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ABSTRACT

For decades the inherent limitations of traditional Von Neumann-based computer sys-

tems have been overshadowed by the fine-grain architectural advancements and the ever-

increasing technological evolution. However, in the last years, the technological advance

has been slower, and at the current pace, the technology has contributed less and less to

the performance of modern systems. In this way, a new era arises demanding disruptive

architectural approaches, either in the creation of new architectures or in the way in which

the existing ones are used. Supported by 3D-stacking technologies that allow integration of

memory and logic, new opportunities to revive old techniques have emerged. One of these

is Processing-in-Memory (PIM), which provides resources for computing data directly

in memory. This thesis takes advantage of these new opportunities by developing a PIM

design targeting to mitigate the current architectures limitations. Although disruptive in the

sense of performance, efficiency and programmability, the presented approach intends to

be general-purpose friendly. However, several challenges must be overpassed to allow PIM

adoption. Moreover, these challenges are burdensome when the goal consists of overcom-

ing current general-purpose architectures deficiencies, and allowing the use of PIM as part

of a general-purpose environment. The design shown in this thesis allows to improve the

overall performance and energy efficiency of the general-purpose systems by adopting the

Reconfigurable Vector Unit (RVU) architecture, while providing Processing-In-Memory

cOmpiler (PRIMO), a complete tool set that automatically exploits the available PIM

resources. The RVU PIM approach can outperform the current General Purpose Processors

(GPPs) by achieving theoretically 2 TFLOPS. Also, the proposed PIM exceeds the ARM

processors’ power efficiency by achieving 232 GFLOPS/Watt.

Keywords: Processing-in-memory. 3D-stacked memory. performance efficiency. energy

efficiency. area efficiency. code generation. compiler.



Melhorando Eficiência dos Sistemas Computacionais de Propósito Geral através da

adoção de uma Arquitetura de Processamento-em-memória

RESUMO

Por décadas as limitações inerentes aos sistemas de computadores tradicionais baseados

em arquiteturas Von Neumann têm sido ofuscadas pelos avanços arquiteturais e a constante

evolução tecnológica. Entretanto, nos últimos anos, o avanço tecnológico tem sido lento, e

no corrente passo, a tecnologia tem contribuído cada vez menos com o desempenho dos

sistemas modernos. Desta forma, uma nova era surge demandando abordagens arquiteturais

disruptivas, seja na criação de novas arquiteturas ou na maneira que as existentes são

utilizadas. Suportado pelas tecnologias de empilhamento 3D que permite integração

de memória e lógica, novas oportunidades de reviver antigas técnicas têm emergido.

Uma destas é o Processamento-em-Memória (PIM), a qual provê recursos para computar

dados diretamente em memória. Esta tese toma vantagem destas novas oportunidades

desenvolvendo um projeto de PIM que busca mitigar as limitações das arquiteturas atuais.

Embora disrupitivo quanto ao desempenho, eficiência e programabilidade, a abordagem

apresentada pretende ser de propósito geral. Entretanto, diversos desafios devem ser

vencidos para permitir a adoção de PIMs. Além disto, estes desafios tornam-se ainda

mais complexos quando os objetivos consistem em reduzir as deficiências das arquiteturas

de propósito geral atuais, e possibilitar a utilização de PIM como parte de ambientes de

propósito geral. A arquitetura PIM apresentada nesta tese permite aumentar o desempenho

e a eficiência energética dos sistemas de propósito geral através da adoção da Unidade

Vetorial Reconfigurável (RVU), enquanto provê o compilador para processamento-em-

memória (PRIMO), um conjunto de ferramentas que automaticamente explora os recursos

deponíveis no PIM. O PIM RVU pode superar os processadores de propósito geral atuais

atingindo teóricos 2 TFLOPS. O PIM proposto também é capaz de alcançar alta eficiência

em termos de potência atingindo 232 GFLOPS/Watt.

Palavras-chave: Processamento-em-Memória, memória 3D, Eficiência Energética, De-

sempenho.
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1 INTRODUCTION

Over the last decade, despite progress in processor architectures, the performance of

General Purpose Processors (GPPs) has been mainly leveraged by technological enhance-

ments (INTEL, 2014; Moore, 2006; MÄRTIN, 2014). These advancements have allowed

the increase in the number of active transistors per area, which enabled processors with

many resources, sophisticated functional units, capacity for vector processing, and wider

buses. However, the recent minor improvements presented by traditional architectures are

insufficient to reduce the dependency on technology for further performance improvements.

Hence, the performance of the latest computer systems is scaling in a reduced step due

to today’s manufacturing process, the physical limits of its components and materials.

These technological limitations lead to a reduction in the scaling of operating frequency

and density of transistors as the principal means of performance increment. Moreover,

energy efficiency remains a significant challenge since the power consumption cannot be

reduced on the same scale by new technological nodes (ending of both Dennard’s Scaling

and Moore’s Law (DENNARD et al., 1974; SCHALLER, 1997; Moore, 2006; MÄRTIN,

2014)).

Due to the failure of the Dennard’s Scaling, multi-core processors were adopted

to mitigate the inability of increasing the operating frequency due to power dissipation.

However, with the shrinking capacity of the chips being physically limited by inherent

characteristics of the materials used and because of the difficult task of avoiding the so-

called Dark Silicon effect (TAYLOR, 2012), manufacturers started to elaborate and explore

stacking techniques. Thus, 3D stacking emerges as a new frontier in terms of development,

and at the same time, making possible the exploration of techniques hitherto prevented

from being adopted due to the lack of technology (ELLIOTT et al., 1999; GOKHALE;

HOLMES; IOBST, 1995; ZHU et al., 2013; UEYOSHI et al., 2018).

Recently, promoted by 3D-stacked technologies, for the first time logic and massive

memory layers are integrated on the same chip (LEE et al., 2014; Hybrid Memory Cube

Consortium, 2013; Lee et al., 2016). Consequently, Processing-in-Memory (PIM) regains

attention as a credible solution for modern architectures’ disadvantages. The basis of

PIM designs lies in reducing data movement between main memory and processors,

usually performed via complex memory hierarchies, by placing processing units close

to data. Several approaches of PIM are explored in the literature, where academic and

industrial researchers have investigated a wide variety of designs (BOWMAN et al., 1997;
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ELLIOTT et al., 1999; ZHANG et al., 2013; ALVES et al., 2015a; AHN et al., 2015; GAO;

KOZYRAKIS, 2016; DRUMOND et al., 2017), taking advantage of recently available

3D-stacked memories, such as High Bandwidth Memory (HBM) and Hybrid Memory

Cube (HMC). However, although several specialized PIM designs have been studied , the

requirements dictated by modern applications and the demand for efficient general-purpose

computer systems claim for a design able to efficiently exploit the available hardware

resources.

1.1 Research Goals and Contributions

The objective set out for this thesis is the adoption of PIM approach to improve

general-purpose systems efficiency. The work here presented focuses on the system aspect

of designing a suitable PIM that is capable of the aforementioned, which involves the hard-

ware (architectural) and software (programmability) environments. Some of the questions

raised and answered by this work include:

• What are the most critical drawbacks of today’s computer architectures?

• What are the most critical challenges for adopting PIM in a general-purpose scenario?

• Which PIM design can improve overall performance and efficiency?

Therefore, in this thesis we tackle the most critical drawbacks of current computer ar-

chitectures. Our studies consider established problems, such as memory wall (WULF;

MCKEE, 1995; SAULSBURY; PONG; NOWATZYK, 1996) and technological limitations

(SCHALLER, 1997; TENACE et al., 2016; TENACE et al., 2017), and also concern

area, power, and energy budgets that limit the performance improvement of traditional

architectures. In order to overcome these shortcomings, this thesis proposes the adoption

of a PIM architecture capable of improving the efficiency of computational systems taking

advantage of 3D stacking technologies.

This work enumerates and presents solutions to the most critical challenges to the

adoption of PIM as part of a general-purpose environment. Therefore, this thesis proposes a

PIM design aiming at improving a wide range of applications, seeking to approach general-

purpose systems, complementing traditional architectures by improving performance and

energy efficiency. Moreover, a non-orthodox PIM architecture is presented, demanding

original solutions in essential points such as host-accelerator link, programmability, and
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code generation.

The main contributions of this work can be summarized as follow:

• General-Purpose Design- the proposed PIM is integrated into the current general-

purpose system, allowing the automatic exploitation of PIM capabilities.

• High Performance- the presented design is able to take advantage of 3D-stacked

technology to improve processing capacity, allowing processing power in the order

of TFLOPS.

• Area Efficiency- the implemented PIM intends to allocate the maximum amount of

area for processing logic, avoiding complex mechanisms.

• Energy Efficiency- modern designs must concern about energy consumption in

order to allow its utilization in wider environments. This design focuses on improving

performance while improving energy efficiency.

• Programmability- while concerning about general-purpose design, the PIM design

must concern about programmability, avoiding to burden the programmer with prag-

mas or directives. This way, this work presents a PIM design that is general-purpose

in its programmability by providing automatic code generation and offloading mech-

anisms.

To achieve the main contributions, this thesis presents the Reconfigurable Vector

Unit (RVU) PIM design that is able to take advantage of the internally available bandwidth

of 3D-stacked memories, and also improve overall efficiency. To support a new architecture,

the compiler plays an important role. Hence, Processing-In-Memory cOmpiler (PRIMO)

is elaborated as part of this thesis. The proposed compiler is able to automatically generate

code and to allow the exploitation of the available processing resources with no user

intervention, special libraries or coding skills. To evaluate our design, small kernels (e.g.

vecsum and dot product), and the PolyBench Benchmark Suite (POUCHET, 2012) were

used.

1.2 Thesis Overview

This work is organized as follows. Chapter 2 shows the most common limitations

present in the current general-purpose architecture, Chapter 3 provides a brief background
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on 3D-stacked DRAM memories and PIM devices. Chapter 4 highlights the most important

challenges to adopt PIM in a general-purpose environment, while discusses how the most

prominent designs present in literature face the same challenges.

Chapter 5 details the proposed architecture, named RVU. This chapter also presents

a comparison against the related work in terms of theoretical performance and energy

efficiency. Chapter 6 completes the architecture design showing mechanisms to allow the

adoption of the RVU as part of general-purpose systems. Chapter 7 provides a detailed

explanation of an important contribution that facilitates the adoption of RVU. This chapter

presents PRIMO, a fully automatic compiler that helps on exploit the resources of RVU.

Finally, in Chapter 8 we evaluate our design, first separately hardware and software, and

then jointly comparing against a GPP. Appendix A presents the list of publications and

contributions during this work. Appendixes B, C, and D present additional information of

this thesis.
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2 LIMITATIONS OF CURRENT ARCHITECTURES

The main restriction faced by modern processor’s architecture is the conservation

of the Von Neumann design. The dependency on this architecture results on a set of

well-known problems (e.g., inefficient data movement (MCGRAW-HILL, 2003)), and

leads to a set of modern dilemmas (e.g., memory bandwidth due to excess of memory

operations (SHAAFIEE; LOGESWARAN; SEDDON, 2017)). Furthermore, different

handicaps have limited the increase in the performance and energy efficiency of traditional

computer systems.

• Technological Limitations

Although operating frequency, power dissipation, energy consumption, and area

budget are a function of the project, technology is the most crucial qualifier in

modern designs. As examples of today’s technological limitations, a rough analysis

can be made by summarizing the current potential of modern processors. Table 2.1

shows the evolution of Intel GPPs in the last decade, where it is possible to notice the

direct performance dependency on the technology node. With the increment of tran-

sistors density, performance (FLOPS/Cycle) can be improved by increasing internal

buses, registers widths, and the number of Functional Units (FUs), allowing more

parallelism. However, in case of operating frequency, it has barely increased in 10

years due to the end of Dennard’s Scaling. The same observation is valid for power

efficiency, which is illustrated by the GFLOPS/Watt column in Table 2.1. Similar

to performance, power efficiency is proportional to technology, which reveals the

minor impact provided by modern architecture improvements. While the technology

scales area by 16×, the power efficiency scales by only 2×, or directly proportional

to the technology node.

Table 2.1: Intel GPP Max Theoretical Performance and Efficiency per Core
µArchitecture Year Frequency Technology FLOPS/cycle GFLOPS/Watt

Nehalem 2008 3.33GHz 45nm 8 1.62
Sandybridge 2011 3.6GHz 32nm 16 3.54

SkylakeX 2018 3.8GHz 14nm 32a 5.9

a Considering the Intel Extreme version with two AVX-512 units

Source: (INTEL, 2008; INTEL, 2013; INTEL, 2018c)
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• Memory Wall

Since 1990’s the memory wall problem has been announced as a relevant problem on

computer architectures (WULF; MCKEE, 1995). However, due to Moore’s Law on

processing manufacturing technologies, the slow advancements of efficient memory

technology and manufacturing process have been overshadowed. As smaller tran-

sistors paved the way for ever-faster processing units, the same could not be done

for memory devices, which have different trade-offs and designs points (WULF;

MCKEE, 1995; SAULSBURY; PONG; NOWATZYK, 1996; ZHANG et al., 2013).

Although different approaches have been presented (ELLIOTT et al., 1999; ZHANG

et al., 2013; WULF; MCKEE, 1995), the most prominent attempt to mitigate this

ever-increasing performance gap targets the increase of the memory hierarchy by

improving cache memories. Cache memories are based on fast memory designs;

however, with the fall of Moore’s Law and Dennard’s Scaling, cache memory is no

longer a viable solution (SANTOS et al., 2016; SHAHAB et al., 2018). Also, cache

memories demand more resources as area and power, and their latencies increase

with their sizes, which leads to the same memory wall behavior (SANTOS et al.,

2016; SHAHAB et al., 2018).

• Bandwidth Wall

Current processors require access to large amounts of data due to the increasing num-

ber of cores and the trend towards vector instructions (NEON, VIS, SSE, AVX-512,

among others) (ARM, 2019; TREMBLAY et al., 1996; INTEL, 2017), which result

in high pressure on the memory system. From the main memory side, to deliver data

on an acceptable fashion and enable the usage of many processor cores and their

vector functional units, the industry started to provide multiple channels and memory

controllers, introducing parallelism at memory modules level, and therefore lending

higher bandwidths (RAHMAN, 2013). Nonetheless, the increase in the number of

memory channels must be thoroughly considered, since the resources consumed

by multiple data buses and sophisticated memory controllers can conflict with the

area, power, and energy constraints. Modern memories take advantage of emerging

3D stacking technologies to provide higher bandwidth efficiency while requiring

fewer complexities from the processor side. However, by improving main mem-

ory bandwidth, the weakness previously noticed is shifted closer to the processor,
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Table 2.2: Intel 8 core GPP Max Theoretical Performance and Bandwidth.
µArchitecture Year LLC Main Memory-4 channels Throughput

Nehalem 2008 213GB/s 42GB/s 425GB/s
Sandybridge 2011 230GB/s 57GB/s 920GB/s

SkylakeX 2018 245GB/s 85GB/s 1,944GB/s

Source: (INTEL, 2008; INTEL, 2013; INTEL, 2018c)

particularly the Last-Level Cache (LLC) (SANTOS et al., 2016; SHAHAB et al.,

2018). Although in a different level, from the on-chip side, cache memories suffer

the same restrictions of the area, power, and energy constraints. Hence, depending

on applications, cache memories can be the bottleneck on modern designs (SANTOS

et al., 2016; SHAHAB et al., 2018). Also, such constraints hamper the exploitation

of data-level parallelism, restricting the efficiency of more extensive vector instruc-

tions. This restriction can be noticed on modern processors, which implement vector

units capable of processing 64 Bytes of data (INTEL, 2018c). Table 2.2 shows the

evolution of the LLC, main memory, and processing logic requirements in terms of

bandwidth in the past decade. A direct comparison between LLC bandwidth and pro-

cessor cores throughput illustrates the existent performance gap. This performance

gap once between main memory and processor (memory wall), now is shifted close

to processing units, which may be a bottleneck for applications that require large

data sets.

• Unnecessary Data Movement

Cache memories widely exploit the temporal locality characteristic, however many

applications have reduced or even no temporal locality in the most critical parts of

their codes (SANTOS et al., 2016; SHAHAB et al., 2018). The lack of temporal

locality results on continuous access to main memory (contiguous or sparse access),

which resembles a streaming-like behavior. Thus, considering a cache memory

hierarchy, several levels handling misses will harm the performance and energy

efficiency. Although the prefetch mechanisms try to mitigate cache memory misses

by anticipating requests, they are not useful for sparse or irregular stride access

(INTEL, 2018c). Therefore, the computations of streaming-like code snippets are

inefficient, while being transferred from the main memory to processor through

external buses and cache memory hierarchy. In addition to performance impairment,

energy efficiency is also undermined as writing data that will not be reused is harmful.
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• Power Wall and Area

With the end of Dennard’s Scaling, a high density of active transistor actuating at

the maximum operating frequency is no more allowed due to the density of power

dissipation (TAYLOR, 2012). These drawbacks can be witnessed in modern proces-

sors that present physical limitations on exploring large widths in vector functional

and LOAD/STORE units, cache memory lines, and internal register buses (e.g.,

Intel’s Skylake processor cannot efficiently accommodate many vector units (IN-

TEL, 2018c)). The multi-core technique tries to overshadow the aforementioned

difficulties, however multiplying the number of resources also multiplies area and

total power. Consequently, the multi-core approach increases costs and requires com-

plex communication systems to avoid cross-core performance interference due to

contention for shared resources in the memory system (XU; WU; YEW, 2010; ZHU-

RAVLEV; BLAGODUROV; FEDOROVA, 2010; Zhao et al., 2013). Although many

multi-core processors are applied in environments that demand power efficiency,

operating frequencies, number of active cores, and different techniques (e.g., ARM

bigLITTLE (ARM, 2011)) must be adopted to avoid endangering the hardware and

excessive energy consumption. This way, a compromise between taking advantage

of the area and avoiding jeopardizing the available hardware resources is essential to

improve the overall efficiency of the system.

Modern systems usually centralize the execution of applications in sophisticated

units. These sophisticated units, such as Central Processing Units (CPUs) and Graphics

Processing Units (GPUs), typically accommodate several functions aiming at generality,

which leads to the use of area and power budgets in a non-efficient manner. Moreover,

although many specialized units are present, these units mostly comprise similar architec-

tures, and therefore, the limitations as described above. Hence, to allow the exploitation of

high memory bandwidth, and to improve instruction and data-level parallelism capabilities,

it is required a disruptive design in a non-centralized fashion. PIM can take advantage of

the new room provided by the 3D-stacked memories. Thus, PIM can provide the resources

to exploit the available bandwidth on 3D-stacked memories. Also, it can avoid unnecessary

data movement through cache memory hierarchies by processing data where it resides,

which improves overall efficiency.
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3 BACKGROUND

This chapter briefly describes and illustrates the concept of 3D-stacked memories

and the main classes of PIM.

3.1 3D-stacked Memories

3D integrated circuits and 3D-stacked memories have emerged as a feasible solution

to tackle the memory wall problem and the little performance-efficiency improvement

achieved by traditional commodity Dynamic Random Access Memories (DRAMs). By

connecting DRAM dies and logic layer on top of each other using dense Through-Silicon

Via (TSV) (OLMEN et al., 2008), 3D-stacked memories can provide high bandwidth,

low latency, and significant energy-efficiency improvements in comparison to traditional

Double Data Rate (DDR) modules (SANTOS; ALVES; CARRO, 2015; PAWLOWSKI,

2011). The most known examples of 3D-stacking technologies from industry are the

Microns’s HMC (Hybrid Memory Cube Consortium, 2013), AMD/Hynix’s HBM (LEE et

al., 2014), and Tezzaron DiRAM (Tezzaron, 2015).

Figure 3.1 shows an overview of the internal organization of a 3D-stacked DRAM

device. For both HMC (JEDDELOH; KEETH, 2012) and HBM architectures, it consists

of multiple layers of DRAM, each layer containing various banks. A vertical slice of

stacked layers composes a vault, which is connected by an independent TSV bus to a

vault controller (JEDDELOH; KEETH, 2012; Hybrid Memory Cube Consortium, 2013).

Since each vault controller operates its vault memory region independently, it enables

vault-level parallelism similar to independent channel parallelism found in conventional

DRAM modules. In addition to the vault parallelism, the vault controller can share the

TSV bus among the layers via careful scheduling of the requests which enables bank-level

parallelism within a vault (ZHU et al., 2013).

According to the last specification (Hybrid Memory Cube Consortium, 2013), the

HMC module contains either four or eight DRAM dies, and one logic layer stacked and

connected by a TSV. Each memory cube contains 32 vaults and each vault controller

is functionally independent to operate upon 16 memory banks. The available external

bandwidth from all vaults is up to 320 GBps, and it is accessible through multiple serial

links, while internally, the bandwidth can achieve 500 GBps (JEDDELOH; KEETH,

2012). Moreover, the HMC specifies atomic command requests which enable the logic
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Figure 3.1: Layout of a HMC-like device.
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layer to perform read-update-write operations atomically on data using up to 16-byte

operands. All in-band communication across a link is packetized and there is no specific

timing associated with memory requests, since vaults may reorder their internal requests

to optimize bandwidth and reduce average access latency.

3.2 Processing-in-Memory (PIM)

PIM techniques have been studied since early 1960’s, however in the decade of

1990s after the identification of the memory wall problem, the PIM approach emerges as

an important idea to reduce the technological gap between logic and memory (GOKHALE;

HOLMES; IOBST, 1995; BOWMAN et al., 1997; PATTERSON et al., 1997; ELLIOTT et

al., 1999; KANG et al., 1999).

The PIM approach consists on reducing data movement by placing processing units

close to main memory. Figure 3.2 illustrates a possible design of a PIM by placing both

processing logic and DRAM devices on a same Dual In-line Memory Module (DIMM)

Printed Circuit Board (PCB). Although this approach shortens the path between data

and processing units, the technology available in the 1990s was insufficient for its full

integration. Thereby, as shown in Figure 3.2, the amount of data accessed could not be

amplified to increase the bandwidth, since the amount of data obtained from each DRAM

device remains unchanged. Moreover, at that time the distribution of data along several

DRAM devices (data interleaving) was necessary, which provides parallel access, and

therefore improves bandwidth. Despite PIM designers having proposed to overpass the

classical data interleaving on DIMM (ALVES et al., 2015b; ELLIOTT et al., 1999), this
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Figure 3.2: Typical DRAM module coupled with PIM.
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approach harms performance for host GPPs.

