
Machine Learning Migration for
Efficient Near-Data Processing

Aline S. Cordeiro† Sairo R. dos Santos†‡ Francis B. Moreira† Paulo C. Santos§ Luigi Carro§ Marco A. Z. Alves†
†Department of Informatics – Federal University of Paraná – Curitiba, Brazil

‡Department of Exact Sciences and Information Technology – Federal Rural University of Semi-arid – Angicos, Brazil
§Informatics Institute – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

Email:†{ascordeiro, fbm, mazalves}@inf.ufpr.br ‡{sairo.santos@ufersa.edu.br} §{pcssjunior, carro}@inf.ufrgs.br

Abstract—Machine Learning (ML) rises as a highly useful
tool to analyze the vast amount of data generated in every
field of science nowadays. Simultaneously, data movement inside
computer systems gains more focus due to its high impact on
time and energy consumption. In this context, the Near-Data
Processing (NDP) architectures emerged as a prominent solution
to increasing data by drastically reducing the required amount
of data movement. For NDP, we see three main approaches,
Application-Specific Integrated Circuits (ASICs), full Central
Processing Units (CPUs) and Graphics Processing Units (GPUs),
or vector units integration. However, previous work considered
only ASICs, CPUs and GPUs when executing ML algorithms
inside the memory. In this paper, we present an approach to
execute ML algorithms near-data, using a general-purpose vector
architecture and applying near-data parallelism to kernels from
KNN, MLP, and CNN algorithms. To facilitate this process, we
also present an NDP intrinsics library to ease the evaluation and
debugging tasks. Our results show speedups up to 10× for KNN,
11× for MLP, and 3× for convolution when processing near-data
compared to a high-performance x86 baseline.

Index Terms—Near-Data Processing; Vector Processing; Ma-
chine Learning.

I. INTRODUCTION

In the last years, Machine Learning (ML) has gained pop-
ularity to analyze the massive amounts of data generated by
digital systems’ growth use [1]–[5]. Simultaneously, general-
purpose computers and their ever-increasing performance
present severe bottlenecks in terms of the execution time of
ML algorithms when dealing with real-world size problems
[6]. In order to mitigate performance problems, ML experts are
using accelerators such as Graphics Processing Units (GPUs),
Field-Programmable Gate Arrays (FPGAs) and Application-
Specific Integrated Circuits (ASICs) [7]–[9]. However, the data
movement between accelerator’s integrated memory (GDDR-
x, HBM, or HMC) and processor is still a bottleneck, also
known as memory-wall [7]. The memory-wall limitation is
inherent to contemporary processor designs, and although
cache hierarchy can mitigate the performance drawbacks, in
terms of energy and latency it is not sufficient [10]–[12].

Data movement consumes as high as 60% of the total
system energy [6]. Here, Near-Data Processing (NDP) has
emerged as a solution for the memory-wall problem, with

This work was partially supported by the Serrapilheira Institute (grant
number Serra-1709-16621), CAPES and CNPq (Brazilian Government).

the idea of integrating processor and memory in the same
chip [13], [14]. The most common NDP proposals rely on
ASIC or full Central Processing Units (CPUs) and GPUs [15]–
[17]. Nevertheless, prominent designs, based on simple near-
data vector units [18]–[21], enable the highest energy effi-
ciency while meeting the required constraints regarding the
area and power [22]. Therefore, our case study is inspired
by the HMC Instruction Vector Extensions (HIVE) [18] to
provide a programming and simulation environment for NDP.

In this paper, we present the benefits of migrating three
well-known ML kernels, namely K-Nearest Neighbors (KNN),
Multi-layer Perceptron (MLP), and Convolutional Neural
Network (CNN), to a NDP design capable of large-vector
operations which is named Vector-In-Memory Architecture
(VIMA). By adopting VIMA we are greatly reducing data
movement between host processors and main memory, hence
increasing overall efficiency and performance. To allow this
migration, we also developed Intrinsics-VIMA, a vector-
designed C/C++ library extension [23]. Intrinsics-VIMA facil-
itates the writing of codes for VIMA and similar Processing-
In-Memory (PIM) architectures, enabling the simulation and
evaluation of new algorithms with reduced programming ef-
fort. Our main contributions are the following:

• We extend and use an NDP intrinsics library that supports
validation of NDP architectures based on large vectors.

• We provide insights and show benefits on migrating ML
algorithms to a vector-based NDP architecture.

Most ML algorithms are split into train and inference phases,
two computation-intensive tasks. The training is performed
once and relies on latency to execute many operations over
a massive set of training instances to define the model
parameters. The inference is performed multiple times by
multiple products, and it relies on high throughput to classify
a stream of instances, representing real-world applications. In
this paper, we focus only on the inference phase.

Comparing the x86-only approach to the NDP execution
we show improvements on execution time up to 10× for
KNN, 11× for MLP, and 3× for convolution. Additionally,
we reduce energy consumption by up to 7× for KNN, ∼ 8×
for MLP and 2× for convolution.

