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Abstract. Convolutional Neural Networks (CNNs) have become a de-facto stan-
dard for image and video recognition. However, current software and hard-
ware implementations targeting convolutional operations still lack embracing
energy budget constraints due to the CNN intensive data processing behav-
ior. This paper proposes a software-based memoization technique to skip en-
tire convolution calculations. We demonstrate that, by grouping output values
within proximity-based clusters, it is possible to reduce by hundreds of times
the amount of memory necessary to store all the tables. Also, we present a ta-
ble mapping scheme to index the input set of each convolutional layer to its
output value. Our experimental results show that for a YOLOv3-tiny CNN, it is
possible to achieve a speedup up to 3.5× while reducing the energy consump-
tion to 22% of the baseline with an accuracy loss of 7.4%.

Keywords: Convolutional Neural Networks · Computation reuse · Memoiza-
tion.

1 Introduction

Supported by advancements in machine learning algorithms, Convolutional Neural
Networks (CNNs) have been broadly used in modern applications, such as image
classification [16], speech recognition [6], and natural language processing [3] tasks.
In addition to the algorithmic advances, efforts in architectural research have also
contributed to make feasible the employment of CNNs, ranging from General Pur-
pose Processors (GPPs) and Graphics Processing Units (GPUs) to custom accelera-
tor designs [19, 2, 18]. Meanwhile, an increasing interest in migrating the execution
of CNNs to embedded systems is leveraged by the Internet of Things (IoT) era, as
already seen in self-driving vehicles, audio, and image recognition software running
into mobile devices. However, current hardware designs used to accelerate CNNs ex-
ecution still have concerns related to energy consumption and do not entirely fulfill
the energy constraints of embedded systems [9].

A significant part of the execution time of a CNN, as well as its energy consump-
tion, is spent performing convolution operations [10]. At their core, a convolution
is composed fundamentally by multidimensional dot product operations on a data
streaming. Thereby, the most costly operations involved in a convolution are the data
movements and the floating-point multiplications and additions [9]. Therefore, such
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convolutional kernels must be accelerated, either by reducing the time of such oper-
ations or by skipping them, to improve the overall CNNs execution time.

Meanwhile, CNNs present characteristics of data compression along with their
convolutional layers. For instance, to perform inference over one input image in
YoloV3-tiny CNN [16], nearly 10 GB of temporary data is generated and processed
between different layers. However, one can observe that, for a universe of N input im-
ages, the classifier vector output will be represented into 320 Bytes. Since the amount
of data generated and processed is thousands of times higher than the output size, it
is expected that there would be high levels of redundancy in the intermediate data.
Thereby, the data redundancy can be exploited to improve performance and en-
ergy efficiency. Such behavior makes CNNs suitable for applying memoization tech-
niques.

Memoization is an old technique, which has been used to shorten the runtime
of applications [20]. This technique works by keeping in storage results of previous
execution for future reuse, thus saving time and energy if the algorithmic way de-
mands more than a lookup search. In the past years, memoization approaches have
been proposed at different levels of implementation and abstraction, varying from
function-level in software to Functional Unit (FU)-level in hardware [20, 5]. Employ-
ing the memoization technique can be suitable for accelerating CNNs since there are
many opportunities for computing reuse. Moreover, by using memoization, both en-
ergy and performance improvements can be achieved as already presented in recent
literature [9, 5]. Nevertheless, memoization-based approaches have a trade-off be-
tween performance savings and data storage size. The memoization overheads come
due to storing previous results in a table and looking up that table at every next ex-
ecution. Since the cost per lookup table access is proportional to its size, identifying
the most suitable memoization technique is essential to achieve the best relation
between performance and table access time.

To overcome the limitations mentioned above, we propose a software-based mem-
oization technique to replace the entire convolution computations by a single lookup
table search implemented as a hash table. Although there are reuse opportunities in
the kernel of CNNs, we demonstrate that measuring the table sizes necessary to keep
all the different output values for each convolutional layer in a YOLOv3-tiny CNN [16]
reveals a costly amount of memory. Further, we present a methodology to reduce the
output table sizes by grouping the output values into range-based clusters according
to their proximity values, which drastically reduces the amount of memory necessary
to keep the convolution values.