With the advent of 3D-stacked technology, the integration of different manufactur-

ing process allowed the mix of memory cells (analog) and processing units (digital) in the

same chip. Moreover, the 3D-stacked technology allows the elaboration of 3D-stacked

memories aiming at overcoming the typical DIMM design drawbacks. From the PIM

point of view, 3D-stacked memories allow the access to a more suitable amount of data,

overcoming the interleaving issue on classical DIMM devices, as illustrated in Figure 3.3.

Therefore, a new design space originates providing the opportunity for more sophisticated

PIM architectures. Due to this, PIM reemerges with different approaches aiming to take

advantage of the internal memory bandwidth.

The different designs of modern PIMs can be classified into two main classes:

Full Core-based PIM and FU-based PIM.

Figure 3.3: Typical HMC module coupled with PIM.
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3.2.1 Full Processor Core-based PIM

In the Full Processor Core-based PIM, traditional processor cores are intended to

be implemented in memory, which means the implementation of typical pipeline stages

(such as fetch, decode, issue/dispatch, execute, access, and write-back), register file, and

complex data cache memory and Translation Look-aside Buffers (TLBs) hierarchy. In this

class, GPPs and GPUs are commonly adopted (ZHANG et al., 2014; AHN et al., 2015;

NAIR et al., 2015; AHN et al., 2015; DRUMOND et al., 2017).

When using typical processors, PIM can make use of the same programming

environment, maintaining compatibility with traditional tools, compilers, and libraries

(OpenMP, MPI, CUDA) (ZHANG et al., 2014; NAIR et al., 2015). On the other hand, to

maintain the aforementioned compatibility, the implementation of entire cores is required,

which may harm the efficiency purpose presented by the adoption of PIM.

3.2.2 Function Units-based PIM

The Function Units-based PIM (or fixed-function PIM (LOH et al., 2013)) com-

prises only the resources required to execute instructions, accessing or modifying data, or

to compute specific set of operations. Application-specific designs fit this class, such as

specialized designs for computing Neural Networks (NNs) (GAO et al., 2017; OLIVEIRA

et al., 2017; KIM et al., 2016; FARMAHINI-FARAHANI et al., 2014), operations through

complex data structures and graphs (SANTOS et al., 2018; NAI et al., 2017), and con-

figurable devices (GAO; KOZYRAKIS, 2016; SANTOS et al., 2017). FUs or Vector

Processor Units (VPUs) comprising of Floating-Point Units (FPUs), Integer Units (IUs)

and register files are common examples of this type (Hybrid Memory Cube Consortium,

2013; OLIVEIRA et al., 2017; SANTOS et al., 2017; SANTOS et al., 2018). Hence,

by implementing the simplest hardware, area and power budget can be ensured, and all

allocated resources can be used to increase processing power. However, with the adoption

of non-traditional architectures, the challenges fall on different aspects, such as programma-

bility and tools compatibility, code generation and offloading, communication, and data

coherence.
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Table 3.1: Comparison between GPP-based and FU-based PIM Designs.
Typical GPP Based PIM Functional Unit Based PIM

Bandwidth Efficiency Limited due to traditional bus Fully Explored
Area Efficiency Limited due to traditional µArch and memory hierarchy Area populated by functional units and registers
Energy Efficiency Limited due to traditional µArch and memory hierarchy All area and bandwidth is used for processing
Performance GFLOPS TFLOPS
Offloading Type Basic blocks/Functions Instruction Offloading
Code Offloading Programmer efforts (pragmas) automatic via compiler
Scheduling PIM Instances Libraries (OpenMP, MPI, CUDA) automatic via compiler
Programmability Programmer efforts + libraries automatic via compiler

To summarize the benefits, limitations, and challenges of each approach, Table 3.1

lists the main characteristics for GPP-based and FU-based PIM designs. Although both

approaches present pros and cons, it is interesting to notice that focusing on performance

and efficiency, FU-based designs are more suitable for a PIM design. However, also as

summarized in Table 3.1, FU-based PIM approach presents high dependency on compiler

and instruction offloading mechanisms, which demand innovative solutions.
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4 CHALLENGES FOR ADOPTING PIM AND STATE-OF-THE-ART

The adoption of Processing-in-Memory (PIM) demands solutions for different

problems, hence several challenges can be highlighted depending on PIM design, memory

architecture, and the application-specific requirements (such as real-time and energy

consumption). However, this proposal deals with the exploitation of the inherent 3D-

stacked memory benefits, while considering the constraints of their designs regardless

of the application requirements. Therefore this chapter focuses on common challenges

that must be faced to allow the adoption of a PIM design able to tackle the issues as

mentioned earlier in Chapter 2, to take advantage of the internal 3D-stacked memory

bandwidth, and to be applied in general purpose environments. Also, this chapter focuses

on maximum theoretical capabilities of the most prominent state-of-the-art works presented

in the literature, hence allowing a comparison along the most important topics.

4.1 Bandwidth

The possibility of exploiting the internally available bandwidth present on 3D-

stacked memories is the primary reason for placing processing logic within the memory

device. Considering the typical 3D-stacked memory parameters, Hybrid Memory Cube

(HMC) and High Bandwidth Memory (HBM) can deliver at least 320 GB/s of external

bandwidth (Hybrid Memory Cube Consortium, 2013; LEE et al., 2014), which represents

the lower bound of the internally available bandwidth in these devices. As presented in

Chapter 3, the bandwidth delivered by these memories is distributed along memory vaults,

which means that in a 32-vault configuration each vault can deliver at least 10GB/s.

In this way, the first goal must be to exploit the offered bandwidth in its entirety,

which requires that the chosen processing logic must be able to take advantage of the

available resources either at once (320GB/s) or per vault (32x 10GB/s). For this, the

adoption of traditional processor cores (or Full-processor based PIM - Section 3.2) can

be considered as presented in several works (PUGSLEY et al., 2014; AHN et al., 2015;

AZARKHISH et al., 2016; DRUMOND et al., 2017).

To analyze the adoption of typical GPPs as PIM, one must consider the capacity of

such processors of making use of the available resources. In traditional GPPs, although

the performance is commonly measured from the processing logic’s point of view, the

Last-Level Cache (LLC) is the default data entry point, which makes it the main bottleneck
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Figure 4.1: Maximum Theoretical Bandwidth on Typical General Purpose Processors
(GPPs).
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in terms of on-chip bandwidth. To illustrate this behavior, Figure 4.1 displays the maximum

theoretical bandwidth supported by the LLC of a set of modern GPPs regardless of main

memory performance and the number of memory channels available. In this analysis,

each processor core can request data from an individual LLC bank, hence saturating the

available bandwidth. This scenario represents the highest ideal performance possible

that can be delivered by the LLC, and therefore the highest acceptable data throughput

arriving from the main memory, although in practice the highest bandwidth achieved is

considerably less (EXANODE, 2017; MCINTOSH-SMITH et al., 2019).

The presented set of GPPs considers µarchitectures from different generations and

also ranging from low-power systems to high-end workstations. Figure 4.1 shows that

depending on the processor’s nature, it is possible to achieve the target bandwidth (320GB/s

- red dashed-line) with small number of cores or less operating frequency. However, it

is possible to notice that even a high-end processor’s single core version (i.e., Skylake-

3.6GHz) is not able to achieve the available memory bandwidth, requiring at least eight

processor cores requesting data from eight independent LLC banks to match the available

3D-stacked memory bandwidth. Although Figure 4.1 shows linear scaling with regard

to operating frequency and number of cores, it is important to notice that the impact of

operating frequency is more significant than the number of cores. In Figure 4.1, the number

of LLC banks is extrapolated in order to exemplify the behavior of several independent

cores, which is currently only adopted by the Intel processors of the Skylake family.

Several dedicated PIM designs are presented in the literature, such as neural

network (OLIVEIRA et al., 2017; KIM et al., 2016), and graph traversing (NAI et al.,
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Table 4.1: Per Core Max Theoretical Bandwidth Supported by different PIM designs.
µArchitecture #Cores

per
Vault

Per Core Max
Theoretical

BW

Max Theoretical
BW Normalized to

32 vaults
(PUGSLEY et al., 2014) ARM A5@1GHz 1 4GB/s 128GB/s
(AHN et al., 2015) ARM A5+FPU@2GHz 1 8GB/s 256GB/s
(AZARKHISH et al., 2016) ARM A15@1GHz 1/32 6GB/s 192GB/s
(DRUMOND et al., 2017) ARM A35+SIMD1024@1GHz 1 8GB/s 256GB/s
(SCRBAK et al., 2017) ARM A5@1.4GHz 1 5.6GB/s 180GB/s
(ZHANG et al., 2014) AMD-CU@650MHz 12/32 0.75GB/s 500GB/s
(NAIR et al., 2015) IBM-AMC VLIW@1.25GHz 1 10GB/s 320GB/s
(GAO; KOZYRAKIS, 2016) CGRA HRL@200MHz 1/8 408GB/s 1632GB/s
(KERSEY; KIM; YALAMANCHILI, 2017) Harmonica SIMT@650MHz 1 12GB/s 384GB/s

2017; SANTOS et al., 2018; HSIEH et al., 2016b), however, this work focuses on designs

able to compute general-purpose applications. Following this idea, Table 4.1 summarizes

the most prominent PIM designs in the literature that claim general-purpose capabilities,

presenting their proposed setup, architecture, number of units or cores to be implemented

within the 3D-stacked memory logic layer, and the maximum theoretical bandwidth per

memory vault. Moreover, the rightmost column presents the total bandwidth considering a

extrapolation of 1 core per vault in a system with 32 memory vaults.

As presented in Table 4.1, the ARM processor is the most commonly used com-

mercial processor for PIM implementation (PUGSLEY et al., 2014; AHN et al., 2015;

AZARKHISH et al., 2016; DRUMOND et al., 2017; SCRBAK et al., 2017), while the most

used organization intends to use one processor core per memory vault, in a multi-processor

fashion. The different sorts of ARM processors vary in terms of cache hierarchy (ARM

A5 comprises only one cache level, while ARM A15 and A35 comprise two cache levels),

last-level cache external bus width (4 Bytes to 16 Bytes), and latency for writing data on

LLC (4 to 20cycles) (ARM, 2016b; ARM, 2012; ARM, 2016a). Moreover, additional

resources can be implemented, such as NEON Single Instruction Multiple Data (SIMD)

instruction set capabilities (AHN et al., 2015), and wider and customized SIMD units

(DRUMOND et al., 2017). Similarly, Table 4.1 shows a PIM design that implements

a customized Very-Long Instruction World (VLIW) processor core (NAIR et al., 2015)

comprised of a LOAD/STORE unit able to access 32 Bytes of data per operation, an

instruction and a data cache memories. In this design, each memory vault accommodates a

VLIW processor core and its cache memories, and it claims 320GB/s of bandwidth.

On the other hand, Table 4.1 also presents works that adopt different architectures

or provide custom hardware. The adoption of Graphics Processing Unit (GPU) Computing

Units (ZHANG et al., 2014) seeking for a General-Purpose Graphics Processing Unit

(GPGPU) environment can achieve a theoretical bandwidth of 500GB/s. In this case,

12 computer units are distributed along with the logic layer, on a GPGPU style. Each
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Table 4.2: Ajusted Number of Cores to Match Bandwidth. Normalized to 32 vaults

Architecture
Original
#Cores

Original
Total

Bandwidth

Extended
#Cores

Extended
Total

Bandwidth
(PUGSLEY et al., 2014) ARM A5@1GHz 32 128 80 320
(AHN et al., 2015) ARM A5+FPU@2GHz 32 256 40 320
(AZARKHISH et al., 2016) ARM A15@1GHz 1 8 40 320
(DRUMOND et al., 2017) ARM A35+SIMD1024@1GHz 32 256 40 320
(SCRBAK et al., 2017) ARM A5@1.4GHz 32 180 58 324.8
(ZHANG et al., 2014) AMD-CU@650MHz 12 500 12 500
(NAIR et al., 2015) IBM-AMC VLIW@1.25GHz 32 320 32 320
(GAO; KOZYRAKIS, 2016) CGRA HRL@200MHz 1 408 4 1632
(KERSEY; KIM; YALAMANCHILI, 2017) Harmonica SIMT@650MHz 32 384 32 384

computer unit comprises a set of SIMD units, a register file, and a private cache memory.

Similarly, a set of Single Instruction Multiple Thread (SIMT) devices (KERSEY; KIM;

YALAMANCHILI, 2017) distributed on logic layer can achieve 384GB/s of bandwidth.

Aiming at reconfiguration, a different approach integrates a Coarse-Grain Reconfigurable

Array (CGRA) within the logic layer of the 3D-stacked memory (GAO; KOZYRAKIS,

2016) to match the requirements of applications and therefore trying to achieve the highest

memory bandwidth.

To match the available memory bandwidth, Table 4.2 presents an adjustment in the

number of cores for each design aiming at 320GB/s, and also it is possible to compare

the original number of cores against the number of cores required to achieve the target

bandwidth. For low-end processors, such as ARM-A5, it is necessary a number of 80 cores

to take advantage of the available bandwidth. On the other hand, for designs that can

massively access data, like GPU and SIMT units (ZHANG et al., 2014; KERSEY; KIM;

YALAMANCHILI, 2017), CGRAs (GAO; KOZYRAKIS, 2016), and larger SIMD-capable

cores (NAIR et al., 2015) the provided number of cores are enough to match the bandwidth.

4.2 Area and Power Budget

Area and power budgets are variables that depend on design constraints, application

scenario, and technology node, however, the embedded nature of the PIM approach presents

inherent limitations. Due to the environment where the PIM design is inserted (3D-stacked

memories), these limitations are given by the 3D-stacked device’s logic layer, which in

turn is constrained by the Dynamic Random Access Memory (DRAM) layers.

One of the main challenges of manufacturing 3D-stacked systems lies on thermal

dissipation since each layer irradiates its heat to the neighbor layers. In the case of

DRAM cell memories, this challenge is accentuated since working outside of the operating
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temperature range might jeopardize data (ECKERT; JAYASENA; LOH, 2014; GAO;

KOZYRAKIS, 2016).

Several works consider as power budget the total power consumed by the HMC

first generation (AHN et al., 2015),(GAO; KOZYRAKIS, 2016),(SCRBAK et al., 2017;

ZHANG et al., 2014), which comprises 1GB distributed along 4 DRAM layers and

16 vaults using technology node of 50nm, and 16 memory controllers within the logic layer

(one per vault) manufactured with technology of 90nm (JEDDELOH; KEETH, 2012).

In this configuration, the reported power consumption is 11W (PAWLOWSKI, 2011).

Although these works consider 11W for the logic layer using 90nm technology node, the

PIMs presented in the literature are implemented considering technologies ranging from

14nm to 40nm.

In a 3D-stacked PIM conception, the implementation of the PIM design within

3D-stacked memory needs to consider the space sharing between the existing memory

controller and the PIM itself (Hybrid Memory Cube Consortium, 2013), hence, the PIM

design is constrained by the available area and power budget. Considering the HMC first

generation (JEDDELOH; KEETH, 2012), the design comprising of 1GB DRAM cells

per layer distributed along 16 vaults takes 68mm2 using 50nm of technological process.

Hence, theoretically up to 68mm2 of circuit logic can be supported by this layer. Moreover,

other studies also found area results ranging from 3.5 to 4.4mm2 (ECKERT; JAYASENA;

LOH, 2014; GAO et al., 2017) per vault for 1GB DRAM cells and 16 vaults.

As mentioned before in Section 4.1, to achieve high bandwidth the HMC requires

32 vaults in order to increase the parallelism. Supported by the CACTI-3D Tool (CHEN

et al., 2012), it is possible to estimate the area of an 1GB DRAM layer for a 3D-stacked

memory comprising of a total of 8GB, distributed along 8 layers and 32 vaults, which

results in 144mm2, or 4.5mm2 per vault for a technology node of 28nm.

Firstly, to analyze the state-of-the-art works in terms of area and power consumption,

and to equalize the comparison between different designs and technology nodes, the area

and power for all designs are scaled to 28nm (STILLMAKER; BAAS, 2017; SHAHIDI,

2019), while the power budget for the PIM is limited to 8.5w also considering a technology

node of 28nm (ECKERT; JAYASENA; LOH, 2014).To allow trustworthy comparisons,

Table 4.3 presents the area and power consumption normalized to 28nm. Also, all analyzed

works are extrapolated to 32 vaults aiming at 320GB/s bandwidth.

It is expected that the presented designs fulfill the area (144mm2) and power (8.5W)

budgets. However, as shown in Table 4.3, it is possible to notice that the state-of-the-art
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Table 4.3: Area and Power Normalized to 28nm and extrapolated to 32 vaults

Architecture #Cores Bandwidth
(GB/s)

Total
Area

(mm2)

Total
Power
(W)

(PUGSLEY et al., 2014) ARM A5@1GHz 32 128 12.5 2.24
(AHN et al., 2015) ARM A5+FPU@2GHz 32 256 21.8 10.2
(AZARKHISH et al., 2016) ARM A15@1GHz 1 8 132.2 1.2
(DRUMOND et al., 2017) ARM A35+SIMD1024@1GHz 32 256 57.6 8.6
(SCRBAK et al., 2017) ARM A5@1.4GHz 32 180 13.3 3.6
(ZHANG et al., 2014) AMD-CU@650MHz 12 500 245 35
(NAIR et al., 2015) IBM-AMC VLIW@1.25GHz 32 320 102.4 19.9
(GAO; KOZYRAKIS, 2016) CGRA HRL@200MHz 4 1632 74.3 12.4
(KERSEY; KIM; YALAMANCHILI, 2017) Harmonica SIMT@650MHz 32 384 167.25 15

works that can achieve a bandwidth of 320GB/s exceed the budget limits. On the other

hand, the works that comply with these limits are not able to achieve 320GB/s, even when

their number of cores are extrapolated to 32 instances (1 per vault).

4.3 Processing Power

Although the primary motivation for adopting PIM is the reduction of unnecessary

data movement, and thus reducing energy consumption, performance, in this case, becomes

an important variable. To achieve overall efficiency, when replacing the host processor with

the PIM accelerator, the performance should not be jeopardized. However, as the power

budget is constrained due to the 3D-stacked design limitations, as presented in Section 4.2,

the challenge remains on allowing high performance with low power dissipation.

Table 4.4 shows the maximum theoretical processing power delivered by the related

works. Due to the inherent limitations of some designs and to normalize the comparisons,

the performances are presented in Single Precision Floaing-Point Operations per Second

(SP-FLOPS). Additionally, all designs are extrapolated to 32 vaults. Moreover, although in

this analysis it is not considered the technical standard for floating-point representation, it

is important to highlight that ARM Vector Floating-Point Units (FPUs) are not IEEE-754

compliant, which implies several general-purpose PIM designs presented in the literature.

Furthermore, the work that presents the highest theoretical performance listed in the

Table 4.4 (DRUMOND et al., 2017) implements a fixed-point SIMD unit, which must be

considered as a significant limitation.

As previously mentioned, when replacing the host processor with PIM, it is interest-

ing that performance is maintained. Therefore, it is important to observe that the maximum

theoretical performance presented by a typical General Purpose Processor (GPP) can

achieve up to 140 GFLOPS at 4.5GHz for single-thread application, and up to 1.9 TFLOPS
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Table 4.4: Maximum Theoretical Performance (SP-FLOPS normalized to 32 vaults

Architecture #Cores
Per Core

SP GFLOPS
Total

SP GFLOPS
(PUGSLEY et al., 2014) ARM A5@1GHz 32 1 32
(AHN et al., 2015) ARM A5+FPU@2GHz 32 4 128
(AZARKHISH et al., 2016) ARM A15@1GHz 1 8 8
(DRUMOND et al., 2017) ARM A35+SIMD1024@1GHza 32 32 1024
(SCRBAK et al., 2017) ARM A5@1.4GHz 32 1.4 44.8
(ZHANG et al., 2014) AMD-CU@650MHz 12 41.6 499.2
(NAIR et al., 2015) IBM-AMC VLIW@1.25GHz 32 10 320
(GAO; KOZYRAKIS, 2016) CGRA HRL@200MHz 4 32 128
(KERSEY; KIM; YALAMANCHILI, 2017) Harmonica SIMT@650MHz 32 10.4 332.8

a This work implements fixed-point unit

for multi-thread applications (i.e., Intel i9-9980XE (INTEL, 2018b)). On the other hand,

when considering the adoption of a typical GPU in a General-Purpose Graphics Processing

Unit (GPGPU) fashion, it is possible to achieve a theoretical performance of 14 TFLOPS

(i.e., Nvidia Tesla V100 (NVIDIA, 2018)). Table 4.4 shows that the state-of-the-art works

can achieve the maximum theoretical performance of 499.2 GFLOPS when implement-

ing 12 GPU core units distributed along 32 memory vaults (ZHANG et al., 2014), and

1024 GFLOPS when 32 cores ARM A35 coupled with a customized vector unit running

at 1GHz are implemented (DRUMOND et al., 2017). Considering the implementation of

32 traditional X86 GPP cores, 32×140 GFLOPS can be achieved, resulting in a theoretical

performance of 4.4 TFLOPS, which means that the cited PIM design can delivery 4× less

processing power.

Although several PIM designs presented in the literature claim performance in the

order of TFLOPS, these are application-specific implementations, therefore they are not

suitable for general purpose applications.

4.4 Code Offloading and Virtual Memory Management

The PIM device needs to properly receive commands or instructions to perform

to achieve high performance and enable exploitation of the internally available memory

bandwidth. Those PIM systems that implement classical processing cores can benefit from

conventional multi-core software mechanisms depending on libraries (and more processing

efforts) to allow synchronization and communication between different cores, such as

Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) (NAIR et al.,

2015; AHN et al., 2015; AZARKHISH et al., 2016; PUGSLEY et al., 2014). However,

these designs cannot achieve high performance, as presented in Section 4.3, which demands
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new approaches.

Two main ways of performing non-classical PIM code offloading are highlighted

in the literature: fine-grain offloading and coarse-grain offloading.

