
Near-memory & In-Memory Detection of Fileless Malware
Marcus Botacin1, André Grégio1, Marco Zanata Alves1

1Federal University of Paraná (UFPR-Brazil)
{mfbotacin,gregio,mazalves}@inf.ufpr.br

ABSTRACT

Fileless malware are recent threats to computer systems that load
directly into memory, and whose aim is to prevent anti-viruses
(AVs) from successfully matching byte patterns against suspicious
files written on disk. Their detection requires that software-based
AVs continuously scan memory, which is expensive due to re-
peated locks and polls. However, research advances introduced
near-memory and in-memory processing, which allow memory
controllers to trigger basic computations without moving data to
the CPU. In this paper, we address AVs performance overhead
by moving them to the hardware, i.e., we propose instrumenting
processors’ memory controller or smart memories (near- and in-
memory malware detection, respectively) to accelerate memory
scanning procedures. To do so, we present MINI-ME, the Malware
Identification based on Near- and In-Memory Evaluation mech-
anism, a hardware-based AV accelerator that interrupts the pro-
gram’s execution if malicious patterns are discovered in their mem-
ory. We prototyped MINI-ME in a simulator and tested it with a
set of 21 thousand in-the-wild malware samples, which resulted
in multiple signatures matching with less than 1% of performance
overhead and rates of 100% detection, and zero false-positives and
false-negatives.

CCS CONCEPTS

• Computer systems organization → Processors and mem-

ory architectures; • Security andprivacy→ Intrusion/anomaly

detection and malware mitigation; Software and application se-
curity;

ACM Reference Format:

Marcus Botacin1, André Grégio1, Marco Zanata Alves1. 2020. Near-memory
& In-Memory Detection of Fileless Malware. In Proceedings of The 2020
International Conference on Memory Systems (MEMSYS’20). ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Damages caused by malicious software range from the exposition
of sensitive information to financial losses (e.g., ransomware [72]
steals billions from their victims). The most deployed countermea-
sure against malware is the anti-virus (AV), which inspects files
on disk (usually at process/file creation time) to match segments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MEMSYS’20, September 2020, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

from a list of known malicious byte-sequences (signatures) [75]. To
thwart AV detection, cyber-criminals recently started to make use
of fileless malware, which infects the image of loaded processes
completely from the main memory [19, 74]. Since fileless malware
are not written on disk at any moment of their operation, they
do not trigger the usual disk-based AV scanning. Moreover, mali-
cious code is injected into already loaded benign processes, making
binary scanning at load time ineffective.

To address fileless malware, AVs started to performmemory scan-
ning, i.e., signature searching inside loaded images of processes [37].
While effective, this procedure is memory access-intensive, since
AVs need to constantly lock and poll system memory to detect hi-
jacks of benign processes during their execution. Hence, AVs have
to handle the inspection rate: more frequent checks may detect sig-
natures on transient states [50], but impose very high performance
penalties; sparser checks have less significant performance penalty,
but are susceptible to attacks whose signature patterns appear only
in the interval between two checks. This scenario creates an urgent
need of more efficient memory pattern matching mechanisms that
allow for continuous inspection (preventing transient attacks with
acceptable performance overhead).

Recent advances on Ultra Large-Scale Integration (ULSI) and
mixed logical and DRAM layers inside 3D-stacked chips using
Through SiliconVias (TSVs) [55] led to the concepts of near-memory
and in-memory processing: memories gained the ability to perform
basic in-place computations without moving data from RAM to
the main CPU, leaving the main processor free for more complex
tasks. This created an opportunity for making more efficient AVs
by taking advantage of near-memory and in-memory capabilities.

In this paper, we propose to instrument memory controllers of
current DDR-powered CPUs or inside smart memories (e.g., Hybrid
Memory Cubes - HMCs, High BandwidthMemories - HBMs [42]) to
create a novel hardware-based malware signature matching mecha-
nism able to detect fileless (and traditional) malware without mov-
ing data from RAM to the CPU. To implement a lightweight check-
ing procedure, we relied on the unexplored time-window between
memory buffers write and read requests for the same addresses in
both DDR and smart-memory memory controllers. Thus, we can
perform almost inexpensive pattern matching routines, ensuring
an invariant in which each piece of read data had been previously
scanned at the time it was written. As far as we know, we are the
first researchers to propose a hardware-assisted malware signa-
ture matching procedure using either near-memory or in-memory
processing techniques.

Our main contributions are: (i) we propose MINI-ME (Malware
Identification based on Near- and In-Memory Evaluation), a novel
hardware-assisted malware detector implemented inside the mem-
ory controller; (ii) we observed inside the memory controller a
very frequent time window of write-to-read operations to the same

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MEMSYS’20, September 2020, Washington, DC, USA Marcus Botacin1, André Grégio1, Marco Zanata Alves1

address, which we used to effectively detect malware in memory,
as well as to reduce software-based AVs overhead; (iii) we detect
cache-resident malware by reinforcing a write-through policy on
memory pages affected by Self-Modifying Code (SMC). This policy
imposes negligible overhead for legitimate SMC code that modifies
non-cached pages (e.g., Java and Python); (iv) we simulateMINI-
ME’s operation and explore its design space to identify the best
signature sizes regarding detection rates and performance.

MINI-ME accelerates in-memory pattern matching and detects
malware with an additional bit to the page table, causing detection
notifications to be handled via standard page-fault routines. We
obtained zero false-positives (FP) with a deterministic matching pro-
cedure, and an FP rate smaller than 1%with a probabilistic matching
procedure based on Bloom filters, also reducing the storage required
for deterministic matching. Both procedures had overheads smaller
than 1%, showingMINI-ME’s feasibility for actual scenarios.

This paper is organized as follows: in Section 2, we motivate
our work; in Section 3, we present background concepts that sub-
stantiate our developments; in Section 4, we introduce the design
of MINI-ME; in Section 5, we present MINI-ME’s implementation
details; in Section 6, we showMINI-ME’s evaluation through multi-
ple criteria; in Section 7, we discussMINI-ME’s contributions and
the future of in-memory threats; in Section 8, we discuss related
work and how they differ from MINI-ME; finally, we draw our
conclusions in Section 9.

2 MOTIVATION

In this section, we present experiments to demonstrate the perfor-
mance bottlenecks that we aim to mitigate and our reasoning about
the adoption of a hardware-assisted solution for it.
Statement 1. Software-based, continuous memory scanners

impose overhead regardless of their implementation. AVs
can implement memory checking procedures using three distinct
approaches: (i) dumping the running processes’ virtual memory; (ii)
dumping full userland virtual memory; or (iii) dumping full system
physical memory.

To dump running processes’ memory, userland AVs first enumer-
ate all running processes (EnumProcess API [43]), then open han-
dlers for the targeted processes (OpenProcess API [44]), and finally
read their memory contents (ReadProcessMemory API [45]). Due
to the need for calling multiple functions and retrieving tokens for
processes inspection, this approach imposes a significant system
slowdown. In addition, as processes are handled through their vir-
tual memories, the overhead caused by the explicit OS boundary
checks [48] and userland-kernel transitions due to OS API calls is
unavoidable and the spent time cannot be masked among other
operations because of the inspected processes must be suspended
(locked) by the inspection procedure to gather information from
a consistent state. An advantage of this approach is that the AV
can select specific processes and/or processes’ memory regions to
dump and inspect.

In the second approach, the AV follows the same strategy pre-
viously described, but do not filter memory regions or processes,
thus dumping all userland-allocated memory resident in the RAM.

When dumping physical memory, the OS simply asks OS to collect
all memory addresses data without any boundary control. Since

this approach does not require explicit OS checks or processes
enumeration, the dump procedure tends to be faster. As a drawback,
as no memory boundaries are provided by the OS, whole system
memory is dumped, which may increase the dump file size on
systems having large memory capacities. To implement this type
of dumping, AVs are required to load a kernel driver, thus making
it a less popular approach than virtual memory dump approaches
implemented at userland. However, despite implementation issues,
this approach can also be implemented by AVs, as it is already
employed in forensic tools [25, 57].

To evaluate the impact of the aforementioned approaches on
actual systems, we have deployed them into a 4-core Intel i7 Skylake,
2x4 GB 2133 MHz DDR-3 DRAM machine running MS-Windows 7.
To evaluate the cost of dumping only the running processes, we
used the ProcDump tool [24] while sequentially running the benign
applications from the SPEC CPU 2006 benchmark suite [69] to
populate the memory regions, consuming a total of 800 MB of used
memory pages. To evaluate the cost of dumping the full userland
memory, we repeated the experiment now completely dumping a
process which dynamically allocates a virtual-memory-based buffer
of the same size of the total RAM. To evaluate the physical dump
approach, we used the frameworks OSForensics [57] and Rekall [25]
while also running the SPEC benchmark applications. In all tests,
we limited the number of dumping (forensic tools) and populating
(SPEC) threads to one to minimize the pressure on the memory
controller. Figure 1 shows the average results obtained from 10
independent dumps for the most-affected, the average-affected, and
less-affected SPEC applications.

 10

 100

 1000

 1 2 4 8

T
im

e
 (

s
)

RAM (GB)

Virtual−Proc Virtual−Full Physical

Figure 1: Memory dump time for distinct software-based

techniques and memory sizes. They impose non-negligible

performance overhead regardless their implementation.

We observe that, as expected, the time spent dumping the full
userland virtual memory (Virtual-Full curve): (i) grows linearly
as the total amount of dumped memory increases; and (ii) is the
longest among all approaches, due to the total amount of trans-
lations and OS invocations. In turn, limiting the total amount of
dumped memory to only the running processes memory (repre-
sented by the Virtual-Proc curve) results on dump speed up, since

2

Near-memory & In-Memory Detection of Fileless Malware MEMSYS’20, September 2020, Washington, DC, USA

the same amount of memory (the processes-allocated pages) is al-
ways dumped regardless of the total amount of memory present in
the system. For the case where approximately amount of memory
is dumped in both approaches (800MB vs. 1GB), the full dump ap-
proach is a bit faster because dumping contiguous pages results on
a higher throughput than enumerating sparse process pages.

The fastest approach, however, for all memory sizes, is the physi-
cal memory dump (Physical curve). We can observe that dumping
physical memory is one order of magnitude faster than dumping
virtual memory. The physical dump is faster even when only tar-
geted processes are dumped. As for the virtual dump approach, the
physical dump cost also grows linearly as the memory capacity is
increased, because the whole-system memory is always dumped.
Despite being faster, the dump’s cost is non-negligible, therefore, al-
though AV memory scanning capabilities could be more efficient by
using physical memory dump approaches, the overhead imposed by
performing memory dumps is unavoidable to any software-based
approach.
Statement 2. Software-based, continuous memory scanners

impose a non-negligible overhead. Regardless of the adopted
approach, we can notice that the imposed performance penalty over-
head to suspend system’s execution and perform a memory dump
for AV scanning is non-negligible. Therefore, improving existing
software-based AVs require more than improving their implemen-
tation (moving from virtual-memory dumps to physical memory
dumps) but changing their paradigm (for instance, moving from
software to hardware implementations), as any software-based im-
plementation will impact into the system’s performance. To further
evaluate this impact in practice, we measured the overhead that
a whole memory scan performed by a real AV imposes to the ex-
ecution of third applications running in the system under scan.
For such, we measured the individual overhead imposed to each
application from the SPEC CPU 2006’s benchmark suite (average
of 10 executions) when executed along with a continuous memory
scan by Clamwin [16], a Windows version for the open-source
ClamAV with memory scan and real-time support [15]. We selected
ClamAV because it is an open-source AV solution, thus easing the
instrumentation required for performance monitoring. The AV was
executed with all default configurations (e.g., default signature size,
scan intervals, so on). Figure 2 shows the overhead imposed to the
benchmark applications which respectively were most (top 3) and
less impacted (top 2) by the AV execution.