To ensure the effectiveness and correctness of computing reuse and memoiza-
tion, we propose an indexing table scheme to map each set of inputs in each convo-
lutional layer to its corresponding output value. By implementing these techniques
in the open-source Darknet framework [15], it is possible to achieve a performance
speedup up to 3.5×, while reducing the energy consumption by a factor of 4.5× by
allowing an accuracy loss of 7.4% due to output values clustering.

The main contributions of this paper are listed as follows:

1. We explore computation reuse and memoization as a software-based technique
to improve CNNs execution.
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2. We propose a technique to reduce the amount of memory necessary to store
the lookup tables by grouping output values into range-based clusters making
memoization feasible for the CNNs realm.

3. In contrast to previous works, we replace entire convolution computations by
lookup table search with low accuracy loss.

The rest of this paper is organized as follows: Section 2 presents a general overview
of CNNs layout and processing and also discusses the state-of-art hardware and soft-
ware techniques to accelerate CNNs execution. The proposed technique and their
implications are presented in Section 3. Section 4 introduces the methodology, ex-
perimental setups, and results used to evaluate this work. Finally, a brief conclusion
and future works are drawn in Section 5.

2 Background and related work

In this section, the basics of CNNs are presented. After, a review of the state-of-art
researches regarding CNNs acceleration is done.

2.1 CNN basics

A CNN performs feature extraction using series of convolutional layers and then it
is followed by classification layers that analyze features and classify input images.
Figure 1 shows an example of a convolutional layer. Each layer takes as input RxC
values distributed along N channels (or input feature maps) and convolves it with M
sets of N xK xK filters generating M output feature maps with R ′xC ′ values each. The
filters represent the weights that are previously obtained in the training phase using
a learning algorithm such as back-propagation. For each filter of the M sets, the con-
volution is performed by sliding the filter across the input feature map according to
a stride value. At each overlapping of the filter over the input feature map, the val-
ues are multiplied and accumulated together, giving one value to the output feature
map. Generally, after a convolution, an activation function is applied on the output
feature maps, and, occasionally, it is also followed by a subsampling operation[1].

In general, the layout of a CNNs is composed of many layers in which the output
of the previous layer is the input of the subsequent layer. As the depth of the network

Fig. 1. Parts of a convolutional layer. Adapted from [1]
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increases, higher recognition accuracy can be achieved. For instance, state-of-the-
art CNNs, such as GoogLeNet [21] and YOLOv3 [16], have 20 and 75 convolutional
layers, respectively.

2.2 Software-based techniques for efficient CNN execution

Past works have shown different approaches for obtaining small networks by shrink-
ing, factorizing, or compressing pre-trained networks [4], as well as for reducing the
number of computation or memory access by pruning, quantizing, or decreasing the
precision of a network [8]. Although novel CNN architectures have been proposed
to provide smaller and faster models for mobile and embedded vision applications,
such as MobileNet [7], we focus on the optimization of existing CNN architectures to
further improve performance under the same hardware.

Recently, [22] has proposed an unified framework to compress and accelerate
CNN inference through product quantization. This technique exploits opportunities
of replacing inner product computation by addition operation if inner products be-
tween the input and quantized weights have been computed in advance. In another
study, [12] proposes modifications to Winograd-based CNN architecture to reduce
the number of multiplications by combining two methods: Winograd’s minimal fil-
tering algorithm and network pruning. The authors have moved ReLU operation into
Winograd domain to increase weight sparsity, and then pruned the weights in the
Winograd domain to exploit weight sparsity.

Afterward, previous works indicate that reuse opportunities can deliver efficient
CNN models by exploiting data redundancy and similarity if we allow a little accu-
racy loss [22, 12]. Though, most of the past works have a common drawback since
they require retraining or modifying the network topology. Also, most of these char-
acteristics related to data redundancy and operation reuse have been explored in
hardware accelerators, as described in the next section.

2.3 Computation reuse-based accelerators

In the past years, several accelerators were proposed to explore data redundancy,
weight/input similarity, and reuse opportunities in convolutional neural networks.
The study presented by [17] reuses computation from one execution of the CNN to
the next and applies the reuse taking into account the similarity found in the inputs
of each layer. The authors have applied linear quantization of inputs to increase the
redundancy, which favors the efficiency of the proposed mechanism, with a minimal
impact on accuracy. [5] exploits weight repetition to reuse CNN sub-computations
(dot product results), to reduce off-chip memory reads and also to compress network
model size. They propose the Unique Weight CNN Accelerator, which unifies two op-
portunities to eliminate multiplication and memory reads: by factorizing dot prod-
ucts as sum-of-products-of-sum expression, and later by reusing the partial product
when the filters slide.