In the former way, PIM instructions are seen as individual operations, and issued

one by one to the PIM logic from the host processor (AHN et al., 2015; LEE; SIM; KIM,

2015; NAI et al., 2017). Similarly to on-chip co-processors, this approach is commonly

adopted for application-specific PIM designs, such as complex data structures and graphs

traversing (SANTOS et al., 2018; NAI et al., 2017), and neural network accelerators

(OLIVEIRA et al., 2017; KIM et al., 2016). In this case, specific instructions are triggered

from host processor to PIM. These instructions can be explicitly inferred directly in the code

during programming (AHN et al., 2015; SANTOS et al., 2018), or can be automatically

generated via compiler (SANTOS et al., 2017).

In the coarse-grain instruction offloading approach, an application can be seen as

having an entire or partial PIM instruction kernel as presented in (AKIN; FRANCHETTI;

HOE, 2015; HSIEH et al., 2016a). Similar to Compute Unified Device Architecture

(CUDA) and OpenMP code annotation idea, the coarse-grain approaches have portions

of code that should execute as PIM instructions surrounded with macros (like PIM-begin

and PIM-end as seen in (BOROUMAND et al., 2016; HSIEH et al., 2016a)). From the

host Central Processing Unit (CPU) side, when it fetches a PIM instruction that marks

the beginning of a PIM block, it sends the instruction’s Program Counter (PC) to a free

PIM core, and the assigned core begins to execute starting from this given PC. Later,

when the PIM unit finishes its execution, the CPU is notified about its completion via a

special interruption procedure, reserved memory address polling, or special shared register

(BOROUMAND et al., 2016; HSIEH et al., 2016a; AHN et al., 2015).

These manners of performing PIM instruction offloading provide the illusion that

PIM operations are executed as if they were host processor instructions (AHN et al.,

2015). Considering that PIM instructions also perform load and store operations, these

instructions require some mechanism to perform address translation. The PIM designs

that implement classical processors usually maintain the same original structures of these

processors, which involve the memory hierarchy and the Translation Look-aside Buffer

(TLB) for virtual to physical memory translation (DRUMOND et al., 2017; AZARKHISH

et al., 2016; AHN et al., 2015; AHN et al., 2016; SCRBAK et al., 2017; NAIR et al., 2015;

ZHANG et al., 2014). On the other hand, designs that allow customized PIM units need to

solve the virtual to physical translation demand.
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There are three common ways to treat the virtual to physical translation presented in

the state-of-art PIM architectures. The first one is to keep the same virtual address mapping

scheme used by the host CPU and Operating System (OS). In this case, the host processor

must support the PIM instructions, and a common data-path must be shared between host

and accelerator (AHN et al., 2015). Another approach is to have split addressing spaces

for each PIM unit (HSIEH et al., 2016a), although it demands each PIM instance to have

its virtual address mapping components. Moreover, this approach restricts the range of

addresses for each PIM instance, usually restricting each PIM unit to a memory vault

(AHN et al., 2015). The last way is to utilize only physical addresses on PIM instructions

(BOROUMAND et al., 2016). However, this approach has critical drawbacks due to

memory protection, software compatibility, and address mapping management schemes.

4.5 Data Coherence and Intercommunication

After the offloading handler addresses a given PIM instruction, it may have to per-

form load/store operations, and consequently have memory addresses shared along others

PIM instances or even CPUs. To cope with this data coherence problem, some designs

opt not to offer a solution in hardware, requiring the programmer to explicitly manage

coherence or mark PIM data as non-cacheable (AHN et al., 2015; AKIN; FRANCHETTI;

HOE, 2015; AHN et al., 2015; HSIEH et al., 2016b). Furthermore, additional cache mem-

ories, directories, and monitor hardware are usually adopted (AHN et al., 2015; AKIN;

FRANCHETTI; HOE, 2015).

In other approaches (BOROUMAND et al., 2016), the coherence is kept within

the first data cache level of each PIM core making use of a Modified, Exclusive, Shared,

Invalid (MESI) protocol directory inside the DRAM logic layer. In this solution, coherence

stats are updated only after the PIM kernel’s execution: PIM cores send a message to the

main processor informing it all the accessed data addresses. The main memory directory is

checked, and if there is a conflict, the PIM kernel rolls back its changes, all cache lines

used by the kernel are written back into the main memory, and the PIM device restarts its

execution. This approach needs to store duplicated data, increases area, data movement

and latencies, and reduces the effective bandwidth.

Other methodologies use protocols based on single-block-cache restriction policy

(AHN et al., 2015), which utilizes last level cache tags. To guarantee coherence, special

PIM memory fence instructions (pfence) must surround shared memory regions code. For
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this, a special module maps the read and written addresses by all PIM elements using a

read-write lock mechanism. Also, the special module monitors the cache block access

issuing requests for back-invalidation or back-writeback, for writing and reading PIM

operation, respectively. Although the additional hardware is considered small (AHN et

al., 2015; AHN et al., 2015), the limitations of single-block-cache reduce the overall

performance, while demanding special treatment on the programming side, such as data

alignment and data sharing.

As aforementioned, PIM designs that implement classical CPU within memory

vaults, usually implement caches, TLB and Memory Management Unit (MMU) (PUGS-

LEY et al., 2014; AHN et al., 2015; AZARKHISH et al., 2016; NAIR et al., 2015; GAO et

al., 2017; DRUMOND et al., 2017; ZHANG et al., 2014). However, in these cases, the

application, library, or OS must handle the cache memory coherence. Alternatively, some

designs try to manage the cache memory in a different way (HSIEH et al., 2016a). In this

case, cache coherence is maintained by a three-step protocol: The Streaming Machine (SM)

that requested the instruction offloading pushes all memory update traffic from itself to

memory before it sends the offloading request. Second, the memory stack SM invalidates

its private data cache. Third, memory stack SM sends all its modified data cache lines to

the SM GPU that subsequently gets the latest version of data from memory.

Another important issue presented by implementing PIM on multiple vaults sce-

nario is the communication between the different instances of the processing units. Multi-

core processors can take advantage of the shared LLC to provide fast (i.e., 40~50 cycles)

communication between the on-chip cores. However, when disposed along several vaults,

the PIM units are seen as isolated logic units, which means that the communication occurs

via main memory addresses sharing (i.e., 60~150 cycles). Besides that, designs that restrict

the PIM units to their own memory vaults isolate logic and memory spaces, which totally

avoids communications between different logic units and memory vaults (AHN et al.,

2015). In both cases, performance and energy efficiency are harmed due to the necessity

of either using main memory as shared space or not being able to share data locally.

4.6 Programmability

Several PIM designs adopt classical processors, hence the traditional software stack

and libraries (e.g. OpenMP, MPI, CUDA) can be used for communication, such as task

scheduling, synchronism, and data sharing (PUGSLEY et al., 2014; AHN et al., 2015;
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AZARKHISH et al., 2016; NAIR et al., 2015; GAO et al., 2017; DRUMOND et al., 2017;

ZHANG et al., 2014). However, considering the typical PIM implementation comprising

up to 32 full-core processors (PUGSLEY et al., 2014; AHN et al., 2015; AZARKHISH et

al., 2016; SCRBAK et al., 2017; NAIR et al., 2015), the efforts for programming all cores

and to efficiently exploit the available resources are not trivial. Moreover, considering the

limitations of each implementation, these efforts easily burden the programmer requiring

specific code annotations, pragmas, and manually inferring instructions via intrinsics

(AHN et al., 2016; ZHANG et al., 2014; NAIR et al., 2015).

Despite the existence of significant work on PIM architecture research, the code

generation for these systems in a automatic manner is an important and open topic. To

automatically generate code for PIM three main points must be tackled: the offloading of

the instructions, the efficient hardware resources exploitation, and the programmability

itself. The offloading of the instructions must be able to decide whether a code should

be executed in the host processor or when to migrate a portion of code and its respective

instructions to execute in the PIM logic layer. To maximize the performance and energy

improvements obtained by the PIM, the generated code must be able to exploit the available

hardware efficiently. Respecting to programmability for PIM, all programmer interventions

such as code annotation and pragmas or the usage of special libraries are not desired and

must be avoided not to disrupt the software development process. In other words, it

is desirable that the use of the PIM be transparent to the user, leaving only the most

experienced programmer to adopt specific code directives and annotations.

Specifically for offloading decisions, (HADIDI et al., 2017) presents an offloading

technique for PIM. However, in (HADIDI et al., 2017), the offload decisions are taken

offline in a non-automatic way due to its necessity of cache profiling and trace analysis.

Similarly, (HSIEH et al., 2016a) introduces a compile-time offloading system candidate

for a PIM. Nonetheless, in (HSIEH et al., 2016a) the programmer is required to insert code

annotations in the portions of code that have potential to be executed in the PIM device,

hurting the programmability issue. Concerning hardware resources allocation, (AHN et

al., 2016), and (XU et al., 2018) propose compiler techniques for PIM architectures, but

explicit code annotations are requested for mapping the PIM units that will execute the

code.
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4.7 Overall Efficiency

This section summarizes the efficiency of the state-of-the-art works, and also recalls

the capabilities of the most common commercial general purpose processors. The chosen

metrics relate processing logic performance (SP-FLOPS), local bandwidth (GBps), power

(W), and area (mm2).

When targeting an efficient system, the main goal is to match the processing

power and the ability of extracting high bandwidth from the memory system with area

and power consumption budget. Figure 4.2 shows the efficiency in terms of area for the

selected related works. It is possible to observe that the designs are either able to extract

high performance or to extract high bandwidth per area, however to achieve high results

on both metrics these designs fail. It is possible to notice the design that presents the

highest efficiency bandwidth per area (GBps/mm2) (GAO; KOZYRAKIS, 2016) also

presents poor efficiency in terms of processing power per area (GFLOPS/mm2). On the

other hand, high operating frequency processors added of large SIMD units, such as the

customized ARM-A35 (DRUMOND et al., 2017) and the Intel i9-9980XE, present the

highest processing power efficiency, but reduced efficiency for exploiting the available

main memory bandwidth.

Similarly, power efficiency is shown in Figure 4.3. For this metric, the recon-

figurable system (GAO; KOZYRAKIS, 2016) excels as the most efficient in terms of

bandwidth exploitation due to its parallel capabilities on memory access. In terms of per-

formance per Watt, the customized low-power, in-order super-scalar processor ARM-A35

is able to outstanding in terms of efficiency. It is important to notice that the worst result

Figure 4.2: Area-efficiency for Bandwidth and Processing Performance on state-of-the-art
PIMs
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Figure 4.3: Power-efficiency for Bandwidth and Processing Performance on
state-of-the-art PIMs
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is presented by the typical GPP Intel i9-9980XE. Moreover, the worst overall efficiency

results are achieved by the GPU (ZHANG et al., 2014), SIMT (KERSEY; KIM; YALA-

MANCHILI, 2017), and out-of-order ARM A15 (AZARKHISH et al., 2016), and X86

processors (INTEL, 2018b).
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5 THE RECONFIGURABLE VECTOR UNIT

Although many PIM approaches are presented in literature implementing traditional

general-purpose processors, GPUs, Field-Programmable Gate Arrays (FPGAs), CGRAs,

or custom designs (Chapter 4), the related work fails to provide a complete design able to

achieve the demanded efficiency.

This thesis proposes a PIM architecture, which aims to mitigate the memory wall

problem, and to improve overall efficiency of the general-purpose systems by extracting

maximum performance within the determined area and power budgets. Moreover, the

proposed design intends to be transparent to the user, while it provides sufficient resources

and strategies to overcome the challenges mentioned in Chapter 4, tackling hardware and

software issues. In order to match these criteria, the next sections describe the proposed

design.

5.1 PIM Organization

The clearest way to tackle the memory wall problem is to efficiently exploit the

internally available memory bandwidth by avoiding the current bottlenecks, such as narrow

buses and external communication latencies. In the case of typical DRAM memories,

fully accessing the memory row buffer is an efficient way to seize the available resources,

instead of accessing traditional cache lines (64 Bytes). Considering modern 3D-stacked

memories, such as HMC, HBM, and WideIO, each module is partitioned into memory

vaults, and in case of HMC, a vault can deliver up to 256 Bytes (row buffer) per access

(Chapter 3). Additionally, each memory vault comprises 16 banks that can be accessed in a

pipeline fashion (Hybrid Memory Cube Consortium, 2013). Hence, for a memory module

comprising 32 memory vaults, 32 × 256 Bytes (8192 Bytes) can be accessed in parallel,

and theoretically, a sustained throughput of 8192 Bytes per memory cycle can be achieved.

Considering the characteristics as mentioned above, and the fact that many applica-

tions may benefit from large memory bandwidth (i.e., streaming and low-temporal locality

applications), the proposed architecture must be able to access and handle a massive

amount of data. Accordingly, by distributing PIM units along the available memory vaults

it is possible to provide resources to efficiently access the entire internal bandwidth, either

individually (in case of applications that demand data from one memory vault - up to

256 Bytes) or jointly by accessing all memory vaults at once (8192 Bytes).
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Figure 5.1: Overview of the proposed PIM Distributed Along Memory Vaults.
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Considering the commercial 3D-stacked memories, the HMC module is the most

suitable device for integrating PIM logic due to its logic layer, high bandwidth, and reduced

energy consumption (JEDDELOH; KEETH, 2012). Therefore, this work is based on the

HMC design, and Figure 5.1 illustrates the distribution of PIM units in the HMC logic

layer. The proposed PIM unit must be able to consume the data accessed at the same rate

as it is delivered, in order to take advantage of the available bandwidth.

5.2 Functional Unit-Centric PIM Architecture

To achieve high performance and energy efficiency, our design prioritizes the

maximum use of the available resources (power and area) for functional units and registers,

instead of adopting sophisticated units or implementing complete processors and complex

cache memory hierarchies.

The proposed PIM architecture, named Reconfigurable Vector Unit (RVU) (SAN-

TOS et al., 2017), aims to extract maximum performance according to the area and power

budgets. Each RVU instance is placed within the memory vault controller to fast access

data from/to DRAM banks, as shown in Figure 5.2. Also, Figure 5.2 illustrates the RVU

Decoder and Controller module, which is responsible for checking whether the incoming

packet is a memory command or a PIM instruction. In the case of memory command no
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Figure 5.2: Overview of the proposed PIM integrated to the HMC’s vault controllers.
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special treatments are required and it follows the original memory access path. However,

in case of RVU instruction, the RVU Decoder and Controller module treats each one

according to its type.

If the instruction is a memory access, RVU takes advantage of the native memory

access path. This means that in case of LOAD instruction, it is inserted in the HMC’s Read

Buffer queue. In the HMC, the Read Buffer and the Write Buffer queues work jointly to

avoid unnecessary DRAM banks access, which means that the Read/Write order is checked,

and if possible, Write Buffer serves read requests. Otherwise, the LOAD instruction will

access DRAM banks, and the data will be delivered to the RVU registers, which share

the data-bus with the vault controller. If the RVU instruction is a STORE instruction, the

command is kept in the Write Buffer queue, and the RVU fills it with the data from the

target register, hence the correct order is maintained. RVU does not allow speculative or

out-of-order executions, since it avoids implementing complex mechanisms. Although

RVU can execute instructions in a pipeline fashion, LOAD and STORE instructions may

lock the PIM Finite State Machine (FSM) controller while it waits for memory response.

Moreover, the RVU naturally coexists with the original features without causing any

interference with normal memory operation, including allowing direct access to memory

from other devices.

The Instruction Set Architecture (ISA) supported by the RVU is inspired by the

most recent Intel Advanced Vector Extensions (AVX) ISA, which can operate over 64 Bytes

(AVX-512) with a single instruction. However, each RVU handles data ranging from 1 Byte

to 256 Bytes, hence extending the vector operand size supported by the Intel ISA. Each
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RVU unit is composed of a set of small register banks and a set of simple Functional Units

(FUs). Each register bank has 8 internal registers 64 bits wide, and per unit 32 register

banks are implemented. They are used to store data from memory partitions (working as

input register), or to store temporary computation results (working as an output register).

In order to meet the efficiency policy pursued, we take advantage of the Multi-

Precision FU design (HUANG et al., 2007), which shares components for operating

over different representations. For instance, in a Multi-Precision FU, the same ADDER

component is used in integer operations and in part of the floating-point operations, as

well the MULTIPLIER, and so on. Hence, by sharing components, area and power are

drastically reduced (HUANG et al., 2007; BRUINTJES et al., 2012). This way, each

adopted FU is a Multi-Precision unit that performs logic and arithmetic operations (integer

and floating-point) from 1 Byte to 8 Bytes in a vector fashion, which means that it can

operate two operands of 4 Bytes (v2x32), four operands of 2 Bytes (v4x16), eight operands

of 1 Bytes (v8x8), or one operand of 8 Bytes. The implemented Multi-Precision FU

is inspired by the works presented in (BRUINTJES et al., 2012; MANOLOPOULOS;

REISIS; CHOULIARAS, 2016), and it is illustrated in the Figure 5.3.

The RVU is able to operate over up to 256 Bytes of data. When working together,

Figure 5.3: Overview of the Multi-Precision FU.
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in synchronized way triggered by the same instruction, the FUs and registers can represent

virtual registers up to 256 Bytes wide, which allow accessing all elements of the row buffer

at once, and thus meeting the memory bandwidth requirements. Figure 5.4, illustrates this

composition. Moreover, since RVU supports vector operations, many instructions consist

of data manipulation between vector elements. Therefore, a communication network is

required to connect the output port to the input ports of FUs within an RVU instance.

Figure 5.4 also illustrates the provided multiplexer network that allows the operations

between vector elements, such as data permutation, shuffle, and broadcast.

5.3 Big Vector Operations

Although each RVU supports vector operands up to 256 Bytes, it is possible to

trigger several RVUs at once, which allows to operate over up to 8192 Bytes (32 instances)

as a single vector operand. This approach allows the RVU design to work from 1 Byte to

256 Bytes if one PIM instance is triggered, and from 512 Bytes to 8192 Bytes if two or

more PIM instances are triggered by the same instruction. It is important to notice that

to support operations over big vectors that allocates more than one PIM unit (placed in

different memory vaults) challenging issues must be solved, such as Instruction and Data

Racing. Similarly, Instruction and Data Racing may occur when different instructions

Figure 5.4: Overview of the RVU with its 32 FUs and the Multiplexer Network.
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access the same PIM instance concurrently, and it is intensified when data are accessed

from different vaults. In both cases, these behaviors demand attention, and they will be

tackled in next chapter.

5.4 RVU Instructions Format

Similarly to native Intel instructions, RVU uses a prefix field for helping the host

decoder to identify PIM instructions, and an opcode field to specify the PIM instruction.

Table 5.1 illustrates the generic RVU Instruction format.

Table 5.1: A Generic RVU Instruction format
PREFIX OPCODE OTHER FIELDS

Source: Author

Each RVU Instruction field consists of the following fields:

• PREFIX - 1 Byte: The 1 Byte prefix meets X86 decoder style. It informs the

decoder that this instruction is an RVU instruction. The default value is 0x61.

• OPCODE - 2 Bytes:

INSTRUCTION: 1 Byte for instruction identifier

OPSIZE: 5 BITS It informs the size of the RVU. It can range from 4 Bytes

(comprising 4 elements of 8 bits integer (v4i8), 2 elements 16 bits integer or floating-

point half-precision (v2if16), or 1 elements of 32 bits integer or floating-point single-

precision (v1if32)) to 8192 Bytes (comprising v8192i8 to v256if256). Table 5.2

shows the available parameters for OPSIZE.

Table 5.2: Parameters for OPSIZE field
Size-BYTES 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Code-BITS 00000 00001 00010 00011 00100 00101 00110 00111 01000 01001 01010 01011

Source: Author

DATA TYPE - 3 BITS: RVU operates over integer and floating-point data, and

theoretically, data type can be 8, 16, 32, 64, 128, or 256 bits long. Table 5.3 show

the available parameters for DATA TYPE field.

Table 5.3 is also used for LOAD and STORE instructions. In this case, as presented

on third row, the parameters available for DATA TYPE represents LOAD/STORE
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Table 5.3: Parameters for DATA TYPE Field
DATA TYPE - BITS 8 16 32 64 128 256
Code-BITS 000 001 010 011 100 101
LOAD/STORE TYPE TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5

Source: Author

types. These LOAD/STORE types are legacy of AVX, since RVU is based on it, it is

important to keep compatibility, hence supporting same addressing modes.

• RVU DESTINATION - 5 BITS: This parameter informs which RVU will receive

the data. If the OPSIZE parameter ranges from 4Bytes to 256Bytes, the RVU

DESTINATION indicates the unique RVU used. If the OPSIZE is bigger than

256Bytes, the RVU DESTINATION indicates the RVU base of the operation.

• RVU REGISTER DESTINATION - 14 BITS: Indicates the register within the

RVU DESTINATION that will receive the data resultant. Since RVU can be used

as a vector with 8192 elements of 8 bits each, 14 bits are necessary to individually

address each element.

• RVU SOURCE - 5 BITS: This parameter informs which RVU will provide data

for the operation.

• RVU REGISTER SOURCE - 14 BITS: This field indicates which register within

the RVU SOURCE will provide data for the operation.

• GPR SOURCE - 6 BITS: - Host’s General Purpose Register (GPR) source.

• MASK GPR SOURCE - 4 BITS: - Host’s Mask GPR source. The three least

significant bits selects K0 K7 register. Most significant bit is set when instruction

requires “no writemask” zeroing other three bits.

• IMMEDIATE - up to 4 BYTES: Immediate Values Source.

• UNUSED: This field completes the instruction in order to make it divisible by Byte.

This field is size variable.

The list of all instructions supported by the RVU architecture is presented in

Appendix B.
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5.5 Covering Processing Efficiency

Each RVU register bank is coupled with a set of 32 FUs, which allow the processing

of 64 SP-FLOPS per cycle, theoretically. This achievement represents a 2× performance

per cycle improvement when compared against the fastest commercial GPP (Table 2.1),

demonstrating RVU’s performance capability for use in general-purpose environment.

Considering the implementation of one RVU instance per memory vault a performance of

up to 2048 SP-FLOPS per cycle can be achieved, which is equivalent to a hypothetical

32 core processor comprising 2 AVX-512 units each.