We identified that ClamWin’s memory scans imposed perfor-
mance overheads from 5% (in the best case) to up to 100% (in the
worst case) even on legitimate applications, using a 4-core pro-
cessor, executing only 2 threads (from the benchmark and the
AV). This overhead is unavoidable for software-based AVs because
they need to use the memory-CPU buses to retrieve data from
the main memory and store them in CPU caches, thus causing a
resource competition with legitimate applications running in the
same system. Therefore, implementing a memory-supported AV
would significantly reduce the performance impact caused by any
software-based AV.
Statement 3. Existing hardware features provide detection

triggers but do not eliminate the performance overhead.We
have so-far shown that software-only solutions will always impose

 0

 50

 100

 150

 200

 250

 300

perl namd Bzip milc mfc

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Benchmark

AV scanning overhead

Scan
Baseline

Figure 2: In-memory AV scans worst-case and best-case

performance penalties. ClamWin’s scans imposes penalties

from 5% to up to 100% even on benign application’s exe-

cutions. Any software-based AV will impose such signifi-

cant overhead as they compete for system resources with all

other running system’s applications.

a significant performance overhead. We now investigate the appli-
cation of existing hardware features to support these solutions in
mitigating the performance overhead. In particular, we discuss the
reliance on the MMU.

Malware detection can be understood as two distinct tasks: (i)
identifying an inspection opportunity for a given resource (e.g.,
process, page, pipe, so on); and (ii) scanning the pointed resource
for infection identification. The existing Page Faults (PFs) handler
might be a good trigger for the first task, as it can indicate read,
write, and execution attempts to individual memory pages. Forensic
solutions often operate on a copy-on-write (CoW) manner [41],
unsettingMMUflags to intentionally cause a PF to be handled under
their control. This type of implementation requires a deep level of
kernel access and thus we are not aware of any AV leveraging this
technique.

Even if AVs were able to implement a complete CoWmechanism,
this would not completely solve the problem, as the second task of
the detection process would still be required to be performed by
the software components. Forensic procedures have the significant
advantage to be allowed to performed offline checks. In turn, AVs
are required to perform online detection to block the threats as soon
as possible. Therefore, the AV would still be running a significant
amount of code during each PF handling.

Table 1 shows the impact in the performance of the same SPEC
applications shown in Figure 2 when blocking on PFs by a distinct
number of cycles. Although the relative number of PFs is short in
comparison to the total number of spent cycles, the overhead might
still be significant depending on the deployed detection routines.
The imposed overhead is increased when the detection routines
are more complex and thus take more cycles to be processed. The
overhead can reach 28% for perl if we consider a routine that

3

MEMSYS’20, September 2020, Washington, DC, USA Marcus Botacin1, André Grégio1, Marco Zanata Alves1

Table 1: Blocking on Page Faults. The performance impact

is greater as more complex is the applied detection routine.

Benchmark Cycles PF 5K 10K 20K 30K

perf 187G 1,8M 4,74% 9,48% 18,96% 28,44%
mcf 69G 375K 2,72% 5,45% 10,89% 16,34%
milc 556G 1,2M 1,05% 2,10% 4,21% 6,31%
bzip 244G 170K 0,35% 0,69% 1,38% 2,08%
namd 491G 325K 0,33% 0,66% 1,32% 1,98%

takes 30 thousand cycles, which can be reached for complex regular
expressions implemented at high level [11].

Therefore, in this paper, we look for a mechanism that provides
both a good trigger and a parallel processing capability to mitigate
the performance overhead imposed to all detection steps. We fol-
lowing show how these goals are achieved via the application of
instrumented memory controllers.

3 BACKGROUND

In this section, we present background information about the con-
cepts that support our developments. We first introduce the concept
of fileless malware, the threats we want to defend against. We sec-
ond introduce the concept of smart-memories, as they provide the
basis for our solution, We finally discuss the write-to-read window,
the time frame exploited by our solution to mask the inspection
overhead.
Fileless malware. Traditionally, AVs scan file contents for mali-
cious patterns. Although it used to be enough for most scenarios,
since even newly created processes were loaded from files down-
loaded in the disk, the emergence of the so-called fileless malware
changed everything. Also known as Advanced Volatile Threats
(AVT), this type of threat can infect a running process without
having a disk counterpart, thus being undetected by file-based AVs.
Fileless malware infections are enabled, for instance, by memory
writes from Javascript code [73], which writes process memory
with malicious code and perform runtime thread creation. The con-
cept of malicious software that operates solely from the memory is
not new (it was proposed in the ’80s [17]), but its implementation
was flawed: since it does not have a disk correspondent, it is not
persistent, which causes the attacker to lose the malware’s con-
trol in the event of a reboot. However, as modern machines hardly
often reboot, such attacks become practical. Many fileless-based
attacks have been recently reported [20, 74] and, to handle their
threat, AVs must periodically scan system memory, in addition to
disk files at process creation time. Additional scanning imposes the
overhead of including the verification of legitimate processes that
could have been infected through their memory spaces, as observed
by Kaspersky [37]. In this work, we propose an efficient way to
performmemory checks able to detect in-memory malware without
adding the significant overhead imposed by current software-based
AVs.
AV signatures. The most widespread detection technique lever-
aged by AVs is the signature matching [28]. In this approach, the AV
looks for byte patterns known to belong tomalicious samples. These
patterns often correspond to the instruction bytes which implement

a given malicious behavior. Code 1 presents an example of a signa-
ture generation procedure from a malicious code snippet responsi-
ble for implementing a debugger evasion technique based on the
internals of the Windows native library IsDebuggerPresent [47],
which is often found in many malware samples [10]. When com-
piled, the malicious C code presented in Code 1a will produce the
assembly code presented in Code 1b (see details in [10]). When
loaded in memory, such code will be represented by the byte se-
quence presented in Code 1c. Therefore, this byte pattern would be
the malicious signature itself. Similar to the AV industry, MINI-ME
considers byte sequences as signatures for in-memory malware
detection. Over time, signature-based detection had been gradually
considered less attractive given a continuous arms-race between
attackers and defenders. Malware attackers started to mutate their
samples by multiple means, such as using crypters [71], to present
distinct signatures than the ones originally identified by AV ven-
dors. Therefore, AVs started to also rely on distinct approaches,
such as behavior-based ones [13], more resistant to obfuscation.
However, signatures resurfaced recently given the emergence of
in-memory, fileless malware. As these can infect even benign ap-
plications, behavior-based approaches are not enough for detec-
tion as they can be biased by the legitimate host process behavior.
Therefore, whereas there are behavior-based approach for fileless
malware detection [23], signature matching is currently the most
effective way to detect this type of threat with higher accuracy,
thus being leveraged by the AV industry [37]. Thus, in this work,
we considered signatures to detect in-memory malware samples.
Write-to-read time window. Current memory controllers are
composed of multiple queues [34], which allows controllers to im-
plement distinct data handling policies. Each memory controller
has at least two distinct request queues (as shown in Figure 3): one
for write requests and other for read requests. A typical response
time-focused policy implemented by most controllers is to priori-
tize recent data read requests instead of cache write-back requests.
This way, read requests might overlap other read requests for any
address. This policy helps the system to sustain higher throughput
rates as consuming data (readingmemory) is a key computation task
for most applications. Despite allowing multiple policies implemen-
tation, an invariant must be ensured: memory read commands must
not overlap previous memory writes commands for the same mem-
ory address, thus keeping context consistency. In other words, it
must avoid Read-After-Write (RAW) bypasses. In practice, however,
this case is rare and write commands are often not latency-critical,
since read requests for the same address often come only after mul-
tiple cycles [35, 67]. Therefore, in practice, there is a write-to-read
window during memory operations.

Identifying this time window as an AV scanning opportunity
is key for our solution since it provides a timing upper bound
for a hardware-implemented AV check. In other words, if a scan
is triggered along a memory write request command for a given
address, an AV can take up to the next, same-address read command
completion to perform the scan without causing the memory to
delay the response to a further read request. Therefore, by exploring
the write-to-read window, we propose implementing an overhead-
free AV scanning mechanism that ensures the invariant that every

4

Near-memory & In-Memory Detection of Fileless Malware MEMSYS’20, September 2020, Washington, DC, USA

1 // Windows API

2 if(IsDebuggerPresent ()){
3 // Attacker Routine

4 evade()

a: C code.

1 // inline anti -debug asm

2 mov eax , [fs:0x30]

3 mov eax , [eax+0x2]

4 jne 0 <evade >

b: Assembly code.

1 64 8b 04 25 30 00 00

2 67 8b 40 02

3 75 e1

c: Instruction Bytes.

Code 1: Signature Generation for an evasive malware sample.

read data was previously scanned by the time when it was written
in the DRAM.

Figure 3: Write-to-Read window. Read requests originated

from the MSHRmight overlap other memory-buffered read

requests for any address, but must not overlap previous

memory-buffered write requests for the same address.

4 MINI-ME DESIGN

In this section, we present the design of MINI-ME and present the
expected usage scenario.
Threat model:MINI-ME’s goal is to perform fileless malware de-
tection in an efficient way, thus enhancing AV scan operations in
the case where AVs present significant drawbacks, and not com-
pletely replace them on detecting ordinary, disk-based threats, a
task which current AVs perform reasonably well. Therefore, we
consider that AVs will still implement their own detectors for other
threats (e.g., web attacks). Our threat model assumes code injection-
based fileless attacks and does not consider code-reuse attacks, such
as return-oriented programming (ROP) since these are not handled
by AVs but by other system mechanisms [8]. To detect fileless mal-
ware,MINI-ME still relies on malware signatures provided by the
AV companies, distributed via the Internet as malware definition
updates. Due to the signature’s nature, the ideal usage scenario
for MINI-ME is to counter 1-day attacks, when new threats are
recently discovered and no other detection method is available, al-
though MINI-ME can be applied in any scenario. MINI-ME checks
malicious patterns both in kernel and userland spaces but privilege
escalation prevention and integrity assurance are out of MINI-ME’s
scope, as authentication and authorization are not AV’s respon-
sibility. Although MINI-ME supports any Operating System, we
here assumed MINI-ME operation on Windows, as it is the most
popular [52] and targeted OS [36] by malware writers. The system

thatMINI-ME runs on may be supported by HMCs, HBMs, ordinary
DDRs or a combination of them.
Architecture: MINI-ME’s key concept is to accelerate fileless mal-
ware detection by moving AV’s pattern matching operation from
software to hardware, adding it to the memory controller. MINI-
ME does not eliminate the software-AV component but limits it
to handle only the malicious patterns detected by the hardware
component. On MINI-ME, the memory controller is responsible
for automatically and continuously retrieving modified data and
comparing it to a database of knownmalicious signatures. Handling
data near and/or inside the memory helps reducing overhead as
data does not need to be moved to the main processor to be in-
spected. When a malicious pattern is identified,MINI-ME invokes
a software-based AV component on-demand to decide whether the
running process is malicious or not. In case of false positives (FPs),
it requestsMINI-ME to add such location to a whitelist.

