
Database Processing-in-Memroy: A Vision?

Tiago R. Kepe1,2[0000−0001−9744−0034], Eduardo C.
Almeida1[0000−0001−5666−0815], Marco A. Z. Alves1[2222−−3333−4444−5555], and

Jorge A. Meira3[2222−−3333−4444−5555]

1 Federal University of Paraná, Curitiba, PR, Brazil
{trkepe,mazalves,eduardo}@inf.ufpr.br

2 Federal Institute of Paraná, Curitiba, PR, Brazil
3 University of Luxembourg

jorge.meira@uni.lu

Abstract. The recent trend of Processing-in-Memory (PIM) promises
to tackle the memory and energy wall problems lurking in the data move-
ment around the memory hierarchy, like in data analysis applications. In
this paper, we present our vision on how database systems can embrace
PIM in query processing. We share with the community an empirical
analysis of the pros/cons of PIM in three main query operators to dis-
cuss our vision. We also present promising results of our ongoing work
to build a PIM-aware query scheduler that improved query execution in
almost 3× and reduced energy consumption in at least 25%. We com-
plete our discussion with challenges and opportunities to foster research
impulses in the co-design of Database-PIM.

Keywords: Processing-in-Memory · Query Processing · Query Sched-
uler. · Energy Efficiency

1 Introduction

PIM is a hardware architecture with simple processing units attached to the
memory chip to efficiently use the internal memory bandwidth. PIM was orig-
inally thought at the end of the 60’s [23, 18, 28]. Over the years, PIM followed
the progress of memory technology with processing components installed in mag-
netic disks to run particular database algorithms [9] that later evolved to Smart
Disks [19, 1] with embedded logical components. Intelligent RAM [25] also tried
to add logical units inside the DRAM to support specific computations. Unfortu-
nately, commercial products did not adopt those approaches due to limitations
of the hardware technology and the continuous growth in CPU performance
complied to the Moores Law and Dennard scaling. In the 2010s flash disks also
tried to add internal functional units to run database applications [29, 10, 7].
However, they missed a general programming interface and suffered from the
low abstraction level when handling hardware errors.

? This work was partially supported by the Serrapilheira Institute (grant number
Serra-1709-16621).



2 Tiago R. Kepe et al.

With the increasing growth in CPU performance, the memory access became
the bottleneck for many applications, a problem known as the “memory wall” [4].
In the last years, the assumptions of Moore and Dennard came to an end due
to hardware limitations and the emergence of multi-core, but the memory wall
remains an open issue as well the current “energy wall” [11, 33]. In data-centric
systems, both walls are critical as huge amounts of data move around the memory
hierarchy from disks, main memory, and caches to the CPU.

Why PIM Now and Again? Recently, PIM architectures came back to
the spotlight due to the introduction of Through-Silicon Vias (TSVs) that made
3D integration technologies feasible: the integration of DRAM dies and logic cells
in the same chip area. Furthermore, co-processing mechanisms have been pro-
posed for GPU, CPU and PIM [26, 20] and commercial GPUs already embed the
emerging 3D-stacked memories, such as the Hybrid Memory Cube (HMC) [16]
and the High Bandwidth Memory (HBM) [21]. These smart memories invert the
traditional data processing approach: they move computation to where the data
resides.

There is no surprise that PIM poses as an attractive approach to reduce
the data movement in data-centric systems. Therefore, in our vision, it is time
to discuss how Database Management System (DBMS) can embrace PIM in
query processing. The major benefits to be explored in the Database-PIM co-
design are the drastic reduction in energy consumption and the internal high
memory bandwidth due to the high levels of data access parallelism and the on-
chip processing. PIM has been used to accelerate isolated database operators:
select [27, 31] and join [24]. But, our recent work demonstrated [20, 30] the trade-
offs of PIM in query processing. The behavior of each query operator depends
on the dataset characteristics and the system cache settings. This position paper
aims to disclose the key requirements and insights for Database-PIM. Our main
contributions are:

I. PIM-aware Query Processing. We make a case for designing a PIM-
aware Query Processing engine that coordinates intra-query parallelism between
CPU and PIM. We reinforce the idea of moving computation around instead of
just deciding over the data movement, discussing: When is it cheaper to process
a record in main memory rather than moving around the memory hierarchy?

II. PIM-aware Scheduler. We introduce a design of PIM-aware Sched-
uler [20] at operator granularity to interleave intra-query processing between
CPU and PIM. We discuss the research question: How the DBMS should coor-
dinate intra-query execution between CPU and the memory processor to exploit
the potential gains from each device?

