Using Memory Access Traces to Map Threads and Data
on Hierarchical Multi-core Platforms

Eduardo Henrique Molina da Cruz,
Marco Antonio Zanata Alves,
Alexandre Carissimi,
Philippe Olivier Alexandre Navaux
PPGC Graduate Program in Computer Science
Institute of Informatics
UFRGS Federal University of Rio Grande do Sul
Porto Alegre, RS, Brazil
Email: {ehmcruz, mazalves, asc, navaux} @inf.ufrgs.br

Abstract—In parallel programs, the tasks of a given applica-
tion must cooperate in order to accomplish the required com-
putation. However, the communication time between the tasks
may be different depending on which core they are executing
and how the memory hierarchy and interconnection are used.
The problem is even more important in multi-core machines
with NUMA characteristics, since the remote access imposes
high overhead, making them more sensitive to thread and data
mapping. In this context, process mapping is a technique that
provides performance gains by improving the use of resources
such as interconnections, main memory and cache memory.
The problem of detecting the best mapping is considered NP-
Hard. Furthermore, in shared memory environments, there is
an additional difficulty of finding the communication pattern,
which is implicit and occurs through memory accesses. This
work aims to provide a method for static mapping for NUMA
architectures which does not require any prior knowledge of the
application. Different metrics were adopted and an heuristic
method based on the Edmonds matching algorithm was used to
obtain the mapping. In order to evaluate our proposal, we use
the NAS Parallel Benchmarks (NPB) and two modern multi-
core NUMA machines. Results show performance gains of up
to 75% compared to the native scheduler and memory allocator
of the operating system.

Keywords-Process Map; Memory Affinity; Parallel Architec-
tures; High Performance Computing.

I. INTRODUCTION

On shared memory parallel platforms with a hierarchical
memory sub-system, the communication (data sharing) time
between threads of a parallel program may be different,
depending on how the processors or cores are interconnected
through the memory hierarchy, the interconnections used
and the memory coherence protocol [1]. This difference is
even more relevant on parallel machines with non-uniform
memory access characteristics (NUMA), since the latency
of remote access are high.

In this context, process mapping helps to improve system
performance by mapping groups of threads which shares

Christiane Pousa Ribeiro,
Jean-Francois Méhaut
INRIA Mescal Research Team
LIG Laboratory
University of Grenoble, France

Email: {Christiane.Pousa, Jean-Francois.Mehaut}@imag.fr

high amounts of data to cores or processors that shares some
level of cache or DRAM memory. Mapping parallel pro-
grams on NUMA becomes harder [2] and more expensive,
as usually there are more levels on the memory hierarchy
to be explored. Furthermore, the problem to find the best
mapping is considered NP-Hard [3] and, in shared memory
environments, there is the additional difficulty to find the
communication pattern, which is implicit and occurs through
memory accesses.

In this paper, we propose and evaluate a technique of
process mapping to bind threads of a given application on
cores and allocate their data on DRAM memories, reducing
the overhead of communication among the threads which
shares data. To perform the static mapping, the proposed
model is based on the analysis of memory traces and does
not require any prior knowledge of the application. We
use two metrics (amount of shared memory and access
performed in the shared memory) to identify the data sharing
pattern between threads and an heuristic algorithm to map
threads and data on the machine. This heuristic is based
on the Edmonds matching algorithm, which provides a well
suited thread and memory affinity for a selected application.
Thus, the main objective is to reduce the data sharing time on
multi-core machines with NUMA characteristics, improving
the overall system performance.

In comparison to related works, our approach differs in at
least two aspects. First of all, we provide an heuristic that
can be adopted in different shared memory architectures.
Secondly, we consider application and hardware character-
istics in order to map threads and data with the most suited
memory policy. We have evaluated our proposal by perform-
ing experiments with HPC benchmarks on two multi-core
NUMA platforms. The results have been compared to the
Linux standard thread and data mapping and to the worst
affinity for an application.