To accelerate AV scans and avoid adding overhead to other ap-
plication’s executions, so important as to perform the matching
procedure near and/or inside the memory is to do it in appropriate
time opportunities. If we opted to use the ordinary logic layer oper-
ations of the smart memories to do so, we could overload it with AV
requests and compromise the response time of other CPU requests,
meanwhile, we would also require CPU time for the AV trigger
such operations. Therefore, we opted to take advantage of the time
window normally existent in memory controllers between a write
and a read operation (write-to-read window) for the same memory
address (see Section 3). The main rationale behind our mechanism
is that only modified memory regions need to be scanned. Thus,
only data being modified (written) requires a check. Moreover, such
detection is only required to be finished whenever the processor
reads the written data to execute the malware instructions. There-
fore, in most cases,MINI-ME will deliver the scan result along with
the read request without imposing any overhead. Overhead is only
imposed in rare corner cases, such as for read-after-write requests
(see discussion in Section 6).

To implement this model, MINI-ME relies on 3 modules: (1) a
userland AV; (2) a kernel driver; and (3) the memory-based AV at
hardware. The userland AV component is responsible for adding
threat intelligence to the system, such as enforcing distinct security
policies. Upon starting, it updates its malware signatures definitions
from the Internet and load them in thememory controller logic to be
matched. When a pattern is matched, the AV is notified and then it
decides which action will be taken (process whitelisting or blocking,
for instance). By keeping threat intelligence in software, we can still
benefit of years of AV industry expertise whereas still improving
AV performance by moving the matching to the hardware.

5

MEMSYS’20, September 2020, Washington, DC, USA Marcus Botacin1, André Grégio1, Marco Zanata Alves1

MINI-ME requires a kernel driver to allow the userland-hardware
communication. The driver is responsible for receiving the user-
land AV component requests (start monitoring, load signatures and
whitelist regions) and forwarding them to the memory controller by
writing to memory-mapped memory controller’s control registers.
The control region is mapped only in the kernel, thus protecting
MINI-ME from userland tampering [31], respecting the privileged
monitoring principle [62].

MINI-ME’s hardware component, responsible for checking mem-
ory for malicious patterns, is implemented inside the memory con-
trollers and is formed by: (i) the Matching Engine, which can be
implemented in several different ways; (ii) the Signature Database
inside the Matching Engine to store the malware signatures; (iii)
a Malicious bit inside the read packets/commands; (iv) the Mali-
cious Bit Database to identify the malicious memory rows; (v) the
Matching Signatures Area (MSA) to store the matched patterns; (vi)
the Whitelist Bit Database to identify whitelisted memory rows;
and (vii) a Malicious bit for each entry of the Page Table. Database
implementation details are described in Section 5.

MINI-ME’s Matching Engine (i) incorporates the Signature Data-
base (ii) and queries it for malicious patterns. The database is ex-
ternally loaded by the driver, allowing signatures updates to oc-
cur without hardware redesign, a common drawback of previous
hardware-AV solutions (see Section 8).
Usage example: Figure 4 presentsMINI-ME architecture and op-
eration (the MSA is omitted for the sake of simplicity). Each time an
income data write packet is received by the memory controller (1),
MINI-ME stores the data in the DRAM (2) and the Matching Engine
in parallel matches the data against the patterns stored in its data-
base (3), adding a suspicious flag for the corresponding row in case
of detection (4). This pattern is also stored in the Matched Signature
Area (MSA) if MINI-ME is configured for it. Suspicious memory
rows are unflagged after the notification delivery to AV. MINI-ME
implements a Scan-On-Write (SoW) policy, raising detection no-
tifications only once for each distinct memory write. MINI-ME
re-scans a row after a new write, as the memory content may have
been modified.

When a memory read is requested,MINI-ME reads the data (5),
adds it into the read packet (6), and in parallel it checks if such
memory region was scanned and identified as suspicious (7) to
add a suspicious flag to the read packet (8). After assembling the
read packet with the suspicious flag, the userland AV needs to be
notified. However, as detection occurs on physical memory and AV
operates on a process-basis (i.e. virtual memory), there is a semantic
gap to be overcome. We bridged such semantic gap by making the
suspicious bit available to the MMU. Therefore, each time a page
is translated, its suspicious flag is also mapped in the MMU, thus
allowing the O.S. to deliver detection notification as an ordinary
page fault. As page-fault handlers are aware of virtual memory
addresses, these can be mapped to O.S. processes, as is usual in
security solutions introspection procedures [8]. This procedure
should be repeatedly executed by the userland AV component for
every newly created process and after every system reboot to handle
the issues related to Address Space Layout Randomization (ASLR)
and Position Independent Executables (PIE).

A drawback of relying on the MMU is that it operates over more
coarse-grained data (pages) than the DRAM (memory rows). There-
fore, multiple matching memory rows are mapped to the same
suspicious MMU flag. The detection is further disambiguate by the
userland AV, which queries the matching patterns stored in the
MSA if required. On the other hand, an advantage of relying on
the MMU is that only mapped pages can raise AV detection, thus
reducing the overall imposed performance penalty due to detec-
tion occurring in non-mapped pages. It also allows distinct policy
implementations: As the MMU is aware of page permission bits,
the page fault handler may be instrumented to forward detection
notifications only for executable pages, for instance. Ignoring data
pages not only reduces notification delivery overhead, but also the
number of false positives, as code is less diverse than data, thus less
prone to random pattern collisions.

After the PF, the detection notification is delivered to the userland
AV component, which is responsible to implement a detection pol-
icy (see policies in Section 7). The userland component might query
the detected patterns in the Matched Signatures Area (MSA) (see
memory commands in Section 5) and input them to AV’s complex
state machines responsible for modeling infections and identify-
ing the malware samples. The userland AV component might then
decide, for instance: (i) to immediately block the process execu-
tion; (ii) to allow execution to resume and wait for more detection
notifications for the same pages to increase its confidence on the
detection correctness; or even (iii) whitelist the process execution
in case of a confirmed False Positive.

During monitoring, false positives (FPs) may occur due to mul-
tiple reasons: spurious data coincidence, a bad signature choice
by the analyst, etc (a discussion on signature generations policies
is presented in Section 7). If a FP occurs and the memory value
remains unchanged, consecutive memory reads would lead to a con-
stant FP detection at such location, which triggers unnecessary AV
calls. To prevent that, a whitelisting mechanism should be deployed,
so AVs can mark such memory regions as clean after identifying
its detection as a FP. If the userland AV identifies that a given noti-
fication is a False Positive (FP), it raises a whitelist command for
the reporting memory region (9) by writing to a specific MINI-ME
control region (0xADDR) the address to be whitelisted (Notice that
in this case, the address to be whitelisted comes from the DATA path
since the ADDRESS path is set to the whitelisting control region).
MINI-ME sets the whitelist bit in the Whitelist Bit Database for
the address corresponding to the misdetected region. This bit will
cause the malware detection check (8) to be false, thus not trigger-
ing detection notifications for further read requests. The whitelist
bit is automatically set off after a new memory write in the same
memory address (10). Whitelisting a region requires bridging the
semantic gap in the opposite direction than the notification (pro-
cesses to DRAM). For such, the following procedure was designed:
Whitelist requests originate as ordinary read/write commands and
thus the pointed address is translated to a row address by the mem-
ory controller. MINI-ME then traps this request and forwards it to
the whitelist database.

6

Near-memory & In-Memory Detection of Fileless Malware MEMSYS’20, September 2020, Washington, DC, USA

Figure 4:MINI-ME Architecture.MINI-ME is implemented within the memory controller.

5 MINI-ME IMPLEMENTATION

In this section, we present the project decisions for MINI-ME’s
proof-of-concept. We focus our description on MINI-ME’s archi-
tectural components, since its software components were imple-
mented as extensively described in the literature (e.g., driver devel-
opment [46]). MINI-ME implementation used a simulator based on
Intel Pin [40].

5.1 Memory-OS integration

The AV and the O.S. should be able to communicate withMINI-ME’s
instrumented memory logic layer to enable/disable the monitoring
mechanism, load signatures and other management tasks.MINI-ME
receives commands using mapped memory regions in the same
manner the OS use to communicate with I/O devices [68]. Notice
that by using memory region mapping we avoid modifying the
ISA from the host processor, making our approach fully compatible
with existing ISAs (although portingMINI-ME to work with new
ISAs is also possible). Once the OS/AV has sent commands toMINI-
ME’s control memory region, they will be decoded by MINI-ME’s
intelligence at logic layer. Table 2 describes MINI-ME’s control
commands. Each command (column I) takes an argument (column
II) as immediate to implement a given behavior (column III).

Table 2: Proposed commands allows controlling MINI-ME’s

detection in a fine-grained manner.

Command Argument Behavior

control ON/OFF Start stop matching
load ADDR Load Signatures pointed by ADDR

matches ADDR Check matches in the region pointed by ADDR
allow ADDR Whitelist region pointed by ADDR

The control command is responsible for enabling and/or dis-
abling MINI-ME matching. A request to start matching is only
valid after a load command to set the signature database. The load
command copies the bytes pointed by ADDR directly to the internal

database. After a match, on can query the memory via the matches
command to check the matching patterns. In cases where a FP oc-
curs, the region can be whitelisted by setting an allow command
having the conflicting address as ADDR argument.

Whereas the aforementioned commands allow OS-memory com-
munication, MINI-ME also needs a way to notifying O.S. about
suspicious patterns detection. Although smart memories already
present a native precise exception mechanism, we opted to not
create a new system interruption point but to let the OS to query
memory status during an existing interruption, thus reducing the
required modifications to the native system architectures. More
precisely, we propose making the suspicious bit/flag available to the
page table via the delivered outgoing packets. Therefore, whenever
a page-fault occurs, the memory provides the requested page and
populates the table with the detection flags, thus allowing malware
detection to be handled within existing OS page-fault (PF) handlers.
Code 2 exemplifies the proposed modification of the PF handler to
get suspicious executions notifications.

1 void __do_page_fault (...) {

2 // Original Code

3 if (X86_PF_WRITE) ...

4 if (X86_PF_INSTR) ...

5 // Added Code

6 if (X86_MALICIOUS) ...

Code 2: Modified PF handler. Malicious bit is set

when suspicious pages are mapped.

As the Page Fault handling routines have access to MMU flags,
the OS PF handler might implement multiple policies as defined
by the userland AV, such as notifying the userland AV about a
suspicious page request only when given MMU flags are set (e.g.,
executable pages only). Moreover, as the Page Fault handler op-
erates in the virtual memory space, it can provide the suspicious
memory region address to the userland AV, which allows the AV
to identify to which process such region belongs and apply per-
processes detection policies.

7

MEMSYS’20, September 2020, Washington, DC, USA Marcus Botacin1, André Grégio1, Marco Zanata Alves1

5.2 Handling self modifying code

Self Modifying Code (SMC) are pieces of code able to mutate them-
selves at runtime via writes to the instruction memory. As read
requests to written data are usually forwarded by the CPU’s Last-
Level Cache (LLC) Miss Status Handler Registers (MSHR) and not
directly delivered to the main memory (see Section 3 for details
on data-forwarding), an SMC code could remain undetected in the
instruction cache, thus evadingMINI-ME detection, if the execution
permission flag were not considered. To overcome this challenge,
MINI-ME relies on the fact that modern processors require system’s
MMU to handle writes to executable pages by flushing the SMC
payload from the cache and reloading it from themainmemory [33],
which allows MINI-ME to inspect them. By relying on this charac-
teristic,MINI-ME imposes no overhead to non-SMC code and an
almost negligible overhead to benign SMC code, since their pages
are scanned only when loaded for the first time, being considered
as “clean” after the first check.

