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Abstract

Self modifying code (SMC) are code snippets that modify themselves at runtime. Malware use SMC to hide payloads and
achieve persistence. Software-based SMC detection solutions impose performance penalties for real-time monitoring and do
not benefit from runtime architectural information (cache invalidation or pipeline flush, for instance). We revisit SMC impact
on hardware internals and discuss the implementation of an SMC detector at distinct architectural points. We consider three
detection approaches: (i) existing hardware counters; (ii) block invalidation by the cache coherence protocol; (iii) the use of
Memory Management Unit (MMU) information to control SMC execution. We compare the identified instrumentation points
to highlight their strong and weak points. We also compare them to previous SMC detectors’ implementations.

1 Introduction

Self modifying code (SMC) are pieces of code able to change
their own structure and/or behavior at runtime [8]. Their ini-
tial usage refers to a period of storage constraints, requiring
huge programming effort regarding code generation. Nowa-
days, SMC is often seen on payload protection cases, either
benign (e.g., intellectual property protection) or malicious
(e.g., binary packers for code obfuscation) [24]. SMC may
also be runtime-generated on interpreted languages, such as
Java and Python [17], mostly as benign cases.

SMC becomes a security concern when used on pack-
ers, as it allows malware to bypass pattern matching checks.
Security solutions started to monitor code execution at dis-
tinct steps to address this issue. This monitoring requires
constant checks and is usually implemented in software [24],
resulting in overhead! (high frequency memory checks may
impose performance penalties as high as 400% [32]). On

! We are hereafter referring to overhead to denote the runtime mon-
itoring overhead, as the overhead of running detection routines is
unavoidable to any AV solution.
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the one hand, solutions performing frequent binary checks
impose high-performance penalties, leading users to turn
them off. On the other hand, solutions that perform less
frequent checks are susceptible to timing attacks, missing
code changes that happen between two checks. Therefore,
improving SMC detection triggering is a relevant task to
make security solutions more effective.

We may notice many architectural implications during the
execution of SMC code if we look at hardware level, such as
instruction and trace cache invalidation. These events suggest
the processor can aid in SMC identification and on reduc-
ing software monitoring overhead. Therefore, we propose an
ideal model to evaluate this possibility: SAP, an SMC-Aware
Processor able to notify upper instances about any SMC exe-
cution.

Previous architectural developments to handle SMC at
hardware level focused on execution speed up, aiming
to solve SMC-imposed execution bottlenecks. This work,
instead, focuses on identifying hardware facilities which
can be leveraged to detect SMC with no significant perfor-
mance penalty. More specifically, we propose implementing
SMC detectors by leveraging: (i) existing hardware perfor-
mance counters; (ii) instruction cache invalidation detection
by the cache coherence protocol; and (iii) MMU protec-
tion bits. Therefore, we do not propose hardware changes
in SAP to speed up SMC execution, but mechanisms to
efficiently detect SMC. We also introduce ways to notify
upper instances—Operating System (OS) and Anti-Viruses
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(AVs)—about SMC execution, triggering scan mechanisms
on-demand.

We classified SMC according to their impact extent over
modified instructions and affected architectural entities: (i)
SMC type-I affects near, cached instructions; (ii) SMC type-
II affects near, pipelined instructions; and (iii) SMC type-III
affects far, non-cached nor pipelined instructions. Our results
show that: (i) the cache detection mechanism is able to han-
dle SMC-type I in a general way, although it can be bypassed
by specially-crafted samples using flush instructions; (ii)
it is possible to build performance-counter-based detectors
with existing architectural components to handle SMC type-
II; and (iii) the MMU-based mechanism, although simpler,
presents the best coverage and is able to detect all SMC types
with near-zero logic overhead.

Target audience According to our experience, many secu-
rity researchers do not understand the impact of malicious
code constructions, such as SMC, at low level. At the same
time, many computer architects do not have a comprehensive
view of system component’s impact on software security,
despite having a deep technical knowledge about such com-
ponents. Given this scenario, our work aims to bridge this
understanding gap. Thus, more than a solution proposal, this
work presents an exploratory analysis on how each software
construction impacts each hardware component and vice-
versa. Therefore, this paper is aimed to reach both security
and computer architecture researchers in a combined effort
towards enhanced security solutions.

