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Abstract

In parallel programs, the threads of a given application must cooperate in order to accom-
plish the required computation. However, the communication time between the tasks may
be different depending on which core they are executing and how the memory hierarchy and
interconnection are used. The problem is even more important in multi-core machines with
NUMA characteristics, since the remote access imposes high overhead, making them more sen-
sitive to thread and data mapping. In this context, thread and data mapping are techniques
that provide performance gains by improving the use of resources such as interconnections,
main memory and cache memory. The problem of detecting the best mapping is considered
NP-Hard. Furthermore, in shared memory environments, there is an additional difficulty of
finding the communication pattern, which is implicit and occurs through memory accesses. Our
mechanism provides static mapping on NUMA architectures which does not require any prior
knowledge of the application by the programmer. To obtain the mapping, different metrics were
adopted and an heuristic method based on the Edmonds matching algorithm was used. In order
to evaluate our proposal, we use the NAS Parallel Benchmarks (NPB) running on two modern
multi-core NUMA machines. Results show performance gains of up to 75% compared to the
native Linux scheduler and memory allocator.

1 Introduction

On shared memory parallel platforms with a hierarchical memory sub-system, the communication
time spent between threads to accomplish data sharing in parallel programs may be different, de-
pending on how the processors or cores are interconnected through the memory hierarchy, the
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interconnections used and the cache coherence protocol [14]. This difference is even more relevant
on parallel machines with non-uniform memory access characteristics (NUMA), since the latency
and the memory bandwidth to get data vary depending where the processors are in the topology.

In this context, thread and data mapping help to improve system performance by optimizing
the usage of resources such as interconnections, main memory and cache memory. Thread mapping
helps by placing groups of threads which shares high amounts of data to cores that shares some level
of cache memory, reducing unnecessary data replication and invalidation due to coherence protocols.
Data mapping is more suitable for NUMA Machines, and consists of placing memory pages in DRAM
memory banks which are close to the cores that are accessing the page. Mapping parallel programs
on NUMA becomes harder [32] and more expensive, because usually there are more levels on the
memory hierarchy to be explored. Furthermore, the problem to find the best mapping is considered
NP-Hard [11] and, in shared memory environments, there is the additional difficulty to find the
communication pattern, which is implicit and occurs through memory accesses.

In this paper, we propose and evaluate a technique to map the threads of a given application on
cores and allocate their data on DRAM memories. Our main objective is to reduce the overhead
imposed by data sharing on multi-core machines with NUMA characteristics, improving the overall
system performance. To perform the static mapping, our proposed model is based on the analysis
of memory traces and does not require any prior knowledge of the application by the programmer.
We use two metrics to identify the data sharing pattern between threads. The first metric is the
amount of memory shared between the threads, and the second metric is the number of accesses
performed to a memory region shared between the threads.

To generate the memory traces, we instrumented the Simics simulator [17] to monitor all the
memory accesses and save them on trace files. These memory traces are analyzed to detect the com-
munication pattern by an algorithm that calculates the thread affinity with the memory hierarchy.
To avoid exponential time complexity, this algorithm is heuristic, based on the Edmonds matching
algorithm [23], and provides a well suited thread affinity for a selected application. The detected
thread affinity is used by the Minas framework, which is responsible for mapping the threads and
data.

In comparison to related works, our approach differs in at least two aspects. First, we provide an
heuristic that can be adopted in different shared memory architectures. Second, we consider both
application and hardware characteristics in order to map threads and data with the most suited
memory policy. We have evaluated our proposal by performing experiments with HPC benchmarks
on two multi-core NUMA platforms. The results have been compared to the Linux standard thread
and data mapping and to the worst affinity for an application.

This paper is organized as follows. Section 2 introduces the method proposed for thread and
data mapping. Section 3 presents the general description of the applications used to evaluate the
proposed technique. The platforms used to validate the mapping technique are presented in Section
4. The experimental results are presented in Section 5. Some related works are presented and
compared in Section 6. Section 7 presents our conclusions and future works.

2 Mapping Threads and Data

The static mapping proposed in this paper is performed in five steps, as described in Figure 1:
monitor the memory accesses to generate the traces; analysis of the trace to generate the sharing
matrix; calculate the thread and data affinity with the memory hierarchy; map threads and data
with the Minas framework [25]; and execute the application with the best mapping found.

2.1 Monitoring the Memory Access

To achieve the static mapping, a preliminary analysis of the application is required to obtain the
information that is used to compose the sharing matrix, which stores the amount of communication
between each pair of threads. In shared memory environments, it is necessary to monitor all the
memory accesses of the applications, which was accomplished by executing them inside the Simics
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Monitor the memory accesses and generate the memory trace.

Analyze the memory trace to compute the shared memory
and access count to generate the sharing matrix.

Compute the thread affinity for the memory hierarchy with the
heurist method based on Edmonds matching algorithm.

Execute application with the best static mapping found.

Map threads and data with Minas.

Figure 1: Methodology used to perform the static mapping.