An almost negligible overhead is also imposed to applications
that rely on runtime code generation, such as Java and/or Python,
since their JIT engines generate code first by writing to data pages
and further turn these pages executable by setting the executable
bit for the written page in the MMU, a sufficient time window for
MINI-ME inspection. However, in the worst case, when an appli-
cation request execution privileges for a cache-resident, modified
page, MINI-ME forces a page re-fetch from the Page Fault handler
to ensure the scanning of the modified page. We highlight that
handling SMC is a corner case already affecting existing CPU’s
performance due to the need of evicting trace cache and stalling
pipelines [33], and theMINI-ME’s main goal is not to speed up SMC
detection, but to prevent imposing overhead to benign, non-SMC
applications. For a complete SMC handling, we advocate for the
MINI-ME’s operation along with an SMC-aware processor [9].

5.3 Matching Engine

MINI-ME’s key component is the Matching Engine implemented
inside the memory controllers. For the case of smart memories, it is
composed by one or many (see experimental results on Section 6)
signature database(s) on the logic layer and individual comparison
units on each Vault. A similar approach could be used for multiple
channel DDR memories. The signature database is a multiple port
memory that allows querying for multiple signatures per cycle. The
number of ports is tied to the number of smart memory’s Vaults
and the number of cycles the checks must take. A comprehensive
performance and storage evaluation on these numbers is presented
in Section 6. The structure of both the database and the comparison
units are tied to the selected data storage methods. We have iden-
tified distinct implementation possibilities, described below. For
the sake of evaluation, we have designed and simulated versions of
MINI-ME using all of them.
Direct Mapped Table: When using a direct mapped table, the
signature bytes are used to directly index a table entry. The content
of such entry is a bit indicating if such signature is malicious (1)
or not (0). To include a signature for a newly detected sample,
the software-based AV component must only to enable the bit
on the corresponding signature index. A drawback of this project
decision is that the table exponentially grows with the signature

size, becoming prohibitive for large signatures. The practical limits
of using a table as the database are discussed in Section 6.
Signature Tree: An alternative for signature storage is to encode
the table as a tree, thus each signature byte indexes a distinct table
(or table region). Using a tree may reduce the required storage when
compression techniques are applied, as non-used indexes/tables
may be removed. Updating a hardware database representing a
compressed tree is an implementation challenge due to storage
constraints, as evaluated and discussed in Section 6.
Bloom Filter (BF): To overcome the exponential storage growth
of tables and trees, a probabilistic data structure might be used, so
we also implemented a MINI-ME version based in BFs [2]. With it,
only some bits are required to represent larger signatures. Although
tables are perfect matching structures, BFs may present some False-
Positives (FPs), evaluated in practice in Section 6. Despite tables and
trees use signature bytes themselves for indexing, a BF requires the
use of some hashing functions. All bits used by the hash functions to
represent the signatures are stored as a single, large value. Therefore,
adding a new signature to a BF database is performed by setting the
respective signature bits as present on this long value, as shown in
Figure 5.

Figure 5: The memory value is hashed into a value which

may trigger a detection flag if contained in the aggregated

malware signature database.

Table 3: Detection Function. Truth Table

Signature 0 0 1 1
Pattern 0 1 0 1

Detection 1 0 1 1

The detection function depicted in Figure 5 identifies whether a
pattern P is compatible with the signature S, thus possibly trigger-
ing a detection flag D. The truth table for the detection function is
shown in Table 3. On the one hand, if the signature has a given bit
set (lines 2 and 3), any pattern might match it. On the other hand,
if the signature has a given bit unset (lines 0 and 1), only a pattern
with that same bit unset might match it (line 0). Notice that this
operation is performed for each bit of S and P. The final detection
notification is triggered only if all bits match (all set to 1).

D = S ∨ ¬P (1) D = ¬S ∧∼ P (2)
The circuit to implement the detection function can be straight-

forwardly derived from the truth table. It is represented by the
8

Near-memory & In-Memory Detection of Fileless Malware MEMSYS’20, September 2020, Washington, DC, USA

Equation 1. Alternatively, by applying the De Morgan’s theorem, it
can also be represented by the Equation 2. This implementation is
considered more practical because, in practice, MINI-ME does not
need to actually negate the signature S using a logic circuit. Instead,
the AV company can distribute already-negated signatures.

5.4 Whitelisting memory regions:

MINI-ME implements the whitelist mechanism as a single bit which
enables/disablesMINI-ME for setting the detection flag for the mis-
detected memory address. Once disabled, the scanning procedure
is only re-enabled to that memory address after the next memory
write on the same location. This mechanism requiresMINI-ME to
add a control bit to each signature-sized memory region which
encompasses the mistakenly matched signature. The relative cost
of adding a bit for each word of a given signature size (shown in
the Table 4) does not depend on the total RAM capacity, as they are
based only in the signature size. Notice that this mechanism does
not flag the signature as whitelisted, but the memory region. There-
fore, the same signature can be responsible for detecting malware
on distinct memory regions.

Table 4: Whitelisting. Storage overhead of adding control

bits. The rates are independent of total memory size.

Signature size

32B 64B 128B

Memory (%) 0,39% 0,20% 0,10%

As a whitelist bit is added to each region corresponding to a
word of the same size as a malware signature, distinct signatures
sizes will reserve distinct amounts of memory to implement their
whitelist bits. More specifically, the larger the signature size, less
bits are required to whitelist their regions. When implementing the
whitelisting mechanism, we must consider both the required stor-
age space as well as the impact of signature size, to be discussed in
Section 6). Such project decisions reflect a trade-off between mem-
ory space and processing time, as also existing in most computer
science problems. The idea of moving AV from software to hard-
ware eliminates the performance overhead problem (performance
gain), but requires additional storage (space impact). Similarly, one
can choose to also use additional memory (space impact) to elimi-
nate the performance impact of handling false positives (achieving
higher performance).

5.5 Signature generation

Generating good signatures is a crucial step for achieving high
detection rates. Traditional AVs rely on sequence of bytes from
binary files and moving for memory-based signatures requires
paying attention to memory mapping details [60]. When loaded in
memory, an executable binary file does not match exactly its disk
counterpart. More specifically, for the Windows PE binary case, our
focus in this work, Microsoft specifies [60] that the binary Section
Alignment field specifies: “The alignment (in bytes) of sections
when they are loaded into memory. It must be greater than or equal
to FileAlignment. The default is the page size for the architecture.”.
It indicates that the binary file content (distinct binary sections)
might not be contiguous when mapped in memory. Therefore, if

an ordinary signature procedure is used and the sequence traverse
two or more binary file sections which are mapped separately in
memory, the signature might be split.

To avoid such effect, distinct approaches might be adopted: (i)
Limit signature generation to the code within the same binary sec-
tion; (ii) Ensure that sections are mapped contiguously in memory;
or (iii) Generate Signatures directly from memory images. The first
two cases are naturally derived from ordinary AV signature genera-
tion procedures, but the third is a new approach. While its adoption
is optional for ordinary binaries, it is the only possibility for AV
companies to handle fileless malware. Moreover, to define section
boundaries, the signature generation procedure must select signifi-
cant binary sections, such as sections whose content might allow
distinguishing a binary from other. Therefore, AV signatures are
often implemented based on the .text binary section (see Section 3,
because sequences of instructions may define a malicious behavior.
As an advantage of relying on memory patterns, we may extend
the signature generation policy to include any section, which al-
lows matching other patterns, such as strings. As a drawback, the
number of false positives may grow if a too comprehensive policy
is allowed.

To mitigate FP detection, some known patterns must be avoided.
The most significant one is related to the PE header used by the
Windows executable files evaluated in this work. As all PE binaries
start with the MZ string [60], the corresponding hex pattern (0x4d5a)
should not be used as part of a signature. If so, it will match any
other loaded PE binary in the system. Moreover, signatures that
matches with well know library functions, such as printf, should
also be avoided, as currently already done by AV companies.

6 EVALUATION

In this section, we evaluate MINI-ME regarding theoretical (ex-
ploratory) and practical aspects. The design exploration is intended
to highlight the multiple possibilities enabled by MINI-ME. The
practical evaluation aims to show howMINI-ME could be deployed
in a near future.

6.1 Exploration: Signature Size

As in the long-term our method ideally traverse the whole memory,
signatures must be carefully chosen to reduce the match to non-
malicious patterns, which would result in a false positive detection.
To mitigate such cases, we need to choose a signature size which
reduces the probability of such occurrences. Table 5 shows the
results of our experiment using different signature sizes and dumps
during the matching. We considered signatures sizes of up to 64
bytes, the current cache line size for most modern processors. We
leveraged 100 thousand distinct signatures randomly generated
from malicious binaries and matched them against memory dumps
of running Windows 7 applications, including the Internet Explorer
10, Firefox 59, Chrome 65, and the 29 applications from the SPEC-
CPU 2006 benchmark suite.

The signature sizes of 32 and 64 bytes present no FP with any
other pattern from any memory dump, which makes MINI-ME
compatible to current AVs: a current AV may use an average of 28
bytes per signature [21] and up to 60KB [22] in the worst case; The

9

MEMSYS’20, September 2020, Washington, DC, USA Marcus Botacin1, André Grégio1, Marco Zanata Alves1

Table 5: Signature Generation. Signatures (%) detected as

false positives for each signature size and memory dump

size.

Memory Size

1 GB 2 GB 4 GB 8 GB

S
i
g
n
a
t
u
r
e

S
i
z
e

8 B 8.65% 9.92% 10.18% 11.45%
16 B 3.06% 3.32% 3.32% 3.32%
32 B 0.00% 0.00% 0.00% 0.00%
64 B 0.00% 0.00% 0.00% 0.00%

whole Clamav database is about 112 MB [14] to store all its million
signatures. Our 32 and 64-byte-long signatures would require 32
and/or 64 MB, respectively, to store 1 million signatures.

6.2 Exploration: Signature Quality

In addition to effectively detect the malware samples, a good signa-
ture must not cause FPs. This imposes an additional requirement
to the already-complex AV signature generation procedures.

To understand how to generate good signatures is an important
step since bad signatures may lead to false positives. In our tests, we
noticed the majority of conflicting signatures presented a pattern of
repeated bytes, such as 0x0000. This may be related to data padding
bytes and/or initial values assigned by the memory allocation sub-
system. Sequences like 0x9090 also often appears because of they
are related to NOP sleds, used for instruction padding.

A good policy would be to avoid generating signatures from
such patterns. More than avoiding regular patterns, we also sug-
gest avoiding generating signatures from patterns that provide a
small amount of information, which may not be suitable for unique
identification. As a general metric for such, we suggest using the
information entropy [26] concept. Table 6 shows entropy values
for some signatures/patterns.

Table 6: Entropy values for distinct signatures. Low values

are more probably reported as FPs.

Signature Entropy Quality

0x0000000000000000 0.00 ✗
0x9090909090909090 1.00 ✗
0x5833917ca7fc967c 3.15 ✓

The first two signatures were reported as false positives for all
memory dumps whereas the third correctly uniquely identified a
malware sample. As can be noticed, the entropy value for the third
case is much higher than the previous ones. Therefore, a threshold
can be used on the signature generation procedure to ensure their
quality.

6.3 Exploration: Matching Mechanisms

To determine the FP rates when using distinct matching mech-
anisms, we have performed an experiment that matches 100 K
signatures of malware on a clean machine with 1 GB RAM popu-
lated with the execution of the aforementioned benign software.
The results are shown in Table 7.

We observe that the two exact matching mechanisms (Direct
Mapped Table and the Signature Tree present the same results

Table 7: Matching Techniques. FP rates for multiple signa-

ture sizes and techniques.

Signature size

8 B 16 B 32 B 64 B

M
a
t
c
h
.