III. Findings and Results. We share our findings about the impact of
PIM on traditional query processing. We discuss the energy-saving and drastic
reduction in response time that goes more than 1 order of magnitude for certain
query operators.

IV. Challenges and Opportunities. We share a list of challenges and
opportunities for the co-design and integration of a Database-PIM.



Database Processing-in-Memroy: A Vision 3

Next, we introduce an overview of current PIM architectures (Section 2)
and the impact of PIM on traditional query processing (Section 3). We then
describe our current work for Database-PIM (Section 4) and present challenges
and opportunities (Section 5). We conclude with a discussion of related work
and our findings (Sections 6 and 7).

2 PIM Architecture

Emerging 3D-stacked memories increase memory bandwidth by integrating one
logic die with a stack of four or eight DDR-3 dies bonded by the TSV. Typi-
cally, the DDR-3 module consists of memory rows of 8-KB, which means that
the memory controller must activate an entire 8-KB DRAM row to access any
memory portion, even smaller portions than 8-KB, which limits the memory
bandwidth and increases energy consumption. Therefore, the 3D-stacked mem-
ories split the 8-KB DRAM rows into small rows of 256-bytes. They organize
the stack of DRAM dies vertically, where underlying memory banks of different
dies are interconnected by the TSV to the logic die at the base, forming a ver-
tical partition called as a “vault” (see Figure 1). Current 3D-stacked memories
have 32 interdependent vaults to access and process data in parallel leveraging
the internal high bandwidth memory up to 320 GB/s. The logic layer of 3D-
stacked memories supports arithmetic, logical and bitwise atomic instructions
up to 16 bytes size.

To fully benefit from the 256-bytes vault’s row buffer, a recent work [2] ex-
tended the logic layer to operate with vectorized instructions of 256-bytes, en-
abling Single Instruction, Multiple Data (SIMD) with PIM. Figure 1 shows the
described PIM architecture with SIMD support to the right side and the tradi-
tional von Neumann architecture to the left: the processor core and a detached
cache hierarchy. At the top of Figure 1, the processor dispatches PIM instruc-
tions directly to the PIM device bypassing the cache hierarchy. At the end of the
instructions, the PIM device only returns the instructions status to the CPU to
continue the pipeline. This is a main advantage compared to current DBMS, such
as Netezza and Exasol, that also filter data in hardware before passing to the
CPU. They have to deal with packing qualifying tuples into condensed pages to
avoid unnecessary bufferpool pollution, which is expensive and error prone. On
the other hand, current memory protocols support all the idiosyncrasies of PIM
instructions, such as cache coherence, Error-Correcting Code Memory (ECC)
and Direct Memory Access (DMA). The execution flow works at instruction-
granularity as the traditional CPU processing (e.g., AVX/SSE): programmers
insert intrinsics PIM instructions into the code, like Intel Intrinsics, and the
compiler flags them as special memory PIM instructions.

3 Query Processing with PIM

The first step towards a PIM-aware query processing is understanding the impact
of PIM on traditional query processing. We discuss the impact on the execution



4 Tiago R. Kepe et al.

3D-Stacked Memory

Processor Core

ALUFetch Decode
Rename
Dispatch

Reorder Buffer

Write
Back

Memory Order Buffer

Cache Hierarchy
L1 Cache

Last Level 
Cache

LOCK PIM
PIM Load 256 bytes // bitmap
PIM Set Predication flags
PIM Lood 256 bytes // column
PIM Store up to 256 bytes // result 
UNLOCK PIM

PIM 
instruction

PIM 
instruction

PIM inst.
(status)

PIM inst.
status

Query Plan

Project

Select Scan

Vault 0
logic

Vault 1
logic

Vault 31
logic

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

B0 B1

B2 B3

B4 B5

B6 B7

T
S
V

...

256 bytes
operation

HIPE

Interlock
register bank

Op.

Data

Lo
a

d
/S

to
re

 
cm

d
. +

 a
d

d
r.