[17] simulator. Simics was instrumented [3] to register memory access information such as the
moment when the access happened, the identifier of the thread that generated the access, the
memory address, the operation type (read, write or instruction fetch) and its size.

To instrument Simics to register every memory accesses, the event Core Breakpoint Memop can
be triggered. However, as the triggers are implemented in the Python language, they have a high
overhead, decreasing the simulation speed. Therefore, it was developed a memory trace module in
the C language that is dynamically linked to Simics, and when it is plugged to a processor in the
simulation environment, it monitors all the memory accesses performed by the processor.

It is necessary to filter the accesses to be registered, so that only the memory accesses performed
by the evaluated application are stored in the trace file. Although Simics API implements tools
to determine which task is running in each processor, it becomes unstable when the number of
processors simulated is high. To overcome this issue, the Linux kernel inside Simics was modified
to warn the simulator about which task was being scheduled to run. This way, the memory trace
module is able to detect if a memory access was performed by the application being analyzed.

Another possibility to generate the memory traces is through dynamic binary instrumentation,
using tools such as Pin [2, 5] or Valgrind [21]. Although dynamic binary instrumentation is easier
and faster than simulation, in some cases it can alter the application behavior. For instance, the Val-
grind tool serializes the threads in parallel applications, which may lead to different communication
patterns.

2.2 Generating the Sharing Matrix

The memory traces alone are not enough to guide the thread mapping. The traces must be analyzed
to discover the communication pattern, which depends on the metric adopted. For this work, two
metrics were separately considered to evaluate the communication: the amount of memory shared
by threads and the number of accesses performed to a block of memory that is shared.

The amount of memory shared by threads metric is more suitable to applications in which the
number of accesses to the shared memory is insignificant when compared to the number of accesses
to the private memory. On the other hand, the amount of accesses to the shared memory metric are
better to describe the behavior of applications that present a huge amount of accesses to the shared
memory.
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Figure 2: Sharing Matrix and the corresponding Communication Graph.

Problems like false sharing were taken into account, as they are very common in multiprocessor
architectures. The tool we developed to analyze the memory traces organizes the memory address
space in blocks of memories in the same way the cache organizes the memory into cache lines. By
setting the block size to the value of the cache line size of the target architecture, the tool generates
the data sharing information considering falsely shared addresses.

The shared memory can be analyzed grouping different number of threads. To calculate how
much memory is being shared between any group of threads size, the amount of space necessary rises
exponentially, discouraging the use of thread mapping. Therefore, the shared memory was evaluated
only between pairs of threads, generating a sharing matrix. Although this pair analysis decreases
the accuracy of the results, it reduces the space complexity to Θ(N2), where N is the number of
threads, and allows a faster processing of the information.

2.3 Thread Affinity with the Memory Hierarchy

After the generation of the sharing matrix, it is necessary to map the threads and their data.
The mapping problem is considered NP-Hard, consequently, finding the optimal solution becomes
infeasible when the number of threads grows. Thus, heuristic algorithms must be employed to
determine the mapping in reasonable time, with results as close as possible to the perfect mapping.
Methods like the Dual Recursive Bipartitioning produces good results, and are available on the
software Scotch [30]. However, for this work, a different method was used to obtain the mapping,
based on the maximum weight perfect matching problem for complete weighted graphs, as presented
in [9].

This problem consists of, given a complete weighted graph G = (V,E), it must be found a subset
M of E in which every vertex of V is met by exactly one edge of M , and the sum of the weights
of the edges of M is maximized. According to [23], this problem can be solved by the Edmonds
matching algorithm in polynomial time, and a parallel algorithm can solve the problem with a time
complexity of O(N3

P + N2 lg N), where N is the vertex number and P is the number of processors.
To model thread mapping as a matching problem, the vertices represent the threads and the
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Figure 3: The Matching Problem.

edges represent the amount of communication. A complete graph is obtained directly from the
sharing matrix, as exemplified in Figure 2. The graph is processed by the matching algorithm,
that outputs the pairs of threads so that the amount of communication is maximized, which is an
extremely relevant information, since, in general, there are few processor cores connected to one
same cache. Figure 3 shows the results that the matching algorithm would produce for the given
graph, in which the threads with the same color should be mapped together.

On many architectures, there are only 2 cores sharing the same L2 cache, therefore, mapping
threads to them with the matching algorithm is straightforward. Nevertheless, there are architectures
in which more than 2 processors share the same cache, or there are more levels of memory hierarchy to
be explored, such as NUMA machines. In these cases, the matching algorithm by itself is insufficient.
To overcome this issue, another communication matrix, containing the communication between pairs
of pairs of threads, is given as input and the algorithm is re-executed. This matrix was generated
by the following heuristic function:

H(x,y),(z,k) = M(x,z) + M(x,k) + M(y,z) + M(y,k)

where x, y, z and k are thread ids, (x, y) and (z, k) are the matchings found at the previous step,
and M(i,j) is the amount of communication between threads i and j. The result obtained with the
heuristic function is represented in Figure 4. Although this does not guarantee that the result will
contain the pairs of pairs with the most amount of communication, as the sharing matrix does not
provide sharing information about groups with more than 2 threads, it is a reasonable approximation
and keeps the time and space complexity polynomial.