II. RELATED WORK

In this section, we discuss related work on NDP for ML
execution. We begin by describing efforts that rely on using
full cores, such as RISC-V, ARM, and Accelerated Processing
Units (APUs) attached to a 3D-stacked architecture to enhance
performance. NeuroStream is a NDP platform that runs Deep
Neural Networks (DNNs) with large inputs and arbitrary
filter sizes [24]. Based on NeuroStream, Network Training
Accelerator (NTX) implements an acceleration engine that
trains state-of-the-art Deep Convolutional Neural Networks
(DCNNs) [25]. Both implement a module composed of RISC-
V cores with local cache, Direct Memory Access (DMA),
and specific cores. The modules connect to the crossbar
switch of every 3D-stacked memory, enabling the execution
of vector instructions. Tesseract accelerates large-scale graph
processing using an Hybrid Memory Cube (HMC) module
integrated to a single-issue in-order ARM core [16]. Another
NDP architecture was used for in-memory analytics frame-
works [26], where the authors employ a set of ARM cores
combined with a Translation Look-aside Buffers (TLBs) and
virtual memory that communicate with each other through
a vault router. The Millipede is a NDP architecture for Big
data Machine Learning Analytics (BMLA), that implements
its processors in the logic layer of 3D-stacked memories.
These processors have a local memory, register file, pipeline,
cache, and prefetcher buffers [27]. Another possible approach
is to implement programmable ARM-based cores in the HMC
logic layer [28] so that some functions can be offloaded
to these cores. The VIMA vector module also attaches to
the crossbar switch but has lower complexity and cost as it
requires fewer components to improve system performance
for a ML application.

Another proposal analyzed aspects of a CNN to develop
a PIM architecture where simple cores are attached to every
vault, and each core has a data controller to allow communi-
cation [29]. TETRIS and NeuralHMC are 3D-stacked Neural
Network (NN) accelerators [15], [30]. Both connect hundreds
of Processing Elements (PEs) with Network-on-Chip (NoC)
technology. VIMA also has lower complexity and cost than
these, as it does not rely on communication between vaults or
cores to achieve high performance or parallelism.

MAssively Parallel Learning/Classification Engine
(MAPLE) [31] uses multi-core near-data for parallel learning
and classification algorithms and a tool that automatically
maps application kernels to the accelerator hardware. They
implemented an architecture with a set of cores to solve
MapReduce operations. MAPLE uses these processing cores
to achieve parallelism, and two separate modules are applied
to solve the entire operation. The cores include processing
elements like registers, selectors, a vector Functional Unit
(FU), and local storage. Xu et al.’s proposal [32] focuses on
parallelizing CNNs on a system with multiple NDP devices.
A host CPU is connected to a 3D-stacked memory and both
host and logic layer are APUs, which consists of CPU and
GPU cores on the same silicon die. VIMA, on the other hand,

uses a straightforward module, enabling vector operation in
an energy-efficient way.

Another approach is the addition of reconfigurable acceler-
ators to the logic layer of 3D-memories. Oliveira et al. [20]
describe Neuron In-Memory (NIM), a module compound by
a register bank, complex FUs, and a sequencer that simulates
biologically meaningful NN of considerable sizes. We also
observed proposals that dynamically adjusts the number of
active FUs on demand [33]. These related proposals require
adding one module per vault, making them more expensive
than VIMA, which is attached only to the crossbar switch and
allows communication to every vault.

Finally, some proposals consider a conventional Dynamic
Random Access Memory (DRAM) device with elementary
logic or boolean circuit into DRAM cells (so-called Processing
In-Memory), which is not an expensive task. However, com-
pared to VIMA, this solution is a complex and error-prone
task to the programmer. Moreover, the set of implementable
instructions is limited [34]–[39].

Table I summarizes the related work regarding NDP and
PIM applied to ML algorithms.

TABLE I: Summary of correlated papers characteristics.

Paper General/Specific
Purpose

Vector/
Scalar

Near-/In-
memory

Full
Cores

[27], [31], [33] General Vector Near-memory N
[20], [36] General Vector In-memory 1

[16], [26], [32] General Scalar Near-memory N
[37] Specific Vector In-memory 1

[15], [24] Specific Vector Near-memory N
[34], [35], [38] Specific Scalar In-memory 1

[25], [28] Specific Scalar Near-memory N
[29], [30] Specific Scalar Near-memory 0

Our Proposal General Vector Near-memory 0

III. BACKGROUND ON NEAR DATA PROCESSING

Near-Data Processing (NDP) dates back to the 1990s [14],
[40], when the industry was unable to integrate DRAM and
logic cells on the same die. However, with the advent of
3D integration, NDP has reemerged as a viable solution. 3D-
stacked memories are generally compound of multiple stacked
layers (e.g., eight layers) of DRAMs plus a logic layer on the
base. This logic layer enables the integration of a processing
logic element near the memory banks. The DRAM layers are
usually logically partitioned (e.g., in up to 32 vaults), where
each partition has many independent DRAM banks (from all
the eight layers). These logical partitions distributed among
DRAM layers are connected through Through-Silicon Vias
(TSVs) [41]. Compared to typical Double Data Rate (DDR)
memories, 3D memories can achieve higher bandwidth and
better energy efficiency [42], while reaching up to 320 GB/s
[43], [44].

NDP systems can be implemented due to 3D integration
technology by adding processing capabilities within the logic
layer. Thereby, NDP can mitigate data movement between
memory and processor because it enables processing in the
same chip where data is stored. NDP architecture improves
performance and energy efficiency as it grants high parallelism

and high bandwidth [45]–[47], ensuring low average latency
even when there is high pressure in memory. Therefore, such
architectures benefit streaming and parallel applications, with
coalescent memory access patterns and low data reuse.

In this paper, as a target NDP architecture, we focus on a
model that provides general-purpose processing (e.g., in con-
trast to ASIC) and does not require a full processor integration
near data. For this, we adopted the HIVE [18] architecture.
It allows the execution of large vector instructions that obtain
data from the independent memory vaults inside a 3D-memory
in a parallel fashion. Besides, it includes vector extensions to
the processor Instruction Set Architecture (ISA) to control the
near-data vector units, not requiring any processor front-end
to be implemented inside the memory.

3D Stacked MemoryProcessor
Core

ALUFetch Decode
Rename
Dispatch

Write
Back

Memory Order Buffer

Cache
Hierarchy

Last Level
Cache

VIMA instruction VIMA status

Vault 0
logic

Vault 1
logic

Vault 31
logic

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

...