Result
+ zero

Predication 
match logic

Instruction buffer

External
Links

Memory
partitions
(DRAMs 

stack)

Logic
layer

PIM
+

SIMD

Fig. 1: A query datapath movement in a traditional von Neumann architecture
plus a modern 3D-stacked memory with PIM and SIMD support.

time and energy consumption of the operators: projection, selection and join
when switching the processing unit from the CPU to PIM. Since current PIM
hardware do not yet implement all the extensions depicted in Figure 1, we per-
formed the analysis through the SiNUCA cycle-accurate simulator [3] with the
same parameters used by related work [31]. The energy estimations consider the
DRAM parameters for state-of-the-art PIM devices [16]. The SiNUCA is exten-
sively adopted by scientific articles in computer architecture [31, 27], HPCC [3]
and database [30, 20].

We evaluate those operators using the 1 GB TPC-H database workload be-
cause their input data set fit into the caches (the best scenario for the CPU
processing). It is therefore possible to investigate the data reuse behavior of
such operators. The CPU implementations of the query operators use SIMD
instructions of 64-bytes (i.e., Intel AVX-512) and the PIM versions use SIMD
instructions of 256-bytes (see [30, 20] for details). The results presented here
guide us to exploit our Database-PIM co-design.

Projection: Figure 2 shows that the PIM-aware projection operator reduced
the execution time by more than one order of magnitude, 60× for projection
and 23× for projection-path. We also observe reductions in energy consumption
around 36× for both projection primitives. Selection: The PIM-aware selec-
tion operator reduces the energy consumption by around 98% and reduces the
execution time by 76× compared to the best CPU scenario.



Database Processing-in-Memroy: A Vision 5

1x 2x 4x 8x 1x 2x 4x 8x 16x 32x
CPU-64B PIM-256B

0

5

10

15

20

25

30

35

40

45

50

20

14

13

21
.3

1 66
0

33
9.

20

18
3

10
0

58

3
7

join projection selection

E
xe

cu
tio

n 
T

im
e 

(m
s)

1x 2x 4x 8x 1x 2x 4x 8x 16x 32x
CPU-64B PIM-256B

0E+0

50E+6

100E+6

150E+6

200E+6

250E+6

300E+6
join projection selection

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

ou
le

s)

Fig. 2: The execution time and energy consumption breakdown of the TPC-H
Query 03 on the operators: selection, projection and join in the CPU-64B and
PIM-256B with different unrolling depths.

The streaming behavior of the projection and selection operators results in
low data reuse and less amount of off-chip data transfers when running into PIM.
In a conventional CPU processing, the column under processing is streamed from
main memory across the memory hierarchy to the CPU registers, then the CPU
tests column chunks against the selection and projection predicates. However,
all the column chunks are “dead” on arrival in the cache hierarchy, because the
operators do not reuse any chunk during the execution. On the other hand, the
counterpart PIM operators send the computation from CPU to the PIM, both
operators access all the 32 vaults in parallel and evaluate the columns with 32×
PIM+SIMD instructions of 256-bytes. These results endorse the feasibility of
both operators for PIM. However, small enough tables may fit into the cache,
and the PIM device might lead to performance loss. Here, the DBMS must take
a careful decision between CPU and PIM.



6 Tiago R. Kepe et al.

Join: In our experiments, we implemented the tree main join algorithms,
but the Hash Join and Sort-Merge Join algorithms generate random memory
accesses that inhibit the internal data access parallelism and the high bandwidth.
To give an intuition of the problems of join in PIM, we analyze the execution
of the Nested Loop Join (NLJ). The NLJ-PIM unrolls the inner loop up to
32× to exploit the data access parallelism of the PIM device. Every inner loop
iteration causes compulsory load and store instructions, i.e., the inner column
is re-accessed every time in the inner loop. Such an effect is more evident in
our tests because the inner column fits into the data caches that have lower
memory latency than the DDR3 dies. Thus, the CPU processing outperforms
the execution of the NLJ-PIM, as depicted in Figure 2. The best CPU processing
is 2.8× faster than PIM. Even the energy consumption, a major benefit of PIM, is
70% worst in the best PIM execution. However, the NLJ-PIM becomes appealing
as long as the inner column does not fit into the LLC inhibiting data reuse. In
this point, PIM shows an improvement of 1.38× against the CPU. Here, we
observe opportunities to tackle random memory access of other join algorithms.

4 PIM-Aware Query Processing

Although the emerging PIM architectures stand as high performance memory
technology removing part of the memory wall, the impact of PIM on query pro-
cessing arises the issue: Not every (instance of) database operator benefits from
PIM. The choice of the target architecture to process a query operator is not
trivial. Indeed, we observed that query operators with high data reuse benefit
from the caching mechanism and thus the CPU processing becomes appealing,
such as for the NLJ. On the other hand, operators that perform data stream-
ing (e.g., projections and selections) are best fit for PIM [27]. Other operators,
such as aggregation, may have low or medium data reuse and partial streaming
behavior, making it unclear where is the best fit device to process.