Contributions Our contributions are the following:

— We revisit the use of SMC for malware packing and cur-
rent OS and architecture support for their execution.

— We introduce a taxonomy for SMC code and detectors
based on architectural detection points and detection win-
dows.

— We evaluate the detection effectiveness and the perfor-
mance impact of each aforementioned approaches.

Paper organization This paper is organized as follows: In
Sect. 2, we motivate this work; in Sect. 3, we provide a
background on SMC and present related work; in Sect. 4,
we introduce SAP, the ideal processor model and its mecha-
nisms to support SMC detection; in Sect. 5, we present SAP’s
evaluation; in Sect. 6, we discuss SMC impact as identified
by SAP; finally, we draw our conclusions in Sect. 7.

2 Motivation

We here present scenarios for which improving SMC detec-
tion is essential. We first present how SMC can be used by
malware to evade analysis environments. Further, we present
the limits of existing software-based defenses.

SMC for bypassing malware analysis Malware samples often
try to hide their malicious behavior to keep executing in
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infected systems. As time passes, new techniques are used
to enforce stronger malicious payload protection policies,
which includes using SMC. Therefore, efficient detection of
SMC is an important security-related task. The methods used
by the malware samples on the first bypass techniques were
as simple as detecting the analysis environment by leverag-
ing an anti-analysis “trick” and then refusing to run their
malicious payloads, as illustrated in Code 1.

1 if (!anti_analysis ())
2 {

3 malicious () ;

4

}

Code 1 Evasive malware. Bypass consists of branching right after the
execution of an anti-analysis trick.

Given the differences on the number of instructions exe-
cuted on the malicious and the evasive path in this model were
noticeable, which makes detection easier, attackers started to
employ more similar constructions where SMC took a funda-
mental place. The code sample presented in Code 2 illustrates
how the malicious function is called in both cases (trick suc-
ceeded or not), but its content is replaced by a malicious
payload only when an anti-analysis trick succeeds.

1 if (!anti_analysis ())
2 {

3 change_page_flags (malicious) ;
4 unsigned char *instruction =
5 malicious+INST_OFFSET;

6 *instruction = INST_DATA;
7}

8

malicious () ;

Code 2 Evasive malware. Malicious function is always called, but has
distinct payloads.

Although more sophisticated, this construction can also
be detected due to the presence of a deviating branch—i.e. a
branch which is a root cause of evasion, in the security con-
text. State-of-the-art evasion techniques are characterized by
not relying on branches for flow deviation. Willems et al. [33]
presented the delusion attack concept, in which the
same instructions behave distinctly on real machines and on
emulators. As an example, consider the assembly instruction
rep movs, which copies the number of bytes pointed by
ecx from esi to edi, with its own address as target. As real
machines perform fetch-then-execute atomically, no
side-effect is observed. It means that the instruction will
only be modified after finishing its execution. On emulators,
as memory page writes are software-trapped for emulation
purposes, the instruction must be re-executed after the trap
routine finishes executing, thus being re-fetched after the
write, resulting in a distinct behavior. Since the address from
the rep movs instruction was modified, the emulator will
actually execute the modified version of such instruction. The
presented technique can be used to evade analysis systems
and build attacks.



The self modifying code (SMC)-aware processor (SAP): a security look on architectural impact...

Table 1 UPX sections memory mapping. Sections are initially mapped
as writable and executable at the same time

Name Content Permissions Accessed
None Header RWE R

UPXO0 Original Code RWE RWE
UPX1 Unpacker RWE RWE
.I'STC Resources RWE RW

1 addr ptrl = &executable_function;

2 addr ptr2 = &writable_data_buffer;

3 target = delusion (ptr2, ptrl)

4+ write_at_addr (payload, target) ;

5

malicious () ;

Code 3 Branch-free evasion with SMC-delusion attack.