T
e
c
h
. Dir. Mapped Table 8.33% 3.15% 0.00% 0.00%

Signature Tree 8.33% 3.15% 0.00% 0.00%
Bloom Filter 8.41% 3.47% 0.00% 0.00%

whereas the Bloom Filter is also affected by FPs due to its in-
trinsic probabilistic characteristic. FP rates were closer to the ones
previously estimated for the smaller signature sizes and no FP was
observed for the longer ones even when using BFs, showcasing it
as a viable alternative.

6.4 Exploration: Scan Policies

To evaluate different scan policies, we considered the same 100 K
signatures and the 1 GB dump. To provide an exact result, we
performed this experiment using a Direct Mapped Table as storage
for the matching mechanism. The results are shown in Table 8.

Table 8: Scan Policies. FP rate for multiple signature sizes

and policies.

Signature size

8 B 16 B 32 B 64 B

S
c
a
n

P
o
l
i
c
y

Whole Memory 8.33% 3.15% 0.00% 0.00%
Mapped Pages 0.06% 0.01% 0.00% 0.00%

Whitelist 0.00% 0.00% 0.00% 0.00%
Code-Only 0.01% 0.00% 0.00% 0.00%

We observe that matching the whole memory increases the FP
rate. It was expected as looking to more data increases the chance
of finding a colliding pattern. Limiting the scan to only the mapped
pages significantly reduces FPs, as fewer locations are checked.
As an additional restriction, limiting the checks to code regions
eliminates the FP which occurred on data pages. However, this
approach does not completely eliminate all FPs when using a small
signature size. Therefore, larger signatures still present the best
results for the general case, achieving no FP at all. As expected,
whitelisting previously misdetected regions completely mitigated
FPs.

The project decision of the used signature size and matching
policy presents another interesting trade-off: by enforcing the use of
one of the restricted scan modes, an AV may use smaller signatures,
which requires less storage space and makesMINI-ME’s definitions
updates faster, as fewer bytes will be written to the MINI-ME’s
control region (although we don’t consider this update time as
critical as the scan time); On the other hand, it makes the solution
less flexible, as it will not be able to operate on a broader threat
model, which may require, for instance, to scan all memory pages.

6.5 Exploration: Storage Space Overhead

Once we defined the boundaries for the signature size (32 bytes),
we can estimate the impact of implementing the distinct storage
strategies.
Static, directly indexed table requiresNSiдnatures∗SizeSiдnatures
bits to store a pre-defined set of signatures. Therefore, to store 1M

10

Near-memory & In-Memory Detection of Fileless Malware MEMSYS’20, September 2020, Washington, DC, USA

32-byte-long signatures, 32MB of storage is required. Notice that,
in the case of a static table, additional, the inclusion of additional
signatures are not supported.
Signature trees allows storing signatures in a compressed way. By
using an Alphabet Compression Table (ACT) [38],MINI-ME was
able to store a pre-defined set of 1M signatures of multiple sizes in a
compressed way. Table 9 shows, respectively, the signature size (in
bytes), the total size required to sequentially store the signatures
on an uncompressed way (without update support) and the total
storage space required for the compressed values (without update
support).

Table 9: Tree Compression. Larger signatures can be more

compressed than smaller ones.

Signature Size

8B 16B 32B 64B

Uncompressed (MB) 8 16 32 64
Compressed (MB) 8 15 16 35

The Uncompressed column refers to the size to store the signa-
tures sequentially, being computed asNumberSiдnatures∗SizeSiдnatures ,
as for tables, therefore being considered as the basis for comparison
(base case).

We observe that the smaller tables were compressed to sizes
closer to the base case (uncompressed signatures). The best com-
pression cases are identified on larger signatures, as these present
longer sequences of repeated bytes, resulting in more gain. The total
storage space required for the 32 and 64 byte-long signatures were
closer to 50% of the base case, representing a significant storage
gain.
Updates: A compression drawbackWhereas we can compress
the database tree for an initially defined set of signatures, we cannot
guarantee that the database structure will be preserved after signa-
ture definition updates. Thus, we need to support reconfigurable
hardware or to offer support for the so-called “worst-case”, which
requires having storage space (thus, hardware) for all combinations
in the tree, despite the entries being in use or not. In this case, the
tree (or table) representation would require to provide space to
store all bits for all signatures, in a total of 2Siдnature−Size bits.
Therefore, for the established signature size (32 bytes),MINI-ME
would have to store 232∗8 bits, which is impractical due to the stor-
age overhead, i.e. required DRAM area. Therefore, the static table
and tree representations are more suitable for scenarios that do
not require constant database updates. For scenarios of constant
updates, the following presented alternatives are better suited.
Bloom filter (BF)We also evaluatedMINI-ME’s implementation
using a BF. The required size to store n elements with a FP rate p is
given by the formula presented in Equation 3. The number of hash
functions required to achieve such FP is shown in Equation 4.

m = ⌈
n ∗ loдp

log 1
2log 2

⌉ (3) k = ⌈log 2 ∗
m

n
⌉ (4)

Therefore, based on the defined signature sizes, we can compute
the required storage space to implement a bloom filter-based data-
base. Table 10 exemplifies the storage and hash requirements to
store 1M signatures for given FP rates.

Table 10: Bloom Filter. FPs and storage space trade-off. The

more storage space, less FPs.

False Positives (1 in N)

10 100 1K 1M 10M

Hashes (#) 3 7 10 20 23
Storage (MB) 0.58 1.10 1.70 3.40 4.00

Similar to previous cases, the BF implementation is backed by a
trade-off regarding space and performance. The small the tolerance
to FPs (and thus to the overhead of verification routines), more
storage space is needed, as more bits will be used. However, even
when set to present FP rates closer to zero (less than 0.1%), the total
required space is smaller than in the compressed tree, which makes
BFs suitable for MINI-ME’s implementation in a dynamic scenario.

For our hypothetical case of storing 1M signatures, a rate of 1
FP in 10M gives results closer to the exact match. In practice, our
tests indicated zero FP raised. Therefore, it is considered a good
implementation choice.

Finally, we highlight that the number of required hash functions
do not impose any constraint to MINI-ME implementation, as they
can be implemented as independent, parallel bitwise functions
within the smart memories’ controllers.

6.6 Practice: Database Size Definition

MINI-ME’s goal is not to move the whole AV detection capabilities
from software to memory, but only the engine components respon-
sible for fileless malware detection. Therefore,MINI-ME does not
need to support all 1M signatures supported by the software AV,
but only the challenging ones, i.e., the ones responsible to detect
malware samples that can only be detected in runtime. In this sense,
although the number of fileless malware samples has grown 94%
in the last years, they are currently responsible for only 4% of all
attacks.

Moreover, AVs will not deploy signatures to all known fileless
malware samples ever existing, but only to the active ones in a
given period of time. In this sense, despite harmful, fileless malware
samples are still limited in number, with only (the same) one present
in the list of most active malware samples of 2018 [64] and 2019 [65].

Therefore, we limitedMINI-ME’s current signature database to
only 1K entries to benefit from smaller energy and area costs. A
bloom filter to store 1K entries with 0.1% FP requires only 1.7KB
of space per Vault. Since HMCs have a maximum number of 32
Vaults [18], thus memory controllers, MINI-ME currently requires
less than 64KB of memory to support an entire HMC memory. The
storage capacity might be increased over time as fileless samples
become more popular.

6.7 Practice: Database Implementation

The previously presented calculation defined thatMINI-ME requires
1.7KB of memory/per Vault to implement its database. Ideally, this
memory should be as fast as possible to reduce the imposed over-
head. Registers are suitable candidates to meet this requirement.
However, the largest registers currently available on modern plat-
forms are the 512-bit long Intel AVX2 registers [32], which requires

11

MEMSYS’20, September 2020, Washington, DC, USA Marcus Botacin1, André Grégio1, Marco Zanata Alves1

MINI-ME to split its match routine across multiple cycles if op-
erating with AVX-2 like registers. Notice that MINI-ME requires
AVX2-sized registers but it does not need to implement AVX’s com-
plex, associated control mechanisms because MINI-ME does not
implement vector operations.

The number of cycles required byMINI-ME to perform its match
depends on the number of available registers and how fast these can
be accessed and compared. In our tests, we consider a conservative
scenario in which only one AVX2-like register is available, but
multiple checks can be performed in parallel if more registers are
available. We also consider that each comparison takes a cycle,
assuming that the reference register is previously loaded with the
fixed malware database. Finally, we considered that each match
was performed until the end of the matching pattern, with no
optimization. Notice that, in practice, the matching routine might
stop after the first unmatched pattern. The remaining cycles could
be used, for instance, to perform checks on unaligned patterns
(see Section 7). Considering this conservative scenario,MINI-ME
required ≈32 cycles (1.7KB/512bits) per check.

We evaluate the imposed overhead imposed by MINI-ME in
multiple scenarios by simulating a memory controller that imposes
distinct delays to write requests. The simulation was performed on
a cycle-accurate simulator that emulates internal structures of an
HMC-powered x86 processor [4]. We considered the applications
from the SPEC benchmark, as in Section 2. All traces were composed
of 200M instructions extracted by Intel pin [40] while using the
pinpoints method [59].

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

0 8 24 32 64 128

IP
C

 O
v
e
rh

e
a
d
 (

%
)

Delay (Cycles)

IPC vs. Memory Delay

astar
calculix

dealII
gromacs

namd

Figure 6:MINI-ME database overhead. Delays of up 32 cycles

impose less than 1% of IPC overhead.

Figure 6 shows the imposed overhead in terms of Instructions Per
Cycle (IPC) penalty for different memory delays (in cycles). Despite
showing only some benchmark applications, the results hold for all
applications. Memory delays up to 32 impose IPC overheads smaller
than 1%, thus not significantly affecting overall system performance
while increasing security coverage.

In the long-term, if adding a huge number of fileless malware
signatures become a requirement, the memory delay might be in-
creased to support larger databases. Longer memory delays impose

significantly greater overhead, of up to 5%. However, we still con-
sider this trade-off reasonable, since the same malware detection
approach imposes overheads of up to 100% when implemented in
software (see Section 2).
Energy Efficiency As for access time, the required storage also
reflects a trade-off regarding the energy costs and the system perfor-
mance.MINI-ME adds a database to the whole system and requires
each Vault to have an additional register in constant operation. As
for the previous case, we consider this trade-off acceptable as the im-
plementation of the samemalware detector in software would cause
a higher energy consumption due to the need of polling. The chip
area to implement MINI-ME is entirely dominated by the SRAM.
Therefore, the area and energy costs are directly proportional to
the number of available registers.

6.8 Practice: Monitoring Overhead

Once we have defined MINI-ME parameters, we aimed to evaluate
its performance in practice when configured with them. However,
performing a fair comparison to existing commercial solutions is
hard because we do not have access to all the parameters leveraged
by the closed source solutions (e.g., accessed pages, signature size,
policies). Therefore, we opted to compare MINI-ME against an
academically-proposed memory inspector [1], since its parameters
are available. On the one hand, its detection capability might not be
as good as a commercial AV because it is not a full fileless malware
detector, but checks only a subset of the memory-related API calls
when these are invoked by any application (on-access inspection).
On the other hand, this solution is a very lightweight approach and
thus can highlight howMINI-ME is effective in mitigating overhead
even face to a lightweight solution. As no source-code was available,
we re-implemented the solution according to our understanding of
what would be done by an AV company. We considered the same
APIs described in the paper and instrumented them via userland
hooks [5]. The proposed solution hashes memory data using the
MD5 algorithm. We considered the MS implementation [49] for
this task so as to benefit from its optimized performance.