This paper is organized as follows. Section II presents

the general description of the applications used to evaluate
the proposed technique. Section III introduces the method
proposed for process mapping, it also presents some analy-
sis of the workload used. The platforms used to validate
the mapping technique is presented on Section IV. The
experimental results are presented on Section V. Some
related works are presented and compared on Section VI. On
Section VII, the conclusions and future works are described.

II. SELECTED BENCHMARKS

In this section, we present the NAS Parallel Benchmark
(NPB) workload used to evaluate the performance of our
thread and data mapping method.

The NPB has its applications derived from computa-
tional fluid dynamics (CFD) codes and it is composed by
applications and kernels [4]. NPB applications and kernels
perform representative computation and data communication
of CFD codes. These characteristics allow us to better
evaluate the impact of both threads and data mapping on
multi-threaded programs over multi-core machines. NPB has
been implemented on different languages, using different
strategies for code parallelization. In this work, we have used
the OMNI compiler group implementation of NPB version
2.3, where all the applications are written in C and have been
parallelized with OpenMP (based on the standard Pthreads
interface). This version of NPB was used because Minas
requires that the applications are written in the C language.

Considering the OMNI implementation details, all the
benchmarks have a parallel initialization of data in order
to make sure all data is touched and to reduce variable
startup costs. Table I provides a description of the selected
set of NPB. Most of them are memory bound applications,
except EP, which is CPU bound. NPB has several standard
inputs(from smallest to greatest) S, W, A, B, C, and the ones
used for this paper were W, A and B. The W was used to
discover the sharing pattern and A and B to perform the
experiments.

The BT, IS, SP and UA applications, which are also part of
the NPB benchmark, were not used in this paper. Regarding
BT, we have observed it does not scale for more than 12
threads with the W input, therefore, the mapping obtained
is not suitable for the A and B inputs and, consequently, no
performance gains are expected for this benchmark in our
experiments. UA is not implemented in the NAS version
used, and IS and SP present implementation problems.

III. MAPPING THREADS AND DATA

The static mapping proposed in this paper is performed
in five steps (Figure 1): monitor the memory access to
generate the traces, analysis of the trace to generate the
sharing matrix, calculate the thread affinity with the memory
hierarchy, map threads and data with the Minas framework
and, finally, execute the application with the best mapping
found.

Table I
SELECTED APPLICATIONS FROM NPB.

Name Description

FT Computational kernel of a 3D Fast Fourier Transform (FFT) method.
FT performs three 1D FFT, one for each dimension.

MG Multigrid V-cycle method used to solve the 3D scalar Poisson equation.
The algorithm works between coarse and fine grids. It exercises both
short and long distance data movement.

LU Simulated CFD application that uses symmetric successive over-

relaxation (SSOR) method to the system resulting from finite-difference
discretization of Navier-Stokes equations in 3D by splitting into block
Lower and Upper triangular systems.

CcG Conjugate Gradient method used to compute the smallest eigenvalue
of a large, sparse, unstructured matrix. Exercising unstructured grid
computations and communications.

EP Embarrassingly Parallel benchmark, which generates pairs of Gaussian
random. Aiming to establish the reference point for peak performance
of a given platform.

Monitor the memory access and generate the memory trace.

Vi

Analyse the memory trace to compute the shared memory
and access count to generate the sharing matrix.

v

Compute the thread affinity with the memory hierarchy with
the heurist method based on Edmonds matching algorithm.

V

| Map threads and data with Minas. I

v

| Execute application with the best static mapping found. I

Figure 1. Methodology used to perform the static mapping.

A. Monitoring the Memory Access

To achieve the static mapping, a preliminary analysis of
the application is required to obtain the information that
is used to compose the sharing matrix. In shared memory
environments, it is necessary to monitor all the memory
access of the applications, which was accomplished by
executing them inside the Simics [5] simulator, registering
memory access information such as the moment when the
access happened, the identifier of the thread that generated
the access, the memory address, the operation type (read,
write or instruction fetch) and its size.

To instrument Simics to register every memory access, the
event Core_Breakpoint_Memop can be triggered. Neverthe-
less, as the triggers are implemented in the Python language,
they have a high overhead, decreasing the simulation speed.
Therefore, it was developed a module in the C language that
is dynamically linked to Simics, and when it is plugged to a
processor in the simulation environment, it monitors all the
memory access performed by it.