Code 3 illustrates our proposed SMC delusion attack,
which handles pointers for two memory regions: an exe-
cutable function (line 1), and a writable data buffer (line 2).
A delusion attack is launched having either the data buffer or
the function address (line 3) as possible resulting values. The
malicious payload is written in the target by the subsequent
write function (line 4). If running inside an emulator, ptr2
is considered, thus writing in the writable data buffer and
not changing the original, benign function. If running on a
real machine, the function offset (ptr1) will be considered,
thus writing the payload into the function and turning it into
a malicious one. In both cases, the function is always called
(line 5), thus not presenting noticeable execution differences
to allow evasion identification.

This attack demonstrates that anti-analysis threats could

not be detected anymore due to the presence of deviating
branches. Therefore, improving SMC execution detectors is
essential to handle such kind of evasive threat to modern
computer systems.
OS support for SMC execution Current OS rely on eXecute
Disable (XD)/No-eXecute (NX) MMU page pro-
tections to enforce a Write@®Execute [30] policy, which
states executable pages cannot be writable. If a write on such
pages happens, a fault is generated.

To set the NX bit, OS functions which modify memory
attributes (e.g. mmap, mprotect and/or VirtualProt
ect) are trapped and instrumented to add checking capabil-
ities. The major drawback of this approach is that the NX
bit must be set when the process is launched and its mem-
ory page protections are set. Thus, either all or none SMC
code is allowed to run, with no fine-grained control. As an
example of this limitation, consider a benign software packed
with UPX,? a popular open-source packer. Table 1 shows the
attributed initial memory flags and the accesses performed
during its execution.

2 https://upx.github.io/.

UPX requires its pages to be initially set as both writable
and executable, thus violating the Write@®Execute pol-
icy. Therefore, a restrictive environment would block this
benign software execution. To handle such benign cases,
OS often adopt whitelisting policies. A drawback of this
approach is that the SMC behavior must be known a pri-
ori, thus still limiting the execution of newly-created, benign
software pieces.

Ideally, the OS should be able to launch processes without
prior information and detect SMC at runtime, thus further
deciding whether a given code should be allowed to run
(benign) or not (malicious). The decision whether a given
SMC execution is due to malicious code or not could be, for
instance, outsourced to a third-party entity, such as an AV
mechanism. Therefore, benign software whitelists would be
runtime-generated instead of relying on prior code knowl-
edge, thus scaling the protection to cover early-launched
applications.

3 Background and related work

We here present an overview of how SMC is used in the secu-
rity context as well as its impact on processor architectures.
We also discuss existing techniques and implementations to
handle SMC.

SMC and malware SMC can be implemented by distinct tech-
niques [35], such as instruction replacement, dynamic code
mutation (encryption), piece clustering and virtual machine
protection. They can be used for malicious purposes (e.g.,
obfuscation through packing [5]) or legitimate software pro-
tection [34]. In the malware context, SMC is mostly used as
packers, it means, software pieces which embed other soft-
ware inside themselves to hide malicious features from static
analysis. Packers like Telock build code in an overlapped
way, requiring special disassemblers for correct interpreta-
tion [5].