Figure 7 shows the execution time overhead from applying the
on-access method and MINI-ME over the same SPEC applications
presented in Section 2. This only accounts for the monitoring step
and not for the notification message deliver (e.g., I/Os) nor the
application of post-detection procedures (e.g., process blocking. We
notice that although the overhead of this lightweight approach
is significantly small in practice than the worst-case discussed in
Section 2, it is still significant for most applications. In addition,
this result might be even worse if more comprehensive checks are
performed by non-lightweight monitoring solutions. In turn, MINI-
ME imposed a negligible overhead to all applications (in no case,
the overhead was greater than 1%) even performing much more
comprehensive checks than the lightweight approach. This shows
thatMINI-ME is a promising solution for overhead mitigation in
fileless malware detection procedures.

6.9 Practice: Malware Detection

To evaluateMINI-ME in practice, we considered the execution of
21 thousand real malware samples collected over four years. We
had access to this dataset that has already been characterized by a

12

Near-memory & In-Memory Detection of Fileless Malware MEMSYS’20, September 2020, Washington, DC, USA

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

11.0%

12.0%

13.0%

perl namd bzip mcf milc

E
x
e
c
u
ti
o
n
 T

im
e
 O

v
e
rh

e
a
d
 (

%
)

Monitoring Overhead

On−Access
MINI−ME

Figure 7: Monitoring Overhead.MINI-ME imposes a smaller

overhead while still checking more pages than an on-access

solution.

previous work [12] and proven to be challenging to other classifi-
cation tasks [7]. We considered a database of up to 1K signatures,
composed of a sequence of 32 random bytes from the .text bi-
nary section, on a 1GB memory, populated with the execution of
the benign applications previously described. The match was per-
formed against the whole memory using the BF mechanism. In each
experiment round, we added 500 signatures of malware samples
that were loaded in memory and 500 signatures of malware that
were not loaded in the system’s memory. MINI-ME matched the
signatures for all samples without triggering FPs, demonstrating
that MINI-ME is practical in real scenarios.

7 DISCUSSION

In this section, we revisit our contributions to discuss their impli-
cations and the limits of MINI-ME application.
MINI-ME advances MINI-ME provides a platform for AV instru-
mentation with negligible overhead, allowing them to perform
constant whole-memory checks, a limitation of the existing mod-
els. Reducing the performance impact of memory scans for fileless
malware detection allowsMINI-ME to mitigate the impact of this
type of threat in actual systems. MINI-ME is a practical solution
as it does not cause a paradigm shift in detection techniques, but
leverages existing AV industry knowledge for threat detection. AV
companies may still develop their investigations and distribute
customized signatures, which makes MINI-ME an easy-to-adopt
approach.MINI-ME is also transparent for applications, thus not
requiring any code injection, recompilation nor introducing side ef-
fects. Therefore, all existing applications would be protected when
running in aMINI-ME-powered environment.
Good detection rates depend upon good policies. MINI-ME
provides a platform for efficient signature matching. However, the
detection effectiveness is still depending upon the security poli-
cies defined by the AV company.MINI-ME’s flexibility allows, for
instance, AV companies to opt for the use of both a single or multi-
ple signatures for the same malware samples, thus allowing them

to control their confidence on the reported detection. This way,
MINI-ME does not break the current AV market, as it still allows
AV companies to offer customized services according to their cus-
tomer’s needs.MINI-ME is also flexible to allow AV companies to
split large signatures into multiple smaller signatures to be matched
by the hardware component. In this case, the AV companies might
further reorder and rebuild large stream in the userland component
handling the detection notifications.
Matching Unaligned Patterns. A detection policy decision that
let for AV companies is about matching unaligned signatures. In
this work we assumed that our signatures were all aligned, which
was true for all of our experiments. However, AV companies might
identify that a given pattern might be revealed in multiple, distinct
locations during a fileless malware execution and thus opt to detect
the threat via this pattern.MINI-MEmight support this type of scan
by allowing signature matching procedures to occur at distinct off-
sets of the scanned data packets. The scanning procedure might be
repeated until the selected number of strides defined by the AV com-
pany and the matching pattern is disambiguate at software-level
by the intelligence agent implemented by the AV. The performance
of this approach is dependent on the number of strides and the
number of matching registers available on the memory controller.
In the first case, the greater the number of strides. the greater the
overhead, In the second case, the more registers are available for
parallel checks, the faster the match. MINI-ME is not able to detect
patterns that are split across the boundaries of a write request (the
cache line size).
Transition to Practice. The proposed approach of performing
pattern matching during the write-to-read window can be imple-
mented both in a near-memory manner (extending the memory
controller inside the CPU) and in a in-memory manner (extending
the memory controller inside smart-memories). ISA modifications
are not required in any case. Whereas implementing MINI-ME in a
near-memory manner is straightforward for current architectures,
in this work, we implementedMINI-ME prototype in an in-memory
manner already envisioningMINI-ME transition to future opera-
tional scenarios, even though they are more challenging due to the
timing constraints imposed by smart-memories. Finally, during all
MINI-ME development process, simplicity was envisioned as a key
target, thus making MINI-ME fully portable to many architectures
and platforms.
Limitations MINI-ME requires AV companies to generate new
signatures for each newly discovered malware variants. We do

not consider it as a particular MINI-ME limitation because
it is a drawback for current AVs and affects all signature-based
solutions [51, 53]. Therefore, handling malware variants is out of
MINI-ME’s scope.MINI-ME’s choice by a signature-based approach
is supported by its widely adoption to detect fileless malware, as
shown in Section 3. In this sense, MINI-ME also do not handle
new malware samples created by misaligning previously identified
signatures, as these are considered as malware variants by already
existing AV solutions.
Future of fileless malware Attackers exploit gaps and fileless
malware is a clear example of it. Such threat is hard to be detected
by AVs, either by performance constraints or by infecting legiti-
mate processes. MINI-ME raises the bar for such exploitation, so

13

MEMSYS’20, September 2020, Washington, DC, USA Marcus Botacin1, André Grégio1, Marco Zanata Alves1

attackers shall move to exploit other gaps. We believe that, with
MINI-ME adoption, attackers will follow the same steps took in
ordinary samples evolution, such as applying polymorphism to
hide their signatures from AVs. Similarly, AVs will evolve to flex
their signature schema to handle such cases. Therefore, we envi-
sion MINI-ME as the first step of hardware-assisted support for
malware detection and expect other researchers to benefit from our
framework to react to future threats. The next-generationMINI-ME
would be probably required to support regular-expression-based
matching, which imposes a significant development challenge, as
it requires storing arbitrary-size regex automatas in a constrained
memory database, which will be considered in future work. We
also believe that defensive measures should not to be only reactive,
but also proactive, thus legitimate software must properly protect
themselves to avoid being infected and leveraged to threat their
users, thus also contributing to fight payload injection by fileless
malware.
From Signatures to Regex andMachine Learning.As far as we
know, MINI-ME is the first solution relying on an in-memory/near-
memory mechanism for malware detection. Therefore, it should
be understood as a platform for future developments of hardware-
assisted AVs. Although evaluated using signatures, the concept
proposed byMINI-ME can be leveraged to support any other detec-
tion mechanism that can be implemented in hardware, such as a
port of the ClamAV [56] to match regular expressions, or the use of
ML algorithms to identify malicious memory accesses patterns [6].
These algorithms, however, are more processing-demanding than
signature matching. If they require a significant number of cy-
cles to be processed, they might not immediately benefit from the
write-to-read window explored in our solution. Thus, detection so-
lutions based on these approaches should consider the adoption of
co-processors and/or FPGAs, as suggested by previous studies [58].
Beyond MINI-ME Despite being focused on malware detection,
MINI-ME may be employed on distinct scenarios that requires
more efficient pattern matching approaches, such as for rootkit
detection. A typical rootkit strategy is to hide processes by remov-
ing them from the kernel list [30]. Our mechanism, however, can
identify running processes by their signatures, regardless of ker-
nel information. In a summary, the pattern matching detection of
malware samples can be considered as a particular case of a gen-
eralized pattern matching procedure, as it imposes tighter corner
cases. As an example, benign programs often present well defined
magic numbers which do not match other memory values, thus
not requiring whitelisting. Therefore, our approach can be used for
general pattern matching without modifications, since the benign
program match uses laxer conditions than the ones we presented
in this paper. Finally, although focused on smart DRAM memories,
MINI-ME can be extended to other memory architectures. As fu-
ture work, we will investigate how to perform pattern matching
on memristor-based systems.

8 RELATEDWORK

In this section, we present related work to better position our con-
tributions.
Fileless Malware. Our work is motivated by the detection of a
sample through a memory pattern matching that identified the

presence of the code from the Meterpreter exploitation frame-
work [66] inside a process memory [19]. The malware movement
towards memory-based implementations and the need of perform-
ing whole-memory pattern matching to detect them—which is
costly—pointed us the need of developing better memory pattern
matching mechanism to detect future threats. A comprehensive
description of fileless malware operation is presented by Sudhakar
and Kumar [70].
Hardware AVs. Previous work on efficient malware detection have
suggested implementing hardware-assisted AVs in FPGAs [27],
which present many drawbacks to be implemented in actual sys-
tems. Ho and Lemieux [29] proposed moving ClamAV signatures
and regular expressions to an FPGA. Their solution, however, is lim-
ited to a immutable signature database, not being suited to be used
with dynamic AV signature definitions. Lin et al. [39] presented a
bloom filter-based matching solution. They use a constrained stor-
age table which is limited to 10 thousand distinct signatures, with no
updates. In addition, their FPGA implementation limits the solution
to work as a co-processor, and not as a fully integrated mechanism.
Due to these limitations, smart memories were considered good
candidates for implementingMINI-ME.
Processing In-Memory (PIM). The PIM feature allowsMINI-ME
to be implemented as a fully integrated security mechanism. In fact,
adding processing capabilities to DRAM presents high potential
of overhead elimination for many operations, such as supporting
vector operations [3], query processing on big-data databases [63],
and for neural networks implementation [54]. Despite the PIM
research growth, as far as we know, no other work has proposed
to move AV and matching procedures to the memory controller of
smart-memories. MINI-ME also relates to the in-disk processing
concept [61], in which processing capabilities are added to hard
disks. MINI-ME could be ported for such devices since they rely on
large buffers and have a logic controller which can be instrumented
to perform pattern matching operations.

9 CONCLUSIONS

We investigated the problem of real-time, memory scanning for file-
less malware detection and proposed near-memory and in-memory
approaches to perform malicious signature-matching during the
write-to-read timewindow, thus eliminating the performance penalty
of polling routines implemented by software-based AV solutions.
As a proof of concept, we developed MINI-ME (Malware Identifier
by Near- and In-Memory Evaluation), an in-memory, AV hardware
accelerator able to perform continuous memory scans to match
signatures at new data writes to the main memory and notifying a
traditional software-based AV when a signature is found.MINI-ME
implementation was made practical via the use of bloom filters
to reduce the storage size of 1M signatures to only 4MB and to
allow pattern matching to be performed within the DRAM buffers
even when a write request is followed by a read request in the
same open cells (e.g., CAS time). Experimental results showed that
MINI-ME was able to detect 500 real-world malicious samples with
zero overhead and no FPs, thus demonstrating its viability.
Reproduciblity. The developed prototype’s source code is avail-
able at: https://github.com/marcusbotacin/In.Memory

14

https://github.com/marcusbotacin/In.Memory

Near-memory & In-Memory Detection of Fileless Malware MEMSYS’20, September 2020, Washington, DC, USA

Acknowledgments. This project was partially financed by the
Serrapilheira Institute (grant number Serra-1709-16621) and by the
Brazilian National Counsel of Technological and Scientific Devel-
opment (CNPq, PhD Scholarship, process 164745/2017-3).