In another proposal, [14] introduces a methodology to replace CNN multiplica-
tion with lookup searches in an associative memory. The authors provide a theoret-
ical analysis of the additive error and present an algorithm to minimize it. However,
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the gains depend on the associative memory blocks to reduce the power and exe-
cution time of floating point units. Instead, our proposal to reuse a coarse-grained
computation (a full convolution) can leverage the use of GPPs.

Following the same idea of [14], [9] explores computation reuse through a re-
configurable Bloom filter unit that supports approximate set membership queries
with a tunable rate of errors to store frequent computation patterns and return the
products without executing the operands on energy-intensive Floating-Point Units
(FPUs). The authors implemented the Bloom filter unit with resistive memory ele-
ments to provide energy efficient storage of common multiplication patterns in each
layer of a Neural Network (NN).

All these approaches that employ memoization for convolution products depend
on custom hardware, and the improvement provided may not justify the costs to pro-
duce them. The main drawback of multiplication reuse resides on increased energy
consumption, since a 16-bit fixed-point multiplication in 32nm is 0.4 pJ, whereas
the corresponding table lookup costs 2.5 pJ, considering a 32K-entry 16-bit SRAM [5,
13]. Instead, our proposal to reuse a coarse-grained computation can provide energy
savings by reducing the amount of table lookups even on GPPs. Therefore, when we
master the technique of reusing convolutional operations, the benefits come virtu-
ally for free, and it is a much easier way than try to brute force optimize the hardware.

3 Proposed approach

In this section, we explore computation reuse opportunities in CNNs by replacing
the execution of entire convolution calculations by memory lookups. Based on this
idea, we propose a hash table scheme to associate an arbitrary input with its cor-
responding output value for each layer’s filter. Further, we measure the amount of
memory necessary to store all the tables, and we develop a proximity range-based
clustering mechanism to reduce the table sizes making feasible the employment of
memoization in the CNN realm.

3.1 Replacing CNN calculations with memory accesses

Since data redundancy and data similarity are found in the inputs, weights and fea-
ture maps for inferring a batch of images, the memoization technique can be con-
sidered as an alternative for the convolutional execution model. To avoid costly mul-
tiplications and additions, we associate every pair of input (Ii) and weight (Wk) pro-
ducing a single output (Oik) of a feature map in lookup tables. The implementation
of a CNN with a reduced number of convolution operations relies on an offline mem-
oization mechanism that generates these tables to be used at running time.

Figure 2 illustrates both the offline analysis and online execution mechanisms.
The flowchart of the memoization Offline analysis flow described in Figure 2 com-
prises two main execution blocks: the CNN execution, and the Memoization profiler.
First, we run all the memoization training set of images, and we store the inputs and
their corresponding outputs for all convolutional layer’s filters.
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Fig. 2. The proposed approach depicted in two flowcharts: a) offline analysis and online exe-
cution flow.

As soon as we have gathered all the convolutional values {Ii,Wk,Oik} from the ex-
ecution of a memoization set, the Memoization profiler processes the collected data
and generates two output files: the output Tables and the Mapping Functions files.
The output Tables are hash tables that enclose all the convolutional values generated
during the CNN execution. The Mapping Functions are indexing functions in charge
of coordinating the appropriate mapping for any input to its corresponding output.
From the set theory perspective, the convolution operation regarding each weight
set and input can be seen as a bijective function F(Ii,Wk) that convolves an input Ii

over the filter weight Wk. To ensure the correct index mapping for any input to its
corresponding output, we create a function that reflects the same bijective function
behavior in the convolution operation.

Now that we have the hash tables with convolution values in memory, the exe-
cution flow of each convolutional layer follows the Online execution flow described
in Figure 2. First, the input is read, and we apply a Mapping Function to calculate
a table index. As soon as we have a table index associated with the input value, we
try to retrieve the entry for a convolution output from the hash table. If an entry is
found in the table, the corresponding position of the feature map is updated with the
value retrieved. Otherwise, we must calculate the convolution value associated with
the current input.