However, it is necessary to filter the access to be reg-
istered, so that only the memory access performed by the
evaluated application are stored in the trace file. Although
Simics API implements tools to determine which task is

running in each processor, it is unstable when the number
of processors simulated is high. To overcome this issue,
the Linux kernel inside Simics was modified to warn the
simulator about which task was being scheduled to run.

Another possibility to generate the memory traces is
through dynamic binary instrumentation, using tools such
as Pin [6] or Valgrind [7]. Although dynamic binary in-
strumentation is easier and faster than simulation, it alters
the application behavior. For instance, the Valgrind tool
serializes the threads in parallel applications, which may led
to different communication patterns.

B. Generating the Sharing Matrix

The memory traces alone are not enough to guide the
process mapping. The traces must be analyzed to discover
the communication pattern, which depends on the metric
adopted. For this work, two metrics were considered sepa-
rated to evaluate the communication: the amount of memory
shared by threads and the amount of access performed
to a block of memory that is shared. Problems like false
sharing were taken into account, as they are very common
in multiprocessor architectures.

The shared memory can be analyzed in different groups
of threads. To calculate how much memory is being shared
between any group of threads, the amount of space necessary
rises exponentially, discouraging the use of process mapping.
Therefore, the shared memory was evaluated only between
pairs of threads, generating a sharing matrix. Although this
decreases the accuracy of the results, it reduces the space
complexity to ©(N?), where N is the number of threads,
and allows a faster processing of the information.

Figure 2 contains the communication pattern of the appli-
cations of NPB with the W input size for both metrics. Each
cell (i, j) represents the communication between threads 7
and j. When 7 equals j, it represents the amount of access to
the private area or its size. As darker the cell is, higher is the
amount of communication. It is important to notice that CG,
with the amount of memory metric, shows a pattern whereas
there is almost no communication between threads and that
thread 0 dominates and performs most of its communication
with its private area. However, with the access count metric,
although there is still a predominance of thread 0, the others
present a bigger share of the total communication. LU and
MG behave similar to CG. This indicates that, in these
applications, thread O probably does some initialization or
post-checking of the data.

Another analysis of the figure exhibits that MG has a
communication pattern that the nearby threads communicate
more among themselves. LU is the opposite, as the most
distant threads communicate more. Both of them can be
explored by mapping due to this heterogeneous pattern. On
the other hand, EP is the one with the most homogeneous
communication pattern, hence it may not benefit from pro-
cess mapping like the other benchmarks.

15
14
13
12
1"

C=-NWAODN®

15
14
13
12
"
10

C=-NWAODN®

15
14
13
12
"

C=LNWhAODN®

15
14
13
12
1"
10

C=-NWAODN®

15
14
13
12
1

C-NWAODN®

N

0123 456 7 8 9 10111213 14 15

(a) CG - Amount of Memory

0123 45 6 7 8 9 101112131415

(c) EP - Amount of Memory

15
14
13
12
"
10

c-NwAGO DN

0123 456 7 8 9 10111213 14 15

(b) CG - Access Count

0123 456 7 8 9 101112131415

(d) EP - Access Count

15
14
13
12
"

CLNMWARO DN ®

N

0123 456 7 8 9 10111213 1415

(e) FT - Amount of Memory

0123 456 7 8 9101112131415

(f) FT - Access Count

-
.

X

0123 456 7 8 9 10111213 14 15

(g) LU - Amount of Memory

0123 456 7 8 9 101112131415

(h) LU - Access Count

15
14
13
12
1"
10

C-NWAODN®

\\

0123 456 7 8 9 10111213 14 15

(i) MG - Amount of Memory

Figure 2.

0123 456 7 8 9 10111213 1415

() MG - Access Count

Communication patterns of NPB applications.