Crossbar switch

VIMA

Vector
Op.

L1 Cache

DRAM
Layers

Logic
Layer

Reorder Buffer

...

Fig. 1: 3D-stacked memory module with the VIMA architec-
ture.

For our experiments, we used VIMA, a modified version of
HIVE. The main difference is that VIMA replaces the register
bank (from HIVE) with a same-sized (i.e., 64 KB) data cache
memory, which maintains high performance while providing
transparency and high flexibility for programmers. Both HIVE
and VIMA support all ARM NEON Integer and Floating-point
(FP) instructions and operate over vectors of 8 KB of data,
which fetch data over the 32 channels (vaults) in parallel.
Figure 1 present an overview of the NDP considered in this
paper. For more details please refer to HIVE’s paper [18].

NDP can mitigate the memory-wall problem in contrast to
CPU, GPU, and FPGA, which all require time and energy
inefficient off-die (or off-chip) data transfers, by eliminating
data movements from the memory hierarchy. Thus, in the
remainder of this paper, we migrate three well-known ML
classification algorithms to exploit this emerging architecture.

IV. PROPOSED INTRINSICS-VIMA LIBRARY

In this section, we present the Intrinsics-VIMA, a library we
develop intending to facilitate the development of programs for
NDP architectures using C/C++ language.

Intrinsics-VIMA supports trace generation for simulation
and allows vector operation with vectors of 8 KB formed
by multiple integers, single- or double-precision floating-point
elements. This library is based on Intel and ARM Intrinsics
[48], a Single Instruction Multiple Data (SIMD) library that
embeds its internal assembly code directly in the compiler to
optimize execution [49].

The main idea for Intrinsics-VIMA is to provide vector
extensions in the ISA. Once C/C++ code is prepared using
Intrinsics-VIMA, it can be debugged and executed on any
architecture. However, to evaluate new NDP architectures, we
use a trace generator to transform each intrinsic call into a
specific NDP instruction supported by the simulator. Thus, it
is possible to write code for non-existing architectures and
ensure its correctness [23].

Code 1: Intrinsics-VIMA routine call for vector sum.
uint32_t vima_size = 2048;

// Allocate the vectors A, B (sources) and C (result)
__v32f *A = (__v32f*)malloc(sizeof(__v32f)* vima_size* x);
__v32f *B = (__v32f*)malloc(sizeof(__v32f)* vima_size* x);
__v32f *C = (__v32f*)malloc(sizeof(__v32f)* vima_size* x);

// Initialize the memory location
<...>

// Perform the vector sum: C[i] = A[i] + B[i]
for (int i = 0; i < vima_size * x; i += vima_size) {

_vim2K_fadds(&A[i], &B[i], &C[i]);
}

Based on this open-source Intrinsics library for NDP [23],
we developed Intrinsics-VIMA, which is the first library to
implement vector instructions for an NDP architecture. VIMA
instructions operate over 8 KB and allow (un)signed integer
and floating-point single- and double-precision operations.
Thus, we consider vectors with 1024 or 2048 elements, for
8 B or 4 B elements, respectively. To use intrinsics-VIMA,
we must allocate vectors with sizes multiple of 1024 or 2048,
so we can iterate on these vectors with this stride length.
Code 1 present the implementation of a vector sum example
using Intrinsics-VIMA. Code 2 show the implementation of
one of our Intrinsics-VIMA routine. Previous work only
considered scalar processing near-data (based on HMC ISA
proposal) [23], and now we can evaluate vector operands used
on VIMA, originally inspired on the NEON ISA.

Code 2: Intrinsics-VIMA routine example.
// This routine can be fully executed in any architecture
// Our simulator replaces this routine with a VIMA instr.
void *_vim2K_fadds(__v32f *a, __v32f *b, __v32f *c) {

for (int i = 0; i < vima_size; ++i) {
c[i] = a[i] + b[i];

}
return EXIT_SUCCESS;

}

V. MIGRATING MACHINE LEARNING USING
INTRINSICS-VIMA

ML is a sub-field of Artificial Intelligence (AI), and its
algorithms compute and analyze datasets to recognize patterns
in data and classify or predict them. Commonly we split ML
algorithms into training and inference phases. Considering su-
pervised algorithms, developers perform the training, and once
it is validated and ready, these trained values are embedded
into multiple systems. It can be executed in a set of different
devices, even in embedded systems with limited hardware
resources [50]–[52]

Both phases are computation-intensive tasks and may
present different challenges. The training depends on massive
operations over a massive set of instances during multiple
epochs to define the model parameters. Meanwhile, inference
relies on high throughput to classify a stream of instances,
representing real-time applications. Therefore, for simplicity,
we choose to focus on this inference phase only in this paper.

In the following subsection, we describe the implementation
of three algorithms widely adopted in ML, also showing the
method to vectorize each of them. We choose a convolution
kernel (commonly used in CNNs), MLP and KNN algorithms.

Besides, we use VIMA vectors of 8 KB, allowing us
to operate over 2048 single-precision values with a single
instruction. Although HIVE and VIMA instructions operates
over 8 KB vectors. The physical implementation of these
architectures can use less vector units in a pipeline manner
to still provide high performance while low area usage [18].

A. Convolution

We start explaining the convolution code due to its sim-
plicity, making it easy to understand the vector process.
Convolution codes are a class of algorithms that has numerous
applications in science. They compute values based on a
fixed pattern involving each element of an array and several
neighbors on a 2D or 3D arrangement [53]. Two of the
most common convolution patterns are the Von Neumann
neighborhood and the Moore neighborhood patterns. The Von
Neumann pattern includes the four neighbors in the cardinal
directions of an element. The computation of each element is
independent, making convolution codes good candidates for
parallel processing. However, they often become memory bot-
tlenecks due to the data access patterns they present potentially
having poor locality [53].