4.1 PIM-Aware Scheduler

Our investigation focus on how to interleave intra-query execution between
the CPU and PIM. To the best of our knowledge, this is the first effort in
that direction. Existing solutions usually direct sole data-intensive operators for
PIM [24, 30, 31]. However, they neglect the potential of CPU processing boosted
by caching mechanism for workloads with high temporal and spatial data local-
ity. Thus, our insight is that a database system requires a PIM-aware scheduler
for intra-query processing.

The DBMS scheduler is a critical performance component in query process-
ing: it orchestrates the execution of physical primitives from the query plans.
Thus, we design two scheduling strategies for a PIM-aware scheduler: static pro-
file based scheduling and dynamic profile based scheduling. Inspired by related
work, we discuss two potential strategies to receive as input the optimal plan
generated by the query optimizer and coordinate the intra-query execution be-
tween PIM and the traditional CPU.



Database Processing-in-Memroy: A Vision 7

Static Scheduling. The static scheduling uses a classification model based on
operator profiles to decide which architecture to process a given operator. Dif-
ferent from related work on operator scheduling for GPU, this strategy does not
require a calibration step [5] nor heuristics [17]. We refer to a partial execution
of the TPC-H Query 03 to evaluate our scheduling:

SELECT o_custkey FROM Orders, Lineitem

WHERE o_orderdate < ’1995-03-15’ AND

l_orderkey = o_orderkey

Figure 3 depicts three execution plans from the optimal plan to answer that
query: two hardware-specific query plans, i.e., either CPU or PIM, and a hybrid
query plan based on the static profile scheduling. In the hybrid query plan, the
selection and projection operators run into the PIM hardware, while the join
operator executes in the CPU.

Figure 3d shows that the hybrid query plan outperforms the hardware-
specific query plans in almost 3× exploiting the advantages of both architec-
tures: the operators with high data reuse run in CPU, and the operators with
data streaming run into PIM. Also, the hybrid plan reduces the energy consump-
tion in at least 25%.

Dynamic Scheduling. The dynamic scheduling is our ongoing work to co-
ordinate, automatically, the intra-query execution between CPU and PIM. We
envision the dynamic scheduler regarding two criteria: execution time and energy
consumption.

We present a prototype of the dynamic scheduling in Figure 4: (1) Initially,
it assumes a target architecture based on the PIM-aware algorithms from each
operator of the query plan; (2) The scheduler requests the observed operator
profiles to the DB Profile that returns the stored profiles generated according
to some criteria on database load monitoring (e.g., energy consumption); (3)
The scheduler chooses the most prominent profile and (4) decides the target
architecture and algorithm. (5) After the execution, the scheduler stores the ob-
served workload information based on the chosen criteria to learning base. At
its heart, the learning model decides the target architecture for an incoming
operator from a query plan. The decision model shall select the most prominent
algorithm based on the defined criteria from a set of profile operators. A profile
operator consists of an execution algorithm (e.g., NLJ), the target architecture
(e.g., CPU, PIM), the measured criteria (e.g., energy consumption) and the fea-
tures about the dataset (e.g., size, distribution, cardinality, and type). We bind
the workload information W to any profile, such as data reuse and selectivity,
and use in statistical methods to interpolate future profiles. The W is useful to
measure the quality of the chosen profile. For instance, the PIM-aware scheduler
measures the distance between the new W and the chosen profile (e.g., Dynamic
time warping). We call this distance as “Energy ramp” when using the energy
criteria. Also, the W might be used to insert, remove or update profiles.



8 Tiago R. Kepe et al.

π

σ

⨝

Orders LineItem

CPU

(a) CPU Plan.

π

σ

⨝

Orders LineItem

PIM

(b) PIM Plan.

π

σ

⨝

Orders LineItem

PIM

CPU

(c) Hybrid Plan.

CPU PIM Hybrid
0

10

20

30

40
⋈
π
σ

Query Plans

E
x

ec
u

ti
o

n
 T

im
e 

(m
s)

(d) Execution Time.

CPU PIM Hybrid
0E+0

15E+6

30E+6

45E+6

60E+6
⋈
π
σ

Query Plans

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

(J
o

u
le

s)

(e) Energy Consumption.