C. Thread Affinity with the Memory Hierarchy

After the generation of the sharing matrix, it is neces-
sary to map threads and its data. The mapping problem
is considered NP-Hard, consequently, finding the optimal
solution becomes infeasible when the number of tasks
grows. Thus, heuristic algorithms must be employed to
determine the mapping in reasonable time, with results as
similar as possible to the perfect mapping. Methods like the
Dual Recursive Bipartitioning produces good results, and
are available on the software Scotch [8]. However, for this
work, a different method was used to obtain the mapping,
based on the maximum weight perfect matching problem for
complete weighted graphs, as presented in [9].

This problem consists of, given a complete weighted
graph G = (V, E), it must be found a subset M of E
in which every vertex of V' is met by exactly one edge
of M, and the sum of the weights of the edges of M is
maximized. According to [10], this problem can be solved
by the Edmonds matching algorithm in polynomial time,
and a parallel algorithm can solve the problem with a time
complexity of O(N?f + N21g N), where N is the vertex
number and P is the number of processors.

To model process mapping as a matching problem, the
vertices represent the tasks and the edges the amount of
communication, which depends on the metric used. Thus,
a complete graph is obtained, and it is processed by the
matching algorithm, which gives as result the pairs of tasks
so that the amount of communication is maximized. This
information is extremely relevant, since, in general, there
are few processor cores connected to one same cache. For
instance, on many architectures, there is only 2 cores sharing
the same L2 cache, therefore, map tasks to them with the
matching algorithm works well.

Nevertheless, there are architectures in which more than
2 processors share the same cache, or there are more
levels of memory hierarchy to be explored, such as NUMA
machines. In these cases, the matching algorithm by itself
fails. To overcome this issue, another communication matrix,
containing the communication between pairs of pairs of
threads, is given as input to the algorithm. This matrix was
generated by the following heuristic function:

= Mz + Mgy + My, + My p

where (x,y) e (2, k) are the matchings found at the previous
step, and M, ;) is the amount of communication between
threads ¢ and j. Although this does not guarantee that the
result will contain the pairs of pairs with the most amount of
communication, it is a reasonable approximation and keeps
the time and space complexity polynomial.

H(zy),(2k)

D. Mapping with Minas Framework

In order to apply the mapping technique introduced on
the previous subsection to applications on real platforms, it

is necessary some support on the operating system to ensure
thread and memory affinity.

Linux operating system provides an interface named lib-
numa that allows developers to manage affinity on applica-
tions [11]. However, this interface, which is a wrapper layer
over Linux system calls, provides a limited set of thread
mapping strategies and memory policies, which are used
to distribute data on memory banks. Additionally, libnuma
obligates developers to explicitly select nodes and cores
that must be used, demanding a large set of hand coded
modifications on source code. Because of these constraints,
we have searched for other solutions that provide us more
transparent mechanisms to control thread and data placement
on Linux based machines [12], [13].

Minas is a framework that allows developers to manage
affinity of parallel applications on large scale multi-core
platforms [14]. This framework avoids any manual appli-
cation source code modification, since it implements an
automatic memory affinity mechanism that controls threads
and data mapping. Minas is composed of three modules:
numArch library, MApp preprocessor and MAI interface.
Numarch extracts all information about the target platform
that are necessary to pin threads to cores and place data on
memory banks. MApp is a preprocessor that implements a
mechanism to extract information of application variables
at compile time. MAIi, which is the core of Minas, is
responsible for implementing several memory policies that
deal with data allocation and placement at runtime [12].

Using the Minas Framework, the original NAS Parallel
Benchmarks source codes have been modififed to consider
threads and data mapping. The code transformation pro-
cess is divided into three steps. Firstly, Minas retrieves
the platform characteristics, using the information extracted
with the numArch module (e.g. NUMA factor!, number of
nodes and memory subsystem). Secondly, Minas scanned the
application source code with MApp to obtain information
about variables (e.g. access mode, parallel section scope,
type). During the third step, the information gotten by MApp
and numArch are used by Minas to automatically transform
the source code by changing the arrays declaration and
including MAI specific functions for thread mapping, data
allocation and data placement.