Code 3: Von Neumann convolution code in C.
for (int i = ColSize; i < max_elem; i++) {

VecB[i] = VecA[i]; // Center Elem.
VecB[i] = VecB[i] + VecA[i - ColSize]; // Upper Elem.
VecB[i] = VecB[i] + VecA[i + ColSize]; // Lower Elem.
VecB[i] = VecB[i] + VecA[i - 1]; //Left Elem.
VecB[i] = VecB[i] + VecA[i + 1]; //Right Elem.
VecB[i] = VecB[i] * constK;

}

For the implementation of a naive convolution code using
VIMA, we adopted the Von Neumann pattern with a range
equals to 1, as shown in dark gray in Figure 2. The algorithm
sums all five elements in the convolution, then multiplies the
result by a constant and stores the result in a different matrix.
Code 3 shows an example in C, considering a matrix in a
continuous array arrangement. The algorithm stores the result
in the corresponding element of a new matrix.

Figure 2 illustrates the convolution. For every loop, elements
from three consecutive lines of the matrix, as pictured in
dark gray, are loaded into VIMA vectors and operated over.
Code 4 shows the implementation using Intrinsics-VIMA. Our
implementation is considering a convolution that eliminates
the matrix borders during execution.

Fig. 2: Convolution pattern used for VIMA.

Code 4: Von Neumann convolution using Intrinsics-VIMA.
for (int i = ColSize; i < max_elem; i += vec_size) {

_vim2K_fmovs(&VecA[i], &VecB[i]);
_vim2K_fadds(&VecB[i], &VecA[i-ColSize], &VecB[i]);
_vim2K_fadds(&VecB[i], &VecA[i+ColSize], &VecB[i]);
_vim2K_fadds(&VecB[i], &VecA[i+1], &VecB[i]);
_vim2K_fadds(&VecB[i], &VecA[i-1], &VecB[i]);
_vim2K_fmuls(&VecB[i], &VconstK[i], &VecB[i]);

}

B. K-nearest Neighbors

KNN is an instance-based classifier. It searches for the k
minimal distances between training and test points in an n-
dimensional space. Here we use the Euclidean method to
calculate the instances’ distances. An n-dimensional array of
features represents each instance. Each array position corre-
sponds to a different feature, which also corresponds to a
weight. The higher the value, the heavier it is [54].

In the KNN algorithm, we must access the training data
in memory to classify every test instance. Depending on the
number of features an instance presents, it can be smaller
than a VIMA vector, so different instances can be stored
consecutively in one VIMA vector as depicted in Figure 3.
Meanwhile, if the instance size is equal or larger than a VIMA
vector, it will occupy at least one VIMA vector.

instance 0 instance 1 instance 2 ... instance 63

0 2047

Fig. 3: E.g., full utilization of a VIMA vector with training
and test instances. Here, we could allocate 64 instances with
32 features inside the vector of 8 KB.

We used an input set labeled with two classes: 0 (negative)
and 1 (positive). We load the labels of the training instances
into separated vectors. As we load the full training set in
memory, a vector with a size multiple of the VIMA vector
size must allocate all the training labels. Thus, if we store
a set of 8192 training instances using 4× VIMA vectors of
8 KB, each with 2048 positions to store the 8192 labels, shown
in Figure 4.instance 0 instance 1 instance 2 ... instance 63

0 2047

inst 0 inst 1 inst 2 inst 3 ... inst 8191

0 262143

0 1 1 0 ... 1

0 8191

Label vector

Fig. 4: VIMA vectors with training instances with 32 features
and the respective labels.

With all training instances stored in memory, the next step
is to calculate the Euclidean distance method, represented by
the following simplified function:

d ≡

√√√√ n∑
i=1

(te(xi)− tr(xi))2

Where tr refers to the training instance and te to the test
instance. We use the following Intrinsics-VIMA routines:

vim2K fsubs() to subtract the values of the training and test
instances; vim2K fmuls() to multiply and raise the resulting
value to the power of two; vim2K fcums() to sum all results
to find out the distance between these instances and finally
calculates the square root of this value. Fortunately, we can
vectorize most of these operations with Intrinsics-VIMA.

Although a VIMA vector can receive more than one in-
stance, depending on the number of features, we choose to
work with a single instance at a time. To do so, we apply
a mask in training and test vectors to obtain just a single
instance. For instance, considering test and training instances
with 32 features, the mask will set the first 32 positions of
a VIMA vector to 1, while the rest of the vector is full of
zeros, as depicted in Figure 5. If the instances size are equal
or greater than the VIMA vector, this transformation will not
be necessary. Isolating one instance per VIMA vector enables
executing all the operations mentioned above (subtraction,
multiplication and accumulated sum) in a simpler way with
better data reuse.

instance 0 instance 1 instance 2 ... instance 63

0 2047

inst 0 inst 1 inst 2 inst 3 ... inst 8191

0 262143

0 1 1 0 ... 1

0 8191

Label vector

1111111...1 0000000...0 0000000...0 0000000...0 0000000...0

instance 0 instance 1 instance 2 ... instance 63

0 31 2047

Fig. 5: Operation to apply a mask over a VIMA vector of
8 KB with instances representing 32 features.