To address obfuscated malware, the payload must be
extracted (unpacked), which can be done in several ways [3],
but many tools use the run and dump approach, i.e., they
continuously inspect memory as execution proceeds, increas-
ing the performance penalty due to the multiple required
checks. Other solutions rely on emulation or binary trans-
lation [12,20], which are effective, but not intended to run in
end-users machines. An effective way to detect SMC involves
flagging memory pages as read-only and then trapping the
page fault handler. Liu and Wang [21] implemented this
approach at the software level and addressed the SIGSEGV
signal on affected applications. OmniUnpacker [24] also
monitor such writes at the OS level by calling an external
scanner when syscalls are originated from OS pages. Com-
pared to them, our goal is to provide hardware support for this
kind of SMC detection approach, aiming at efficient detec-
tion and low performance overheads.
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SMC inside the computer architecture Intel processors have
native support for runtime code modification in their many
variations (e.g., self modifying code in the local core, cross
modifying code in a distinct core). Intel Core 2, for instance,
makes use of an inclusion filter that acts as an instruction
cache monitor [11]. From the architecture’s perspective, the
first stage impacted by SMC execution is the instruction
fetch. Since instruction bytes are cached in the instruc-
tion cache once requested, those should be updated when
the memory code region is written. As a general policy,
processors tend to clear the whole instruction cache, a draw-
back pointed in [17,31,37]. The second impacted stage is
the instruction decoder. As the newly fetched bytes could
represent another instruction, cached instructions must be
discarded. On Intel processors, the decode buffer is often
named trace cache and has to be invalidated, as pointed in
the manual: “For the Pentium 4 and Intel Xeon processors, a
write or a snoop of an instruction in a code segment, where
the target instruction is already decoded and resident in the
trace cache, invalidates the entire trace cache.”.

The processor back-end (formed by the rename, dispatch,
execution, and write-back stages) will also be impacted.
Since modern processors present big Reorder Buffers (ROB)
to support aggressive out-of-order execution within a super-
scalar pipeline, instructions can be affected by a write after
they have been already entered the pipeline. In general, pro-
cessors tend to flush the entire pipeline, causing performance
degradation. Since the organization changes according to the
processor family, the flush conditions varies a lot, as pointed
by the processor manual [18]: “IA-32 processors exhibit
model-specific behavior when executing self-modified code,
depending upon how far ahead of the current execution
pointer the code has been modified. As processor micro-
architectures become more complex and start to speculatively
execute code ahead of the retirement point (as in P6 and more
recent processor families), the rules regarding which code
should execute, pre- or post-modification, become blurred.”.

While the presented invalidation procedures solve the cor-
rectness problem, the already implemented SMC detectors
do not assist security at all. A straightforward enhancement
would be to add an alert routine to the existing detectors—a
solution discussed in this work.

Overall solutions for SMC handling rely on additional
hardware; [13] presents a full x86 implementation with
a morphing code support layer; [4] presents the Selec-
tive Snoop Protocol (SSP), which minimizes the number
of cache invalidation by the snoop protocol due to SMC,
thus saving energy. Such approaches, however, imply on
aggressive redesign changes. In addition, most changes are
performance-focused (e.g., cache): [17] suggests reducing
the number of stalling instructions due to SMC to reduce
cache invalidation rate and overhead; Other approaches, such

@ Springer

as selective cache line change [31] and the line-address buffer
concept [37] opt to invalidate only the SMC-affected lines.
None of them consider security alerting. Although porting
these approaches to detect SMC for security purposes seems
straightforward, we are not aware of any other work propos-
ing such move. Therefore, we present over this article how
SMC detection could be performed based on distinct instru-
mentation points.

SMC and code generated at runtime A precise SMC def-
inition is a bit hard since it can refer to many scenarios.
Some work opt to cover a broad scenario, such as in [8],
which defines SMC as “any program that loads, generates,
or mutates code at runtime”. In this paper, we consider this
definition to encompass all cases in which code is mutated in
runtime. This might include polymorphic and metamorphic
code [6] if they employ SMC constructions. Our goal, how-
ever, is not to cluster metamorphic samples, but to detect
when a code mutates itself, thus possibly becoming mali-
cious in runtime. More specifically, in our view, SMC may
be defined in at least three scenarios, based on the probability
of the code modification to cause hardware side-effects (e.g.,
cache and/or pipeline invalidation). We consider how far the
modified code is from the modifier instruction and whether
the instruction was previously executed or not as proxies for
the probability estimation.

SMC type-1 (cached instructions) When an instruction is
modifying an instruction of its neighborhood (e.g., in the
same function), it is very probable the original instructions
had been previously cached, either by being previously exe-
cuted or by block associativity/prefetching, resulting in cache
invalidation, which can be detected by cache instrumentation.
SMC type-II (pipelined instructions) the last version of the
modified instruction (regardless of its type) might be present
in the pipeline even when evicted from cache, resulting in for-
warding issues. This can be detected by pipeline monitoring
hardware counters.