Fig. 3: Three query execution plans: a sole CPU (a) and PIM (b) plans, a hy-
brid plan (c) with CPU/PIM and the respective execution time (d) and energy
consumption (e).

Figure 5 exemplifies the energy consumption of expected and observed pro-
files for the NLJ. As the data sets do not fit into the caches (L1, L2, and LLC),
then the data reuse distance increases, which leads to increasing data movement
across cache levels and more energy consumption. When the dynamic scheduling
detects an increasing energy ramp, a scheduling decision is made to switch the
processing unit of the running operator based on the trend profile. In the exam-
ple, we use the least squares method to set the energy trend profile. If the energy
trend goes up and data do not fit in cache, then the operator is rescheduled to
the PIM device. In our ongoing work, we also study the tradeoffs of restarting
the running operator from scratch after rescheduling(e.g., cache invalidation).



Database Processing-in-Memroy: A Vision 9

PIM-Aware Scheduler

Project

Select
Scan NLJoin

1- choose arch + alg

4 - target arch + alg

DB Profile

Dynamic
Scheduling

2
 –

 g
e

t 
pr

of
ile

s

3
 –

 p
ro

fil
es

5 – Learning

Fig. 4: Architecture overview of the PIM-aware Scheduler with dynamic schedul-
ing.

0

40

80

120

160

200
Expected Observed Mean (Observed)

Dataset Size (a workload metric)

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

ou
le

s)

Fits L1 Fits L2 Fits LLC

Energy
ramp

Fig. 5: The dynamic scheduler monitors the energy consumption (Joules) during
the data movement (Bytes) of the NLJ for Query 03.

5 Challenges & Opportunities

Hybrid query processing and optimization require a holistic view of a query opti-
mizer to exploit heterogeneous co-processing. Next, we identify a list of challenges
for the Database-PIM co-design.

Simultaneous Co-processing: In heterogeneous processing environments,
the optimizer needs to identify opportunities of co-processing to avoid idle de-
vices or inefficient power-consumption (e.g., the power wall problem [33]). Be-



10 Tiago R. Kepe et al.

sides, the simultaneous CPU and PIM processing may add hard-to-predict con-
currency into the main memory.

Query Plan Optimization: The search space to optimize query plans is
already a problem for traditional query optimizer. The addition of hybrid query
plans increases the complexity to generate efficient candidate query plans. A
PIM-aware query optimizer needs to take into account hardware-specific features
to choose the appropriate running device, such as limited processing power and
reduced data movement for PIM, and fast processing with caching mechanisms
for superscalar CPUs.

Multi-Objective Optimization: Due to the peculiarities of heterogeneous
processing devices, the query plan optimizer must focus on multi-objective op-
timization (e.g., min energy s.t. runtime constraint), which is challenging to
linearize.

Transactions: Intrinsically, arithmetic and logical PIM update instructions
are atomic [14]. This opens research opportunity for near-data transactions and
Hybrid Transactional/Analytical Processing (HTAP). The current PIM ISA sup-
ports compare-and-swap instruction to evaluate values. Therefore, PIM update
instructions can be synchronized in-memory without wasting cache-check time or
extra memory bandwidth. The opportunity is to reduce the overhead of locking
and latching, which correspond to 30% of the instructions in OLTP [13].

Programming Interface: The programming interface of PIM architectures
is still premature to implement database operations. A preliminary effort is the
Intrinsics-PIM [8] that provides Intel-like intrinsic functions to simulate PIM in-
structions. However, the Intrinsics-PIM only provides functions for basic PIM in-
structions, and it does not yet support complex components (e.g., large registers)
and instructions (e.g., lock and unlock) of other PIM architectures (HIVE [2],
RVU [27] or HIPE [31]).

DBMS Adoption: We envision that DBMSes should invoke PIM instruc-
tions at the operator code base, similarly to the SSE and AVX approaches. We
also consider code optimization to provide intrinsic functions for PIM ISA.

6 Related Work

To our knowledge, we are the first work to investigate query scheduling between
CPU and modern PIM architectures aiming energy-saving.

Flash Disks. Recently, the attention moved to flash disks to accelerate [12]
and save energy [22] of scan and join operators. However, there are two main
problems in these works: (1) They rely on complex and database dedicated hard-
ware that may reduce the general use for the hardware. Smart SSDs [10] use an
embedded ARM processor into the SSD with a firmware for communication to
evaluate the execution of database operators. Intelligent SSDs [7] add a recon-
figurable stream processor to reach high processing performance with energy
savings. (2) They are application-driven without a general interface to abstract
hardware features. Active Flash [29] offloads particular functions of scientific



Database Processing-in-Memroy: A Vision 11

workloads to run into the SSDs. The Samsung Smart SSD prototype is origi-
nally designed to process the intersection of lists [32].