We store the accumulated sums between each test instance
and the set of training instances (calculated with VIMA
routines) in a different vector in memory. Afterward, the
x86 square root instruction will be applied, resulting in the
Euclidean Distances. One vector for each test instance will
store several Euclidean Distances. Each vector has size equals
to the number of training instances. Finally, to classify an
instance, all its distances are paired with the label vector to
find the k lowest distances. In this phase, we are interested in
the labels of the k lowest values. The label with the majority
among these k lowest values is the label assigned to the
test instance. This final step does not use Intrinsics-VIMA
functions.

C. Multi-layer Perceptron

The MLP algorithm is a supervised learning technique that
provides a practical method for learning from given examples.
It is an Artificial Neural Network (ANN) that consists of
one input layer, at least one hidden layer, and one output
layer. Each layer is formed by neurons that apply a series
of non-linear transformations on features data to classify the
instance [54]. As explained in KNN algorithm, we are using
VIMA vectors of 8 KB and floating-point single precision,
which gives us vectors with 2048 positions. Additionally, the

number of neurons in the input layer is the number of features
presented on the instances, while the hidden layer contains half
of it. Due to its responsibility in defining relations between
relevant features, it must have a balanced amount of neurons
compared to the number of analyzed features in an instance. If
the hidden layer presents too few or too many neurons it may
not identify properly the relevant features or it may consider
every feature as being relevant, resulting in accuracy loss
during classification. The output layer has only two neurons
to classify instances as either positive or negative, as depicted
in Figure 6. In this work, we are considering that the NN is
already trained, doing just the inference of the instances as the
weights were trained and disregarding any other parameter of
training or classification.

i4

i2

i3

h1

h2

h0

o0

o1

Input
Layer

Hidden
Layer

Output
Layer

i5

i1

i0 w00

w20

w30

w40

w10

w50

w’00

w’10

w’20

bias
bias

b0

b1

b2

b’0

b’1

Fig. 6: Representation of an ANN.

If the instances are smaller than the VIMA vector, we
compute a single instance at a time, as explained for the KNN
algorithm. If the instances’ size is equal to or greater than the
VIMA vector, this transformation will not be necessary.

To obtain the hidden layer’s activation values, first, we
must use the Intrinsics-VIMA function vim2K fmuls() to
multiply the input features and weight values (wxy). Then, we
use the function vim2K fcums() to accumulate the resultant
values and store them in the vector of the hidden layer
activation values. The algorithm repeats this operation for each
neuron in the hidden layer. This hidden layer vector will store
the activation values of all the instances sequentially. After
calculating all the instances, we add the bias vector for all
the neurons in the layer (the bias is a value to be added
or subtracted to an activation value factor to adjust it and
reduce errors) using the function vim2K fadds(). Finally, we
use the function vim2K fmaxs() to apply the the activation
function. In this work, we are considering Rectified Linear
Unit (ReLU) as an activation function. Thus the hidden layer
vector is operated with a zeroed vector, and every negative
value is replaced by zero.

Similar to the input layer computation, we repeat the same
steps for the hidden layer present in the MLP. Considering the
varying number of weights for each layer, we must use specific
masks to operate with each neuron separately, as depicted in
Figure 7.

Since we consider only two types of labels, negative and
positive, the output layer will have two neurons. Thus, two

11111111 00000000 00000000 00000000 00000000

weight set 0 weight set 1 weight set 2 weight set 3 XXXXX...X

0 7 15 23 31 2047

weight set 0 00000000 00000000 ... 00000000

instance 0 00000000 00000000 ... 00000000

Fig. 7: Example of a VIMA vector with four sets of weights
for instances representing 8 features.

sets of weights (w′xy) are defined, both sets with the same size
as the hidden layer and referring to the connections between
the hidden and output layers. In the last, there are just two
activation values and a Softmax activation function [55] must
be applied to them to transform these values in probabilities.
The higher probability corresponds to the label most likely to
classify the instance. This final step does not use Intrinsics-
VIMA functions.

VI. EXPERIMENTAL EVALUATION OF VIMA

This section presents the methodology and the simulation
results for our ML kernel implementations.

A. Methodology and Simulation Setup

Computer architects often use simulators when evaluating
new architectures. Compared to analytical models, simula-
tors are more accurate, considering the high complexity of
computer systems. Besides, simulators are faster and cheaper
to implement new models if compared to prototyping. To
evaluate our proposal, we adopted SiNUCA [56], a open-
source cycle-accurate simulator. SiNUCA enables us to model
our custom smart-memory architecture with FUs, a cache
memory, and configurable operation size. Table II shows the
main parameters used for our model.

TABLE II: Baseline and VIMA system configuration.
OoO Execution Cores 32 cores @ 2.0 GHz, 32 nm; Power: 6W/core;
6-wide issue; Buffers: 18-entry fetch, 28-entry decode; 168-entry ROB;
MOB entries: 64-read, 36-write; 2-load, 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);
1 branch per fetch; Branch predictor: Two-level GAs. 4096 entry BTB;
L1 Data + Inst. Cache 64 KB, 8-way, 2-cycle; 64 B line; LRU policy;
Dynamic energy: 194pJ per line access; Static power: 30mW;
L2 Cache 256 KB, 8-way, 10-cycle; 64 B line; LRU policy;
Dynamic energy: 340pJ per line access; Static power: 130mW;
LLC Cache 16 MB, 16-way, 22-cycle; 64 B line; LRU policy;
Dynamic energy: 3.01nJ per line access; Static power: 7W;
3D Stacked Mem. 32 vaults, 8 DRAM banks/vault, 256 B row buffer;
4 GB; DRAM@1666 MHz; 4-links@8 GHz; Inst. lat. 1 CPU cycle
8 B burst width at 2.5:1 core-to-bus freq. ratio; Closed-row policy;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);
Avg. energy per access: x86:10.8pJ/bit; VIMA:4.8pJ/bit; Static power 4W;
VIMA Processing Logic Operation frequency: 1 GHz; Power: 3.2W;
256 int. units: alu, mul. and div. (8-12-28 cycles for 8 KB pipelined)
256 fp. units: alu, mul. and div. (13-13-28 cycle for 8 KB pipelined);
VIMA cache: 64 KB (8 lines), fully assoc., 2-cycle (1-tag, 1-per data);
Dynamic energy: 194pJ per line access; Static power: 134mW;