However, the number of cores sharing a cache may not be 2x, where x is an integer. In this case,
the matching algorithm is not able to cluster all the threads properly. Considering an architecture
with 6 cores and 2 caches, where each cache is shared by 3 cores, for some given graph, the matching
algorithm would produce the result shown in Figure 5(a). As can be seen, the resulting graph
contains 3 disconnected graphs, but the target architecture has only 2 caches. To overcome this
issue, we sort the pairs found according to the edge weight, and group only the ones that maximizes
the total amount of communication, as in Figure 5(b). A bipartite graph is then generated, as
exposed in Figure 5(c), and the matching algorithm can be applied again to group the threads for
the target architecture, as show in Figure 5(d). The graph must be bipartite in order to prevent
matchings between threads already clustered, and between threads that were not clustered yet. This
process can be modified to map any number of threads.

2.4 Mapping with Minas Framework

In order to apply the mapping technique introduced on the previous subsection to applications on
real platforms, it is necessary some support on the operating system to ensure thread and data
distribution over the machine.

Linux operating system provides an interface named libnuma that allows developers to manage
affinity on applications [15]. However, this interface, which is a wrapper layer over Linux system
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(b) Graph obtained after applying the heuristic function.

Figure 4: Heuristic used to generate new communication graphs (or sharing matrix) from previous
matching.

calls, provides a limited set of thread mapping strategies and memory policies, which are used to
distribute data on memory banks. Additionally, libnuma obligates developers to explicitly select
nodes and cores that must be used, demanding a large set of hand coded modifications on source
code. Because of these constraints, we have searched for other solutions that provide us more
transparent mechanisms to control thread and data placement on Linux based machines [25, 6].

Minas [27] is a framework that allows developers to manage affinity on parallel applications
for large scale multi-core platforms with NUMA design [25]. It provides a fine control of memory
accesses for application data and similar performance on different NUMA platforms. Additionally,
Minas allows architecture and compiler abstraction and none or minimal modifications to the source
code of the applications. Minas is composed of three components: MAi, MApp and numArch.

MAi is a high level API that is responsible for implementing the explicit thread and data place-
ment mechanism of Minas. It provides simple and high level functions that can be called in the
application source code to perform data allocation, placement and migration [25, 28]. MAi func-
tions can be divided in three groups: allocation and memory policies. Allocation functions are
responsible for reserving space for application data on heap, similar to a standard malloc function.
Memory policy functions are used to physically distribute data among the memory banks of the
machine. MAi implements the memory two types of policies that can be used to optimize memory
access on NUMA platforms taking into account the latency and the bandwidth. Regarding thread
placement, MAi implements the classical compact thread placement mechanisms that is used to
better manage memory affinity.

The MApp preprocessor implements an automatic mechanism to place data by considering the
application and platform characteristics at compile time. MApp retrives application information
using a two level parser. The first one extracts information of variables whereas the second one
extracts information of the parallel constructions of the programming interface. The parser respon-
sible to extract information of variables is written with the Lex/Yacc tools and it is called CUIA. It
aims at providing variables information of the parallel application. CUIA parses C code and returns,
for each of the variables: (i) the name and type; (ii) the lexical scope, and (iii) the name of the file
where it has been declared. When the variable is a static array, CUIA also obtains the number of
dimensions of the array and the number of entries in each one of the dimensions; (iv) a list of the
access modes made on the variable: Read, Write, or both, and (v) the location in the program where
these accesses occur. The second level of the parser is implemented inside MApp and it retrieves
information of how data is distributed for worker threads (work sharing) and the sharing type of a
static array (i.e. shared vs private). Using the information generated by the parsers, MApp changes
the static array declaration to use the memory allocation provided by MAi. It also includes for each
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Figure 5: Steps when the number of cores sharing a cache is 3.

static array a memory policy from MAi considering the access mode on them.
The last module, numArch, extracts several information about the target platform, which is then

used by the MAi and the MApp components. These informations are combined together to represent
the machine topology and the impact of the non-uniform memory access on application performance.
Therefore, numArch describes how processing elements share memories and how they are related to
each other. Considering Minas objectives and scope, the following information is necessary: number
of NUMA nodes, number of cpus/cores, number of sockets, number of caches, size of cache memories,
set of cores that share a cache memory, memory banks size, free memory and relation between nodes
and cpus/cores. To retrieve such information, numArch parses the topology-related /sys/devices/
and /proc/PID/ file system of the Linux operating system. From the file system, numArch gets the
information of the hardware of the machine parsing some text files. From these text files , numArch
extracts the information of the nodes (number and physical id), of the cores (number, physical id
and siblings cores) and of the cache memory hierarchy (number of levels, size and sharing among
cores). After parsing step, the obtained information is stored in temporary files on the /tmp/ of the
machine. In the initialization of Minas, these files on /tmp/ are loaded to dynamic structures (e.g.
queues, hash tables and matrices) that can be later accessed using the numArch interface.