Though, it is only viable to memoize a subset of a large dataset like MSCOCO,
which provides a representative part of the convolutional operations. Even using a
memoization set of 500 random images, the offline mechanism generates huge ta-
bles, which requires up 12 GB of storage memory.
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3.2 Redundant data on CNNs

Storing all the outputs for any memoization set as presented in the previous section
can be a limiting factor for this implementation since it is a one-to-one relationship
of (Ii,Wk) and Oik, which may introduce repeated entries in the lookup table. How-
ever, inputs tend to present redundancy within a single picture and even among dif-
ferent images that generate repeated convolution results. The goal of exploiting this
inherent redundancy is not only to reduce the table size but also to improve spatial
and temporal locality, thus benefiting the execution on CPUs.

To illustrate the above-mentioned data redundancy, Table 1 shows the compu-
tation reuse percentage to run different numbers of images from MSCOCO dataset
[11] along YOLOv3-tiny [16] convolutional layers. For instance, by analyzing a single
image (second column), the first convolutional layer presents up to 26 percent of the
convolutions that can be reused from previous convolutions. That is, the same pat-
tern of input Ii and weight Wk are repeatedly found in the first layer producing the
output pattern of Oik, which can be replaced by a single table search. Table 1 also
indicates that, as the number of images in the batch increases, the reuse ratio for
each convolutional layer grows too. Such behavior is essential to provide scalability
to this CNN implementation. Thus, by eliminating the redundant entries in the of-
fline analysis, we found that the 3 GB of storage memory is needed instead of the
former 12 GB.

Table 1. Computation reuse percentage running different numbers of images in YOLOv3-tiny
CNN.
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#2 23 29 52 88
#3 21 25 44 83
#4 15 19 32 71
#5 6 11 20 56
#6 0 1 6 35
#7 0 1 9 53
#8 0 0 3 22
#9 0 1 6 40

#10 0 1 11 57
#11 0 0 2 15
#12 0 1 10 54
#13 1 5 36 81

3.3 Range-based clustering to reduce lookup tables

As described in the previous section, we measured the amount of memory required
to store all the unique pairs {Ii,Wk} and the corresponding output Oik to create the
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relationship {Ii,Wk} →Oik in the table. However, the amount of memory to store dif-
ferent entries remains prohibitive to CPUs, indicating that we have to find a way to
reduce even more the table size. To make the proposed memoization technique fea-
sible, we introduce a range-based clustering mechanism that groups entries by its
proximity and provides smaller lookup tables.

Our technique groups convolution values within ranges in a four-step proce-
dure, which requires modification to the Memoization profiler presented in Figure
2. Firstly, all the output values for each layer in the CNN are sorted in ascending or-
der. Then, we create clusters that minimize the distance among the entries. Each
number in a cluster is enclosed within an interval defined by a bottom value and a
top value. The top values are determined by multiplying the bottom values by a pre-
defined range (typically a percentage). Thirdly, we replace all the convolution values
inside each cluster by their average value. Finally, as a result of the clustering, both
the Tables and the Mapping Functions in Figure 2 are updated to generate the correct
output values.

As a result of the mechanism proposed to reduce the table sizes, Figure 3 presents
a tunable accuracy correlation among the table sizes, and proximity values, and their
respective accuracy levels. For the four range distances (0.1% to 1%) illustrated in
Figure 3, the table sizes vary from 220 MB to 4.35 MB in contrast to 12 GB, when
none table reduction technique is employed, and 3 GB, when repeated entries are
removed. As we have approximated the convolution results by reducing the Output
set size, one can observe an accuracy drop over the original CNN detection. The nor-
malized accuracy over the original CNN execution varies from 98.9% to 92.5% when
the range distance is increased from 0.1% to 1%.
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4 Methodology and Evaluation

To evaluate the proposed mechanism, we implemented the algorithm flow described
in Figure 2 in Darknet framework [15]. We used a random subset of the MSCOCO
dataset [11] as input for the offline memoization technique of the YOLOv3-tiny model
[16]. Then, another random subset of MSCOCO dataset was used in the execution,
which runs the modified Darknet coupled with our memoization technique and YOLOv3-
tiny.

