popov, A. Jimborean, and D. Black-Schaffer, “Efficient
thread/page/parallelism autotuning for numa systems,” in Int. Conf. on
Supercomputing, 2019, pp. 342–353.

[20] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. Mc-
Donald, Parallel programming in OpenMP. Morgan kaufmann, 2001.

[21] Intel, “Maximizing multicore processor performance,” Jan. 2019. [On-
line]. Available: https://www.intel.com/content/www/us/en/io/quickpath-
technology/quickpath-technology-general.html

[22] F. P. Willhalm Thomas, Dementiev Roman, “Intel performance counter
monitor,” Dec. 2012. [Online]. Available: https://software.intel.com/en-
us/articles/intel-performance-counter-monitor

[23] B. S. Center, “Hpc4e seismic test suite to increase the
space of development of new modelling.” Apr. 2016. [Online].
Available: https://www.bsc.es/news/bsc-news/new-hpc4e-seismic-test-
suite-increase-the-pace-development-new-modelling-and-imaging

[24] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The tiledb array
data storage manager,” Proc. VLDB Endow., vol. 10, no. 4, 2016.

[25] H. Lustosa, F. Porto, P. Blanco, and P. Valduriez, “Database system
support of simulation data,” Proc. VLDB Endow., vol. 9, no. 13, pp.
1329–1340, 2016.

[26] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, “A novel
data-partitioning algorithm for performance optimization of data-parallel
applications on heterogeneous hpc platforms,” IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 10, pp. 2176–2190, 2018.

[27] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively parallel sort-
merge joins in main memory multi-core database systems,” Proc. VLDB
Endow., vol. 5, pp. 1064–1075, 2012.

[28] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu, “Multi-core, main-
memory joins: Sort vs. hash revisited,” Proc. VLDB Endow., vol. 7, no. 1,
pp. 85–96, 2013.

[29] D. Porobic, I. Pandis, M. Branco, P. Tözün, and A. Ailamaki, “Oltp on
hardware islands,” Proc. VLDB Endow., vol. 5, no. 1, pp. 1447–1458,
2012.

[30] S. Bellamkonda, H.-G. Li, U. Jagtap, Y. Zhu, V. Liang, and T. Cruanes,
“Adaptive and big data scale parallel execution in oracle,” Proc. VLDB
Endow., vol. 6, no. 11, pp. 1102–1113, 2013.

[31] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich, D. Molka, and
W. Lehner, “Eris: A numa-aware in-memory storage engine for ana-
lytical workloads,” Proc. VLDB Endow., vol. 7, no. 14, pp. 1–12, 2014.

[32] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki, “Atrapos: Adaptive
transaction processing on hardware islands,” in 2014 IEEE 30th Int.
Conf. on Data Engineering (ICDE), 2014, pp. 688–699.

[33] J. Giceva, G. Alonso, T. Roscoe, and T. Harris, “Deployment of query
plans on multicores,” Proc. VLDB Endow., vol. 8, no. 3, 2014.

[34] M. Gawade and M. Kersten, “Numa obliviousness through memory
mapping,” in Int. Workshop on Data Manag. on New Hardware, 2015.

[35] O. Ozturk, U. Orhan, W. Ding, P. Yedlapalli, and M. T. Kandemir,
“Cache hierarchy-aware query mapping on emerging multicore architec-
tures,” IEEE Trans. on Computers, vol. 66, no. 3, pp. 403–415, 2016.

[36] S. R. Agrawal, S. Idicula, A. Raghavan, E. Vlachos, V. Govindaraju,
V. Varadarajan, C. Balkesen, G. Giannikis, C. Roth, N. Agarwal et al.,
“A many-core architecture for in-memory data processing,” in Int. Symp.
on Microarchitecture, 2017, pp. 245–258.

[37] M. Dreseler, T. Kissinger, T. Djürken, E. Lübke, M. Uflacker, D. Habich,
H. Plattner, and W. Lehner, “Hardware-accelerated memory operations
on large-scale numa systems.” in ADMS@ VLDB, 2017, pp. 34–41.

[38] J. Giceva, G. Zellweger, G. Alonso, and T. Rosco, “Customized os
support for data-processing,” in Int. Workshop on Data Manag. on New
Hardware, 2016, pp. 1–6.

[39] V. Leis, P. Boncz, A. Kemper, and T. Neumann, “Morsel-driven par-
allelism: a numa-aware query evaluation framework for the many-core
age,” in Proc. ACM SIGMOD Int. Conf. on Manag. of Data, 2014, pp.
743–754.