The modification performed in NAS Parallel Benchmark
source codes guarantee suitable memory policies for data
mapping (how memory pages will be distributed over the
platform). However, the number of nodes to be used and
where to map data depends on the set of cores where
threads are running. On Minas, the standard thread mapping
mechanism is based on the machine topology. It maximizes
cache sharing between threads, since it considers the cache
memory levels to map threads on cores. However, in this
paper, we aim at use the information generated by the

INUMA factor is the ratio between remote latency and local latency

mEIMmE pilld) |ahed
g
§ § T X1
mEINmE pilld) aEed
d

(a) Machine with Opteron 875.

(b) Machine with Xeon X7560.

Figure 3. Evaluated Multi-cored NUMA Platforms.

mapping heuristic (Section III-A) to pin threads on cores.

In order to do so, we have included on Minas the
support for input configuration files. Such support allows
users to specify a file with the set of cores that must be
used to map threads of an application. Using the thread
affinity information obtained with the mapping heuristic, we
generate a configuration file that is later used by Minas.
Using a function from MAi, Minas maps threads to the
cores specified in the configuration file at runtime. After that,
Minas retrieves threads nodes and maps their data using the
chosen memory policy.

IV. MULTI-CORED NUMA PLATFORMS EVALUATED

In order to evaluate the proposed method, we have
selected two representative parallel machines, and their
topology is present in Figure 3. The Opteron machine is
composed by eight NUMA nodes, each node with one dual
core processor. It has no shared cache memories and each
core has two private cache levels. In Xeon, there are four
NUMA nodes, each node with one eight core processor. In
this machine, each core has private L1 and L2 cache, and all
cores share the same L3 cache (24MB). Both machines are
cache coherent Non-Uniform Memory Access (ccNUMA)
architectures. However, they have different implementations
of the cache coherence protocol, the Opteron machine uses
the MOESI protocol whereas the Xeon machine uses the
MESIF one [15]. All machines run Linux operating system
(kernel 2.6.32) with NUMA support and GCC (GNU C
Compiler 4.4.3). For the remainder of the paper, we will
name the machines Opteron and Xeon respectly.

Table II
HARDWARE DETAILS OF MULTI-CORE MACHINES USED IN OUR STUDY.

Characteristic Opteron Xeon
Number of Cores 16 32
Number of Processors 8 4
NUMA Nodes 8 4
Clock (GHz) 2.22 2.27
Last Level Cache (MB) 1 24
Total DRAM Size (GB) 32 64
NUMA Factor 12to 1.5 1.20to 3.6

The main differences between the platforms presented

above is their memory subsystem and interconnection de-
sign, which gives different memory access costs. All the
machines have hardware support and on-chip memory con-
trollers to provide a global shared memory. Such shared
memories is actually physically distributed over the machine
nodes that are interconnected by an efficient network (e.g.
HyperTransport for AMD and QuickPath Interconnection for
Intel). The interconnection network gives different memory
latencies for remote access by nodes of the platform. Table
I summarizes the characteristics of these machines.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental evaluation
of the mapping method introduced in this paper. In our
evaluation, we have used execution time as performance
metric. Considering the benchmark execution, we have used
all the cores of each given machine presented on section IV
with one thread per core.

Results have been obtained through the average of sev-
eral executions with exclusive access to the machine. The
analysis of the results is per machine and it compares the
performances obtained with our solution (best mapping)
to the ones obtained with Linux standard mapping control
(Operating System) and to the worst mapping. The worst
mapping was also calculated using the Edmonds matching,
but with the minimum cost perfect matching [16] instead of
the maximum cost perfect matching. The maximum standard
deviation was 20% for Linux Default, 3.5% for best mapping
and 16% for worst mapping, for the results considering
the total amount of shared memory. Regarding the total
number of shared access, the results had 8% and 14.6%
maximum standard deviations for best and worst mapping,
respectively. High standard deviations are expected for the
Linux Default, since it can map threads to different cores
during each execution. Both the amount of shared memory
and access count metrics were evaluated.