SMC type-1II (distant instructions) if an instruction modifies
a far code, such as a function placed on a distinct mem-
ory page, the previous data is not cached nor pipelined, not
triggering any execution check. The only affected functional
unity is the MMU.

In addition to malware, which often employ SMC for all
three discussed scenarios, modern software also performs
SMC for legitimate uses, such as Just-In-Time (JIT) com-
pilation and interpreters [2,17]. Contrary to malware, they
usually generate code in the third case, far ahead of their
code generators, and the generated codes do not modify them-
selves. This way, many researchers do not call them SMC,
but runtime generated code. This is a controversy since the
90’s (see the LISP case [26]).
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4 SAP: an SMC-aware processor

SMC-Aware Processor (SAP) is our ideal model of a proces-
sor to investigate and evaluate the impact of implementing
SMC detection mechanisms in distinct CPU components.
The main idea of SAP is to raise warnings and call upper
instances (OS or AV) when SMC execution is identified, thus
reducing the performance penalty of continuously monitor-
ing binaries to identify code changes. SAP is able to raise
interrupts when SMC execution is detected, thus causing
a traditional, software-based AV to be called on-demand.
Using hardware flags to trigger an AV is not new (Microsoft
submits patent claims on that since 2007 [29]), but SAP is not
limited to flag pages as suspicious, but it also provides a pre-
cise mechanism to trigger inspection on effectively modified
pages.

SAP introduces independent modifications in three dis-
tinct components: the CPU cache coherence protocol is
modified to alert when cache code invalidation is performed;
flushes in the CPU pipeline are monitored through hardware
performance counters; and MMU is instrumented to enforce
write protections to executable pages.

4.1 Threat model and assumptions

In SAP, we design a CPU able to detect both in-place and
runtime-generated SMC cases. We focus SMC occurrences
in user-land due to their prevalence, although no technical
restriction is imposed to handle kernel cases. SAP moni-
tors the system in a system-wide way, thus not requiring
users to specify which processes will be monitored, However,
SAP allows individual process monitoring to be turned off
on-demand to allow benign SMC processes to run without
any impact (whitelisting). Therefore, we assume no prior-
execution blocking of writable pages by the OS, thus SMC
processes can be normally launched and benign SMC cases
will be runtime-whitelisted. Similarly, we assume no appli-
cation signing requirement enforcement, thus allowing users
to freely download apps from the Internet, as most end-users
do in current desktop OS versions.

Regarding packers, SAP covers only SMC cases due to
instruction modification and not due to instruction encoding
in virtual machines, which does not structurally impact pro-
cessor execution, our focus in this work. Finally, our goal is
not to entirely replace existing AVs, but to assist them with
new, efficient inspection triggering mechanisms.

4.2 SMC-aware cache

When a Type-I SMC happens, the instruction cache is directly
affected. Since it is not writable, it should be updated by an
operation that performs partial or full invalidation and re-
fetch. Therefore, a straightforward approach to detect SMC

is to raise an exception during instruction cache invalida-

tion. This mechanism does not impose a modification on the

coherence protocol, but a side-effect during instruction cache

invalidation, which allows the cache to directly detect code

changes. This mechanism is illustrated through the SMC in

Code 4, which overwrites the increment instruction (inc

eax) with NOP instructions in the odd executions, starting

from the second loop iteration. From this point to the end,

the code does not accumulate any value anymore.

1 for(i=0,1i<3;1i++){

2 if (1i%2==1) {

3 void *func_addr =
FUNC_ADJUST ;

(char*) foo +

4 instr = (unsigned char*) func_addr
+ INST_OFFSET;

5 *instr = nop; *(inst+1) = nop;

6 }else{ acc++;

Code 4 SMC code. Accumulator variable is overwritten.