PIM As Query Accelerator. Recent works use PIM devices as isolated
accelerators to boost query operators, such as selection [27, 31], projection [30],
and join [24]. However, this one-sided approach neglects the potential of CPU-
PIM co-processing with caching and energy-saving benefits.

Scheduling On Emerging Hardwares. Current intra-query scheduling fo-
cused on co-processing between GPU and CPU to improve execution time based
on runtime learning model [5] and operator cost model [17]. In the Intel Xeon
Phi co-processor [6] was also tested a similar scheduling idea. These approaches
tackle compute-intensive applications but neglect the potential of PIM to run
data-intensive applications.

Kernel Scheduling on PIM-Assisted GPU. Related work in GPU ar-
chitectures proposed scheduling techniques with PIM devices installed as GPU
main memory. GPU applications are split into independent GPU-kernels and
interleave the processing of each kernel between the GPU cores and the PIM
device [26, 15]. Although GPUs are highly parallel devices to boost processing
power, data still need to be transferred around the memory hierarchy before
moving to the GPU-PIM device.

7 Conclusion & Future Work

This paper presented our Database-PIM co-design vision to exploit the unprece-
dented memory bandwidth with on-chip processing delivered by modern PIM
hardware. We discussed promising results of interleaving the parallel execution
of intra-query processing between PIM and CPU. With our static scheduler,
the hybrid query plans outperformed hardware-specific plans in almost 3× and
reduced energy consumption about 25%. Our ongoing work focuses on the dy-
namic scheduling strategy to create and update operator profiles and reschedule
operators on-the-fly between the CPU and PIM devices. Finally, we share with
the community a list of challenges and opportunities opened by our vision in the
co-design of DBMS and PIM.

References

1. Acharya, A., Uysal, M., Saltz, J.H.: Active disks: Programming model, algorithms
and evaluation. In: Bhandarkar, D., Agarwal, A. (eds.) ASPLOS-VIII Proceedings
of the 8th International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, California, USA, October 3-7, 1998.
pp. 81–91. ACM Press (1998). https://doi.org/10.1145/291069.291026

2. Alves, M.A.Z., Diener, M., Santos, P.C., Carro, L.: Large vector extensions inside
the HMC. In: Fanucci, L., Teich, J. (eds.) 2016 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2016, Dresden, Germany, March 14-18,
2016. pp. 1249–1254. IEEE (2016), http://ieeexplore.ieee.org/document/7459502/



12 Tiago R. Kepe et al.

3. Alves, M.A.Z., Villavieja, C., Diener, M., Moreira, F.B., Navaux, P.O.A.: Sin-
uca: A validated micro-architecture simulator. In: 17th IEEE International Con-
ference on High Performance Computing and Communications, HPCC 2015, 7th
IEEE International Symposium on Cyberspace Safety and Security, CSS 2015,
and 12th IEEE International Conference on Embedded Software and Systems,
ICESS 2015, New York, NY, USA, August 24-26, 2015. pp. 605–610. IEEE (2015).
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.166

4. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in monetdb.
Commun. ACM 51(12), 77–85 (2008). https://doi.org/10.1145/1409360.1409380

5. Breß, S., Mohammad, S., Schallehn, E.: Self-tuning distribution of db-operations
on hybrid CPU/GPU platforms. In: Schmitt, I., Saretz, S., Zierenberg, M.
(eds.) Proceedings of the 24th GI-Workshop ”Grundlagen von Datenbanken
2012”, Lübbenau, Germany, May 29 - June 01, 2012. CEUR Workshop Pro-
ceedings, vol. 850, pp. 89–94. CEUR-WS.org (2012), http://ceur-ws.org/Vol-
850/paper bress.pdf

6. Cheng, X., He, B., Lu, M., Lau, C.T.: Many-core needs fine-grained scheduling:
{A} case study of query processing on intel xeon phi processors. J. Parallel Distrib.
Comput. 120, 395–404 (2018). https://doi.org/10.1016/j.jpdc.2017.09.005