Linux schedules threads considering their access to me-
mory hierarchy. During the application execution, if Linux
notices that a thread is generating more cache misses, it
will re-schedule this thread to a new core in order to try
to reduce cache misses in the future. However, some times
Linux fails in the prediction and such re-scheduling can
generate even more cache misses. Additionally, since the
evaluated platforms are NUMA, the re-scheduling can led
to remote accesses, which decreases the overall performance.
Considering data placement, Linux uses the first-touch me-
mory policy, in which only the first access by threads on data
are considered for data placement on the DRAM memories.
Contrary to this strategy, our method allow us to observe
data sharing between threads and place them considering
these patterns.

Figure 4 shows the execution time obtained with the
benchmarks on the Opteron machine. This machine do
not have shared cache memories, so data sharing between

A Input Size

110
100

a o N © ©
o O o o o

Normalized Execution Time (%)

N
Is)

110
100
90
80
70
60
50
40

Normalized Execution Time (%)

CG EP

Linux Default Exxx=
Best Mapping — Amount of Memory zzzzzzzz

Worst Mapping — Amount of Memory st
Best Mapping — Access Count .

Figure 4. Execution time of the applications on the Opteron platform.

threads is related to DRAM memories. The EP benchmark
has not presented any speedup. However, this is the expected
result, since EP is CPU-bound and its threads perform
independent computation on their private data. Thus, any
improvement gains can be archived for this benchmark when
using our method.

We have significant performance gains with A input in CG
(up to 40%), FT (up to 55%) and MG (up to 55%) bench-
marks when compared to results obtained with the operating
system on the Opteron machine. As these benchmarks
are more sensitive to memory access (more shared data),
and considering the characteristics of the machine, placing
threads that share some data closer reduces the number of
remote access. On the other hand, although LU presents
an heterogeneous communication pattern, gains only up to
4% were obtained. The reason for this difference is that, in
CG, FT and MG, some application data is initialized by one
thread, and, in LU, each thread initializes all data that they
need, therefore, Linux first touch policy works well only for
LU.

The knowledge of how threads access data allow us to
perform some optimization on data allocation and placement
by using Minas memory policies. These memory policies
allow us to ensure memory affinity, reducing the NUMA
penalties such as load balancing, memory contention and
remote access. In the case of CG, FT and MG, we guarantee
load balancing and less memory contention by using all

the DRAM memories available on the machine, whereas
the operating system has placed more data on some restrict
DRAM memories.

Figure 5 reports the execution time obtained with the
benchmarks on the Xeon machine. Similar to the results
obtained with the Opteron machine, we observe important
gains for CG, FT and MG benchmarks and none for EP. No
gains were obtained with CG using the A input. The reason
for this behavior is that with 32 threads it executes so fast
that the overhead of the mapping is greater than the benefits.
Considering LU benchmark, for this machine, no significant
gains were obtained. As mentioned, Linux first touch policy
works well for LU, so the improvement on performance are
similar to that obtained in UMA machines, which are less
than 2% for this application according to [9].

Regarding CG, FT and MG benchmarks, gains are up
to 75%, 50% and 70% respectively with B input when
compared to the operating system and worst mapping. On
this machine, the operating system mapping is similar to the
worst mapping generated by our technique. As mentioned on
above paragraphs, these benchmarks have more shared data
and different memory access patterns. Because of this, our
method allow us to better map threads and their shared data
over the machine. Considering the CG and MG benchmarks,
their main characteristic is the indirect access by threads on
some arrays. Due to this, Linux can not perform an efficient
thread and data mapping for them.

A Input Size

110
100 |-
90 -
80 |-
70 f-
60 -
50 -
40 |-
30 f-
20

Normalized Execution Time (%)

B Input Size

FT

£ 120

o 110 |

E 100

5 2f ’

5 80 0

& 70 o g
G 60 . ;
3 50 . 5
S a0} . v
S gl | 7

5 20 r

z CG EP

Linux Default Exxx=
Best Mapping — Amount of Memory zzzzzzzz

Figure 5.

One important thing to notice is that the difference
between the best mapping and worst mapping is much
lower than when compared to Linux default in the Opteron
machine, but for the Xeon, an opposite behavior is ac-
complished. The main reason for this is that the Xeon
machine has more cores per NUMA node to be explored
by mapping than the Opteron machine, therefore, there is a
greater latency in the communication time between the best
and worst mapping.