Figure 6 shows a scheme of the Minas approach to enhance memory affinity. The original
application source code can be modified by either using the explicit mechanism (gray arrows) or the
automatic one (black arrows). In the case of the explicit mechanism the programmer has to change
the application source code to manually improve memory affinity. In contrast to this approach, in the
automatic mechanism the application source code is automatically changed by Minas. The decision
between automatic and explicit mechanisms depends on the developer’s knowledge about the target
application and the characteristics of the application source code. Since MApp preprocessor current
version only deals with C language and static arrays, it is possible to use it only on aplication with
these characteristics [24, 26].

Using the Minas Framework, we modify the original source code to consider threads and data
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Figure 6: Overview of Minas Framework.

mapping. The code transformation process is divided into three steps. Firstly, we use Minas to
retrieve the platform characteristics, using the information extracted with the numArch module (e.g.
NUMA factor1, number of nodes and memory subsystem). Secondly, Minas scan the application
source code with MApp to obtain information about variables. During the third step, the information
gotten by MApp and numArch are used to manually (dynamic variables) or automatically transform
the application source code (static variables). To do so, the source code is changed to include MAi
specific functions for thread mapping, data allocation and data placement.

The modifications performed in the source code ensure suitable memory policies for data mapping
(how memory pages will be distributed over the platform). However, the number of nodes to be
used and where to map data depends on the set of cores where threads are running. On Minas, the
standard thread mapping mechanism is based on the machine topology. It maximizes cache sharing
between threads, since it considers the cache memory levels to map threads on cores. However, in
this paper, we use the information generated by the mapping heuristic (Section 2.1) to pin threads
on cores.

In order to do so, we have included on Minas the support for input configuration files. Such
support allows users to specify a file with the set of cores that must be used to map threads of an
application. Using the thread affinity information obtained with the mapping heuristic, we generate
a configuration file that is later used by Minas. Using a function from MAi, Minas maps the threads
to the cores specified in the configuration file at runtime. After that, Minas retrieves threads nodes
and maps their data using the chosen memory policy.

3 Selected Benchmarks

In this section, we present the NAS Parallel Benchmark (NPB) workload used to evaluate the
performance of our thread and data mapping method.

The NPB has its applications derived from computational fluid dynamics (CFD) codes and it
is composed by applications and kernels [13]. NPB applications and kernels perform representa-
tive computation and data communication of CFD codes. These characteristics allow us to better
evaluate the impact of both threads and data mapping on multi-threaded programs over multi-
core machines. NPB has been implemented on different languages, using different strategies for
code parallelization. In this work, we have used the OMNI compiler group implementation of NPB
version 2.3, where all the applications are written in C language and are parallelized with OpenMP.

Considering the OMNI implementation details, all the benchmarks have a parallel initialization
of data in order to make sure all data is touched and to reduce variable startup costs. Table 1
provides a description of the selected set of NPB. Most of them are memory bound applications,
except EP, which is CPU bound. NPB has several standard inputs (from smallest to greatest) S,

1NUMA factor is the ratio between remote latency and local latency
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Table 1: Selected Applications from NPB.

Name Description
FT Computational kernel of a 3D Fast Fourier Transform (FFT) method. FT performs

three 1D FFT, one for each dimension.

MG
Multigrid V-cycle method used to solve the 3D scalar Poisson equation. The algorithm
works between coarse and fine grids. It exercises both short and long distance data
movement.

LU
Simulated CFD application that uses symmetric successive over-relaxation (SSOR)
method to the system resulting from finite-difference discretization of Navier-Stokes
equations in 3D by splitting into block Lower and Upper triangular systems.

CG
Conjugate Gradient method used to compute the smallest eigenvalue of a large, sparse,
unstructured matrix. Exercising unstructured grid computations and communica-
tions.

EP Embarrassingly Parallel benchmark, which generates pairs of Gaussian random. Aim-
ing to establish the reference point for peak performance of a given platform.

W, A, B, C, and the ones used for this paper were W, A and B. The W was used to discover the
sharing pattern and A and B to perform the experiments.

The BT, IS, SP and UA applications, which are also part of the NPB benchmark, were not used
in this paper. Regarding BT, we have observed it does not scale for more than 12 threads with the
W input, therefore, the mapping obtained is not suitable for the A and B inputs and, consequently,
no performance gains are expected for this benchmark in our experiments. UA is not implemented
in the NAS version used, and IS and SP present implementation problems and could not be used.

4 Multi-core NUMA Platforms Evaluated

In order to evaluate the proposed method, we selected two representative parallel machines. The
first is a multi-core machine based on eight dual-core AMD Opteron Processor 875 and the second
is a Dell PowerEdge R910 equipped with 4 eight-core Intel Xeon X7560. All machines run Linux
operating system (kernel 2.6.32) with NUMA support and GCC (GNU C Compiler 4.4.3). For the
remainder of the paper, we will refer to these machines as Opteron and Xeon respectly.