x86 baseline: We inspired our baseline architecture in the
Intel Sandy Bridge processor micro-architecture and referred

to as x86. We modeled the ISA with AVX-512 instruction set
capabilities besides all x86 ISA instructions. Furthermore, we
use a 3D-stacked memory as the main memory.
VIMA architectures: To provide two scenarios for compar-
ison, we propose using near-data operations over vectors of
8 KB. In this approach, we implemented the NEON ISA near-
data. The x86 processor triggers these VIMA instructions.
VIMA 8 KB mechanism and its 64 KB cache memory are
estimated as 1.5W at 1 GHz with 32nm technological node.
Benchmark: In our experiments, we evaluate KNN, MLP and
convolution kernels. We used 4096 instances for MLP, 32768
training instances, 256 test instances, and 9 neighbors for
KNN, varying the number of features for both applications (32,
64, 128, 256, 512, 1024, 2048, and 4096). For the convolution
benchmark, we vary matrix dimensions (512×512, 724×724,
1024 × 1024, 1448 × 1448, 2048 × 2048, 2896 × 2896,
4096×4096, 5794×5794, 8192×8192, and 11648×11648).
Our evaluations focus on architecture efficiency, not on the
accuracy of each classification algorithm. Thus, the results will
be shown in terms of speedup and energy savings.

In order to evaluate the energy consumption in our models,
similar to other related work, we used CACTI and Multicore
Power, Area, and Timing (McPAT) tools. Both were used to
measure the cost of hardware on power, area, and timing
parameters depending on their circuitry characteristics [57].

B. Execution Time Results

Figure 8(a) presents speedup results for the convolution al-
gorithm described on Code 4 over matrices from size 512×512
to 11648 × 11648. The speedup for the convolution is not
linear. It depends on the vector fill rate and the x86 baseline
implementation time, which varies whenever the cache is
more or less useful. We evaluated with the larger matrix of
11648× 11648 that occupies 512 MB of memory, which still
makes fair usage of the cache hierarchy of x86. Nevertheless,
sizes greater than 16 MB slightly better utilizes the VIMA
vectors, achieving thus the maximum performance.

Figure 8(b) presents speedup results for MLP and KNN
algorithms. Both algorithms start to present better results for
VIMA when increasing memory usage. MLP and KNN exceed
cache size with 512 and 256 features, respectively, using
32 MB of memory. When the memory footprint exceeds x86
cache memory size, the Advanced Vector Extensions (AVX)
implementation starts to spend more time and energy in cache
line replacements in comparison with VIMA. However, while
it does not reaches this memory footprint, there is no speedup
over the baseline, as we can observe for MLP with up to 256
features and for KNN with up to 128 features. Nevertheless,
both algorithms have different behavior. Thus the speedup is
more evident in KNN due to its quadratic complexity. On the
other hand, MLP has linear complexity, achieving better results
only when evaluating with a more significant amount of data,
for example, with 4096 features (although using fewer features
it presents a slow down up to 5× compared to the baseline).

1 2 4 8 16 32 64 128 256 512
−4

−2

0

2

4

6

0

−
1
.0
1
×

1
.6
6
×

1
.0
6
×

1
.2
4
×

1
.9
0
× 3
.1
9
×

1
.7
3
×

1
.9
2
×

1
.7
4
× 2
.8
7
×

Matrix Size (MB)

Sp
ee

du
p

(a) Convolution

32 64 128 256 512 1K 2K 4K
−12

−8

−4

0

4

8

12

16

0

−
3
.3
5
×

−
4
.1
5
×

−
2
.5
8
×

−
3
.0
1
×

−
2
.4
6
×

−
1
.6
8
×

−
1
.9
6
×

1
.3
0
×

2
.0
2
×

2
.6
6
×

1
1
.3
×

2
.4
6
×

4
.4
5
×

7
.1
2
×

9
.3
5
×

1
0
.5
2
×

Number of Features

MLP
KNN

(b) KNN and MLP

Fig. 8: Speedup results over baseline for (a) Convolution varying matrix size, (b) MLP and KNN varying number of features.

1 2 4 8 16 32 64 128 256 512
−6

−4

−2

0

2

4

6

0

−
2
.3
3
×

−
1
.2
5
×

−
1
.0
8
×

1
.2
2
×

1
.4
5
×

2
.3
4
×

1
.3
2
×

1
.4
5
×

1
.3
3
×

2
.1
0
×

Matrix Size

E
ne

rg
y

Sa
vi

ng
s

(a) Convolution

32 64 128 256 512 1K 2K 4K

−12

−8

−4

0

4

8

12

0

−
4
.9
7
×

−
6
.2
9
×

−
3
.8
9
×

−
4
.5
6
×

−
3
.7
2
×

−
2
.5
2
×

−
2
.9
5
×

−
1
.1
2
×

1
.4
0
×

1
.8
9
×

7
.9
5
×

1
.6
3
×

3
.0
0
×

4
.8
7
×

6
.5
4
×

7
.3
3
×

Number of Features

MLP
KNN

(b) KNN

Fig. 9: Energy savings of VIMA over baseline for (a) Convolution varying matrix size, (b) MLP and KNN varying number of
features and neighbors.