VI. RELATED WORK

In order to reduce the necessary efforts to control thread
and data mapping on OpenMP applications, transparent data
distribution has been object of study of several OpenMP
implementations [17], [13], [18].

Dynamic task and data placement for OpenMP applica-
tions have been proposed in [13]. In these works, researchers
have proposed an NUMA-aware runtime for OpenMP,
named ForestGOMP. This proposal relies on hints provided
by developers and extracts information about the architecture
to better distribute them over the NUMA machine. Such run-
time is an extension of to the GNU OpenMP GNU library,
which restricts its usage. Additionally, some modifications
on the application source codes are needed to provide some
hints to the runtime system (e.g. data distribution, which
variables to consider).

In [17], researchers have compared runtime and manual
data distribution for OpenMP over NUMA platforms. They

Worst Mapping — Amount of Memory s

Best Mapping — Access Count .

Worst Mapping — Access Count

Execution time of the applications on the Xeon platform.

have shown that automatic data distribution algorithms (e.g.
first-touch) are easy to use, but have generated worser
results than manual data distribution. These researchers have
concluded that it is important to select data distribution
strategy considering the target application. Thus, it may be
interesting to have a solution that combines compile time
application information with runtime one to better distribute
data for OpenMP applications on NUMAs.

Static process mapping of MPI applications has been
evaluated in [18], where performance gains of up to 9.16%
were obtained when mapping the groups of threads that
send more data among them to nearby processors. Although
performance gains were achieved, they were not as great
as expected, since the experiments were performed on a
cluster, which imposes a high latency remote access and
has high potential for process mapping. Besides, as the pa-
rallel programming paradigm used was messaging passing,
discovering the communication pattern is straightforward
when compared to shared memory, and it was accomplished
by adding wrappers to the MPI functions that register
informations about the messages sent.

VII. CONCLUSIONS AND FUTURE WORK

Future multi-core and many-core processors with tens of
processing cores will require new techniques to control the
computational resources available on the entire machine.
This way, techniques for process mapping such as we
presented will have a key role for future architectures.

This paper presented a technique to map threads and its
data from parallel applications over multi-core machines
with NUMA characteristics. We have used memory traces
and an heuristic algorithm to estimate the most suited thread
and data placement for each application in a given architec-
ture. In order to evaluate our proposal, we have performed
some experiments on two modern multi-core machines using
NAS Parallel Benchmarks.

Results have shown performance improvements of up to
75% when compared to the Linux standard solution for
thread and data mapping. Additionally, our results have
shown that applications with homogeneous communication
patterns, such as EP, may not benefit from mapping. Another
important result is that, sometimes, the original scheduler
of the operating system performs worse than the worst
mapping, since it periodically migrates the threads.

As future work, we intend to develop a deeper mapping
technique, which considers the different phases of the appli-
cation to map threads and data. Additionally, the design of
more efficient methods to retrieve the memory sharing and
access patterns are also considered. Tools using dynamic
binary analysis, like Pin, are being cogitated. Furthermore,
we pretend to develop dynamic mechanisms to detect the
sharing pattern and extend the presented techniques to be
used in a dynamic scheduler.

ACKNOWLEDGMENT

This research has been partially supported by the CAPES-
BRAZIL under grant 4874-06-4 and CNPq-BRAZIL.

REFERENCES

[1] A. Joseph, J. Pete, and R. Alistair, “Exploring Thread and
Memory Placement on NUMA Architectures: Solaris and
Linux, UltraSPARC/FirePlane and Opteron/HyperTransport,”
in High Performance Computing - HiPC, 2006, pp. 338-352.

[2] C. Terboven, D. A. Mey, D. Schmidl, H. Jin, and T. Reich-
stein, “Data and Thread Affinity in OpenMP Programs,” in
MAW °08: Proceedings of the 2008 workshop on Memory
access on future processors. ACM, 2008, pp. 377-384.