Figure 7 shows the topology of evaluated machines. The Opteron machine is composed by eight
NUMA nodes, each node with one dual core processor, as shown in Figure 7(a). It has no shared
cache memories and each core has two private cache levels. The Xeon machine has four NUMA
nodes, each node with one eight core processor, as shown in Figure 7(b). Each core has private L1
cache (32KB) and L2 (256KB) and all cores share the same L3 cache of 24MB. Both machines are
cache coherent Non-Uniform Memory Access (ccNUMA) architectures. However, they have different
implementations of the cache coherence protocol, the Opteron machine uses the MOESI protocol
whereas the Xeon machine uses the MESIF [20]. These two protocols have different number of hops
and messages to guarantee the cache coherence on the platform.

Regarding thread and data placement, the main differences between the platforms presented
above is their memory subsystem and interconnection design, which gives different memory access
costs. All the machines have hardware support and on-chip memory controllers to provide a global
shared memory. Such shared memories are actually physically distributed over the machine nodes
that are interconnected by an efficient network (e.g. HyperTransport for AMD and QuickPath
Interconnection for Intel). The interconnection network gives different memory latencies for remote
access by nodes of the platform. Table 2 summarizes the characteristics of these machines.
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Figure 7: Evaluated Multi-cored NUMA Platforms.

5 Experimental Results

In this section we evaluate the impact of our mapping mechanism on the selected benchmarks. For
the evaluation, we have used execution time as performance metric. Considering the benchmark
execution, we have used all the cores of each given machine presented on section 4 with one thread
per core. All the results are based on an arithmetic mean of several runs. First, we present and
discuss the shared matrices generated for the selected benchmarks. After that, we evaluate the
performance impact of the proposed method in the two selected NUMA platforms. Then, more
details from two benchmarks are presented in order to perform a deeper analysis of the performance
improvements.

5.1 Shared Matrices for NPB

Figure 8 contains the communication pattern of the applications of NPB with the W input size for
the amount of memory and access count metrics. Each cell (i, j) represents the communication
between threads i and j. When i equals j, it represents the amount of access to the private area or
its size. Darker cells represent more communication.

It is important to notice that CG, with the amount of memory metric, shows a pattern whereas
there is almost no communication between threads and that thread 0 dominates and performs most
of its communication with its private area. This happens because, in some steps of the initialization,
thread 0 accessed almost all the data. However, with the access count metric, although there is
still a predominance of thread 0, the others present a bigger share of the total communication. The
difference between the results obtained with the metrics indicates that each address in the shared
data is accessed several times. Otherwise, both metrics would exhibit the same behavior.

The Figure also shows that MG has a communication pattern where the nearby threads com-
municate more among themselves. This is very common in parallel applications based on domain
decomposition, where most of the shared memory is located at the border of each sub-domain. Both
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Figure 8: Sharing Matrices showing the communication patterns of NPB applications.
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Table 2: Hardware details of multi-core machines used in our evaluation.

Characteristic Opteron Xeon
Number of Cores 16 32
Number of Processors 8 4
NUMA Nodes 8 4
Clock Frequency (GHz) 2.22 2.27
Last Level Cache (MB) 1 24
Total DRAM Size (GB) 32 64
NUMA Factor 1.2 to 1.5 1.20 to 3.6

metrics indicates this sharing behavior. However, with the access count metric, the domain decom-
position pattern is more evident. As with CG, this indicates that each address in the shared data
is accessed several times. However, the sharing pattern of MG is more heterogeneous than CG, as
there are more shared memory regions regarding a subset of threads. Therefore, MG presents more
potential for performance improvement with mapping than CG.

The application LU, besides the domain decomposition pattern, also presents huge amount of
communication between the most distant threads. With the amount of memory metric, the amount
of communication between the most distant threads and nearby threads is about the same. However,
the access count metric makes the communication between the most distant threads more evident
than the communication between nearby threads. This shows that the amount of shared data
between the nearby threads is equivalent to the amount of shared data between the most distant
threads, but the most distant threads present more access to the shared data.

EP is the one with the most homogeneous communication pattern, hence it shall not benefit
from mapping like the other benchmarks. In FT, the amount of shared memory metric shows more
communication than the access count metric. This happens because the number of access to the
private area overwhelms the number of access to the shared memory.

5.2 Performance Evaluation

Results have been obtained through the average of several executions with exclusive access to the
machine. The analysis of the results is per machine and it compares the performances obtained
with our solution (best mapping) to the results obtained with Linux standard mapping control
(operating system) and to the worst mapping. The worst mapping was also calculated using the
Edmonds matching, but with the minimum cost perfect matching [16] instead of the maximum
cost perfect matching algorithm. Both the amount of shared memory and access count metrics were
evaluated. The maximum standard deviation was 20% for Linux Default, 3.5% for best mapping and
16% for worst mapping, for the results considering the total amount of shared memory. Regarding
the total number of shared access, the results had 8% and 14.6% maximum standard deviations for
best and worst mapping, respectively. High standard deviations are expected for the Linux Default,
since it can map threads to different cores during each execution.