C. Energy Results

Figure 9(a) presents the energy efficiency for the convolu-
tion, which follows the speedup pattern. The gains are higher
when a matrix row fits perfectly into a VIMA vector, spending
just half of the energy compared to the baseline.

For MLP and KNN algorithms, depicted in Figure 9(b), the
energy savings are proportional to the speedup. It is possible to
reduce in 7× the energy consumption using VIMA compared
to the baseline. However, there are no energy savings for MLP
and KNN with lower number of features, i.e. until 512 and
128, respectively. As we can observe in the graphic, VIMA
can consume up to 6× more energy than AVX in these cases.

The energy savings achieved by VIMA depends directly on
memory usage and algorithm behavior. Whenever the memory
footprint fits inside the x86 cache memory, the processor
presents higher efficiency. In contrast, VIMA consumes less
due to faster execution and less data movement. This result
reinforces the concept that NDP must be seen as an accelerator
for applications with data-stream behavior and low data reuse.

VII. CONCLUSIONS AND FINAL CONSIDERATIONS

Considering the memory-wall problem, several approaches
to NDP are emerging in the last years. Concurrently, ML
algorithms are getting higher importance when analyzing large
volumes of data. In this paper, we propose the migration of
ML kernels to a vector execution near-data system to achieve
high speedup with low energy consumption.

Using our Intrinsics-VIMA library extension, we could
achieve a speedup of up to 10× for KNN, 11× for MLP, and

3× for convolution. Meanwhile, we obtained energy savings
of 7× for KNN, ∼ 8× for MLP, and 2× for convolution
compared to a baseline line system with x86.

Although we emphasize ML algorithms, other programs that
rely on similar data access behavior shall benefit from VIMA.
In general, it is expected a higher performance for algorithms
that have streaming and coalescent data access behavior with
low data reuse and a memory footprint bigger than the cache
memory hierarchy capacity

As future work, we consider extending the migration to
other ML algorithms, including its training phase and improv-
ing the Intrinsics-VIMA library to achieve better performance.

All the source code for our VIMA architecture simulation,
the ML algorithms, and the Intrinsics-VIMA library are freely
available in our on-line repositories12.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012.

[2] A. Rakotomamonjy, “Variable selection using svm-based criteria,” Jour-
nal of machine learning research, vol. 3, no. Mar, 2003.

[3] M. W. Gardner and S. Dorling, “Artificial neural networks (the multi-
layer perceptron)—a review of applications in the atmospheric sciences,”
Atmospheric environment, vol. 32, no. 14-15, 1998.

[4] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, 2009.
[5] T. G. Dietterich, “Ensemble methods in machine learning,” in Int.

workshop on multiple classifier systems, 2000.

1https://github.com/mazalves
2https://github.com/ascordeiro

[6] A. Boroumand, S. Ghose et al., “Google workloads for consumer
devices: Mitigating data movement bottlenecks,” in Int. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2018.

[7] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
1995.

[8] E. Nurvitadhi, J. Sim et al., “Accelerating recurrent neural networks
in analytics servers: Comparison of fpga, cpu, gpu, and asic,” in
2016 26th International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2016, pp. 1–4.

[9] K. Kara, D. Alistarh et al., “Fpga-accelerated dense linear machine
learning: A precision-convergence trade-off,” in 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2017, pp. 160–167.

[10] M. Hashemi, E. Ebrahimi et al., “Accelerating dependent cache misses
with an enhanced memory controller,” in Int. Symp. on Computer
Architecture (ISCA), 2016.

[11] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line distillation:
Increasing cache capacity by filtering unused words in cache lines,” in
Int. Symp. on High Performance Computer Architecture (HPCA), 2007.

[12] M. K. Qureshi, A. Jaleel et al., “Adaptive insertion policies for high
performance caching,” ACM SIGARCH Computer Architecture News,
vol. 35, no. 2, 2007.

[13] A. Nowatzyk, F. Pong, and A. Saulsbury, “Missing the memory wall:
The case for processor/memory integration,” in Int. Symp. on Computer
Architecture (ISCA), 1996.

[14] D. Patterson, T. Anderson et al., “A case for intelligent ram,” IEEE
micro, vol. 17, no. 2, 1997.

[15] M. Gao, J. Pu et al., “Tetris: Scalable and efficient neural network
acceleration with 3d memory,” ACM SIGOPS Operating Systems Review,
vol. 51, no. 2, 2017.

[16] J. Ahn, S. Hong et al., “A scalable processing-in-memory accelerator
for parallel graph processing,” ACM SIGARCH Computer Architecture
News, vol. 43, no. 3, 2016.

[17] R. Nair, S. F. Antao et al., “Active memory cube: A processing-in-
memory architecture for exascale systems,” IBM Journal of Research
and Development, vol. 59, 2015.

[18] M. A. Alves, M. Diener et al., “Large vector extensions inside the hmc,”
in Design, Automation & Test in Europe Conf. & Exhibition (DATE),
2016.

[19] P. C. Santos, G. F. Oliveira et al., “Operand size reconfiguration for big
data processing in memory,” in Design, Automation & Test in Europe
Conf. & Exhibition (DATE), 2017.

[20] G. F. Oliveira, P. C. Santos et al., “Nim: An hmc-based machine
for neuron computation,” in Int. Symp. on Applied Reconfigurable
Computing, 2017.

[21] P. C. Santos, G. F. Oliveira et al., “Processing in 3d memories to speed
up operations on complex data structures,” in Design, Automation &
Test in Europe Conf. & Exhibition (DATE). IEEE, 2018.

[22] J. a. P. Lima, P. C. Santos et al., “Design space exploration for pim
architectures in 3d-stacked memories,” in Proceedings of the Computing
Frontiers Conference. ACM, 2018.