Since RVU only implements basic units (such as registers and FUs), all available

resources of area and power are used for processing. Considering the area and power

constraints discussed in Chapter 4, the RVU was implemented and synthesized to enable

preliminary studies and analysis. The implemented FU Register Transfer Level (RTL) de-

sign is an adapted version of the designs presented by (HUANG et al., 2007), (BRUINTJES

et al., 2012) and (MANOLOPOULOS; REISIS; CHOULIARAS, 2016). For estimating

power and area, the 32 FUs, coupled with the aforementioned explained register banks and

multiplexer network were synthesized with the Cadence Encounter RTL Compiler tool

using technology node of 28nm CMOS28FDSOI, provided by STMicroelectronics (CMOS

FDSOI-8ML (MULTI-PROJETS, 2018)) constrained for low-power. Table 5.4 summarizes

the synthesis results for different operating frequencies. From the synthesized results, it is

possible to conclude that the RVU design operating at 1 GHz meets the aforementioned

power and area constraints.

Table 5.4: RVU Area and Power Estimation for 28nm
F250 F500 F750 F1000 F1250

Total Area (mm2) 55.4 78.1 94.9 138.8 153.9

Total Power (W) 3.79 4.26 6.75 8.62 10.8

Figure 5.5 and Figure 5.6 present the preliminaries results showing the overall

efficiency achieved by the proposed architecture. Figure 5.5 shows that the RVU design

can stand out in terms of memory bandwidth per area capacity. However, it is important to

notice the capacity of the RVU of achieving highest bandwidth is dependent on internally

available buses (frequency and parallelism), since RVU in this analysis is presented as

a set of parallel FUs without considering concurrent accesses or constraints of any kind.

In terms of performance (GFLOPS/W), the RVU also achieves the best result. Similarly,

considering the power consumption metric, Figure 5.6 shows that the proposed PIM can
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reach the highest overall efficiency.

Figure 5.5: Area-efficiency for Bandwidth and Processing Performance on state-of-the-art
PIMs
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Figure 5.6: Power-efficiency for Bandwidth and Processing Performance on
state-of-the-art PIMs
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6 ENABLING RVU USAGE - THE HARDWARE SIDE

Although the RVU approach results in high overall efficiency, it is essential to

tackle some crucial challenges to allow the claimed efficiency and performance.

Due to the inherent nature of implementing only FUs and registers, RVU demands

a fine-grain control, which means that the PIM instructions must be sent from the host pro-

cessor to the PIM accelerator. Hence, an Instruction Offloading mechanism to deliver the

instructions to the PIM is required. Also, the host-PIM close-coupling approach adopted by

the RVU design allows full data sharing and unrestricted use of the same memory address

space between host and PIM. However, to take advantage of these characteristics, they

demand an efficient Cache Coherence and Virtual Memory Management mechanisms to

allow the utilization of the proposed PIM as part of the general-purpose environment.

Since host CPU and RVU instructions share the same address space, it is likely

to occur a data race within the 3D-stacked memory. Also, the host may request data

whose target vault is not the same as the vault where the data is being processed by

a PIM instruction. Excluding the interference of requests from the host CPU, a code

region that triggers multiple RVU instances is prone to have a data race between requests

from distinct PIM instances. Moreover, RVU instructions can use registers and memory

addresses from distinct vaults, which while achieving high performance, also increase

the chances of data racing. Additionally, a single instruction may trigger multiple PIM

units at once, which requires efficient control over internal communication. Therefore,

leaving instruction and data racing unmanaged can potentially cause data hazards, incorrect

results, and unpredictable application behavior. For this reason, an Instruction and

Data Racing protocol is required to keep requests ordered and synchronized, and an

Intervault Communication to provide resources for the communication between different

PIM instances.

As a result of the fine-grain control, decisions to execute code on the host processor

or PIM are made at the instruction level. Therefore, allowing such a choice to be made by

the programmer can be counterproductive. Thus, it is essential to provide an efficient code

offloading decision methodology to take advantage of the available processing resources

automatically. Moreover, providing a programming style that does not demand special

pragmas or directives, thus reducing the programmer efforts. The programmability will be

tackled in Chapter 7.
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6.1 Instruction Offloading Mechanism

The instruction-level or fine-grain offloading is convenient for FU-centric accelera-

tors (such as RVU), since the application execution flow can remain in the host CPU by

only including a dedicated ISA for accelerator’s operations. The Instruction Offloading

Mechanism presented in this work considers an arbitrary ISA-extension for triggering PIM

instructions, and also for allowing binaries to be composed of both host CPU and PIM

instructions (which will be further discussed in next chapter). Hence, the host CPU has to

fetch, decode, and issue instructions transparently to the in-memory logic without or with

minimal timing overhead.

This work adopts a two-step decoding mechanism to perform fine-grain instruction

offloading to the RVU: host CPU and PIM sides. As advantages, the modules present in

any host CPU, such as TLB, page walker, and even host registers can be reused by CPU

and PIM instructions without incurring any limitation or additional hardware. For instance,

memory access instructions, such as PIM_LOAD and PIM_STORE, rely on the host address

translation mechanism (from Address Generation Unit (AGU) to TLB), which prevents

hardware duplication in PIM logic, keeping software compatibility and memory protection,

and helping keeping area and power efficiency. Thus, the host-side interface seamlessly

supports register-to-register and register-to-memory instructions in the near-memory logic,

and also register-to-register instructions between host CPU and PIM logic.

The first step to perform instruction offloading consists of decoding a PIM instruc-

tion in the host CPU. Part of the instruction fields in the PIM ISA can be used to read

from or write to host registers, and to calculate the memory addresses using any host

addressing method. In the meantime, other instruction fields are used to PIM-specific

features, such as physical registers of PIM logic, operand size, vector width and so on,

which are encapsulated into the PIM machine format in the execution stage.

In the host CPU pipeline, all PIM instructions are seen as store instructions, which

are issued to the Load Store Queue (LSQ) unit. This characteristic allows each PIM to be

addressed at compile time (memory mapped), and therefore properly dispatched to the

correct PIM within a vault controller. The RVU Instruction Dispatcher unit illustrated in

Figure 6.1 represents the modifications made in the LSQ unit to support the instruction-

level offloading. As PIM instructions are sent as regular packets to the memory system,

they are addressed by the destination PIM unit and an architecture-specific flag is set in

the packet to differ it from typical read and write requests. When the packet arrives at the
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Figure 6.1: Overview of the proposed datapath for efficient utilization of the PIM logic
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vault controller, the second step of the offloading mechanism takes place on the memory

side: the instruction fields are extracted from the packet and decoded by the PIM FSM

in the Decoder Stage, where data will finally be transferred or modified. By using this

methodology, we decouple PIM logic from the host interface and, thus, the PIM logic

can be easily extended without implying in modifications either to the host CPU or the

host-PIM interface.

Further, the RVU Instruction Dispatcher unit is also responsible for violation

checking between native and PIM load/store requests. An exclusive offloading port

connects the LSQ to the host memory controller directly. The PIM instructions are

dispatched in a pipeline fashion at each CPU cycle, except for the memory instructions that

need their data to be updated in the main memory and invalidated in the cache memories

to keep data coherent, which is detailed in Section 6.2.

6.2 Cache Coherence and Virtual Memory Management

Cache coherence in near-data architectures must not only keep shared data between

cache hierarchy and processors, but also between cache memories and main memory with

processing logic, since both PIM and host instructions may have access to a shared memory,

which is typically a DRAM. However, traditional coherence mechanisms, e.g., MOESI,

may not be enough to keep coherence in PIM because such protocols will require intense

traffic of snooping messages in a narrower communication channel, which may be a source

of bandwidth, time, and energy consumption overhead. To minimize these overhead, and

to maintain coherence with a fine-grain protocol, we delegate the offloading decision to

the compiler, so that it can minimize data sharing. Hence, regardless the compiler, the
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coherence mechanism proposed in this work invalidates only conflicting memory regions

of the cache hierarchy at running time.

The proposed cache coherence mechanism behavior is illustrated in Figure 6.2, and

it works as follows: Before sending a memory access instruction, the upgraded LSQ unit

emits a flush request of the corresponding PIM memory operand size (ranging from 4 Bytes

to 8 KBytes (SANTOS et al., 2017; AHMED et al., 2019)) to the data cache memory

port. The flush request adopted by RVU is supported by the Intel’s native CLFLUSHOPT

instruction, which flushes all cache levels each cache line at a time (INTEL, 2018a).

Therefore, no additional hardware is required for this operation.

The flush request is sent to the first level data cache and then it is forwarded to the

next cache level until it arrives at the last level cache, where the request is transmitted

back to the LSQ unit. At each cache level, a specific hardware module interprets the flush

request and triggers lookups for cache blocks within the address range of the PIM memory

access instruction that originated the flush request. If there are cache blocks affected, they

will either cause a writeback or an invalidate command that is enqueued in the write-buffer

and finally, the flush request is enqueued. Although all RVU instructions are emitted by

the LSQ unit, since all RVU instructions are seen as CPU store operations, only those

instructions that access memory will trigger the flush operations. Also, it is important

to notice that the proposed mechanism maintains coherence between a single-core host

and PIM. However, for multi-core host CPUs emitting instructions to PIMs, we need an

existing cache coherence, such as MOESI, to be in charge of keeping data shared coherent

between the hosts. After the last flush operation is flagged as done, the RVU Instructions

Dispatcher allows the PIM instruction to follow its way towards the main memory. This

Figure 6.2: Cache Coherence Protocol - Example for a 256 Bytes PIM LOAD instruction
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Level 1
RVU Instruction Checker

LSQ Unit 
dispatch  
PIM_LOAD 0x200 / 256B

sends flush request 0x200 / 256B look-up operation:
checks if block is valid, then inserts 
evict request into write-buffer

respond with flush response to LSQ

Last-Level 
Cache

sends instruction 
PIM_LOAD 0x200 / 256B

4 x

sends flush request 0x200 / 256B

look-up operation
4 x

Host HMC 
controller



53

way, the PIM instruction and the in-cache data will follow in-order towards the main

memory, which ensures data coherence.

Another import issue present on PIM designs is related to virtual memory transla-

tion. As aforementioned in Chapter 6.1, the proposed design avoids duplicated resources,

such as AGU and TLB. Since the Cache Coherence Mechanism considers all cache lev-

els, the virtual memory management is ensured by following same natural path used for

host’s native instructions. Therefore, the presented cache coherence and virtual memory

management mechanisms cover host designs where either multiple TLBs are implemented

(e.g. DTLB, STLB, etc) or designs that implement first level cache with virtually indexed-

physically tagged addressing mode are adopted.

6.3 Instruction and Data Racing Management

Another important task delegated to the RVU Instructions Dispatch module is to

ensure that the instructions will be triggered in-order. As mentioned in Section 6.2, PIM

instructions that access memory require a series of flush operations to maintain cache and

DRAM consistent. However, a second instruction that avoids caches (i.e., logical and

arithmetic instructions), must wait for instructions still dependent on flush operations to

be completed. RVU Instructions Dispatch module guarantees the required behavior by

buffering the RVU instructions if necessary.

Since host CPU and RVU instructions share the same address space, it is likely

to occur a data race within the 3D-stacked memory. Also, host may request data whose

target vault is not the same as the vault where the data is being computed by a PIM

instruction. Excluding the interference of requests from the host CPU, a code region

that triggers multiple PIM instances is prone to have a data race between requests from

distinct instances. Moreover, PIM instructions can use registers and memory addresses

from distinct vaults, which while achieving high performance, also increase the chances

of data racing. Additionally, a single instruction may trigger multiple PIM units at once,

which requires efficient control over internal communication. Furthermore, when multiple

PIM units are triggered, the instruction ordering sequence turns critical. Therefore, leaving

instructions and data racing unmanaged can potentially cause data hazards, incorrect

results, and unpredictable application behavior. For this reason, a data racing protocol is

required to keep requests ordered and synchronized.

To implement the instruction and data racing protocol, we explored the interconnec-
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tion network available in the logic layer of the 3D-stacked memory (Hybrid Memory Cube

Consortium, 2013). In the presented design this network is not only used for a request

coming from the host CPU or responses from memory vaults to the CPU, but also requests

made from one vault to another, which are called here as intervault requests. On top

of that, we implemented a protocol for solving coherence and data racing of host-RVU

and RVU-RVU communication using an acquire-release transaction approach. To enable

the proposed communication, three commands are defined to use within the intervault

communication subsystem: memory-write and memory-read, and register-read requests.

These requests can be used with either acquire or release flag and they carry a sequence

number related to the original RVU instruction, which allows maintaining the ordering of

the requests.

Figure 6.1 highlights the Instruction and Data Racing Manager module, which

allows the PIM architecture to synchronize and keep the order of memory requests as soon

as the host CPU or RVU instructions arrive in the PIM logic. The Instruction and Data

Racing Manager is basically a small FSM and a set of buffers to manage RVU instructions.

The next section explains the adopted intervault communication and its application on

instructions and data racing management.

6.3.1 Intervault Communication

As aforementioned, PIM instructions may require data from different memory

vaults to better use the available resources. For instance, Figure 6.3 illustrates the sequence

of operations for allowing a PIM_LOAD instruction, that arrives in the vault 0, to access

data from the vault 2. In short, when an RVU instruction is dispatched from the host’s LSQ

unit, it crosses the HMC serial link and arrives at the Instruction and Data Racing Manager

(shown in Figure 6.1). In this module, the acquire memory-read or acquire memory-write

requests are generated for memory access instruction, and acquire register-read requests

for modifying instructions involving registers from different vaults. In case of memory

access the acquire memory-read is generated for LOAD instructions, and it is sent to the

source vault. For STORE instructions, the acquire memory-write is generated, and this

command is sent to the destination vault. Similarly, instructions that demand two sources

require two acquire commands that are sent to the source vaults, while the destination

vault is responsible for the release commands.

Finally, when the RVU instruction is decoded in the RVU FSM, its LSQ unit
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Figure 6.3: Intervault Communication Protocol Example for a 256 Bytes PIM LOAD
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generates a memory-write, memory-read or register-read request with a release flag. In the

target vault controller, the release request will either unlock the register-read instruction

in the RVU’s Instruction Queue or remove a blocking request from the memory buffer,

according to the instruction type. Thus, the PIM execution flow can continue without any

data hazard. Internally, the RVU Instruction and Data Racing Manager submodule called

Instruction Splitter is responsible for identifying the source address/register according to

instructions.

As another example, the instruction presented in Listing 6.1 is a vector ADD where

the PIM placed within vault 0 requires data from registers belonging to PIMs within

vault 10 and vault 28, respectively. In this case, two acquire register-read commands are

dispatched from RVU Instruction and Data Racing Manager (to PIM_10 and PIM_28),

and the original instruction is sent to the destination PIM.

Listing 6.1: Example of a PIM ADD Instruction

PIM_256B_VADD_DWORD PIM_0_R256B_0, PIM_10_R256B_3, PIM_28_R256B_2

6.3.2 Big Vector Instructions Support

Taking advantage of the intervault protocol, it is possible to provide resources for

big vector instructions that can operate all RVU instances at once.

Considering that the RVU design allows grouping many instances to be triggered
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by the same instruction, RVU design allows grouping instances to be triggered by same

instruction, and therefore works as a virtual big vector operand supporting instructions

that operates over up to 8192 Bytes at once (SANTOS et al., 2017; AHMED et al., 2019).

Listing 6.2 illustrates an instruction of this type, which shows that 32 RVUs need to be

triggered, concurrently.

Listing 6.2: Example of a Big Vector PIM ADD Instruction

PIM_8192B_VADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_3, PIM_0-31_R8192B_2

For this, the RVU Instruction and Data Racing Manager splits the original instruc-

tion into 32 sub-instructions of same type. Each sub-instruction must be delivered to the

correct RVU unit (source and destination) to keep processing consistence and data coher-

ence. Hence, it is possible to adopt the same protocol illustrated in Figure 6.3, and similarly

to the case of the instruction in Listing 6.1, it is possible to trigger many sub-instructions

as necessary to support big vector instructions. This means that several acquire and release

commands may be generated to allow the allocation of the demanded resources.

6.4 Hardware Additions Overhead

The RVU Instruction Checker comprises a small FSM to control and avoid the in-

struction racing as aforementioned (e.g. arithmetic instruction after load/store instruction),

and therefore to ensure the correct execution order. For the cache coherence, host’s flush

commands are adopted to ensure cache write-back when PIM load/store instructions are

triggered. Similarly, the RVU Instructions and Data Racing is composed of a FSM that

triggers the acquire commands or splits the suitable RVU instructions in up to 32 parts in

case of larger (512 Bytes or more) vector operands. For this, a small buffer (32 positions

pf 128 bits) is necessary. Therefore, considering the power and area of a typical GPP and

HMC module, the additional hardware necessary to allow instruction offloading, to ensure

cache coherence and virtual memory management, and to allow the exploitation of the

RVU can be neglected.

On the other side, the additional latencies are an important overhead. The RVU

Instruction Checker triggers flush operations, which need to be divided into 64 Byte

portion, due to the cache line size. Then the worst case may occur when a LOAD/STORE

PIM instruction is triggered. In case of operand size of 8192 Bytes, it requires 128 flush

operations (8192 Bytes = 128×64 Bytes). Since each operation is dependent on the latency
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of each cache memory level, and the depth of the cache hierarchy, this can be an important

drawback, although operations occur in pipeline fashion. The RVU Instruction and Data

Racing module is lighter in terms of latency, and its operation infers 3 cycles for splitting

instructions or triggering acquire commands.
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7 ENABLING RVU USAGE - THE SOFTWARE SIDE

As aforementioned, to achieve high performance, and area and power efficiency, the

RVU design makes use of the available resources for FUs. Hence, RVU has no instruction

fetch mechanisms, or instruction and data cache memories. Due to the FU-centric design

of the RVU, the code must be fetched and decoded by the host processor, and thus the

instruction is emitted to the PIM via a data-path, as presented in Chapter 6. However, to

enable this approach, RVU requires a non-trivial solution called hybrid code. The hybrid

code consists of mixed host and PIM instructions, which requires intrinsic collaboration

between host and accelerator at instruction level. Therefore, this approach requires a

compiler capable of generating a hybrid machine code containing both host ISA and

PIM ISA from the same source code. However, these features increase the difficulty of

programming, since code must be built on two ISAs whose behaviors and characteristics

can be completely different. Thus, a method for automatically generating the hybrid code

is required to avoid burden the programmer.

In this way, this chapter presents another contribution of this thesis; a compiler

that is able to automatically exploit the RVU design. The compiler, named Processing-In-

Memory cOmpiler (PRIMO) (AHMED et al., 2019; SANTOS et al., 2019b), is developed

using the Low Level Virtual Machine (LLVM) compiler tool (LATTNER; ADVE, 2004),

which is an open source compiler infrastructure that is suitable for implementing compiler

support for PIM based architecture. Appendix D presents the list of all LLVM files that

were updated to create PRIMO.

PRIMO provides complete compiler support for the RVU architecture by enabling

instruction offloading decisions, suitable vector size and vector FUs unit selection, and

code emission in an automatic manner. Figure 7.1 shows the main modules that comprise

PRIMO. For implementing these modules, both the back-end and middle-end of the

compiler are modified while front-end is used without any changes. The Instruction

Offloader component is implemented in the optimizer phase, while the Vector Size Selector

acts in the instruction selection phase, and relevant RVUs are selected by RVU Selector

module in register allocation phase. Finally, Code Generator functionality is enabled in

code emission phase in PRIMO’s back-end. There are no changes implemented in other

phases of the back-end.

Since RVU depends on host for instruction decoding and offloading, it can be seen

as an extension of the host processor’s FUs. Thus, an extension of the host’s back-end
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Figure 7.1: Structure of PRIMO
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is a possible way of allowing compiler to generate the required code. Therefore, X86

back-end was extended to add PIM support, like an added extension to the present AVX

instruction set. This approach allows the direct interpretation and communication with

the RVU. Also, PRIMO can control the generation of RVU code, by allowing a simple

-mattr=+PIM flag to be used at compile-time which treats RVU as a subtarget of x86. With

this approach, code annotations such as special pragmas and compiler directives are totally

avoided, which allows the use of legacy codes with reduction in the user interventions,

complex languages and libraries, and the necessity of specialized programmers.

The modifications done in LLVM pipeline flow by PRIMO can be described as

follows. For the Front-End module, there are no modifications needed since the actions

performed in this stage are kept the same and they are independent for any Intermediate

Representation (IR) or architecture. Middle-End stage is extended to support bigger vector

widths and an offloading mechanism. The offloading technique is based on data locality

and vector width, and it is responsible for deciding whether to execute the code on PIM.

Additionally, the Middle-End has specific PIM hardware usage optimizations implemented.

The Back-End is updated to support the PIM registers banks and the new extended PIM ISA.

Optimizations related to better exploit vaults, memory banks and RVUs level parallelism

in the HMC device are also introduced in this module. Also, optimizations regarding

communication among PIM instances, register allocation and architectural instruction

translations are added in the Back-End. Finally, the binary file containing a hybrid mix of

PIM and X86 instructions is built to be executed.

To exemplify how the proposed compiler works, Listing 7.1 shows the instructions

generated by the compilation of a integer vecsum kernel with 64 iterations (Listing 7.1a) for

both the GPP x86 coupled with AVX-512, and the X86 coupled with the RVU architecture.

In case of GPP, the optimizer selects vector width of 16 because the maximum vector

size computed by x86 AVX-512 SIMD units is 16 single precision/integer elements

(16×4Bytes). Hence, the given vecsum kernel is decomposed into eight LOAD, four ADD

and four STORE instructions as shown in Listing 7.1b. The PIM equivalent instructions

emitted by PRIMO are shown in Figure 7.1c. For this specific kernel, PRIMO has
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automatically set vector width to 64 using its vector size selector. In this way, vecsum

kernel is decomposed into two LOAD, one ADD and one STORE instructions, respectively.