Linux schedules threads considering their access to memory hierarchy. During the application
execution, if Linux notices that one given thread has high cache miss rate, it will re-schedule this
thread to a new core in order to try to reduce cache misses in the future. However, sometimes Linux
fails in the prediction and such re-scheduling can generate even more cache misses. Additionally,
since the evaluated platforms are NUMA, the re-scheduling can lead to remote memory accesses,
which decreases the overall performance. Considering data placement, Linux uses the first-touch
memory policy, in which only the first access by threads on data are considered for data placement
on the DRAM memories. Contrary to this strategy, our method allow us to observe data sharing
between threads and place them considering these patterns.

Figure 9 shows the execution time obtained with the benchmarks on the Opteron machine. This
machine do not have shared cache memories, so data sharing between threads is related to DRAM
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Figure 9: Execution time of the applications on the Opteron platform.

memories. The EP benchmark has not presented any speedup. However, this result is expected,
since EP is CPU-bound and its threads perform independent computation on their private data.
Thus, no performance improvement can be archived for this benchmark using our method.

Significant performance gains were achieved with the A input in CG (up to 40%), FT (up to 55%)
and MG (up to 55%) benchmarks when compared to results obtained with the operating system
on the Opteron machine. As these benchmarks are more sensitive to memory access (more shared
data), and considering the characteristics of the machine, placing threads that share some data closer
reduces the number of remote access. On the other hand, although LU presents an heterogeneous
communication pattern, gains of only up to 4% were obtained. The reason for this difference is that,
in CG, FT and MG, some application data is initialized by one thread, and, in LU, each thread
initializes all data that they need, therefore, Linux first touch policy works well only for LU.

The knowledge of how threads access data allow us to perform some optimization on data allo-
cation and placement by using Minas memory policies. These memory policies allow us to ensure
memory affinity, reducing the NUMA penalties such as load balancing, memory contention and
remote access. In the case of CG, FT and MG, we guarantee load balancing and less memory con-
tention by using all the DRAM memories available on the machine, whereas the operating system
has placed more data on some restrict DRAM memories.

Figure 10 reports the execution time obtained with the benchmarks on the Xeon machine. Similar
to the results obtained with the Opteron machine, we observe important gains for CG, FT and MG
benchmarks and none for EP. No gains were obtained with CG using the A input. The reason for
this behavior is that with 32 threads it executes so fast that the overhead of the mapping is greater
than the benefits. Considering LU benchmark, for this machine, no significant gains were obtained.
As mentioned, Linux first touch policy works well for LU, so the improvement on performance are
similar to that obtained in UMA machines, which are less than 2% for this application according
to [9].

Regarding CG, FT and MG benchmarks, gains are up to 75%, 50% and 70% respectively with B
input when compared to the operating system and worst mapping. On this machine, the operating
system mapping is similar to the worst mapping generated by our technique. As mentioned on
previous paragraphs, these benchmarks have more shared data and different memory access pat-
terns. Thus, our method allow us to better map threads and their shared data over the machine.
Considering the CG and MG benchmarks, their main characteristic is the indirect access by threads
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Figure 10: Execution time of the applications on the Xeon platform.

on some arrays, in such way that Linux can not perform an efficient thread and data mapping.
It is important to note that, for the Opteron machine, the difference between the best mapping

and worst mapping is much lower than the difference between the best mapping and the operating
system scheduler. For the Xeon, an opposite behavior is observed, the performance of the worst
mapping is close to the performance of the operating system. This difference between the behaviors
on the Opteron and Xeon shows that the performance improvement of our mechanism does not
depend just on the behavior of the applications, but also on the characteristics of the architecture.

Considering data mapping, the Xeon machine has more cores per NUMA node than the Opteron
machine, so our mapping mechanism is able to decrease the number of remote memory accesses
more effectively on the Xeon. Additionally, the NUMA factor of the Xeon machine is much greater
than the NUMA factor of the Opteron machine, which makes the overhead generated by the remote
memory accesses more evident on the Xeon machine. Since the worst mapping causes lots of remote
memory accesses, it is expected that the worst mapping present worse results with the Xeon than
the Opteron.

Considering thread mapping, there is only one level of the memory hierarchy to be exploited by
thread mapping in the Opteron machine: the NUMA node. However, the Xeon machine also presents
a shared cache memory on each processor. Therefore, it is expected the performance improvement
of any mapping technique to be more similar on the Opteron machine than on the Xeon machine.
About the two different metrics that we evaluated, the sharing matrices present some differences.
However, our mapping algorithm based on graph matching generated similar thread affinities for
both metrics. This implies that the performance results of both metrics are also expected to be
similar.