7. Cho, S., Park, C., Oh, H., Kim, S., Yi, Y., Ganger, G.R.: Active disk meets flash:
a case for intelligent ssds. In: Malony, A.D., Nemirovsky, M., Midkiff, S.P. (eds.)
International Conference on Supercomputing, ICS’13, Eugene, OR, USA - June 10
- 14, 2013. pp. 91–102. ACM (2013). https://doi.org/10.1145/2464996.2465003

8. Cordeiro, A.S., Kepe, T.R., Tome, D.G., Almeida, E.C., Alves, M.A.Z.: Intrinsics-
HMC: An automatic trace generator for simulations of processing-in-memory in-
structions. In: XVIII Brazilian Symposium on High Performance Computing Sys-
tems, WSCAD, Campinas, SP, Brazil (2017)

9. DeWitt, D.J., Hawthorn, P.B.: A performance evaluation of data base machine
architectures (invited paper). In: Very Large Data Bases, 7th International Con-
ference, September 9-11, 1981, Cannes, France, Proceedings. pp. 199–214. IEEE
Computer Society (1981)

10. Do, J., Kee, Y., Patel, J.M., Park, C., Park, K., DeWitt, D.J.: Query processing
on smart ssds: opportunities and challenges. In: Ross, K.A., Srivastava, D., Pa-
padias, D. (eds.) Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013. pp.
1221–1230. ACM (2013). https://doi.org/10.1145/2463676.2465295

11. Esmaeilzadeh, H., Blem, E.R., Amant, R.S., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. IEEE Micro 32(3), 122–134 (2012).
https://doi.org/10.1109/MM.2012.17

12. Graefe, G., Harizopoulos, S., Kuno, H.A., Shah, M.A., Tsirogian-
nis, D., Wiener, J.L.: Designing database operators for flash-enabled
memory hierarchies. IEEE Data Eng. Bull. 33(4), 21–27 (2010),
http://sites.computer.org/debull/A10dec/hp-paper.pdf

13. Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: OLTP through the
looking glass, and what we found there. In: Wang, J.T. (ed.) Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, June 10-12, 2008. pp. 981–992. ACM (2008).
https://doi.org/10.1145/1376616.1376713

14. HMC Consortium: Hybrid Memory Cube Specification 2.1 (June 2015),
http://www.hybridmemorycube.org/, hMC-30G-VSR PHY



Database Processing-in-Memroy: A Vision 13

15. Hsieh, K., Ebrahimi, E., Kim, G., Chatterjee, N., O’Connor, M., Vijaykumar,
N., Mutlu, O., Keckler, S.W.: Transparent offloading and mapping (TOM): en-
abling programmer-transparent near-data processing in GPU systems. In: 43rd
ACM/IEEE Annual International Symposium on Computer Architecture, ISCA
2016, Seoul, South Korea, June 18-22, 2016. pp. 204–216. IEEE Computer Society
(2016). https://doi.org/10.1109/ISCA.2016.27

16. Jeddeloh, J., Keeth, B.: Hybrid memory cube new DRAM architecture increases
density and performance. In: Symposium on VLSI Technology (VLSIT). IEEE
(2012). https://doi.org/10.1109/VLSIT.2012.6242474

17. Karnagel, T., Habich, D., Schlegel, B., Lehner, W.: Heterogeneity-aware operator
placement in column-store DBMS. Datenbank-Spektrum 14(3), 211–221 (2014).
https://doi.org/10.1007/s13222-014-0167-9

18. Kautz, W.H.: Cellular logic-in-memory arrays. IEEE Trans. Computers 18(8), 719–
727 (1969). https://doi.org/10.1109/T-C.1969.222754

19. Keeton, K., Patterson, D.A., Hellerstein, J.M.: A case for intelligent disks (idisks).
SIGMOD Record 27(3), 42–52 (1998). https://doi.org/10.1145/290593.290602

20. Kepe, T.R.: Dynamic database operator scheduling for processing-in-memory. In:
Roy, S.B., da Silva, A.S. (eds.) Proceedings of the VLDB 2018 PhD Workshop co-
located with the 44th International Conference on Very Large Databases (VLDB
2018), Rio de Janeiro, Brasil, Aug 27-31, 2018. CEUR Workshop Proceedings,
vol. 2175. CEUR-WS.org (2018), http://ceur-ws.org/Vol-2175/paper07.pdf

21. Kim, J., Kim, Y.: HBM: memory solution for bandwidth-hungry processors. In:
2014 IEEE Hot Chips 26 Symposium (HCS), Cupertino, CA, USA, August 10-12,
2014. pp. 1–24. IEEE (2014). https://doi.org/10.1109/HOTCHIPS.2014.7478812