Listing 7.1: PRIMO output example

for(int i=0; i<64; i++)
c[i] = a[i] + b[i];

(a) VecSum - C Code Example

.LBB0_1:
vmovdqu32 zmm8, [rax+c+16576]
vmovdqu32 zmm4, [rax+c+16512]
vmovdqu32 zmm3, [rax+c+16448]
vmovdqu32 zmm0, [rax+c+16384]
vpaddd zmm9, zmm0, [rax+b+16384]
vpaddd zmm6, zmm3, [rax+b+16448]
vpaddd zmm3, zmm4, [rax+b+16512]
vpaddd zmm0, zmm8, [rax+c+16576]
vmovdqu32 [rax+a+16384], zmm0
vmovdqu32 [rax+a+16448], zmm3
vmovdqu32 [rax+a+16512], zmm6
vmovdqu32 [rax+a+16576], zmm9

(b) AVX CODE

.LBB0_1:
PIM_256B_LOAD_DWORD V_0_R2048b_0, [rax+b+16384]
PIM_256B_LOAD_DWORD V_0_R2048b_1, [rax+c+16384]
PIM_256B_VADD_DWORD V_0_R2048b_1, V_0_R2048b_0, V_0_R2048b_1
PIM_256B_STORE_DWORD [rax+a+16384], V_0_R2048b_1

(c) PIM CODE

In the case of LOAD, the selected PIM instruction is PIM_256B_LOAD_DWORD,

where 256B indicates the loading of 256 Bytes which is 64×4 Bytes at a time. For instance,

in the first PIM_256B_LOAD instruction, the register ID is indicated as V_0_R2048b_0,

which means register 0 of vault 0 of size 2048 bits. This instruction moves 256 Bytes from

the memory location addressed by rax+b+16384 to the register 0 of the vault 0 (PIM 0).

Similarly, instruction PIM_256B_VADD_DWORD V_0_R2048b_1, V_0_R2048b_0, V_0_R2048b_1

adds the contents of register 0 and register 1 of vault 0 and puts the result in register 1

of vault 0. The similar semantics can be observed for other vector size instructions, with

some absolute address adjustments.
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7.1 Instruction Offloading Decision

Both host GPP and RVU are suitable for different type of tasks. For example,

GPP is intended for compute-bound tasks which can reuse the available cache data, thus

avoiding long latency due to memory transfers. Whereas PIMs are suitable for memory-

bound tasks that involve streaming data with less reuse. Besides, RVUs are suitable for

exploiting data-level parallelism by allowing huge SIMD operations. Thus, it is important

to decide whether instructions are suitable for execution on the PIM accelerator or on the

GPPs. Otherwise, the wrong device can lead towards performance degradations and energy

consumption, as previously mentioned in Chapter 4. This approach can minimize extra

runtime, hardware area and power overhead, and design complexity, as also discussed

in Chapter 4. The performance achieved by enabling these static decisions is showed in

Chapter 8. Moreover, future optimizations and improvements can be made in the compiler

more easily than in hardware.

Although RVU can handle operands from scalar to big vectors, scalar operations are

most commonly seen in applications that present temporal locality, and tend to make use of

cache memories, hence suitable for traditional GPPs. Therefore, in this very first version,

PRIMO’s Instruction Offloader module uses the instruction vector width as a threshold

in order to decide RVU offloading candidates. The main principle followed is to perform

large size vector operations using RVU, and smaller size operations are performed in the

GPP. It can be summarized through Equation 7.1, if vector size is greater than or equal to k,

which is smallest available vector width in given RVU hardware, then instruction offloader

selects PIM instruction, otherwise GPP instruction is selected. The offloader component is

implemented in the instruction selection stage. Each vector instruction of each basic block

is scanned, and if vector width is greater than or equal to k, the intermediate instruction is

lowered into PIM instruction. Following this metric, the selection of PIM instruction is

done by operand sizes. In case if vector width is less than k, the intermediate instruction is

lowered to GPP instruction.

Instructions =

RV U, if vector size > k

HOST, otherwise
(7.1)

Since RVU is inspired by Intel AVX-512 ISA, we have considered a GPP with
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Listing 7.2: Vecsum C Code Kernels Example

#define N 2048
for(count=0;count<N;count++) //N=2048

a[count] = b[count] + c[count];

for(count=0;count<N/4;count++) //N=512
a[count] = b[count] + c[count];

for(count=0;count<N/8;count++) //N=256
a[count] = b[count] + c[count];

for(count=0;count<N/16;count++) //N=128
a[count] = b[count] + c[count];

for(count=0;count<N/128;count++) //N=32
a[count] = b[count] + c[count];

for(count=0;count<N/256;count++) //N=16
a[count] = b[count] + c[count];

SIMD units of size v16i32 (a vector of 16 32-bit integer elements), and for instance, the

RVU PIM presented in Chapter 5 having sizes v32i32, v64i32, v128i32, v256i32, v512i32,

v1024i32, v2048i32. In the considered scenario, k is equivalent to 32. Therefore, if the

vector width is set to values less than 32, PRIMO will emit routine GPP SIMD instructions.

However, if the vector width is > 32, PRIMO generates code for the RVU PIM accelerator,

which will be executed by respective hardware. To exemplify this idea, the Listing 7.2

presents a series of vecsum kernels, each one with a different iteration N, ranging from

2048 to 16. These kernels are used to generate codes that shows the behavior described

above. Listing 7.3 shows the IR code generated for each vecsum loop kernel, in which it is

possible to observe different vector widths selected by the optimizer. This way, the sort

of vector instructions depends on the availability of the architecture present in the back-

end. Listing 7.4 shows the instruction selected by the instruction offloading module. The

instructions with size > 32 are lowered into PIM instructions, whereas instructions with

size of 16 are lowered into GPP instructions. In this way, PIM offloading candidates are

identified at compile time, and hence appropriate PIM instructions are selected accordingly.

7.2 Vector Size Selection

In order to make the offloading of RVU instructions possible, the compiler must

be able to generate and exploit as many vector operations as possible. At the same time,
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Listing 7.3: Vectorized IR Code - Pre-Instruction Offloading Decision

%wide.load = load <2048xi32>, <2048xi32>* %24
%wide.load76 = load <2048xi32>, <2048xi32>* %25
%26 = add nsw <2048xi32> %wide.load76, %wide.load
store <2048xi32> %26, <2048xi32>* %27

%wide.load95 = load <512xi32>, <512xi32>* %124
%wide.load96 = load <512xi32>, <512xi32>* %125
%126 = add nsw <512xi32> %wide.load96, %wide.load95
store <512xi32> %126, <512xi32>* %127

%wide.load115 = load <256xi32>, <256xi32>* %140
%wide.load116 = load <256xi32>, <256xi32>* %141
%142 = add nsw <256xi32> %wide.load116, %wide.load115
store <256xi32> %142, <256xi32>* %143

%wide.load135 = load <128xi32>, <128xi32>* %156
%wide.load136 = load <128xi32>, <128xi32>* %157
%158 = add nsw <128xi32> %wide.load136, %wide.load135
store <128xi32> %158, <128xi32>* %159

%wide.load = load <32xi32>, <32xi32>* %1
%wide.load38 = load <32xi32>, <32xi32>* %2
%24 = add nsw <32xi32> %wide.load38, %wide.load
store <32xi32> %24, <32xi32>* %0

%wide.load57 = load <16xi32>, <16xi32>* %28
%wide.load58 = load <16xi32>, <16xi32>* %29
%30 = add nsw <16xi32> %wide.load58, %wide.load57
store <16xi32> %30, <16xi32>* %31

the compiler must be able to make use of the largest vector possible to take advantage of

the great amount of available FUs. The Vector Size Selector module is an extension of the

base vectorization available in LLVM, however, with the RVU-specific vector sizes and

types. To allow this level of vectorization, the extension provides larger vector types in the

middle-end of the LLVM, including vectors of 64, 128, 256, 512, and 1024, supporting

32 bits and 64 bits, and 2048 elements of 32 bits, integer and floating-point representation

The included vector sizes are according to the available operands in RVU architecture,

which are limited due to design decisions and instruction parameter fields limitations.

The proposed compiler considers the number of iterations to improve vector

operand allocation (N in the example at Listing 7.2). Therefore, the implemented PRIMO

compiler forces the loop unrolling aiming at achieving the biggest possible vector operand.

In this manner, if the number of iterations (N) in a given code is > 2048, PRIMO will

select operand size to be v2048 instead of conventional v16, v8, v4. Similarly, with N

between 1024 and 2047 the compiler chooses vector size to be v1024. Hence, the same
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Listing 7.4: Instruction Offloading Decision considering RVU and AVX-512

PIM_8192B_LOAD_DWORD V_0_1_..._30_31_R64Kb_0, [rsp + 360448]
PIM_8192B_LOAD_DWORD V_0_1_..._30_31_R64Kb_1, [rsp + 327680]
PIM_8192B_VADD_DWORD V_0_1_..._30_31_R64Kb_0, V_0_1_..._30_31_R64Kb_1,

V_0_1_..._30_31_R64Kb_0
PIM_8192B_STORE_DWORD [rsp + 98304], V_0_1_..._30_31_R64Kb_0

PIM_2048B_LOAD_DWORD V_0_..._7_R16Kb_0, [rsp + 360448]
PIM_2048B_LOAD_DWORD V_0_..._7_R16Kb_1, [rsp + 327680]
PIM_2048B_VADD_DWORD V_0_..._7_R16Kb_0, V_0_..._7_R16Kb_1, V_0_..._7_R16Kb_0
PIM_2048B_STORE_DWORD [rsp + 98304], V_0_..._7_R16Kb_0

PIM_1024B_LOAD_DWORD V_0_..._3_R8Kb_0, [rsp + 360448]
PIM_1024B_LOAD_DWORD V_0_..._3_R8Kb_1, [rsp + 327680]
PIM_1024B_VADD_DWORD V_0_..._3_R8Kb_0, V_0..._3_R8Kb_1, V_0_..._3_R8Kb_0
PIM_1024B_STORE_DWORD [rsp + 98304], V_0_..._3_R8Kb_0

PIM_512B_LOAD_DWORD V_0_1_R4Kb_0, [rsp + 360448]
PIM_512B_LOAD_DWORD V_0_1_R4Kb_1, [rsp + 327680]
PIM_512B_VADD_DWORD V_0_1_R4Kb_0, V_0_1_R4Kb_1, V_0_1_R4Kb_0
PIM_512B_STORE_DWORD [rsp + 98304], V_0_1_R4Kb_0

PIM_128B_LOAD_DWORD V_0_R1024b_0, [rsp + 1408]
PIM_128B_LOAD_DWORD V_0_R1024b_1, [rsp + 1280]
PIM_128B_VADD_DWORD V_0_R1024b_0, V_0_R1024b_1, V_0_R1024b_0
PIM_128B_STORE_DWORD [rsp + 384], V_0_R1024b_0

vmovdqa32 zmm0, [rsp + 1280]
vpaddd zmm0, zmm0, [rsp + 1408]
vmovdqa32 [rsp + 384], zmm0

behavior can be observed for remaining vector sizes through Equation 7.2. This way, the

compiler prioritizes the biggest possible vector operand. These examples show how the

approach of vector widths selection on the basis of the number of iterations is beneficial in

reducing the issued scalar operations and operating with non optimal vector sizes. This

leads to the overall reduction in under or over utilization of SIMD units (AHMED et al.,

2019).

vectorsize =



v2048, if N > 2048

v1024, if 1024 6 N 6 2047

v512, if 512 6 N 6 1023

... ...

v8, if 8 6 N 6 15

v4, if 4 6 N 6 7

scalar, otherwise

(7.2)

The fact that PRIMO is able to generate different vector sizes on the same basic

block allows the RVU to take advantage of the same optimization techniques available for

other vector units, such as AVX, and new upcoming optimization techniques. Although

the clear advantages of this approach, some important rules were updated to allow a better
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exploitation of the available PIM resources. We have updated the vectorization module

to allow a per basic block/per instruction analysis, which allows the relaxation of vector

allocation, and therefore the selection of different sizes of vectors in same basic block,

since RVU can handle different vector sizes. Moreover, the ability of selecting vectors of

different sizes helps in reducing the energy consumption by approximating to the necessary

resources for the demanded instruction, while taking advantage of the reconfigurable nature

of the RVU.

Listing 7.5 illustrates how the Vector Size Selector allows the Instruction Offloading

Decision module to select different vector sizes on same basic block for a same operation.

Listing 7.5a presents a simple vecsum loop with 104 elements, and as can be noticed in

Listing 7.5b the entire vector (104 elements) is selected in a single IR instruction. However,

neither AVX nor RVU can allocate a vector instruction with 104 elements, therefore the

Vector Size Selector factorizes the IR code to allow the Instruction Offloading to select

the biggest possible vector, virtually resulting in more IR instructions, as presented in

Listing 7.5c. In this case, 104 integer elements are factorized into 3 groups of 64, 32,

and 8 elements. The final result is the capacity of selecting distinct vector sizes for a

same operation. As presented in Listing 7.5d, three vector sizes of two ISAs are selected,

RVU 256B (256 Bytes = v64i32), RVU 128B (128 Bytes = v32i32), and AVX with YMM

registers supporting 32 Bytes (v8i32).
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Listing 7.5: Vector Size Selector Example

for(int i=0; i<104; i++)
c[i] = a[i] + b[i];

(a) Integer VecSum C Code Example

%wide.load = load <104xi32>, <104xi32>* %20
%wide.load76 = load <104xi32>, <104xi32>* %21
%22 = add nsw <104xi32> %wide.load76, %wide.load
store <104xi32> %22, <104xi32>* %23

(b) Actual IR Code before Vector Selector

%wide.load = load <64xi32>, <64xi32>* %20
%wide.load76 = load <64xi32>, <64xi32>* %21
%22 = add nsw <64xi32> %wide.load76, %wide.load
store <64xi32> %22, <64xi32>* %23

%wide.load84 = load <32xi32>, <32xi32>* %24
%wide.load85 = load <32xi32>, <32xi32>* %25
%26 = add nsw <32xi32> %wide.load85, %wide.load84
store <32xi32> %26, <32xi32>* %27

%wide.load95 = load <8xi32>, <8xi32>* %124
%wide.load96 = load <8xi32>, <8xi32>* %125
%126 = add nsw <8xi32> %wide.load96, %wide.load95
store <8xi32> %126, <8xi32>* %127

(c) IR Code after Vector Selector

.LBB0_1:
PIM_256B_LOAD_DWORD V_0_R2048b_0, [rax+b+16384]
PIM_256B_LOAD_DWORD V_0_R2048b_1, [rax+c+16384]
PIM_256B_VADD_DWORD V_0_R2048b_1, V_0_R2048b_0, V_0_R2048b_1
PIM_256B_STORE_DWORD [rax+a+16384], V_0_R2048b_1

PIM_128B_LOAD_DWORD V_0_R1024b_0, [rax+b+16640]
PIM_128B_LOAD_DWORD V_0_R1024b_1, [rax+c+16640]
PIM_128B_VADD_DWORD V_0_R1024b_1, V_0_R1024b_0, V_0_R1024b_1
PIM_128B_STORE_DWORD [rax+a+16640], V_0_R1024b_1

vmovdqa32 ymm0 [rax+b+16768]
vpaddd ymm0, ymm0, [rax+c+16768]
vmovdqa32 [rax+a+16768], ymm0

(d) Generated Code

7.3 VPU Selector

Since RVU is placed within the memory vault controller, and up to 32 vaults can

exist, 32 RVU instances can be available in a 3D-stacked memory. Hence, it is important

to have a policy for selecting the most suitable PIM instances to reduce the intervault

communication between destination and source in many instructions being concurrently
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Figure 7.2: RVU Instance Selector Algorithm
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Exit
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Map the current VR the 
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Source: Author

executed. The Vector Processor Unit (VPU) Selector component is responsible for mapping

the computations to the suitable vector units by selecting the most proper RVU unit to

execute determined instructions. This selection is performed during the register allocation

phase of the compiler, which is responsible for mapping each Virtual Register (VR) of an

instruction to PIM physical registers.

The proposed selector algorithm is implemented in the register allocation stage

of the compiler, and enables the maximum parallelism by selecting multiple registers

belonging to register files of different vaults. This is achieved by analyzing the code in

order to identify the existing dependencies for mapping the computations to the suitable

vector units. Figure 7.2 presents the selection algorithm. In the proposed algorithm the

VR index is treated as the input. The algorithm operates by reading the VR index and

checking whether the accessed register is the first one. In case the accessed register is the

first VR of the set, the VR gets directly mapped to an available physical register belonging

to a certain vault of PIM, without any further checking. However, in scenarios where the

accessed VR is not the first register, dependency checking is performed between current

and past VRs. In such checking, the end and start indexes of the current VR are compared

with end indexes of previous VRs. These indexes are obtained through the live interval

set. In case there exists a dependency between the current VR and previous VRs, then the
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current VR is mapped to a physical register belonging to the same RVU instance as the

previously dependent register. However, when there is no dependency between current

and past VR the vault number of the previous VR is incremented by 1 and bounded to 32,

which is the vault count. In this scenario, the current VR is mapped to the next available

physical register of a new RVU, resulting in increased vault level parallelism. Finally, after

mapping the given VR to a physical register, the algorithm is terminated.

Listing 7.6 illustrates the main target of the presented RVU Selector module. In the

code present in Listing 7.6a three different RVU instances are allocated (RVU of the vault

20 for destination, and 11 and 31 for source). However, with the adoption of the RVU

Selector mechanism, it is possible to reduce the allocation of multiple RVUs for a same

instruction, as presented in Listing 7.6b, which allocates all registers belonging to a same

RVU.

Listing 7.6: Example of VPU Selector

PIM_128B_VADD_DWORD V_20_R1024b_1, V_11_R1024b_0, V_31_R1024b_1

(a) RVU Selector OFF

PIM_128B_VADD_DWORD V_0_R1024b_1, V_0_R1024b_0, V_0_R1024b_1

(b) RVU Selector ON

7.4 Code Generator

In the end, the PRIMO code generator component is responsible for emitting

assembly and binary code for the target PIM. In order to emit assembly, only the RVU

mnemonics are implemented in this stage, and no further modifications are required after

register allocation. However, for the emission of object code, the complete RVU-based

instruction encoding is required in PRIMO, according to Chapter 5.4. In the end, the linker

creates an executable file containing both the host and PIM instructions after acquiring the

object code. When this executable is run the on host platform, it automatically offloads the

PIM instructions to the PIM hardware and the remaining instructions are executed on the

host processor.
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8 EVALUATION

This chapter presents the simulated results for the PIM RVU coupled with the

compiler PRIMO. For this, the experiments are supported by a GEM5 simulator version

able to simulate a general-purpose processor based on the Intel Skylake µarchitecture. Also,

the simulator implements an HMC module and its serial links, and the RVU architecture

within each HMC vault(CARDOSO, 2019).

The simulation parameters are summarized in Table 8.1, and they are applied for

all experiments. To evaluate our design we adopt simple applications, such as vecsum, dot

product, stencil, and matrix multiplication. Also, we evaluate our implementations with

the PolyBench Benchmark Suite (POUCHET, 2012), which is suitable for experimenting

SIMD units and vector operations.

Table 8.1: Baseline and Design system configuration.

Baseline and PIM Host x86 Processor
4 GHz Intel Skylake inspired X86-based out-of-order processor;
2-issues AVX-512 Instruction Set Capable;
L1 Instruction Cache 64kB: 4 cycles;
L1 Data Cache 64kB: 4 cycles;
L2 Cache 256kB: 12 cycles;
L3 Cache 8MB; 32 cycles
8GB HMC; 4 Memory Channels;

RVU
1GHz; 32 Independent Functional Units;
Integer and Floating-Point Capable;
Vectorial Operations up to 256 Bytes per Functional Units;
32 Independent Register Bank of 8x256Bytes each;
32 slots Instruction Buffer;
Latency (cycles): 1-alu, 3-mul. and 32-div. integer units;
Latency (cycles): 6-alu, 6-mul. and 32-div. floating-point units;
Interconnection between vaults: 5 cycles latency;
RVU instruction size ranging from 128B to 4096B;

HMC
HMC version 2.0 specification;
Total DRAM Size 8GBytes - 8 Layers - 8Gbit per layer
32 Vaults - 16 Banks per Vault - 256 Bytes Row Buffer;
4 high speed 16 lanes Full Duplex Serial Links;
Smart-Closed-Row policy;
DRAM: CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);
32 slots Write Buffer - Read Buffer;
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8.1 Matching Theoretical Performance

The first experiment evaluates the performance achieved by the RVU when maxi-

mum resources are allocated aiming at extracting maximum SP-FLOPS. Listing 8.1 illus-

trates the code used for this experiment, and to prevent memory access latencies interven-

tion, the selected code has no memory access in the main loop (.LBB0_1) only arithmetic

operations. The code executes 1×106 times the instruction PIM_8192B_FVADD_DWORD,

which is a single precision floating-point ADD instruction that operates 2048 elements.

Hence, to achieve 2TFLOPS, it is expected the execution time in 1ms. However, the

performance achieved in this experiment results in 1.773 TFLOPS (1.14ms), which is

slightly lower than the theoretical capacity 2 TFLOPS. The major factor that contributes

to the achieved sustained performance is related to the HMC protocol. Despite the RVU

Instruction Checker being able to dispatch one instruction per host cycle, and the fact

that the memory controller can deliver commands through the HMC’s serial link at high

frequency (Hybrid Memory Cube Consortium, 2013), this serial link requires packing

and unpacking commands and data. Hence, although a pipeline can be formed from host

processor (triggering instructions) to the RVU (executing instructions), the latencies in

the middle way due to inherent HMC protocol (Hybrid Memory Cube Consortium, 2013)

cannot be avoided.

Listing 8.1: Example of Code for Max Peformance Evaluation

xor rax, rax

PIM_8192B_LOAD_DWORD PIM_0_R8192B_0, [rax+a+1024]

PIM_8192B_LOAD_DWORD PIM_0_R8192B_1, [rax+b+1024]

.LBB0_1:

PIM_8192B_FVADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_1, PIM_0-31_R8192B_0

PIM_8192B_FVADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_1, PIM_0-31_R8192B_0

PIM_8192B_FVADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_1, PIM_0-31_R8192B_0

PIM_8192B_FVADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_1, PIM_0-31_R8192B_0

PIM_8192B_FVADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_1, PIM_0-31_R8192B_0

PIM_8192B_FVADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_1, PIM_0-31_R8192B_0

PIM_8192B_FVADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_1, PIM_0-31_R8192B_0

PIM_8192B_FVADD_DWORD PIM_0-31_R8192B_0, PIM_0-31_R8192B_1, PIM_0-31_R8192B_0

inc rax

cmp rax, 250000

jne .LBB0_1

PIM_8192B_STORE_DWORD [rax+c+1024], PIM_0_R8192B_0
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8.2 Cache Coherence and Intervault Communication performance impact

To evaluate the impact of cache coherence and intervault communication mecha-

nisms, Figure 8.1 presents the execution time results for small kernels, which are decom-

posed into three regions. The bottom blue region represents the time spent only computing

the kernel within the in-memory logic. The red region highlighted in the middle depicts

the cost of inter-vault communication, while the top green region represents the cost to

keep cache coherence.