Further, we ran all experimental scenarios in the system described in Table 2 to
measure the execution time. We estimated the accuracy of our implementation by
analyzing the confusion matrix of YOLOv3-tiny’s predicted classes. To compare our
experiments, we took the original Yolov3-tiny implementation and predictions accu-
racy as the baseline.

4.1 Performance and energy consumption evaluation

To obtain a significant performance on traditional CPUs, we have to find a sweet spot
between CPU’s memory performance and table size, as well as considering the trade-
off between table size and accuracy previously illustrated in Figure 3. As our pro-
posal of using memoization aims to replace multiplications and additions by lookup
searches, it is expected an increase of main memory accesses when compared to the
original CNN execution.

Figure 4 shows the absolute values for the amount of stored data and main mem-
ory access for each experiment. By storing all generated data, the No reuse experi-
ment demands nearly 12 GB of memory space, while it requires 3.2 GB of data moved
from main memory to the Last-Level Cache (LLC). On the other hand, by applying
the proposed technique, the demand for memory space and data transferring de-
creases. By removing the redundant entries (Reuse in Figure 4) we can reduce the
amount of data placed in memory from 12 GB to 3 GB, though this approach still
needs 2.8 GB of data transferring.

Further, by applying the proposed technique and clustering the values within
the range of 1% (Range 1.00% in Figure 4), the demanded amount of data drops
to 4.2 MB. This aggressive reduction on the memory footprint allows more efficient

Table 2. System configuration.

CPU processor
Intel(R) Core(TM) i5-7500 CPU; 4 cores; 3.40GHz;
AVX2 Instruction Set Capable;
32KB IL1 cache; 32KB DL1 cache;
1MB L2 cache;
6MB L3 cache;
Total Power - 65W;

DRAM
DDR4 2133MHz;
Total DRAM Size 16GB;
Total Power - 6.4W;
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Fig. 4. Table sizes and DRAM transfers.

exploration of the cache memories, which directly reflects on the data movement
behavior, thus reducing DRAM transfer from 3.5 GB to 52 MB.

Influenced by the table size and the amount of data moved from the main mem-
ory, the performance and energy consumption are presented in Figure 5. Orthogo-
nally, the accuracy of the experimented CNN is dependent on the representativeness
of data in lookup tables.

In comparison to the baseline, the No Reuse experiment presents a negative im-
pact due to the increasing data access, as presented in Figure 5. This impact leads to a
performance reduction of 23%, although energy consumption has barely decreased.
Considering the Reuse experiment, due to the elimination of repeated entries, the
performance is improved by 2.3×. In both cases, No Reuse and Reuse achieves 100%
of original CNN accuracy, which is possible due to the maintenance of all original
values. However, the amount of memory demanded by this configuration becomes a
significant drawback.

The experiments presented by Range 0.10%, Range 0.25%, Range 0.50%, Range
0.75%, Range 1.00% show a performance improvement of 2.3×, 2.8×, 3.1×, 3.4×, and
3.5×, respectively. Similarly, the energy consumption is reduced in 72%, 74%, 75%,
77%, and 78%, respectively. Despite the positive impact on performance and energy,
the accuracy is reduced due to the lack of data representativeness in the tables. Thus,
in Figure 5 it is possible to observe the impact of different Ranges on accuracy, which
varies from 98.9% to 92.5% over the original YOLOv3-tiny accuracy.

5 Conclusion and future work

In this work, we exploit data redundancy and proximity in neural networks leveraged
by a software-based memoization technique to skip entire convolution operations.
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We designed a workflow that analyzes a training set and generates hash tables for fu-
ture reuse in the running time. By using a range-based clustering, we make the size
of the lookup tables smaller, at a cost to the accuracy of prediction. Our experimental
results show that our implementation can improve the execution time by 3.5× over
the baseline CNN running a YOLOv3-tiny model. We have shown how the perfor-
mance improvement provided by our technique is strictly dependent on a tunable
accuracy loss. Thus, the energy savings can be improved by a factor of 4.5×, at the
cost of 7.4% of accuracy loss over the original CNN execution. In future works, we
intend to investigate the proposed technique on larger CNN models, and also inves-
tigate whether the variances of data set and CNN models influence the opportunities
for memoization.
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