[3] M. Diener, F. Madruga, E. Rodrigues, M. Alves, J. Schneider,
P. Navaux, and H.-U. Heiss, “Evaluating thread placement
based on memory access patterns for multi-core proces-
sors,” in High Performance Computing and Communications
(HPCC), 2010 12th IEEE International Conference on, 2010,
pp. 491 —496.

[4] J. Y. Haogiang Jin, Michael Frumkin, “The OpenMP
Implementation of NAS Parallel Benchmarks and Its
Performance,” NAS System Division - NASA Ames Research
Center, Tech. Rep. 99-011/1999, 1999. [Online]. Available:
https://www.nas.nasa.gov/Research/Reports/Techreports/1999/
PDF/nas-99-011.pdf

[5S] P. Magnusson ef al, “Simics: A full system simulation
platform,” IEEE Computer Micro, vol. 35, no. 2, pp. 50-58,
Feb 2002.

[6] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor,
K. Hazelwood, A. Jaleel, C.-K. Luk, G. Lyons, H. Patil, and
A. Tal, “Analyzing parallel programs with pin,” Computer,
vol. 43, no. 3, pp. 34 —41, 2010.

[7] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” SIGPLAN
Not., vol. 42, no. 6, pp. 89-100, 2007.

[8] Scotch, “Scotch,” http://www.labri.fr/perso/pelegrin/scotch/,
December 2010.

[9] E. H. Cruz, M. A. Alves, and P. O. Navaux, “Process mapping
based on memory access traces,” in Computing Systems
(WSCAD-SCC), 2010 11th Symposium on, 2010, pp. 72 -79.

[10] C. Osiakwan and S. Akl, “The maximum weight perfect
matching problem for complete weighted graphs is in pc,”
in Parallel and Distributed Processing, 1990. Proceedings of
the Second IEEE Symposium on, 9-13 1990, pp. 880 —887.

[11] A. Kleen, “A NUMA APl for Linux,” Tech.
Rep. Novell-4621437, 2005. [Online]. Available:
http://whitepapers.zdnet.co.uk/0,1000000651,260150330p,00.
htm

[12] C. Pousa Ribeiro, M. Castro, L. G. Fernandes, A. Carissimi,
and J.-F. Méhaut, “Memory Affinity for Hierarchical Shared
Memory Multiprocessors,” in 21st International Symposium
on Computer Architecture and High Performance Computing.
Séao Paulo, Brazil: IEEE, 2009.

[13] F. Broquedis, N. Furmento, B. Goglin, R. Namyst, and
P.-A. Wacrenier, “Dynamic Task and Data Placement over
NUMA Architectures: an OpenMP Runtime Perspective,” in
5th International Workshop on OpenMP. Dresden, Germany:
Springer, 2009, pp. 79-92.

[14] C. Pousa Ribeiro, I. S. Nicolas Maillard, and J.-F. Méhaut,
“Compiling OpenMP Applications to Enhance Memory
Affinity on Hierarchical Multi-Core Machines,” in 23rd Inter-
national Workshop on Languages and Compilers for Parallel
Computing. US: LNCS, 2010.

[15] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller,
“Memory performance and cache coherency effects on an
intel nehalem multiprocessor system,” in /8th International
Conference on Parallel Architectures and Compilation Tech-
niques. USA: IEEE, 2009, pp. 261-270.

[16] V. Kolmogorov, “Blossom V: A new implementation of a
minimum cost perfect matching algorithm,” Mathematical
Programming Computation, vol. 1, no. 1, pp. 43-67, 2009.

[17] D. S. Nikolopoulos, E. Ayguadé, and C. D. Polychronopou-
los, “Runtime vs. manual data distribution for architecture-
agnostic shared-memory programming models,” Int. J. Para-
llel Program., vol. 30, no. 4, pp. 225-255, 2002.

[18] E. Rodrigues, F. Madruga, P. Navaux, and J. Panetta, “Multi-
core aware process mapping and its impact on communication
overhead of parallel applications,” in Computers and Commu-
nications, 2009. ISCC 2009. IEEE Symposium on, 5-8 2009,
pp. 811 -817.