It is possible to notice in the vecsum kernel that more than 70% of the time is

spent in cache coherence and internal communication, while only 30 % of the time is

actually used for processing data. Although most of the vecsum kernel is executed in

RVU, hence the data remains in the memory device during all execution time and no hits

(writeback or clean eviction) should be seen in cache memories, there is a fixed cost for

lookup operations to prevent data inconsistency. Regarding the matrix-multiplication and

dot-product kernels in Figure 8.1, the impact of flush operations is amortized by the lower

ratio of RVU memory access per RVU modification instructions.

Figure 8.1: Execution time of common kernels to illustrate the costs of Cache Coherence
and Inter-vault communication
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Since the flush operation generally triggers lookups to more than one cache block

addressed by an RVU instruction, the overall latency will depend on each cache-level

lookup latency. Also, for each flush request dispatched from the LSQ, all cache levels

will receive the forward propagation request, but it is executed sequentially from the first-

level to last-level cache. Only improvements in lookup time or reduced cache hierarchy

would impact in the performance of flush operations. On the other hand, inter-vault

communication penalty generally has little impact on the overall performance. For the
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transposed matrix-multiplication kernel, it is possible to see the effect of a great number of

register-read and mem-read to different vaults inherent to the application loop.

Regarding flush operations and intervault communication as costs that could be

avoided, in Figure 8.2 it is shown the overall performance improvement of an ideal RVU

(no flush and no intervault communication), and the performance penalty employing

the work’s proposal in some benchmarks of Polybench Suite. In general, the present

mechanism can achieve speed-up improvements between 2.5× and 14.6×, while using

82% of the execution time for computation, and hence only 18% for cache coherence and

inter-vault communications. Therefore, our proposal provides a competitive advantage in

terms of speedup in comparison to other HMC-instruction-based RVU setups. For instance,

the proposal presented in (NAI et al., 2017) relies on uncacheable data region, hence no

hardware cost is introduced. However, it comes with a cost in how much performance

can be extracted when deciding if a code portion must be executed in the host core or in

RVU units. Besides, the speculative approach proposed in (BOROUMAND et al., 2016)

has only 5% of performance penalty compared to an ideal RVU, but the performance can

profoundly degrade if rollbacks are frequently made, which will depend on the application

behavior. Also, another similar work (AHN et al., 2015) advocates locality-aware PIM

execution to avoid flush operations and off-chip communication. However, they do not

consider that large vectors in RVU can amortize the cost of cache coherence mechanism

even if, eventually, the host CPU has to process scalar operands on the same data region.

Figure 8.2: Execution time of PolyBench normalized to AVX-512
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8.3 Vector Selector performance impact

As presented in Chapter 7.2, different vector operand sizes can be scheduled by

the compiler in order to improve SIMD operation. However, it is important to select the

largest possible vector size to exploit HMC’s internal parallelism efficiently.

Figure 8.3 illustrates the impact of the suitable vector size selection on RVU PIM

architecture for different kernels with different input sizes. In this evaluation, each kernel

application is compiled for different target sizes, as described in Table 8.1, ranging from

128 Bytes to the maximum size given by the architecture specification (8192 Bytes) or the

maximum size possible for each input size. For this, at compile time, the flag -vector-force-

width can be used to manually inform the compiler which vector size to use. Although the

input size contributes to the choice of the operand size, the results show that each algorithm

has different requirements that dictate the optimal operand size. In this way, the results

presented here clearly highlight the significance of PRIMO in deciding the most favorable

vector size.

Figure 8.3a presents results for a regular-pattern Vector Sum kernel running different

workloads. It is possible to notice that for each workload the largest possible vector operand

Figure 8.3: Vector Size analysis on different kernels for floating-point computation.
All results normalized to RVU128B.
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size can be set. One can observe that the compiler favors instructions with smaller vector

operand size to match the input size of small workloads. This behavior is illustrated in

the workloads ranging from 256B to 8kB, where the largest instruction size for each input

size gives better performance in comparison to all remaining sizes. In this way, PRIMO’s

decision of always choosing the largest vector width is found to be an optimal choice for

vecsum-like application in terms of performance.

Although the allocation of operands bigger than the input size is possible (e.g.,

operating through 256 Bytes of data and an RVU of 1024 Bytes), this behavior will reduce

the efficiency of the system, as it requires the use of mask to select the proper elements

of the vector (similar to AVX-512), or data could be incorrectly modified. Because of

this, PRIMO tries to avoid unnecessary operations, by matching the operand size and the

workload. In this case, PRIMO tries to allocate the biggest operand size, always seeking

the greatest possible vectorization, as presented in the Chapter 7.2.

The impact of vector size technique on the 5p Stencil kernel is shown in the Fig-

ure 8.3b. When the workload size is 512Bx512B the largest possible operand R512 shows

greater performance in comparison to R256. Similarly, when the input size is increased

to 1kBx1kB, the largest operand R1024 shows maximum performance in comparison to

R256 and R512. However, for the data size of 4kBx4kB, R1024 gives a better outcome

in comparison to R2048. Finally, with 8kBx8kB size, R2048 and R1024 are better than

R4096. Hence, for stencil application represented in the Figure 8.3b, it can be observed

that the behavior of operand size is not monotonic in the manner that performance is

not always increased by increasing the vector sizes. In this way, for stencil application

PRIMO’s vector size selection appears to be optimal for certain workloads, but for others,

some smaller size operand performs even better.

The stencil kernel presents a memory-unaligned access on part of the code, which

can be observed mainly on bigger workload sizes. For a matrix of 512Bx512B and

1024Bx1024B speedup increases accordingly with operand size. However, for 4096Bx4096B

and 8192Bx8192B, due to the unaligned access, it is not possible to allocate the operand

and workload of the same size.

Figure 8.3c presents the results for the Dot Product kernel. When the data size

is 2kB, the largest possible width of R512 appears to be slower in comparison to R256.

This exemplifies some of the drawbacks of vector size technique for small workloads. In

this case, the kernel has two different parts, and just one of them can be reused when

the workload is increased. Also, PRIMO chooses a more efficient sequence of R256B
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instructions that avoids intervault requests for the kernel part which is not reused. In short,

the code targeting R512B instructions can only be amortized in larger workloads.

Similarly, with data size of 16kB and 128kB, R2048 instructions shows better

performance than the largest size of R4096, as shown in the Figure 8.3c. Whereas, for the

data size of 8kB and 4MB, R4096 gives slightly better performance than the remaining

operand sizes. For this kernel, the largest vector size is not the optimal size for all cases. It

can be explained by the increasing amount of intervault requests and the higher latencies

that occur between different level of the network connecting PIM units when computing

R4096 instructions. In this case, the instruction mapping can take advantage of parallel

access by scheduling instructions of 2048 Bytes that can access more vaults in parallel with

lower interconnection latency, overcoming the performance achieved by the RVU 4096B.

The speedups obtained for matrix-vector multiplication kernel are shown in the

Figure 8.3d. For small workloads (i.e., 512B) R256 operands show little performance

improvement in comparison to the baseline. However, as the workload size is increased, a

larger operand size can be used, while providing a growing performance improvement. In

the case of matrix-vector multiplication, the largest vector width appears to be the optimal

operand size as for all cases it gives maximum performance.

It can be observed through the results presented in Figure 8.3 that the selection of

optimal vector size is critical as it can lead to great performance improvement by exploiting

the maximum capability of SIMD instructions in a PIM hardware. In this way, for certain

applications PRIMO’s vector size selector can fetch the maximum performance from the

available PIM machine by automatically selecting the largest vector sizes. Hence, it saves

the programmer from the burden of selecting optimal size manually.

However, the largest vector width (e.g., R4096B) is not optimal for all applications.

In this way, the situation is not deterministic because the largest size can bring the best

results in certain cases, while in others it might lead to reduced performance. The possible

reason for this behavior is, when PRIMO tries to use vector operators in a loop, the

data must be gathered from different memory regions in small parts, harming the overall

performance. Also, in certain situations, larger sizes could lead to hardware overhead,

underutilization, and saturation of performance. In this way, the largest sizes are not always

optimal for all applications. It means that operand size selection is sensitive to application

characteristics as well.
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8.4 VPU Selector performance impact

Another important issue on multi-instances PIM style is the efficient utilization of

distributed FUs. The use of one or a few parallel RVUs reduces the communication between

register banks located in different vaults. However, it increases the cross-references to

distinct vaults for memory requests, which reduces the efficiency of the setup. By setting

affinity to PIM instructions, which means to match the RVU instance with the vault that

data resides, it is possible to exploit the inherent parallelism and high-speed transferring

available within each vault while reducing the communication between different vaults.

This section evaluates the performance obtained by implementing the VPU se-

lection algorithm presented in Chapter 7.3. The operand sizes were varied from R128

to the maximum size, e.g., R4096, to better illustrate the performance achieved when

compiled with VPU enabled (VPU-ON) and the technique disabled (VPU-OFF). The

improvement provided by the PRIMO’s VPU Selector algorithm is shown in the Figure 8.4,

which focuses on a uniform distribution of instructions along PIM instances to increase

performance. The results demonstrate that the VPU Selector technique can improve in up

to 4.1× the utilization of PIM instances.

For the vecsum kernel, with the size of 1kB, both VPU-ON and VPU-OFF show

little improvement over the baseline, and the speedup of VPU-ON over VPU-OFF is also

small. This little improvement is because the small workload is not enough to amortize

the offloading cost and show the benefit of large vector sizes and VPU selection. When

the workload is increased to 2kB, R1024 with VPU-ON shows the maximum speedup

over the baseline. For this workload, the operand sizes of R512 and R1024 show a minor

difference between VPU-ON and VPU-OFF. The reason behind this is that, larger vector

sizes can already exploit multiple vaults, like R512 uses two vaults instead of only one

synchronously. Similarly, R1024 uses four vaults. In this way, even without VPU-ON, the

performance is not as bad as in the case of R256.

Moreover, the VPU selection shows a decreasing effect as the speedup gets reduced

linearly by increasing operand size. The workload of 4kB and the larger ones show a

different picture. The speedup of VPU-ON over VPU-OFF is maximum with R512, i.e.,

1.9×, instead of R256. Similarly, for the workloads of 8kB and 128kB, R512 achieves

a maximum speedup concerning VPU-ON over VPU-OFF, 3.1× and 2.7×, respectively.

It can be observed that the speedups of VPU selection are not only achieved with R256

and R512 but with other vector sizes as well including R128, R1024, R2048, and R4096.
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Figure 8.4: RVU Selector Analysis on different kernels for floating-point computations.
All results normalized to RVU128B.
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However, here we have only discussed the maximum speedups achieved. Furthermore, the

impact of VPU selection gets decreased, and the overall speedup relative to the baseline is

increased with larger operand sizes.

Figure 8.4b shows the impact of VPU selection on the 5-point stencil application.

It can be observed that VPU selection has a low impact on small workloads (4kB), but,

when the size is increased to 8kB, a more significant impact can be observed. Although

R1024 gives the maximum performance in comparison to the baseline, the maximum VPU

selection speedup (i.e., 2.5x) is attained with R256. In this way, the VPU selection appears

to be more beneficial in case of R256. Also, the impact of VPU selection starts decreasing,

and the overall speedup relative to the base is increased with larger operand sizes.

The impact of VPU selection on the dot product kernel can be observed in Figure

8.4c. For small workloads (8kB), R1024 presents the greatest gains (i.e., 1.3×) for VPU-

ON over VPU-OFF. When the workload is increased to 16kB, R256 attains the maximum

VPU selection speedup i.e., 3.15x. The reason for this much speedup is the use of multiple

vaults with VPU-ON in comparison to a single vault with VPU-OFF. Furthermore, with

more increase in vector operand sizes, the VPU-ON speedup gets lowered because VPU-

OFF is also capable of exploiting multiple vaults. The input sizes of 128kB and 4MB show

similar behavior. The VPU speedup is maximum with R256. VPU-ON/VPU-OFF ratio

gets reduced, but the overall speedup over the baseline is increased with larger operand
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sizes.

Finally, the Figure 8.4d shows VPU selection impact for matrix-vector multipli-

cation kernel. For all workloads, R256 shows maximum VPU selection speedup. Also,

for all cases, the VPU selection speedup tends to saturate by increasing the operand size.

However, the VPU selection technique can increase the performance for the remaining

operand sizes as well. Also, by increasing operand sizes, the VPU-ON/VPU-OFF ratio

gets lowered, but the overall speedup is increased with respect to the baseline.

Overall, it can be observed that the ratio of VPU-ON and VPU-OFF is maximum

for smaller vector size like R256 and R512. This is because by default it makes use of a

few or a single vault and VPU selection technique enables it to use more than one vault at

the same time. Further, it can be seen how this VPU-ON/VPU-OFF ratio gets reduced by

increasing vector sizes. Still, VPU selection improves performance for large size operands

but the impact is lesser as compared to R256. By increasing the operand sizes, the overall

performance gets improved with respect to the base machine. Therefore, it can be said that

the maximum speedup in comparison to the baseline machine, is achieved by using the

largest possible vector size and VPU selection technique.

8.5 Performance Breakthrough

To show the applicability of RVU and PRIMO, the PolyBench Benchmark Suite

(POUCHET, 2012) was experimented, and the generated binaries were executed in the

custom GEM5 simulator. Figure 8.5 compares the RVU PIM and the baseline AVX-512

processor. Also, Figure 8.5 directly compares the ability of the compiler in extracting more

performance from RVU architecture running PolyBench kernels. Without PRIMO’s VPU

Selector technique, RVU achieves an average speedup of 8.1×, while the average speedup

jumps to 15.9× by enabling VPU Selector mechanism. On average, VPU selector improves

the execution time by 2×, which demonstrate the importance of efficiently generate and

offload code to use multiple PIM instances.

As shown in Figures 8.5a, 8.5b and 8.5c, the performance is improved as the

workload is increased, achieving a maximum speedup of 26× with R1024 VPU-ON.

Whereas, R512 (RVU operating through 512 Bytes) achieves the highest gain when

comparing VPU-ON over VPU-OFF, i.e. 2.72×. Regarding the bicg kernel depicted in

the Figures 8.5d, 8.5e and 8.5f, the highest speedup over the AVX baseline is achieved

by using R512 operands and VPU-ON for large inputs (2048x2048). The bicg kernel
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for medium input size (1024x1024) shown in Figure 8.5e is less impacted by PRIMO’s

optimization than atax (Figure 8.5b), which has a speedup of 13.1× for the same input size.

This is due to application characteristics, as atax contains more vectorization opportunities

than bicg.

Similarly, the doitgen kernel shown in Figures 8.5g and 8.5h presents maximum

speedup of 24× by using R1024 with VPU-ON in the workload of 256x256x256 elements.

It is interesting to notice for doitgen kernel, despite of using a three-dimensional matrix

workload, the innermost loop can be totally unrolled hence taking advantage of the biggest

vector operands provided by RVU architecture. Therefore, in this case, each innermost

loop operation fits into a single RVU vector operand, which allow the elimination of most

internal iterations. The workload 128x128x128 uses the RVU instruction R512, and it

shows the speedup of 11.5×. In case of VPU-ON vs VPU-OFF speedup, both R512 and

R1024 give improvement of 4.0×.

Figures 8.5i and 8.5j shows kernel deriche with R2048 and R4096 having different

input sizes. Although the evident ability for vectorization, the compiler is not able to

widely improve performance of the Deriche application by scheduling the RVU instances

in case of largest vectors. This is because the larger the selected vector (or group of RVUs),

the less room for acting the compiler has. This makes it even more difficult to scale to other

vector units, which would also use a large vector. Therefore, Figure 8.5i presents speedup

of 33× for VPU-ON, while VPU-OFF achieves 21×, both cases operating over 2048 Bytes.

Figure 8.5j shows the adoption of R4096, and in this case the speedup achieved is 32×

and 36× for VPU-OFF and VPU-ON respectively.

In Figures 8.5k and 8.5l, gemver is tested with R1024 and R2048. In this case,

the maximum speedup over the baseline is achieved by R2048 VPU-ON, although the

improvement of VPU selection is maximum for R1024. Regarding mvt kernel represented

by Figures 8.5m and 8.5n, the overall speedup with respect to the baseline is maximum

when R2048 is used with VPU selection. Similarly, VPU-ON vs VPU-OFF is maximum

for smaller operands i.e. R128. Finally, Figures 8.5o and 8.5p shows results for covariance

kernel. It can be seen the speedup relative to the baseline is maximum with R1024 and

VPU-ON. The performance of VPU-ON vs VPU-OFF is maximum with R256.

Through Figure 8.5, the importance of both large vector size and VPU selection can

be observed. It can be seen how large vector sizes improve performance with respect to the

baseline, although the largest value cannot be considered optimal size for all applications,

as discussed in the Chapter 7. In addition to the vector size technique, the performance can
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be further improved by using the VPU selection technique, which is found to be reasonable

for all application scenarios and operand sizes. However, the effect of the proper RVU

selection through the VPU Selector module gets more prominent for smaller operand

sizes where the performance by VPU-ON is largely improved in comparison to VPU-OFF.

Another interesting point to observe is that applications from the same class of PolyBench

executed with the same input size and operand size have different behaviors in terms of

performance and optimization. Thus, the use of the proposed technique depends on the

Figure 8.5: Speedup over the AVX-512 baseline for different kernels of the PolyBench
suite
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application characteristics to obtain the optimal point. Also, certain applications possess

more vectorization opportunities as compared to others, which directly translates to the

better use of the techniques.
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8.6 Energy Breakthrough

Figure 8.6 presents the energy consumption for PolyBench applications normalized

to AVX-512. Similarly to Figure 8.5, it shows results for both cases: VPU Selector enabled

and disabled. By analyzing this results, it is possible to notice the efficiency of RVU design

and PRIMO compiler.

The impact of avoiding data movement through complex cache memory hierarchies,

unnecessary register spills and cache memory evictions is noticeable. For ATAX application,

a reduction of 92% on energy consumption can be observed for the largest workload

(2048x2048) and use of R2048. Similar results can be noticed for BICG, DOITGEN, and

DERICHE. Also, MVT and GEMVER achieve 92% of energy reduction when operating

over 2048x2048 elements. Other applications and workloads also present improvement,

ranging from 55% to 80% of energy reduction. The worst case scenario occurs on

COVARIANCE, which for 256x256 achieves a reduction of only 8% on energy consumption.

The two main reasons are the accumulations over scalars, which by default trigger memory

accesses that can use the cache memories, and also benefit from host’s higher frequencies

(4GHz vs 1GHz - Table 8.1). Therefore, a possible solution to achieve better results is to

implement a mem2reg optimization on compiler in order to further reduce the offloading

of memory instructions.

Considering the performance improvements presented in Figure 8.5, it is expected

that the energy consumption follows the same path. However, as it can be observed, the

impact of additional RVU units cannot improve energy efficiency in the same way as

performance.

In case of ATAX experiment (Figures 8.6a, 8.6b, and 8.6c), additional RVU instances

improve performance and energy efficiency. However, the energy efficiency for the

workload of 2048x2048 is slightly better when VPU-ON is adopted, while performance

improvement is considerable (Figure 8.5c). This shows that the use of all RVU instances

can improve performance, but not necessarily achieves the best energy efficiency, since

extra units on imply in extra power dissipation in a larger proportion. This behavior also

happens in different applications on PolyBench Suite, and in some cases, the use of all

PIM units can even reduce energy efficiency when compared against reduced number of

RVUs. Figures 8.6i, 8.5j, 8.5k, 8.5l, 8.5m, 8.5n, and 8.6p illustrates this case.
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Figure 8.6: Energy over the AVX-512 baseline for different kernels of the PolyBench suite
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9 CONCLUSIONS AND FUTURE WORK

This chapter summarizes the thesis, presents an overview of our findings and con-

tributions, some recommendations for improvement and future work, and the conclusion.

9.1 Summary

In Chapter 1 we set out three research topics for this thesis. The first one was

What are the most critical drawbacks of today’s computer architectures?. After substantial

research investigation and analysis of the last 10 years of modern processor architectures,

several traditional architecture limitations on different areas are presented in Chapter 2.

Chapter 2 concludes that performance and energy efficiency in these designs are directly

dependent on technological node, which is drastically constrained due to materials adopted

and physical specifications. Therefore, this study shows that a new approach is required to

improve overall efficiency of those systems. Here, as the main objective of this thesis, the

adoption of Processing-in-Memory (PIM) is a possible solution, as motivated by Chapter 4

and Chapter 8.

The second topic states: What are the most critical challenges for adopting PIM

in a general-purpose scenario?. Chapter 4 lists the most prominent PIM designs that

aim general-purpose applications. Although they can be compared to typical General

Purpose Processors (GPPs), either their performance, energy efficiency or area are present

as real contribution, and rarely all requirements are performed at same time. Moreover,

other important issues are frequently left aside, like cache coherence, virtual memory

management, and programmability. Therefore, for integrating PIM to the general-purpose

environment, all requisites must be properly filled. This way, we find that a new PIM design

is required to achieve the proposed objective, which must be disruptive in its essence, and

must present a complete solution as above mentioned.

The last and most important question is: Which PIM design can improve overall

performance and efficiency? This question can be answered by analyzing the PIM ar-

chitectures present in literature, which mainly implement full cores. Today’s processing

cores present a bunch of limitations (Chapter 2), and even more drawbacks exist when

full cores are implemented (i.e. cache hierarchy). Furthermore, those PIM implementa-

tions (Chapter 4) cannot achieve the expected high performance and energy efficiency

comparing against GPP. Also, the embedded nature of PIM devices demands area and
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power efficiency within critical constraints. Considering these facts, Chapter 5 presents an

innovative PIM design (though simple) implementing only Functional Units (FUs). The

presented design, named Reconfigurable Vector Unit (RVU), meets the power and area

constraints. Additionally, the challenges discussed in Chapter 4 are solved, which allow the

insertion of the implemented RVU in the general-purpose environment improving overall

performance, as presented in Chapter 6. Moreover, in order to allow fully exploitation

of the RVU design, Chapter 7 shows the Processing-In-Memory cOmpiler (PRIMO), a

compiler to automatically generate code for RVU without additional user intervention,

programming efforts, or special libraries of any kind.

The evaluations for the different modules of PRIMO are presented in Chapter 8.