REFERENCES

[1] Mohammed I. Al-Saleh and Rasha K. Al-Huthaifi. 2017. On Improving Antivirus
Scanning Engines: Memory On-Access Scanner. https://thescipub.com/abstract/
10.3844/jcssp.2017.290.300. Journal of Computer Sciences 13, Article 1 (2017),
10 pages.

[2] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison.
2007. Scalable Bloom Filters. Inf. Process. Lett. 101, 6, Article 1 (March 2007),
7 pages. https://doi.org/10.1016/j.ipl.2006.10.007

[3] M. A. Z. Alves, M. Diener, P. C. Santos, and L. Carro. 2016. Large vector extensions
inside the HMC. In 2016 Design, Automation Test in Europe Conference Exhibition
(DATE). UEEE, US, 1249–1254.

[4] M. A. Z. Alves, C. Villavieja, M. Diener, F. B. Moreira, and P. O. A. Navaux.
2015. SiNUCA: A Validated Micro-Architecture Simulator. In 2015 IEEE 17th
International Conference on High Performance Computing and Communications,
2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and
2015 IEEE 12th International Conference on Embedded Software and Systems. UEEE,
US, 605–610. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.166

[5] apriorit. 2018. A Windows API hooking library. https://github.com/apriorit/
mhook.

[6] Sergii Banin and Geir Olav Dyrkolbotn. 2018. Multinomial malware classification
via low-level features. Digital Investigation 26 (2018), S107 – S117. https://doi.
org/10.1016/j.diin.2018.04.019

[7] Tamy Beppler, Marcus Botacin, Fabrício J. O. Ceschin, Luiz E. S. Oliveira, and
André Grégio. 2019. L(a)ying in (Test)Bed. In Information Security, Zhiqiang
Lin, Charalampos Papamanthou, and Michalis Polychronakis (Eds.). Springer
International Publishing, Cham, 381–401.

[8] Marcus Botacin, Paulo Lício De Geus, and André Grégio. 2018. Enhancing Branch
Monitoring for Security Purposes: From Control Flow Integrity to Malware
Analysis and Debugging. ACM Trans. Priv. Secur. 21, 1, Article 4 (Jan. 2018),
30 pages. https://doi.org/10.1145/3152162

[9] Marcus Botacin, Marco Zanata, and André Grégio. 2020. The self modifying
code (SMC)-aware processor (SAP): a security look on architectural impact and
support. Journal of Computer Virology and Hacking Techniques 1, 1 (2020), 1.
https://doi.org/10.1007/s11416-020-00348-w

[10] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto. 2012.
Scientific but Not Academical Overview of Malware Anti-Debugging, Anti-
Disassembly and Anti-VM Technologies. https://media.blackhat.com/bh-us-12/
Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf.

[11] Niklas Broberg, Andreas Farre, and Josef Svenningsson. 2004. Regular Expression
Patterns. SIGPLAN Not. 39, 9, Article 1 (Sept. 2004), 12 pages. https://doi.org/10.
1145/1016848.1016863

[12] F. Ceschin, F. Pinage, M. Castilho, D. Menotti, L. S. Oliveira, and A. Gregio. 2018.
The Need for Speed: An Analysis of Brazilian Malware Classifers. IEEE Security &
Privacy 16, 6 (Nov.-Dec. 2018), 31–41. https://doi.org/10.1109/MSEC.2018.2875369

[13] Mahinthan Chandramohan, Hee Beng Kuan Tan, Lionel C. Briand, Lwin Khin
Shar, and Bindu Madhavi Padmanabhuni. 2013. A Scalable Approach for Malware
Detection Through Bounded Feature Space Behavior Modeling. In Proceedings of
the 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE’13). IEEE Press, Piscataway, NJ, USA, Article 1, 11 pages. https://doi.org/
10.1109/ASE.2013.6693090

[14] Clamav. 2018. Clamav. https://www.clamav.net/downloads#collapseCVD.
[15] ClamSentinel. 2018. ClamSentinel. https://sourceforge.net/projects/

clamsentinel/.
[16] ClamWin. 2018. Free Antivirus for Windows. http://www.clamwin.com/.
[17] Fred Cohen. 1984. Computer Viruses - Theory and Experiments. http://web.eecs.

umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html.
[18] Hybrid Memory Cube Consortium. 2013. Hybrid Memory Cube Specification

Rev. 2.0. http://www.hybridmemorycube.org.
[19] Cyberscoop. 2017. New malware works only in mem-

ory, leaves no trace. https://www.cyberscoop.com/
kaspersky-fileless-malware-memory-attribution-detection/.

[20] DarkReading. 2016. Fileless Malware Takes 2016 By
Storm. https://www.darkreading.com/vulnerabilities---threats/
fileless-malware-takes-2016-by-storm/d/d-id/1327796.

[21] EMSISOFT. 2015. Why antivirus uses so much RAM – And why
that is actually a good thing! https://blog.emsisoft.com/2016/04/13/
why-antivirus-uses-so-much-ram-and-why-that-is-actually-a-good-thing/.

[22] ESET. 2018. Types of updates. http://support.eset.com/kb309/?viewlocale=en_US.
[23] Facebook. 2018. OSQuery. https://osquery.io/schema/3.3.2.
[24] glmcdona. 2017. Process-Dump. https://github.com/glmcdona/Process-Dump.

[25] Google. 2017. Rekall. https://github.com/google/rekall.
[26] Robert M. Gray. 2011. Entropy and Information Theory. Springer, US. https:

//doi.org/10.1007/978-1-4419-7970-4
[27] N. B. Guinde and R. B. Lohani. 2011. FPGA Based Approach for Signature

Based Antivirus Applications. In Proceedings of the International Conference &
Workshop on Emerging Trends in Technology (ICWET ’11). ACM, New York, NY,
USA, Article 1, 2 pages. https://doi.org/10.1145/1980022.1980300

[28] Peter Gutmann. 2007. The Commercial Malware Industry. https://www.cs.
auckland.ac.nz/~pgut001/pubs/malware_biz.pdf.

[29] Johnny Tsung Lin Ho and Guy G.F. Lemieux. 2009. PERG-Rx: AHardware Pattern-
matching Engine Supporting Limited Regular Expressions. In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA
’09). ACM, New York, NY, USA, Article 1, 4 pages. https://doi.org/10.1145/
1508128.1508171

[30] Greg Hoglund and Jamie Butler. 2005. Rootkits: Subverting the Windows Kernel.
Addison-Wesley Professional, US.

[31] F. H. Hsu, M. H. Wu, C. K. Tso, C. H. Hsu, and C. W. Chen. 2012. Antivirus
Software Shield Against Antivirus Terminators. IEEE Transactions on Information
Forensics and Security 7, 5 (Oct 2012), 1439–1447. https://doi.org/10.1109/TIFS.
2012.2206028

[32] Intel. 2011. Intel(R) Advanced Vector Extensions Programming Reference. Intel.
[33] Intel. 2013. Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel.
[34] Bruce Jacob, Spencer Ng, and David Wang. 2007. Memory Systems: Cache, DRAM,

Disk. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
[35] Aamer Jaleel. 2012. Memory Characterization of Workloads Using

Instrumentation-Driven Simulation. http://www.jaleels.org/ajaleel/publications/
SPECanalysis.pdf.

[36] Kaspersky. 2015. Overall Statistics for 2015. https://securelist.com/files/2015/12/
KSB_2015_Statistics_FINAL_EN.pdf. Access in May 11, 2016.

[37] Kaspersky. 2017. A Disembodied Threat. https://www.kaspersky.com/blog/
bodiless-threat/6128/.

[38] Shijin Kong, Randy Smith, and Cristian Estan. 2008. Efficient Signature Matching
withMultiple Alphabet Compression Tables. In Proceedings of the 4th International
Conference on Security and Privacy in Communication Netowrks (SecureComm ’08).
ACM, New York, NY, USA, Article 1, 10 pages. https://doi.org/10.1145/1460877.
1460879

[39] P. C. Lin, Y. D. Lin, Y. C. Lai, Y. J. Zheng, and T. H. Lee. 2009. Realizing a Sub-
Linear Time String-Matching Algorithm With a Hardware Accelerator Using
Bloom Filters. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
17, 8 (Aug 2009), 1008–1020. https://doi.org/10.1109/TVLSI.2008.2012011

[40] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05). ACM, New York, NY, USA, Article 1,
11 pages. https://doi.org/10.1145/1065010.1065034

[41] Lorenzo Martignoni, Aristide Fattori, Roberto Paleari, and Lorenzo Cavallaro.
2010. Live and Trustworthy Forensic Analysis of Commodity Production Syst.. In
Proc. 13th Intl. Conf. on Recent Advances in Intrusion Detection (RAID’10). Springer-
Verlag, US.

[42] Micron. 2018. Hybrid Memory Cube – HMC Gen2. https://www.micron.com/~/
media/documents/products/data-sheet/hmc/gen2/hmc_gen2.pdf.

[43] Microsoft. 2017. Enumerating All Processes. https://msdn.microsoft.com/pt-br/
library/windows/desktop/ms682623(v=vs.85).aspx.

[44] Microsoft. 2017. OpenProcess function. https://msdn.microsoft.com/en-us/
library/windows/desktop/ms684320(v=vs.85).aspx.

[45] Microsoft. 2017. ReadProcessMemory function. https://msdn.microsoft.com/
pt-br/library/windows/desktop/ms680553(v=vs.85).aspx.

[46] Microsoft. 2018. Getting started with Windows drivers. https://docs.microsoft.
com/en-us/windows-hardware/drivers/gettingstarted/.

[47] Microsoft. 2018. IsDebuggerPresent function. https://msdn.microsoft.com/en-us/
library/windows/desktop/ms680345(v=vs.85).aspx.

[48] Microsoft. 2018. Overview of memory dump file options for
Windows. https://support.microsoft.com/en-us/help/254649/
overview-of-memory-dump-file-options-for-windows.

[49] Microsoft. 2019. MD5 Class. https://docs.microsoft.com/en-us/dotnet/api/system.
security.cryptography.md5?view=netframework-4.8.

[50] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim, Yunheung Paek, and
Brent Byunghoon Kang. 2012. Vigilare: Toward Snoop-based Kernel Integrity
Monitor. In Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security (CCS ’12). ACM, New York, NY, USA, Article 1, 10 pages.
https://doi.org/10.1145/2382196.2382202

[51] A. Moser, C. Kruegel, and E. Kirda. 2007. Limits of Static Analysis for Malware
Detection. In Twenty-Third Annual Computer Security Applications Conference
(ACSAC 2007). ACM, US, 421–430. https://doi.org/10.1109/ACSAC.2007.21

[52] Netmarketshare. 2018. Operating System Market Share. https://www.
netmarketshare.com/operating-system-market-share.aspx.