5.3 Understanding Performance

In order to have an insight about the reason of the thread and data placement impact in the
benchmarks performance, we have selected two benchmarks that presented clearly different results:
EP and MG, both with input size B. These benchmarks are very distinct: EP is CPU-bound while
MG is memory-bound. Considering these benchmarks, we have used the vTune tool to obtain access
to some performance hardware counters while executing the original version of the benchmarks on
the Xeon machine. The Xeon machine is used for the performance hardware counters because it is
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Figure 11: Event Counters of EP on Xeon.
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Figure 12: Event Counters of MG on Xeon.

the only one that supports the vTune software.
Figure 11 shows the CPU cycles, last level cache miss and remote cache response performance

event counters for EP, whereas the Figure 12 shows the same event counters for MG. In these figures,
the black color means few events, green some events and red several events. Since this machine has
NUMA characteristics, it is important to investigate the ratio between remote accesses and CPU
cycles on both benchmarks, to comprehend the importance of thread and data placement for the
application. On this machine we have used vTune to extract information of accesses on local and
remote last level caches. We can observe that the main difference between EP and MG is the number
of cache accesses during the benchmark execution. EP has presented almost no access to the last
level cache, while MG performs several accesses on the last level cache memory. Such results let
us to conclude that MG is much more sensitive to memory placement than EP. Due to this, the
performance improvements in MG are higher than in EP.

The proposed data and thread mapping method allows a better data locality for threads. Partic-
ularly, on applications that are memory bound the data mapping improves latency and bandwidth
perceived by threads to get data. Due to this, threads take less cycles to access the needed data
to compute their operations. Considering MG benchmark, we present in Table 3 the number of
operations performed for each mapping strategy on MG benchmark. The highest performance is
obtained with the best mapping using the access count metric. This is mainly due to the better
data locality provided by the mapping, enhancing the cache and memory usage by threads. In Table
5.3, we can also observe that the results obtained with Linux are similar to the ones obtained with
the worst mapping. Both strategies do not perform data placement and consequently, threads wait
more to get the necessary data.
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Table 3: Number of Operations Performed on MG for each Mapping in Mops/s (Millions of opera-
tions per second).

Mapping Access Count Amount of Memory
Linux 3506.98 3506.98
Worst 3479.91 3507.23
Best 11319.7 11700

6 Related Work

In order to reduce the necessary efforts to control thread and data mapping on parallel applications,
transparent distribution of thread and data has been object of study of a number of researches
[22, 18, 4, 6, 29, 34]. These studies have been designed at different levels and they can be grouped
in: thread placement, data placement or a mix of both.

6.1 Thread and process mapping solutions

Static process mapping of MPI applications has been evaluated in [29], where performance gains of
up to 9.16% were obtained when mapping the groups of threads that send more data among them to
nearby processors. Although performance gains were achieved, they were not as great as expected,
since the experiments were performed on a cluster, which imposes a high latency remote access
and has high potential for process mapping. Besides, as the parallel programming paradigm used
was messaging passing, discovering the communication pattern is straightforward when compared
to shared memory, and it was accomplished by adding wrappers to the MPI functions that register
informations about the messages sent.

In [31], it is shown that hardware performance counters already present in current processors may
be used to dynamically map parallel applications. They schedule threads by taking into account an
indirect estimate of the sharing pattern based on stall cycles, cache miss counters and other hardware
counters present in the Power5 processor. To decrease the overhead of the proposed mechanism, the
mapping system is just enabled after the core stall cycles exceeds a given threshold. Performance was
increased by up to 7%, and the number of memory accesses to remote cache memories were reduced
by up to 70%. Our mechanism provides more reliable information to map the threads and data,
while their mechanism indirectly estimates the communication pattern by relying on less accurate
information about the sharing pattern. However, their method is more flexible and lightweight,
because the mapping is performed by the operating system and do not require any profiling step.

A machine learning approach for OpenMP applications to map threads over the machine cores
is presented in [34]. Using the machine learning approach, the proposed solution is capable of
automatically predict the number of threads and the thread placement policy for an application.
The thread affinity mechanism has several steps in order to find the best number of threads and the
thread placement policy for an application. First, the mechanism has to train the machine learning
model with some target applications using as input some characteristics of the application such as
cache misses, loop iteration and branch miss rate. The output of the training step is a predictor for
the best number of threads and scheduling strategy for a given application. The main limitation of
this approach is that it can only predict correctly if the target applications have regular behaviors.
If a novel application has to use this mechanism, it must have similar characteristics to the ones used
in the training step. Otherwise, a new training must be performed to get the best thread placement
for this application. In terms of flexibility, both this and our work present the same problem: the
need of profiling steps. Their profiling present less overhead than ours, with the downside of relying
on indirect information about the sharing pattern such as cache misses. In our mechanism, we are
able to detect an accurate sharing pattern.

The Charm++ parallel system also provides an explicit and implicit support to thread map-
ping. In the case of explicit support, a command line option allows programmers to set the thread
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placement for an application execution. The command line has to be used when launching the appli-
cation, specifying which cores of the machine must be used to place the application threads [19]. In
this explicit mechanism no abstraction of the machine is provided to the user, since the programmer
has to explicitly specify the threads to cores mapping. The implicit support is provided by the use
of a load balancer that schedules work over the machine cores. The load balancer in Charm++
can be employed as a plug-in, using the load balancing Charm++ framework to build them. Due
to the simplicity of design and implementation, a number of load balancers have been proposed for
Charm++. For instance, load balancers that consider constraints such as memory usage and threads
communication [4, 12].