22. Kim, S., Oh, H., Park, C., Cho, S., Lee, S.: Fast, energy efficient scan inside flash
memory. In: Bordawekar, R., Lang, C.A. (eds.) International Workshop on Accel-
erating Data Management Systems Using Modern Processor and Storage Archi-
tectures - ADMS 2011, Seattle, WA, USA, September 2, 2011. pp. 36–43 (2011),
http://www.adms-conf.org/p36-KIM.pdf

23. Minnick, R.C., Goldberg, J., et al.: Cellular arrays for logic and storage. Tech. rep.,
Stanford Research Inst Menlo Park Calif (Apr 1966)

24. Mirzadeh, N., Kocberber, O., Falsafi, B., Grot, B.: Sort vs. hash join revisited for
near-memory execution. In: ASBD@ISCA (2015)

25. Patterson, D.A., Anderson, T.E., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis,
C.E., Thomas, R., Yelick, K.A.: A case for intelligent RAM. IEEE Micro 17(2),
34–44 (1997). https://doi.org/10.1109/40.592312

26. Pattnaik, A., Tang, X., Jog, A., Kayiran, O., Mishra, A.K., Kandemir, M.T.,
Mutlu, O., Das, C.R.: Scheduling techniques for GPU architectures with
processing-in-memory capabilities. In: Zaks, A., Mendelson, B., Rauchwerger, L.,
Hwu, W.W. (eds.) Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation, PACT 2016, Haifa, Israel, September 11-15, 2016.
pp. 31–44. ACM (2016). https://doi.org/10.1145/2967938.2967940

27. Santos, P.C., Oliveira, G.F., Tome, D.G., Alves, M.A.Z., de Almeida, E.C., Carro,
L.: Operand size reconfiguration for big data processing in memory. In: Atienza, D.,
Natale, G.D. (eds.) Design, Automation & Test in Europe Conference & Exhibition,
DATE 2017, Lausanne, Switzerland, March 27-31, 2017. pp. 710–715. IEEE (2017).
https://doi.org/10.23919/DATE.2017.7927081

28. Stone, H.S.: A logic-in-memory computer. IEEE Trans. Computers 19(1), 73–78
(1970). https://doi.org/10.1109/TC.1970.5008902



14 Tiago R. Kepe et al.

29. Tiwari, D., Boboila, S., Vazhkudai, S.S., Kim, Y., Ma, X., Desnoyers, P.,
Solihin, Y.: Active flash: towards energy-efficient, in-situ data analytics on
extreme-scale machines. In: Smith, K.A., Zhou, Y. (eds.) Proceedings of
the 11th USENIX conference on File and Storage Technologies, FAST 2013,
San Jose, CA, USA, February 12-15, 2013. pp. 119–132. USENIX (2013),
https://www.usenix.org/conference/fast13/technical-sessions/presentation/tiwari

30. Tome, D.G., Kepe, T.R., Alves, M.A.Z., de Almeida, E.C.: Near-data filters: Tak-
ing another brick from the memory wall. In: Bordawekar, R., Lahiri, T. (eds.)
International Workshop on Accelerating Analytics and Data Management Sys-
tems Using Modern Processor and Storage Architectures, ADMS@VLDB 2018,
Rio de Janeiro, Brazil, August 27, 2018. pp. 42–50 (2018), http://www.adms-
conf.org/2018-camera-ready/01 adms camera ready.pdf

31. Tome, D.G., Santos, P.C., Carro, L., de Almeida, E.C., Alves, M.A.Z.: HIPE:
HMC instruction predication extension applied on database processing. In:
2018 Design, Automation & Test in Europe Conference & Exhibition, DATE
2018, Dresden, Germany, March 19-23, 2018. pp. 261–264. IEEE (2018).
https://doi.org/10.23919/DATE.2018.8342015

32. Wang, J., Park, D., Kee, Y., Papakonstantinou, Y., Swanson, S.: SSD in-storage
computing for list intersection. In: Proceedings of the 12th International Workshop
on Data Management on New Hardware, DaMoN 2016, San Francisco, CA, USA,
June 27, 2016. pp. 4:1–4:7. ACM (2016). https://doi.org/10.1145/2933349.2933353

33. Wang, L., Skadron, K.: Implications of the power wall: Dim cores and reconfig-
urable logic. vol. 33, pp. 40–48 (2013). https://doi.org/10.1109/MM.2013.74