Moreover, this chapter presents results for several applications and benchmarks being

executed on RVU. Also, comparisons against GPPs are shown in this chapter.

9.2 Contributions

In retrospect, important contributions have been made by answering the questions

raised at the beginning of this thesis.

Highlighting the limitations of today’s architectures can be selected as a foremost

motivation to point out the necessity for new approaches. This step shows that, although

new technologies are expected for the future as new researches are a constant, the current

designs must be revised and updated to allow full exploitation of the available resources.

Secondly, this thesis investigate the most prominent PIM devices in literature. Through

this investigation and profound analysis, this thesis concludes that typical processing cores

are not suitable for PIM implementation. Therefore, a new approach should be taken.

From these efforts, the RVU PIM design is created ensuring the constraints of power and

area, at the same time being capable of exploiting the available resources. From these

efforts, the RVU PIM design is created. RVU can extract maximum bandwidth from

3D-stacked memories, and theoretically, it is able to achieve 2 TFLOPS of performance

(Single Precision Floaing-Point Operations per Second (SP-FLOPS)), while present a

power efficiency of 232GLOPS/Watt.

The integration with general-purpose environment is result of a custom data-path,

which ensures automatic instruction offloading and data coherence. In practice, the

presented architecture achieves 1.773 TFLOPS in a controlled experiment, resulting in

205GFLOPS/Watt. These results reflect in high performance when compared against
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traditional GPP architecture, showing a speedup up to 30×. Furthermore, the presented

design drastically reduces energy consumption. By processing directly in memory, it

is able to avoid complex memory hierarchies, reducing data movement and therefore

achieving up to 92% of energy reduction. The experimentation of our design was supported

by a fully functional simulator based on GEM5. To efficiently exploit the RVU, is is

presented PRIMO. This compiler automatically decides where a portion of code should

run, host or PIM. Hence PRIMO is able to offload suitable PIM codes requiring no user

intervention, no special libraries or pragmas, and no programmer’s special skills. Also,

it is totally compatible with legacy codes, only demanding new compilation. On our

simulations, several PolyBench Benchmark Suite kernels were used to widely evaluate the

RVU architecture and PRIMO.

9.3 Conclusions

This work presents an approach to increase the overall efficiency of general-purpose

systems by adopting a PIM design. In this thesis we have presented the RVU, although

disruptive in the form, it uses same traditional units present in typical GPPs. Therefore, a

non-orthodox PIM that coupled with the PRIMO compiler, another contribution of this

work, significantly improves performance and energy efficiency of general-purpose sys-

tems. Several experiments and applications were performed, and the design implemented

increases performance by 15× in average, while reducing the energy consumption by 80%.

In the worst case, the proposed design achieves speedup of 2×, and energy reduction of

less than 2% running Correlation kernel. While in the best case, it achieves speedup of

36× with energy reduction of 92% for Deriche kernel.

9.4 Future work and Recommendations for Improvement

Chapter 8 showed that the architecture that was developed can be fully integrated

in a general-purpose environment with significant improvement in performance and energy.

Also, the same chapter shows that it is possible to totally avoid to burden programmers

with complex decisions, preventing the use of libraries and special pragmas by adopting

a compiler able to exploit the proposed architecture. Although these are significant

contributions, there is still room for further improvements.
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The first one is related to host processor modifications. In our implementation,

the host’s decode stage must be updated to support new PIM Instruction Set Architecture

(ISA). Another host modification implemented in our approach is the additional hardware

responsible for cache coherence. Although area and power can be neglected in these

cases due to the minor additions, the host processor design must support it, which requires

manufacturer acceptance and project updates. In either case, the proposal is to take a

software approach. One way to avoid decoding stage updating is by embedding PIM

instructions into host native instructions in some way. In similar way, it is possible to

avoid the necessity of cache coherence hardware mechanism by adopting some approach

in software. However, both cases obviously increase the compiler complexity.

Another important improvement is enabling massive scalar operations in the RVU.

This will require more intelligence in the compilation process, making it recognize patterns

that have reduced temporal locality, or streaming behavior even when it occurs in scalar

format, for example. Although this thesis presents a compiler able to automatically generate

code for PIM, which reduces the programming efforts, it is not optimal. The selection of

vector sizes can also be improved, allowing a better distribution of tasks within a basic

block. Also, the selection of PIM units must be improved to further reduce intervault

communication.

As applications continue to rely on huge amounts of data, the principles proposed

in this thesis are expected to reach main stream products, and hence further research will

be needed in the near future.
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APPENDIX A — LIST OF PUBLICATIONS

The designed RVU presented in the Chapter 5 was initially published on Design,

Automation, and Test in Europe DATE’2017 conference. While the compiler PRIMO

appeared on on Design, Automation, and Test in Europe DATE’2019 conference.

The list below presents the published works directly related to this thesis proposal:

1. P. C. Santos et al., "Solving Datapath Issues on Near-Data Accelerators", IFIP Adv.

Inf. Commun. Technol., IESS 2019

2. P. C. Santos et al., “A Technologically Agnostic Framework for Cyber-Physical

and IoT Processing-in-Memory-based Systems Simulation”, Microprocessor and

Microsystems, 2019

3. *H. Ahmed, *P. C. Santos et al., “A Compiler for Automatic Selection of Suitable

Processing-in-Memory Instructions”, DATE 2019

4. J. P. C. de Lima, P. C. Santos, et al.,“Exploiting Reconfigurable Vector Processing

for Energy-Efficient Computation in 3D-Stacked Memories”, ARC 2019

5. P. C. Santos et al., “Processing in 3D memories to speed up operations on complex

data structures”, DATE 2018

6. P. C. Santos et al., “Exploring IoT platform with technologically agnostic processing-

in-memory framework”, in ESWEEK - INTESA Workshop, 2018

7. J. P. C. De Lima, P. C. Santos, et al., “Design space exploration for PIM architectures

in 3D-stacked memories”, Computer Frontiers, 2018

8. P. C. Santos, et al., “Operand size reconfiguration for big data processing in mem-

ory”, DATE 2017

9. P. C. Santos, et al., “HMC and DDR performance trade-offs”, IFIP Adv. Inf.

Commun. Technol., IESS 2017

10. G. F. Oliveira, P. C. Santos, et al. “A generic processing in memory cycle accurate

simulator under hybrid memory cube architecture”, SAMOS, 2017

11. G. F. Oliveira, P. C. Santos, et al., “NIM: An HMC-based machine for neuron

computation”, ARC 2017
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12. M. A. Z. Alves, M. Diener, P. C. Santos, and L. Carro, “Large Vector Extensions

Inside the HMC”, DATE 2016

13. P. C. Santos, et al., “Exploring Cache Size and Core Count Tradeoffs in Systems

with Reduced Memory Access Latency”, Euromicro PDP 2016.

14. M. A. Z. Alves, P. C. Santos, et al., “Reconfigurable Vector Extensions inside the

DRAM”, ReCoSoC 2015

15. M. A. Z. Alves, P. C. Santos, et al., “Opportunities and Challenges of Performing

Vector Operations inside the DRAM”, MEMSYS 2015

16. M. A. Z. Alves, P. C. Santos, F. B. Moreira, M. Diener, and L. Carro, “Saving

memory movements through vector processing in the DRAM”, CASES 2015

Submissions under review:

• P. C. Santos, et al., "Enabling Near-data Accelerators Adoption by Through Investi-

gation of Datapath Solutions", International Journal of Parallel Programming - IJPP

The list below presents publications in project cooperations:

• R. F. De Moura, et al., “Skipping CNN convolutions through efficient memoization”,

SAMOS 2019

• M. Botacin, et al., “The AV says : Your Hardware Definitions Were Updated !”,

ReCoSoC 2019

• D. G. Tomé, et al., “HIPE : HMC Instruction Predication Extension Applied on

Database Processing”, DATE 2018
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APPENDIX B — LIST OF RVU INSTRUCTIONS

Table B.1: LOAD TYPE 1
PREFIX OPCODE RVU DEST RVU REG DEST IMM_32 SRC1 UNUSED_5

OPERAND_SIZE <= to_int(OPSIZE)
DST[OPERAND_SIZE-1:0] <= MEM(SRC1)[OPERAND_SIZE-1:0]

Table B.2: LOAD TYPE 2
PREFIX OPCODE RVU DEST RVU REG DEST GPR_SRC1 UNUSED_7

OPERAND_SIZE <= to_int(OPSIZE)
DST[OPERAND_SIZE-1:0] <= MEM(SRC1)[OPERAND_SIZE-1:0]

Table B.3: LOAD TYPE 3
PREFIX OPCODE RVU DEST RVU REG DEST GPR SRC1 UNUSED_7 IMM_32 SRC2

OPERAND_SIZE <= to_int(OPSIZE)
DST[OPERAND_SIZE-1:0] <= MEM(SRC1 + SRC2)[OPERAND_SIZE-1:0]

Table B.4: LOAD TYPE 4
PREFIX OPCODE RVU DEST RVU REG DEST GPR SRC1 UNUSED_7 IMM_32 SRC2 IMM_32 SRC3

OPERAND_SIZE <= to_int(OPSIZE)
DST[OPERAND_SIZE-1:0] <= MEM(SRC1*SRC2 + SRC3)[OPERAND_SIZE-1:0]

Table B.5: LOAD TYPE 5
PREFIX OPCODE RVU DEST RVU REG DEST GPR SRC1 GPR SRC2 UNUSED_1 IMM_32 SRC3 IMM_32 SRC4

OPERAND_SIZE <= to_int(OPSIZE)
DST[OPERAND_SIZE-1:0] <= MEM(SRC1 + SRC2*SRC3 + SRC4)[OPERAND_SIZE-1:0]

Table B.6: STORE TYPE 1
PREFIX OPCODE RVU SRC RVU REG SRC IMM_32 DST1 UNUSED_5

OPERAND_SIZE <= to_int(OPSIZE)
MEM(DST)[OPERAND_SIZE-1:0] <= SRC[OPERAND_SIZE-1:0]
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Table B.7: STORE TYPE 2
PREFIX OPCODE RVU SRC RVU REG SRC GPR_DST1 UNUSED_7

OPERAND_SIZE <= to_int(OPSIZE)
MEM(DST)[OPERAND_SIZE-1:0] <= SRC[OPERAND_SIZE-1:0]

Table B.8: STORE TYPE 3
PREFIX OPCODE RVU SRC RVU REG SRC GPR DST1 UNUSED_7 IMM_32 DST2

OPERAND_SIZE <= to_int(OPSIZE)
MEM(DEST1+DEST2)[OPERAND_SIZE-1:0] <= SRC[OPERAND_SIZE-1:0]

Table B.9: STORE TYPE 4
PREFIX OPCODE RVU SRC RVU REG SRC GPR DST1 UNUSED_7 IMM_32 DST2 IMM_32 DST3

OPERAND_SIZE <= to_int(OPSIZE)
MEM(DEST1*DEST2 + DEST3)[OPERAND_SIZE -1:0] <= SRC[OPERAND_SIZE-1:0]

Table B.10: STORE TYPE 5
PREFIX OPCODE RVU SRC RVU REG SRC GPR DST1 GPR DST2 UNUSED_1 IMM_32 DST3 IMM_32 DST4

OPERAND_SIZE <= to_int(OPSIZE)
MEM(DEST1+ DEST2*DEST3 + DEST4)[OPERAND_SIZE-1:0] <=

SRC[OPERAND_SIZE-1:0]

Table B.11: ARITHMETIC, LOGIC, and MULTIPLICATION
PREFIX OPCODE RVU DST RVU REG DST RVU SRC1 RVU REG SRC1 RVU SRC2 RVU REG SRC2 UNUSED_7

OPERAND_SIZE <= to_int(OPSIZE)
if X = DWORD THEN

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i+31:i] <= SRC1[i+31:i] OP SRC2[i+31:i]

if X = QWORD THEN
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1

i <= j*64
DEST[i+63:i] <= SRC1[i+63:i] OP SRC2[i+63:i]
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Table B.12: LOGICAL SHIFT LEFT and RIGHT
PREFIX OPCODE RVU DST RVU REG DST RVU SRC1 RVU REG SRC1 RVU SRC2 RVU REG SRC2 UNUSED_7

;;SHIFT LEFT
OPERAND_SIZE <= to_int(OPSIZE)
if X = DWORD THEN

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i+31:i] <= SRC1[i+31:i] << (unsigned(SRC2[i+31:i]))

if X = QWORD THEN
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1

i <= j*64
DEST[i+63:i] <= SRC1[i+63:i] << (unsigned(SRC2[i+63:i]))

;;SHIFT RIGHT
OPERAND_SIZE <= to_int(OPSIZE)
if X = DWORD THEN

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i+31:i] <= SRC1[i+31:i] >> (unsigned(SRC2[i+31:i]))

if X = QWORD THEN
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1

i <= j*64
DEST[i+63:i] <= SRC1[i+63:i] >> (unsigned(SRC2[i+63:i]))
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Table B.13: IMMEDIATE LOGICAL SHIFT LEFT and RIGHT
PREFIX OPCODE RVU DST RVU REG DST RVU SRC1 RVU REG SRC1 UNUSED_2 IMM_8 SRC2

;;SHIFT LEFT
OPERAND_SIZE <= to_int(OPSIZE)
if X = DWORD THEN

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i+31:i] <= SRC1[i+31:i] << (unsigned(SRC2[7:0]))

if X = QWORD THEN
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1

i <= j*64
DEST[i+63:i] <= SRC1[i+63:i] << (unsigned(SRC2[7:0]))

;;SHIFT RIGHT
OPERAND_SIZE <= to_int(OPSIZE)
if X = DWORD THEN

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i+31:i] <= SRC1[i+31:i] >> (unsigned(SRC2[7:0]))

if X = QWORD THEN
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1

i <= j*64
DEST[i+63:i] <= SRC1[i+63:i] >> (unsigned(SRC2[7:0]))

Table B.14: BROADCASTS/D TYPE 1
PREFIX OPCODE RVU DEST RVU REG DEST IMM_32 SRC1 UNUSED_5

OPERAND_SIZE <= to_int(OPSIZE)
if( TYPE == DWORD)

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i*31:i] <= MEM(SRC1)[31:0]

elif( TYPE == QWORD)
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1

i <= j*64
DEST[i*31:i] <= MEM(SRC1)[64:0]

fi



101

Table B.15: BROADCASTS/D TYPE 2
PREFIX OPCODE RVU DEST RVU REG DEST GPR_SRC1 UNUSED_7

OPERAND_SIZE <= to_int(OPSIZE)
if( TYPE == DWORD)

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i*31:i] <= MEM(SRC1)[31:0]

elif( TYPE == QWORD)
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1

i <= j*64
DEST[i*31:i] <= MEM(SRC1)[64:0]

fi

Table B.16: BROADCASTS/D TYPE 3
PREFIX OPCODE RVU DEST RVU REG DEST GPR SRC1 UNUSED_7 IMM_32 SRC2

OPERAND_SIZE <= to_int(OPSIZE)
if( TYPE == DWORD)

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i*31:i] <= MEM(SRC1+SRC2)[31:0]

elif( TYPE == QWORD)
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1
i <= j*64
DEST[i*31:i] <= MEM(SRC1+SRC2)[64:0]

fi

Table B.17: BROADCASTS/D TYPE 4
PREFIX OPCODE RVU DEST RVU REG DEST GPR SRC1 UNUSED_7 IMM_32 SRC2 IMM_32 SRC3

OPERAND_SIZE <= to_int(OPSIZE)
if( TYPE == DWORD)

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i*31:i] <= MEM(SRC1*SRC2+SRC3)[31:0]

elif( TYPE == QWORD)
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1

i <= j*64
DEST[i*31:i] <= MEM(SRC1*SRC2+SRC3)[64:0]

fi
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Table B.18: BROADCASTS/D TYPE 5
PREFIX OPCODE RVU DEST RVU REG DEST GPR SRC1 GPR SRC2 UNUSED_1 IMM_32 SRC3 IMM_32 SRC4

OPERAND_SIZE <= to_int(OPSIZE)
if( TYPE == DWORD)

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i*31:i] <= MEM(SRC1 + SRC2*SRC3 + SRC4)[31:0]

elif( TYPE == QWORD)
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1

i <= j*64
DEST[i*31:i] <= MEM(SRC1 + SRC2*SRC3 + SRC4)[64:0]

fi

Table B.19: BROADCASTR S/D
PREFIX OPCODE RVU DEST RVU REG DEST GPR_SRC1 UNUSED_7

OPERAND_SIZE <= to_int(OPSIZE)
if X = DWORD THEN

KL <= OPERAND_SIZE/4
for j <= 0 to KL-1

i <= j*32
DEST[i*31:i] <= SRC1[31:0]

elif X = QWORD THEN
KL <= OPERAND_SIZE/8
for j <= 0 to KL-1
i <= j*64
DEST[i*63:i] <= SRC1[63:0]

fi

Table B.20: VPERM S/D
PREFIX OPCODE RVU DST RVU REG DST RVU SRC1 RVU REG SRC1 RVU SRC2 RVU REG SRC2 UNUSED_7

OPERAND_SIZE <= to_int(OPSIZE)
if X = DWORD THEN

KL <= OPERAND_SIZE/4
n <= {log2(KL)} -1
for j <= 0 to KL-1

i <= j*32
id <= 32*SRC1[i+n:i]
DST[i+31:i] <= SRC2[id+31:id]

if X = QWORD THEN
KL <= OPERAND_SIZE/8
n <= {log2(KL)} -1
for j <= 0 to KL-1

i <= j*64
id <= 64*SRC1[i+n:i]
DST[i+63:i] <= SRC2[id+63:id]
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Table B.21: VMOVV
PREFIX OPCODE RVU DST RVU REG DST RVU SRC1 RVU REG SRC1 UNUSED_2

OPERAND_SIZE <= to_int(OPSIZE)
DEST[OPERAND_SIZE-1:0] <= SRC1[OPERAND_SIZE-1:0]

Table B.22: VMOV XMM/YMM/ZMM to PIM
PREFIX OPCODE RVU DST RVU REG DST X86 Vector Reg SRC1

OPERAND_SIZE <= to_int(OPSIZE)
DEST[OPERAND_SIZE-1:0] = SRC1[OPERAND_SIZE-1:0]

Table B.23: VMOV PIM to XMM/YMM/ZMM
PREFIX OPCODE X86 Vector Reg SRC1 RVU DST RVU REG DST

OPERAND_SIZE <= to_int(OPSIZE)
DEST[OPERAND_SIZE-1:0] <= SRC1[OPERAND_SIZE-1:0]
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Table B.24: GATHER
PREFIX OPCODE RVU DST RVU REG DST MASK GPR SRC1 X86 Vector SRC2 UNUSED_4

OPERAND_SIZE <= to_int(OPSIZE)
if (ADDRESS_SIZE = DATA_SIZE = DWORD) THEN

KL <= OPERAND_SIZE/4
;;64B/4=16 => SRC2=ZMM, 32B/4=8 => SRC2=YMM, 16B/4=4 => SRC2=XMM
for j <= 0 to KL-1

i <= j*32
if(SRC1[j] or no-writemask) THEN

DST[i+31:i] <= MEM[SignExtend(SRC2[i+31:i])
else

DST[i+31:i] <= remains unchanged
fi;

endfor

if (ADDRESS_SIZE = DATA_SIZE = QWORD) THEN
KL <= OPERAND_SIZE/8
;;64B/8=8 => SRC2=ZMM, 32B/8=4 => SRC2=YMM, 16B/4=4 => SRC2=XMM
for j <= 0 to KL-1

i <= j*64
if(SRC1[j] or no-writemask) THEN

DST[i+63:i] <= MEM[SignExtend(SRC2[i+63:i])
else

DST[i+63:i] <= remains unchanged
fi;

endfor

if((ADDRESS_SIZE = DWORD) & (DATA_SIZE = QWORD)) THEN
KL <= OPERAND_SIZE/8
;;128B/8=16 => SR2=ZMM (16 address of 32bits), 64B/8=8 => SRC2=YMM

(8 address of 32bits), 32B/8=4 => SRC2=XMM (4 address of
32bits)

for j <= 0 to KL-1
i <= j*64
k <= j*32
if(SRC1[j] or no-writemask) THEN

DST[i+63:i] <= MEM[SignExtend(SRC2[k+32:k])
else

DST[i+63:i] <= remains unchanged
fi;

endfor

if((DATA_SIZE = DWORD) & (ADDRESS_SIZE = QWORD)) THEN
KL <= OPERAND_SIZE/4
;;32B/4=8 => SRC2=ZMM (8 address of 64bits)
for j <= 0 to KL-1

i <= j*32
k <= j*64
if(SRC1[j] or no-writemask) THEN

DST[i+31:i] <= MEM[SignExtend(SRC2[k+63:k])
else

DST[i+31:i] <= remains unchanged
fi;

endfor

SRC1[MAX-1:KL] <= 0
DST[MAX_OPERAND_SIZE-1:KL] <= 0
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Table B.25: SCATTER
PREFIX OPCODE X86 Vector SRC2 MASK GPR SRC1 RVU DST RVU REG DST UNUSED_4

OPERAND_SIZE <= to_int(OPSIZE)
if (ADDRESS_SIZE = DATA_SIZE = DWORD) THEN

KL <= OPERAND_SIZE/4
;;64B/4=16 => DST=ZMM, 32B/4=8 => DST=YMM
for j <= 0 to KL-1

i <= j*32
if(SRC1[j] or no-writemask) THEN

MEM[SignExtend(DST[i+31:i]) <= SRC2[i+31:i]
else

MEM[SignExtend(DST[i+31:i]) <= remains unchanged
fi;

endfor

if (ADDRESS_SIZE = DATA_SIZE = QWORD) THEN
KL <= OPERAND_SIZE/8
;;64B/8=8 => DST=ZMM, 32B/8=4 => DST=YMM
for j <= 0 to KL-1

i <= j*64
if(SRC1[j] or no writemask) THEN

MEM[SignExtend(DST[i+63:i]) <= SRC2[i+63:i]
else

MEM[SignExtend(DST[i+63:i]) <= remains unchanged
fi;

endfor

if((ADDRESS_SIZE = DWORD) & (DATA_SIZE = QWORD)) THEN
KL <= OPERAND_SIZE/8
;;128B/8=16 => DST=ZMM (16 address of 32bits), 64B/8=8 => DST=YMM