15

https://thescipub.com/abstract/10.3844/jcssp.2017.290.300
https://thescipub.com/abstract/10.3844/jcssp.2017.290.300
https://doi.org/10.1016/j.ipl.2006.10.007
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.166
https://github.com/apriorit/mhook
https://github.com/apriorit/mhook
https://doi.org/10.1016/j.diin.2018.04.019
https://doi.org/10.1016/j.diin.2018.04.019
https://doi.org/10.1145/3152162
https://doi.org/10.1007/s11416-020-00348-w
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://doi.org/10.1145/1016848.1016863
https://doi.org/10.1145/1016848.1016863
https://doi.org/10.1109/MSEC.2018.2875369
https://doi.org/10.1109/ASE.2013.6693090
https://doi.org/10.1109/ASE.2013.6693090
https://www.clamav.net/downloads#collapseCVD
https://sourceforge.net/projects/clamsentinel/
https://sourceforge.net/projects/clamsentinel/
http://www.clamwin.com/
http://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html
http://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html
http://www.hybridmemorycube.org
https://www.cyberscoop.com/kaspersky-fileless-malware-memory-attribution-detection/
https://www.cyberscoop.com/kaspersky-fileless-malware-memory-attribution-detection/
https://www.darkreading.com/vulnerabilities---threats/fileless-malware-takes-2016-by-storm/d/d-id/1327796
https://www.darkreading.com/vulnerabilities---threats/fileless-malware-takes-2016-by-storm/d/d-id/1327796
https://blog.emsisoft.com/2016/04/13/why-antivirus-uses-so-much-ram-and-why-that-is-actually-a-good-thing/
https://blog.emsisoft.com/2016/04/13/why-antivirus-uses-so-much-ram-and-why-that-is-actually-a-good-thing/
http://support.eset.com/kb309/?viewlocale=en_US
https://osquery.io/schema/3.3.2
https://github.com/glmcdona/Process-Dump
https://github.com/google/rekall
https://doi.org/10.1007/978-1-4419-7970-4
https://doi.org/10.1007/978-1-4419-7970-4
https://doi.org/10.1145/1980022.1980300
https://www.cs.auckland.ac.nz/~pgut001/pubs/malware_biz.pdf
https://www.cs.auckland.ac.nz/~pgut001/pubs/malware_biz.pdf
https://doi.org/10.1145/1508128.1508171
https://doi.org/10.1145/1508128.1508171
https://doi.org/10.1109/TIFS.2012.2206028
https://doi.org/10.1109/TIFS.2012.2206028
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf
https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
https://www.kaspersky.com/blog/bodiless-threat/6128/
https://www.kaspersky.com/blog/bodiless-threat/6128/
https://doi.org/10.1145/1460877.1460879
https://doi.org/10.1145/1460877.1460879
https://doi.org/10.1109/TVLSI.2008.2012011
https://doi.org/10.1145/1065010.1065034
https://www.micron.com/~/media/documents/products/data-sheet/hmc/gen2/hmc_gen2.pdf
https://www.micron.com/~/media/documents/products/data-sheet/hmc/gen2/hmc_gen2.pdf
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms682623(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms682623(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684320(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684320(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms680553(v=vs.85).aspx
https://msdn.microsoft.com/pt-br/library/windows/desktop/ms680553(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680345(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680345(v=vs.85).aspx
https://support.microsoft.com/en-us/help/254649/overview-of-memory-dump-file-options-for-windows
https://support.microsoft.com/en-us/help/254649/overview-of-memory-dump-file-options-for-windows
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.md5?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.md5?view=netframework-4.8
https://doi.org/10.1145/2382196.2382202
https://doi.org/10.1109/ACSAC.2007.21
https://www.netmarketshare.com/operating-system-market-share.aspx
https://www.netmarketshare.com/operating-system-market-share.aspx

MEMSYS’20, September 2020, Washington, DC, USA Marcus Botacin1, André Grégio1, Marco Zanata Alves1

[53] P. OKane, S. Sezer, and K. McLaughlin. 2011. Obfuscation: The Hidden Malware.
IEEE Security Privacy 9, 5 (Sept 2011), 41–47. https://doi.org/10.1109/MSP.2011.98

[54] Geraldo F. Oliveira, Paulo C. Santos, Marco A. Z. Alves, and Luigi Carro. 2017.
NIM: An HMC-Based Machine for Neuron Computation. In Applied Reconfig-
urable Computing, Stephan Wong, Antonio Carlos Beck, Koen Bertels, and Luigi
Carro (Eds.). Springer International Publishing, Cham, 28–35.

[55] J. Van Olmen, A. Mercha, G. Katti, C. Huyghebaert, J. Van Aelst, E. Seppala, Z.
Chao, S. Armini, J. Vaes, R. C. Teixeira, M. Van Cauwenberghe, P. Verdonck,
K. Verhemeldonck, A. Jourdain, W. Ruythooren, M. de Potter de ten Broeck,
A. Opdebeeck, T. Chiarella, B. Parvais, I. Debusschere, T. Y. Hoffmann, B. De
Wachter, W. Dehaene, M. Stucchi, M. Rakowski, P. Soussan, R. Cartuyvels, E.
Beyne, S. Biesemans, and B. Swinnen. 2008. 3D stacked IC demonstration using
a through Silicon Via First approach. In 2008 IEEE International Electron Devices
Meeting. IEEE, US, 1–4. https://doi.org/10.1109/IEDM.2008.4796763

[56] N. L. Or, X. Wang, and D. Pao. 2016. MEMORY-Based Hardware Architectures to
Detect ClamAV Virus Signatures with Restricted Regular Expression Features.
IEEE Trans. Comput. 65, 4 (April 2016), 1225–1238. https://doi.org/10.1109/TC.
2015.2439274

[57] OSForensics. 2018. OSForensics. https://www.osforensics.com/.
[58] Nisarg Patel, Avesta Sasan, and Houman Homayoun. 2017. Analyzing Hardware

Based Malware Detectors. In Proceedings of the 54th Annual Design Automation
Conference 2017 (DAC ’17). Association for Computing Machinery, New York,
NY, USA, Article Article 25, 6 pages. https://doi.org/10.1145/3061639.3062202

[59] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. 2004.
Pinpointing Representative Portions of Large Intel ® Itanium ® Programs with
Dynamic Instrumentation. In 37th International Symposium on Microarchitecture
(MICRO-37’04). ACM/IEEE, US, 81–92. https://doi.org/10.1109/MICRO.2004.28

[60] Matt Pietrek. 1994. Peering Inside the PE: A Tour of theWin32 Portable Executable
File Format. https://msdn.microsoft.com/en-us/library/ms809762.aspx.

[61] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. 2001. Active
Disks for Large-Scale Data Processing. Computer 34, 6, Article 1 (June 2001),
7 pages. https://doi.org/10.1109/2.928624

[62] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos,
and M. v. Steen. 2012. Prudent Practices for Designing Malware Experiments:
Status Quo and Outlook. In 2012 IEEE Symposium on Security and Privacy. IEEE,
US, 65–79. https://doi.org/10.1109/SP.2012.14

[63] P. C. Santos, G. F. Oliveira, D. G. Tomé, M. A. Z. Alves, E. C. Almeida, and L.
Carro. 2017. Operand size reconfiguration for big data processing in memory. In
Design, Automation Test in Europe Conference Exhibition (DATE), 2017. IEEE, US,
710–715. https://doi.org/10.23919/DATE.2017.7927081

[64] Cis Security. 2018. Top 10 Malware January 2018. https://www.cisecurity.org/
blog/top-10-malware-january-2018/.

[65] Cis Security. 2019. Top 10 Malware January 2019. https://www.cisecurity.org/
blog/top-10-malware-january-2019/.

[66] Offensive Security. 2017. Using Meterpreter Commands. https://www.
offensive-security.com/metasploit-unleashed/meterpreter-basics/.

[67] Sarabjeet Singh and Manu Awasthi. 2019. Memory Centric Characterization
and Analysis of SPEC CPU2017 Suite. https://www.cs.utah.edu/~manua/pubs/
icpe19a.pdf.

[68] Nae Young Song, Yongseok Son, Hyuck Han, and Heon Young Yeom. 2016. Ef-
ficient Memory-Mapped I/O on Fast Storage Device. ACM Trans. Storage 12, 4,
Article 19 (May 2016), 27 pages. https://doi.org/10.1145/2846100

[69] SPEC. 2006. CPU 2006. https://www.spec.org/cpu2006/. This suite has been
retired during the paper development process.

[70] Sudhakar and Sushil Kumar. 2020. An emerging threat Fileless malware: a
survey and research challenges. Cybersecurity 3, 1 (14 Jan 2020), 1. https:
//doi.org/10.1186/s42400-019-0043-x

[71] Vasilis G. Tasiopoulos and Sokratis K. Katsikas. 2014. Bypassing Antivirus
Detection with Encryption. In Proceedings of the 18th Panhellenic Conference
on Informatics (PCI ’14). ACM, New York, NY, USA, Article 16, 2 pages. https:
//doi.org/10.1145/2645791.2645857

[72] TechRadar. 2018. Ransomware attacks see huge year-on-year rise. https://www.
techradar.com/news/ransomware-attacks-see-huge-year-on-year-rise.

[73] TrendMicro. 2017. A Look at JS_POWMET, a Completely Fileless Mal-
ware. http://blog.trendmicro.com/trendlabs-security-intelligence/look-js_
powmet-completely-fileless-malware/.

[74] Wired. 2017. Say Hello to the Super-Stealthy Malware
That’s Going Mainstream. https://www.wired.com/2017/02/
say-hello-super-stealthy-malware-thats-going-mainstream/.

[75] Christian Wressnegger, Kevin Freeman, Fabian Yamaguchi, and Konrad Rieck.
2017. Automatically InferringMalware Signatures for Anti-Virus Assisted Attacks.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communi-
cations Security (ASIA CCS ’17). ACM, New York, NY, USA, Article 1, 12 pages.
https://doi.org/10.1145/3052973.3053002

16

https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1109/IEDM.2008.4796763
https://doi.org/10.1109/TC.2015.2439274
https://doi.org/10.1109/TC.2015.2439274
https://www.osforensics.com/
https://doi.org/10.1145/3061639.3062202
https://doi.org/10.1109/MICRO.2004.28
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://doi.org/10.1109/2.928624
https://doi.org/10.1109/SP.2012.14
https://doi.org/10.23919/DATE.2017.7927081
https://www.cisecurity.org/blog/top-10-malware-january-2018/
https://www.cisecurity.org/blog/top-10-malware-january-2018/
https://www.cisecurity.org/blog/top-10-malware-january-2019/
https://www.cisecurity.org/blog/top-10-malware-january-2019/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/
https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/
https://www.cs.utah.edu/~manua/pubs/icpe19a.pdf
https://www.cs.utah.edu/~manua/pubs/icpe19a.pdf
https://doi.org/10.1145/2846100
https://www.spec.org/cpu2006/
https://doi.org/10.1186/s42400-019-0043-x
https://doi.org/10.1186/s42400-019-0043-x
https://doi.org/10.1145/2645791.2645857
https://doi.org/10.1145/2645791.2645857
https://www.techradar.com/news/ransomware-attacks-see-huge-year-on-year-rise
https://www.techradar.com/news/ransomware-attacks-see-huge-year-on-year-rise
http://blog.trendmicro.com/trendlabs-security-intelligence/look-js_powmet-completely-fileless-malware/
http://blog.trendmicro.com/trendlabs-security-intelligence/look-js_powmet-completely-fileless-malware/
https://www.wired.com/2017/02/say-hello-super-stealthy-malware-thats-going-mainstream/
https://www.wired.com/2017/02/say-hello-super-stealthy-malware-thats-going-mainstream/
https://doi.org/10.1145/3052973.3053002

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	4 MINI-ME Design
	5 MINI-ME Implementation
	5.1 Memory-OS integration
	5.2 Handling self modifying code
	5.3 Matching Engine
	5.4 Whitelisting memory regions:
	5.5 Signature generation

	6 Evaluation
	6.1 Exploration: Signature Size
	6.2 Exploration: Signature Quality
	6.3 Exploration: Matching Mechanisms
	6.4 Exploration: Scan Policies
	6.5 Exploration: Storage Space Overhead
	6.6 Practice: Database Size Definition
	6.7 Practice: Database Implementation
	6.8 Practice: Monitoring Overhead
	6.9 Practice: Malware Detection

	7 Discussion
	8 Related Work
	9 Conclusions
	References