[23] A. S. Cordeiro, T. R. Kepe et al., “Intrinsics-hmc: An automatic
trace generator for simulations of processing-in-memory instructions,”
Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD),
2017.

[24] E. Azarkhish, D. Rossi et al., “Neurostream: Scalable and energy
efficient deep learning with smart memory cubes,” Trans. on Parallel
& Distributed Systems, 2018.

[25] F. Schuiki, M. Schaffner et al., “A scalable near-memory architecture
for training deep neural networks on large in-memory datasets,” arXiv
preprint arXiv:1803.04783, 2018.

[26] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data processing
for in-memory analytics frameworks,” in Parallel Architecture and
Compilation (PACT), 2015.

[27] M. Thottethodi, T. Vijaykumar et al., “Millipede: Die-stacked memory
optimizations for big data machine learning analytics,” in Int. Parallel
and Distributed Processing Symp. (IPDPS), 2018.

[28] J. Liu, H. Zhao et al., “Processing-in-memory for energy-efficient
neural network training: A heterogeneous approach,” in Int. Symp. on
Microarchitecture (MICRO), 2018.

[29] A. Ganguly, V. Singh et al., “Memory-system requirements for convo-
lutional neural networks,” in Proceedings of the Int. Symp. on Memory
Systems, 2018.

[30] C. Min, J. Mao et al., “Neuralhmc: an efficient hmc-based accelerator
for deep neural networks,” in Asia and South Pacific Design Automation
Conf. (ASPDAC), 2019.

[31] S. Cadambi, A. Majumdar et al., “A programmable parallel accelerator
for learning and classification,” in Int. Conf. on Parallel architectures
and Compilation Techniques (PACT), 2010.

[32] L. Xu, D. P. Zhang, and N. Jayasena, “Scaling deep learning on multiple
in-memory processors,” in Workshop on Near-Data Processing, 2015.

[33] J. P. C. de Lima, P. C. Santos et al., “Exploiting reconfigurable vector
processing for energy-efficient computation in 3d-stacked memories,” in
Int. Symp. on Applied Reconfigurable Computing, 2019.

[34] D. Gao, T. Shen, and C. Zhuo, “A design framework for processing-
in-memory accelerator,” in Int. Workshop on System Level Interconnect
Prediction (SLIP), 2018.

[35] Q. Deng, L. Jiang et al., “Dracc: a dram based accelerator for accurate
cnn inference,” in Design Automation Conf. (DAC), 2018.

[36] S. Li, D. Niu et al., “Drisa: A dram-based reconfigurable in-situ
accelerator,” in Int. Symp. on Microarchitecture, 2017.

[37] Q. Deng, Y. Zhang et al., “Lacc: Exploiting lookup table-based fast and
accurate vector multiplication in dram-based cnn accelerator,” in Design
Automation Conf. (DAC), 2019.

[38] J. Sim, H. Seol, and L.-S. Kim, “Nid: processing binary convolutional
neural network in commodity dram,” in Int. Conf. on Computer-Aided
Design (ICCAD), 2018.

[39] C. Sudarshan, J. Lappas et al., “An in-dram neural network processing
engine,” in Int. Symp. on Circuits and Systems (ISCAS), 2019.

[40] D. G. Elliott, M. Stumm et al., “Computational ram: Implementing
processors in memory,” IEEE Design & Test of Computers, vol. 16,
1999.

[41] J. V. Olmen, A. Mercha et al., “3D stacked IC demonstration using a
through silicon via first approach,” in Int. Electron Devices Meeting,
2008.

[42] J. Hrusca, “PIM comparison,” https://www.extremetech.com/computing/
197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm\
-and-hybrid-memory-cube, 2015, [Online; accessed 01-July-2019].

[43] Transcend, “DDR comparison,” https://www.transcend-info.com/
Support/FAQ-296, 2014, [Online; accessed 01-July-2019].

[44] AMD, “DDR5 and HBM comparison,” https://www.amd.com/system/
files/documents/high-bandwidth-memory-hbm.pdf, 2015, [Online; ac-
cessed 01-July-2019].

[45] Hybrid Memory Cube Consortium, “Hybrid memory cube specification
rev. 2.0,” 2013, http://www.hybridmemorycube.org/.

[46] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in Symp. on VLSI Technology,
2012.

[47] J. Pawlowski, “Hybrid memory cube (hmc),” Hot Chips, vol. 23, 2011.
[48] C. Lomont, “Introduction to intel advanced vector extensions,” Intel

White Paper, 2011.
[49] I. Coorporation, “Intel 64 and ia-32 architectures optimization reference

manual,” 2009.
[50] B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded binarized

neural networks,” arXiv preprint arXiv:1709.02260, 2017.
[51] J. Qiu, J. Wang et al., “Going deeper with embedded fpga platform for

convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2016,
pp. 26–35.

[52] Y. Tian, K. Pei et al., “Deeptest: Automated testing of deep-neural-
network-driven autonomous cars,” in Proceedings of the 40th interna-
tional conference on software engineering, 2018, pp. 303–314.

[53] S. Afonso, A. Acosta, and F. Almeida, “Automatic acceleration of stencil
codes in android devices,” in Int. Conf. on Algorithms and Architectures
for Parallel Processing, 2017.

[54] T. M. Mitchell and M. Learning, “Mcgraw-hill science,” Engineering/-
Math, 1997.

[55] C. M. Bishop et al., Neural networks for pattern recognition. Oxford
university press, 1995.

[56] M. A. Z. Alves, C. Villavieja et al., “Sinuca: A validated micro-
architecture simulator.” in HPCC/CSS/ICESS, 2015, pp. 605–610.

[57] S. Li, J. H. Ahn et al., “Mcpat: an integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2009, pp. 469–480.