(8 address of 32bits), 32B/8=4 => DST=XMM (4 address of 32bits)
for j <= 0 to KL-1

i <= j*64
k <= j*32
if(SRC1[j] or no-writemask) THEN

MEM[SignExtend(DST[k+31:k]) <= SRC2[i+63:i]
else

MEM[SignExtend(DST[k+31:k]) <= remains unchanged
fi;

endfor

if( (ADDRESS_SIZE = QWORD) & (DATA_SIZE = DWORD)) THEN
KL <= OPERAND_SIZE/4
;;32B/4=8 => DST=ZMM (8 address of 64bits)
for j <= 0 to KL-1

i <= j*32
k <= j*64
if(SRC1[j] or no-writemask) THEN

MEM[SignExtend(DST[k+63:k]) <= SRC2[i+31:i]
else

MEM[SignExtend(DST[k+63:k]) <= remains unchanged
fi;

endfor

SRC1[MAX-1:KL] <= 0
DST[MAX_OPERAND_SIZE-1:KL] <= 0
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Table B.26: VSHUF32x4
PREFIX OPCODE RVU DST

RVU
REG DST RVU SRC1

RVU
REG SRC1

RVU
SRC2

RVU
REG SRC2 UNUSED_7 IMM_64 SRC3

Select16(SRC, control){
CASE(control[3:0]) OF

0: TMP <= SRC[127:0]
1: TMP <= SRC[255:128]
. . .
15: TMP <= SRC[2047:1920]

ESAC;
RETURN TMP

Select8((SRC, control){
CASE(control[2:0]) OF

0: TMP <= SRC[127:0]
1: TMP <= SRC[255:128]
. . .
7: TMP <= SRC[1023:896]

ESAC;
RETURN TMP

Select4((SRC, control){
CASE(control[1:0]) OF

0: TMP <= SRC[127:0]
1: TMP <= SRC[255:128]
2: TMP <= SRC[383:256]
3: TMP <= SRC[511:384]

ESAC;
RETURN TMP

OPERAND_SIZE <= to_int(OPSIZE)
KL <= OPERAND_SIZE/16
if KL = 16 THEN

TMP_DST[127:0] <= Select16(SRC1[2048:0],imm64[3:0])
TMP_DST[255:128] <= Select16(SRC1[2048:0],imm64[7:4])
. . . . .
TMP_DST[1919:1792] <= Select16(SRC1[2048:0],imm64[59:56])
TMP_DST[2047:1920] <= Select16(SRC1[2048:0],imm64[63:60])

if KL = 8 THEN
TMP_DST[127:0] <= Select16(SRC1[2048:0],imm64[2:0])
TMP_DST[255:128] <= Select16(SRC1[2048:0],imm64[5:3])
. . . . .
TMP_DST[895:768] <= Select16(SRC1[2048:0],imm64[20:18])
TMP_DST[1023:896] <= Select16(SRC1[2048:0],imm64[23:21])

if KL = 4 THEN
TMP_DST[127:0] <= Select16(SRC1[2048:0],imm64[1:0])
TMP_DST[255:128] <= Select16(SRC1[2048:0],imm64[3:2])
TMP_DST[383:256] <= Select16(SRC1[2048:0],imm64[5:4])
TMP_DST[511:384] <= Select16(SRC1[2048:0],imm64[7:6])

for j <= KL-1
i <= j*32
DEST[i+31:i] <= TEMP_DST[i+31:i]
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Table B.27: VSHUF64x2
PREFIX OPCODE RVU DST

RVU
REG DST RVU SRC1

RVU
REG SRC1

RVU
SRC2

RVU
REG SRC2 UNUSED_7 IMM_64 SRC3

Select16(SRC, control){
CASE(control[3:0]) OF

0: TMP <= SRC[127:0]
1: TMP <= SRC[255:128]
. . .
15: TMP <= SRC[2047:1920]

ESAC;
RETURN TMP

Select8((SRC, control){
CASE(control[2:0]) OF

0: TMP <= SRC[127:0]
1: TMP <= SRC[255:128]
. . .
7: TMP <= SRC[1023:896]

ESAC;
RETURN TMP

Select4((SRC, control){
CASE(control[1:0]) OF

0: TMP <= SRC[127:0]
1: TMP <= SRC[255:128]
2: TMP <= SRC[383:256]
3: TMP <= SRC[511:384]

ESAC;
RETURN TMP

OPERAND_SIZE <= to_int(OPSIZE)
KL <= OPERAND_SIZE/16
if KL = 16 THEN

TMP_DST[127:0] <= Select16(SRC1[2048:0],imm64[3:0])
TMP_DST[255:128] <= Select16(SRC1[2048:0],imm64[7:4])
. . . . .
TMP_DST[1919:1792] <= Select16(SRC1[2048:0],imm64[59:56])
TMP_DST[2047:1920] <= Select16(SRC1[2048:0],imm64[63:60])

if KL = 8 THEN
TMP_DST[127:0] <= Select16(SRC1[2048:0],imm64[2:0])
TMP_DST[255:128] <= Select16(SRC1[2048:0],imm64[5:3])
. . . . .
TMP_DST[895:768] <= Select16(SRC1[2048:0],imm64[20:18])
TMP_DST[1023:896] <= Select16(SRC1[2048:0],imm64[23:21])

if KL = 4 THEN
TMP_DST[127:0] <= Select16(SRC1[2048:0],imm64[1:0])
TMP_DST[255:128] <= Select16(SRC1[2048:0],imm64[3:2])
TMP_DST[383:256] <= Select16(SRC1[2048:0],imm64[5:4])
TMP_DST[511:384] <= Select16(SRC1[2048:0],imm64[7:6])

for j <= KL-1
i <= j*32
DEST[i+63:i] <= TEMP_DST[i+63:i]
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Table B.28: PSHUFFLE_D
PREFIX OPCODE RVU DST RVU REG DST RVU SRC1 RVU REG SRC1 UNUSED_2 Imm_64 SRC2

OPERAND_SIZE <= to_int(OPSIZE)

KL <= OPERAND_SIZE/4

FOR j <= 0 TO KL-1
i <= j * 32

TMP_SRC[i+31:i] <= SRC[i+31:i]
ENDFOR;

if(KL >= 4) then ;; RVU-16B
TMP_DEST[31:0] <= (TMP_SRC[127:0] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[63:32] <= (TMP_SRC[127:0] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[95:64] <= (TMP_SRC[127:0] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[127:96] <= (TMP_SRC[127:0] >> (ORDER[7:6] * 32))[31:0];
if(KL >= 8) then ;; RVU-32B
TMP_DEST[159:128] <= (TMP_SRC[255:128] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[191:160] <= (TMP_SRC[255:128] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[223:192] <= (TMP_SRC[255:128] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[255:224] <= (TMP_SRC[255:128] >> (ORDER[7:6] * 32))[31:0];
if(KL >= 16) then ;; RVU-64B
TMP_DEST[287:256] <= (TMP_SRC[383:256] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[319:288] <= (TMP_SRC[383:256] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[351:320] <= (TMP_SRC[383:256] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[383:352] <= (TMP_SRC[383:256] >> (ORDER[7:6] * 32))[31:0];
TMP_DEST[415:384] <= (TMP_SRC[511:384] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[447:416] <= (TMP_SRC[511:384] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[479:448] <= (TMP_SRC[511:384] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[511:480] <= (TMP_SRC[511:384] >> (ORDER[7:6] * 32))[31:0];
if(KL >= 32) then ;; RVU-128B
TMP_DEST[543:512] <= (TMP_SRC[641:512] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[575:544] <= (TMP_SRC[641:512] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[607:576] <= (TMP_SRC[641:512] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[639:608] <= (TMP_SRC[641:512] >> (ORDER[7:6] * 32))[31:0];
...
TMP_DEST[927:896] <= (TMP_SRC[737:706] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[959:928] <= (TMP_SRC[737:706] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[991:959] <= (TMP_SRC[737:706] >> (ORDER[5:3] * 32))[31:0];
TMP_DEST[1023:992] <= (TMP_SRC[737:706] >> (ORDER[7:6] * 32))[31:0];
if(KL >= 64) then ;; RVU-256B
TMP_DEST[1055:1024] <= (TMP_SRC[865:738] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[1087:1056] <= (TMP_SRC[865:738] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[1119:1088] <= (TMP_SRC[865:738] >> (ORDER[5:4] * 32))[31:0];
TMP_DEST[1151:1120] <= (TMP_SRC[865:738] >> (ORDER[7:6] * 32))[31:0];
...
TMP_DEST[1953:1922] <= (TMP_SRC[2047:1920] >> (ORDER[1:0] * 32))[31:0];
TMP_DEST[1983:1954] <= (TMP_SRC[2047:1920] >> (ORDER[3:2] * 32))[31:0];
TMP_DEST[2015:1984] <= (TMP_SRC[2047:1920] >> (ORDER[5:3] * 32))[31:0];
TMP_DEST[2047:2016] <= (TMP_SRC[2047:1920] >> (ORDER[7:6] * 32))[31:0];



109

Table B.29: VINSERT_H
PREFIX OPCODE RVU DST

RVU
REG DST RVU SRC1

RVU
REG SRC1

RVU
SRC2

RVU
REG SRC2 UNUSED_7 IMM_8 SRC3

TEMP = SRC1
case (SRC3[0])

0: TEMP[OPSIZE/2-1:0] <= SRC2
1: TEMP[OPSIZE: OPSIZE/2] <= SRC2

esac.

RVU_DST = TEMP

;; RVU_DST, RVU_SRC1 must be OPSIZE
;; RVU_SRC2 must be OPSIZE/2

Table B.30: VEXTRACT_H
PREFIX OPCODE RVU DST RVU REG DST RVU SRC1 RVU REG SRC1 UNUSED_2 Imm_8 SRC2

case(SRC3[0])
0: TEMP = SRC1[OPSIZE/2-1:0]
1: TEMP = SRC1[OPSIZE-1:OPSIZE/2]

esac
RVU_DSL = TEMP

;; RVU_DST, RVU_SRC1 must be OPSIZE
;; RVU_SRC2 must be OPSIZE/2
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Table B.31: VINSERT_64x4
PREFIX OPCODE RVU DST

RVU
REG DST RVU SRC1

RVU
REG SRC1

RVU
SRC2

RVU
REG SRC2 UNUSED_7 IMM_8 SRC3

TEMP = SRC1
if(OPSIZE = 256B) then

case (SRC3[2:0])
000: TEMP[255:0] <= SRC2
001: TEMP[511:256] <= SRC2
. . . . . . .
111: TEMP[2047:1792] <= SRC2

esac.
fi

if(OPSIZE = 128B) then
case (SRC3[1:0])

00: TEMP[255:0] <= SRC2
01: TEMP[511:256] <= SRC2
10: TEMP[767:512] <= SRC2
11: TEMP[1023:768] <= SRC2

esac.
fi

if(OPSIZE = 64B) then
case (SRC3[0])

0: TEMP[255:0] <= SRC2
1: TEMP[511:256] <= SRC2

esac.
fi

RVU_DST = TEMP
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Table B.32: VEXTRACT_64x4
PREFIX OPCODE RVU DST RVU REG DST RVU SRC1 RVU REG SRC1 UNUSED_2 Imm_8 SRC2

if(OPSIZE = 256B) then
case (SRC2[2:0])

000: TEMP <= SRC1[255:0]
001: TEMP <= SRC1[512:256]
. . . . . . .
111: TEMP <= SRC1[2047:1792]

esac.
fi

if(OPSIZE = 128B) then
case (SRC2[1:0])

00: TEMP <= SRC1[255:0]
01: TEMP <= SRC1[511:256]
10: TEMP <= SRC1[767:512]
11: TEMP <= SRC1[1023:768]

esac.
fi

if(OPSIZE = 64B) then
case (SRC2[0])

0: TEMP <= SRC1[255:0]
1: TEMP <= SRC1[511:256]

esac.
fi

RVU_DST = TEMP
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APPENDIX C — OPCODE

OPCODE

PREFIX INSTRUCTION DATA TYPE
TABLE 5.3

OPSIZE
TABLE 5.2

8bits 8bits 3bits 5bits MNMONIC OBSERVATIONS

61h 00000000 000 4∼8192 LOAD_OPSIZE
61h 00000000 001 4∼8192 LOAD_OPSIZE
61h 00000000 010 4∼8192 LOAD_OPSIZE
61h 00000000 011 4∼8192 LOAD_OPSIZE
61h 00000000 100 4∼8192 LOAD_OPSIZE

61h 00000001 000 4∼8192 STORE_OPSIZE
61h 00000001 001 4∼8192 STORE_OPSIZE
61h 00000001 010 4∼8192 STORE_OPSIZE
61h 00000001 011 4∼8192 STORE_OPSIZE
61h 00000001 100 4∼8192 STORE_OPSIZE

61h 00000010 000 4∼8192 VADD_BYTE
61h 00000010 001 4∼8192 VADD_WORD
61h 00000010 010 4∼8192 VADD_DWORD
61h 00000010 011 8∼8192 VADD_QWORD

61h 00000011 001 4∼8192 FVADD_WORD
61h 00000011 010 4∼8192 FVADD_DWORD
61h 00000011 011 8∼8192 FVADD_QWORD

61h 00000100 000 4∼8192 VSUB_BYTE
61h 00000100 001 4∼8192 VSUB_WORD
61h 00000100 010 4∼8192 VSUB_DWORD
61h 00000100 011 4∼8192 VSUB_QWORD

61h 00000101 001 4∼8192 FVSUB_WORD
61h 00000101 010 4∼8192 FVSUB_DWORD
61h 00000101 011 4∼8192 FVSUB_QWORD

61h 00000111 000 4∼8192 VAND_BYTE
61h 00000111 001 4∼8192 VAND_WORD
61h 00000111 010 4∼8192 VAND_DWORD
61h 00000111 011 4∼8192 VAND_QWORD

61h 00011111 000 4∼8192 VOR_BYTE
61h 00011111 001 4∼8192 VOR_WORD
61h 00011111 010 4∼8192 VOR_DWORD
61h 00011111 011 4∼8192 VOR_QWORD

61h 00001000 000 4∼8192 VNOT_BYTE
61h 00001000 001 4∼8192 VNOT_WORD
61h 00001000 010 4∼8192 VNOT_DWORD
61h 00001000 011 4∼8192 VNOT_QWORD
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OPCODE

PREFIX INSTRUCTION DATA TYPE
TABLE 5.3

OPSIZE
TABLE 5.2

8bits 8bits 3bits 5bits MNMONIC OBSERVATIONS

61h 00001001 000 4∼8192 VSHIFTL_BYTE
61h 00001001 001 4∼8192 VSHIFTL_WORD
61h 00001001 010 4∼8192 VSHIFTL_DWORD
61h 00001001 011 8∼8192 VSHIFTL_QWORD

61h 00001010 000 4∼8192 VSHIFTR_BYTE
61h 00001010 001 4∼8192 VSHIFTR_WORD
61h 00001010 010 4∼8192 VSHIFTR_DWORD
61h 00001010 011 8∼8192 VSHIFTR_QWORD

61h 01001001 000 4∼8192 VSLLI_BYTE
61h 01001001 001 4∼8192 VSLLI_WORD
61h 01001001 010 4∼8192 VSLLI_DWORD
61h 01001001 011 4∼8192 VSLLI_QWORD

61h 01001010 000 4∼8192 VSRLI_BYTE
61h 01001010 001 4∼8192 VSRLI_WORD
61h 01001010 010 4∼8192 VSRLI_DWORD
61h 01001010 011 4∼8192 VSRLI_QWORD

61h 00001100 000 4∼8192 VMUL_BYTE
61h 00001100 001 4∼8192 VMUL_WORD
61h 00001100 010 4∼8192 VMUL_DWORD
61h 00001100 011 8∼8192 VMUL_QWORD

61h 00001101 001 4∼8192 FVMUL_WORD
61h 00001101 010 4∼8192 FVMUL_DWORD
61h 00001101 011 8∼8192 FVMUL_QWORD

61h 00001110 000 4∼8192 VDIV_BYTE
61h 00001110 001 4∼8192 VDIV_WORD
61h 00001110 010 4∼8192 VDIV_DWORD
61h 00001110 011 8∼8192 VDIV_QWORD

61h 00001111 001 4∼8192 FVDIV_WORD
61h 00001111 010 4∼8192 FVDIV_DWORD
61h 00001111 011 8∼8192 FVDIV_QWORD

61h 00010000 000 8∼8192 BROADCASTB
61h 00010000 001 8∼8192 BROADCASTH
61h 00010000 010 8∼8192 BROADCASTS
61h 00010000 011 8∼8192 BROADCASTD
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OPCODE

PREFIX INSTRUCTION DATA TYPE
TABLE 5.3

OPSIZE
TABLE 5.2

8bits 8bits 3bits 5bits MNMONIC OBSERVATIONS

61h 00010001 000 8∼8192 BROADCASTRB
61h 00010001 001 8∼8192 BROADCASTRH
61h 00010001 010 8∼8192 BROADCASTRS
61h 00010001 011 8∼8192 BROADCASTRD

61h 00010010 000 4∼8192 VPERM_BYTE
61h 00010010 001 8∼8192 VPERM_WORD
61h 00010010 010 16∼8192 VPERM_DWORD
61h 00010010 011 32∼8192 VPERM_QWORD

61h 00010011 000 4∼8192 VMOVV

61h 00010100 010 16∼64 VMOV_PIMtoM M = XMM, YMM, ZMM

61h 00100100 010 16∼64 VMOV_MtoPIM M = XMM, YMM, ZMM

61h 00010101 xxx 32∼256 VSHUFF32x4 No Multiple RVU Support

61h 00010110 xxx 32∼256 VSHUFF64x2 No Multiple RVU Support

61h 00011100 000 4∼8192 PSHUFFLE_BYTE
61h 00011100 001 4∼8192 PSHUFFLE_WORD
61h 00011100 010 4∼8192 PSHUFFLE_DWORD
61h 00011100 011 4∼8192 PSHUFFLE_QWORD

61h 00010111 000 4∼8192 VXOR_BYTE
61h 00010111 001 4∼8192 VXOR_WORD
61h 00010111 010 4∼8192 VXOR_DWORD
61h 00010111 011 4∼8192 VXOR_QWORD

61h 00011000 010 16∼64 VGATHER_DD
61h 00011000 011 32∼128 VGATHER_DQ

61h 00011001 010 16∼32 VGATHER_QD
61h 00011001 011 32∼64 VGATHER_QQ

61h 00011010 010 16∼64 VSCATTER_DD
61h 00011010 011 32∼128 VSCATTER_DQ

61h 00011011 010 16∼32 VSCATTER_QD
61h 00011011 011 32∼64 VSCATTER_QQ
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OPCODE

PREFIX INSTRUCTION DATA TYPE
TABLE 5.3

OPSIZE
TABLE 5.2

8bits 8bits 3bits 5bits MNMONIC OBSERVATIONS

61h 00011101 000 4∼8192 VMIN_BYTE
61h 00011101 001 4∼8192 VMIN_WORD
61h 00011101 010 4∼8192 VMIN_DWORD
61h 00011101 011 4∼8192 VMIN_QWORD

61h 00011110 001 4∼8192 FVMIN_WORD
61h 00011110 010 4∼8192 FVMIN_DWORD
61h 00011110 011 4∼8192 FVMIN_QWORD

61h 00111101 000 4∼8192 VMAX_BYTE
61h 00111101 001 4∼8192 VMAX_WORD
61h 00111101 010 4∼8192 VMAX_DWORD
61h 00111101 011 4∼8192 VMAX_QWORD

61h 00111110 001 4∼8192 FVMAX_WORD
61h 00111110 010 4∼8192 FVMAX_DWORD
61h 00111110 011 4∼8192 FVMAX_QWORD

61h 01111100 010 64∼256 VINSERT64x4_DWORD
61h 01111100 011 64∼256 VINSERT64x4_QWORD
61h 01111101 010 64∼256 VEXTRACT64x4_DWORD
61h 01111101 011 64∼256 VEXTRACT64x4_QWORD

No Multiple RVU Support

61h 01111110 010 64∼8192 VINSERTHALF_DWORD
61h 01111110 011 64∼8192 VINSERTHALF_QWORD

61h 01111111 010 64∼8192 VEXTRACTHALF_DWORD
61h 01111111 011 64∼8192 VEXTRACTHALF_QWORD
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APPENDIX D — LIST OF LLVM MODIFIED FILES

The following files have been modified in LLVM to allow the proposed implemen-

tation. For informational purposes regarding the work to build PRIMO, around 20,000

lines of code have been entered into the LLVM.

• Middle-End - Vector Extension

/include/llvm/CodeGen/MachineValueType.h

/include/llvm/CodeGen/ValueTypes.td

/include/llvm/CodeGen/ValueTypes.h

/include/llvm/IR/Intrinsics.td

/lib/IR/ValueTypes.cpp

• Middle-End - Vector Size Selector

/lib/Transforms/Vectorize/LoopVectorize.cpp

• Back-end - Lane Extension

/lib/CodeGen/MIRParser/MIParser.cpp

/lib/CodeGen/RegisterCoalescer.cpp

/include/llvm/MC/LaneBitmask.h

/utils/TableGen/CodeGenRegisters.cpp

/utils/TableGen/RegisterInfoEmitter.cpp

• Back-end - Register File Definition

/lib/Target/X86/X86RegisterInfo.td

• Back-end - PIM Instruction Selection

/lib/Target/X86/X86ISelLowering.cpp

/lib/Target/X86/X86ISelLowering.h

/lib/CodeGen/SelectionDAG/SelectionDAG.cpp

/lib/Target/X86/X86InstrInfo.td

/lib/Target/X86/X86InstrInfo.cpp

/lib/Target/X86/X86InstrFormats.td
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/lib/Target/X86/X86InstrFragmentsSIMD.td

/lib/Target/X86/X86Subtarget.cpp

/lib/Target/X86/X86Subtarget.h

/lib/Target/X86/X86.td

/lib/Target/X86/AsmParser/X86AsmParserCommon.h

/lib/Target/X86/AsmParser/X86Operand.h

/lib/Target/X86/Disassembler/X86Disassembler.cpp

/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp

/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h

/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp

/lib/Target/X86/InstPrinter/X86ATTInstPrinter.h

/lib/Target/X86/InstPrinter/X86IntelInstPrinter.cpp

/lib/Target/X86/InstPrinter/X86IntelInstPrinter.h

/utils/TableGen/X86RecognizableInstr.cpp
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