6.2 Data placement solutions

Data placement support for NUMA machines is now present in many operating systems, such as
Linux, Windows and Solaris [15, 14]. First-touch is the default policy in Linux/Windows operating
systems to manage data placement on NUMA. This policy places data on the node that first accesses
it [14, 8]. To improve memory affinity using this policy, it is necessary to either execute a parallel
initialization of all shared application data allocated by the master thread or allocate its data on each
thread. However, this strategy will only present performance gains if it is applied on applications
that have a regular data access pattern. In case of irregular applications, first-touch may result in a
high number of remote accesses, since threads do not access the same data.

In [22], researchers have compared runtime and manual data distribution for OpenMP over
NUMA platforms. They have shown that automatic data distribution algorithms (e.g. first-touch)
are easy to use, but have generated worser results than manual data distribution. These researchers
have concluded that it is important to select data distribution strategy considering the target ap-
plication. Thus, it may be interesting to have a solution that combines compile time application
information with runtime one to better distribute data for OpenMP applications on NUMAs.

The work [18] presents a hardware-assisted page placement scheme based on automated profiling.
The main objective of this solution is to reduce the execution time by placing memory pages closer to
the most frequently requesting processor. The proposal relies on an automated profiling mechanism
that extracts the application memory access patterns of both static and dynamic memory. Using
such profiling information, some memory migration is performed to increase the number of local
access. The proposed solution is implemented in the user space and it is independent of compiler,
operating system and interconnection network but it relies on the machine providing the necessary
hardware counters. This method has been evaluated using the NAS and SPEC OpenMP benchmarks
and the results show that the mechanism can achieve performance improvements of up to 20%.

The recent integration of memory controllers inside processor chips has demanded a special
attention when allocating data on machines based on such processors. Since memory controllers
manage all access to physical memory, they can be a bottleneck and reduce the system performance.
To deal with this problem, researchers have proposed in [1] two memory policies that can adapt to
improve data locality. The memory policies make use of the hardware information (e.g. queuing
delay of a memory controller, number of hops from a core to a memory controller) during the
application execution to decide where to place a memory page. They have implemented the memory
policies in the Virtutech Simics simulator and used some benchmarks to evaluate them. Results
have shown gains of up to 35% on platforms with one memory controller per N number of processors
and gains up to 5% on platforms with one memory controller per processor. The main disadvantage
of this work is that it does not consider which threads are accessing the pages to choose where to
migrate, leading to the increase of the remote memory accesses.

6.3 Thread and data placement solutions

Dynamic task and data placement for OpenMP applications have been proposed in [6]. In these
works, researchers have proposed an NUMA-aware runtime for OpenMP, named ForestGOMP. It
is a an extension of GNU OpenMP library that relies on the hwloc framework [7], on the Marcel
threading library [10] and on the BubbleSched framework [33]. This runtime uses hwloc to extract
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the target machine topology and then pin kernel threads on the machine cores. In order to provide
more performance for OpenMP applications, the Marcel library is used to create user level threads
within parallel sections and associates them to the kernel threads. Their proposal does not require
profiling steps. However, differently from our mechanism, ForestGOMP requires some modifications
to the source code to provide informations about the program behavior, such as how the data is
distributed, which variables to consider, among others.

7 Conclusions and Future Work

Future multi-core and many-core processors with tens of processing cores will require new techniques
to control the computational resources available on the entire machine. This way, techniques for
thread and data mapping such as we presented will have a key role for future architectures.

This paper presented a technique to map threads and its data from parallel applications over
multi-core machines with NUMA characteristics. We have used memory traces and an heuristic
algorithm based on graph theory to estimate the most suited thread and data placement for each
application in a given architecture. In order to evaluate our proposal, we have performed experiments
on two NUMA multi-core machines using NAS Parallel Benchmarks.

Results have shown performance improvements of up to 75% when compared to the Linux stan-
dard solution for thread and data mapping. Additionally, our results have shown that applications
with homogeneous communication patterns, such as EP, may not benefit from mapping. Another
important result is that, sometimes, the original scheduler of the operating system performs worse
than the worst mapping. This happens because the original scheduler periodically migrates the
threads, which increases the cache miss rate, as the working set of the migrated thread must be
loaded in the cache of the destination core.

As future work, we intend to develop a smarter mapping technique, which considers the different
phases of the application to map threads and data. Additionally, the design of more efficient methods
to retrieve the memory sharing and access patterns are also considered. Tools using dynamic binary
analysis, like Pin, are being cogitated. Furthermore, we pretend to develop dynamic mechanisms to
detect the sharing pattern and extend the presented techniques to be used in a dynamic scheduler.
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Improving Memory Affinity of Geophysics Applications on NUMA platforms Using Minas. In
9th International Meeting High Performance Computing for Computational Science, VECPAR,
US, 2010. LNCS.

[28] Christiane Pousa Ribeiro, Maxime Martinasso, and Jean-François Méhaut. NUMA Support for
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