We executed this example on a pre-decoded cache mod-
elled with Intel PIN, a dynamic binary inspection framework
that allows system components to be modelled without
requiring binary recompilation and/or patching [22]. The
cache was modelled (as shown in Code 5) to detect when
the decoded instruction for the same index differs.
| UINT64 idx = ((UINT64)PC >>

LINE_INDEX) && (LINES-1) ;
» for(int j=0,;J<LINES;j++){

3 if (cache[idx][j] .valid && cachel[idx
1031 .tag==PC) {
4 if (current->disassembly != cachel
idx][3j] .decoded) {
5 // SMC Code

Code 5 SMC-aware cache. Checking decoded instruction for the same
index.

When running the sample code in the aforementioned pro-
totype, the following result is observed (Code 6).

13F7111DE inc eax;

13F7111DE nop;

1

2

3 13F7111DF nop

4 <<SMC Detected>>

Code 6 SMC-aware cache executing the SMC sample.

As expected, the first iteration caches and executes the
increment instruction (2-byte-long at 0x11DE), and the
second iteration changes the instruction with two NOP
instructions at 0x11DE and 0x11DF, respectively, thus trig-
gering SMC detection. The proceeding iterations execute
the NOP sled, but as it now corresponds to cached, decoded
instructions, SAP does not trigger SMC detection.
Detection evasion with forced cache flushes A drawback of
this mechanism is that it can be defeated by SMC perform-
ing a cache flush right before code modification, as the cache
would have no prior data to compare. Modern processors
present many instructions able to flush cache lines, such as
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clflush, invd, and wbinvd. They were originally cre-
ated to keep synchronization and consistency among storage
systems, but can also be used to leverage such kind of attack.
The use of cache flush instructions is supported by compil-
ers through the use of inline asm or intrinsics [25].
To exemplify this type of attack, consider the code shown
in Code 7, which flushes the cached line associated to the
instruction to be modified right before modifying it.

1 instr = (ptr*) func_addr + OFFSET;
> _mm_clflush(instr) ;
3 *instr = nop;

Code 7 Forced cache flush before instruction change.

To support the use of such instructions, we have comple-
mented our prototype to reflect the proper behavior, as shown
in Code 8.

I string dis = INS_Disassemble (ins) ;

> if(dis.find("clflush"))
3 clear_cache (addr) ;

Code 8 Cache simulator. Forced cache flush support.

When running in such environment, our flush-based,
modified SMC example was able to stealthily modify the
instruction cache content. Therefore, detecting this threat
requires the development of an alternative solution: A heuris-
tic approach could flag forced cache flushes as suspicious
and to raise an interrupt to trigger a scan procedure. With
that, our solution was able to detect the execution of the
flush instruction (003515A7 clflush zmmword ptr
[eax]). We consider the cache flush heuristic as reason-
able since most legitimate applications do not perform cache
flushes. To confirm that, we disassembled 2870 PEs and DLL
binaries from System32 folder of a clean Windows instal-
lation, thus considering them as benign. Only 6 (0.2%) of
them presented at least one c1flush instruction and 160
(5.5%) presented at least one wbinvd instruction.

In addition of being a requirement for stealth SMC, cache

flush is also used on a variety of side-channel cache attacks,
such as privileged information leakage [16] and cryptogra-
phy attacks [19,36]. Therefore, this complementary, heuristic
approach, as implemented in SAP, may aid also on non-SMC
threat detection.
Cache monitor implementation The implementation decision
which presents the best cost-benefit is to instrument the L1
cache, as it presents high-rates of hits. However, we could
easily extend this detection mechanism through the whole
cache hierarchy. To detect SMC on any cache level, we con-
sider that a simple addition of one control bit per cache line
would be necessary. This extra control bit, would be respon-
sible to identify cache lines which holds executable code
(executable cache line). In this sense, during any modifica-
tion of an executable cache line, the cache hierarchy should
generate an exception on the requester processor. Figure 1
illustrates the proposed modification.
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Fig.1 SMC-aware cache. An exception is generated when an invalida-
tion is performed on valid executable cache line

4.3 SMC-aware pipeline

The presented cache modifications enable processors to
detect SMC type I. We here extend our model to also cover
SMC type II. As SMC type II affects the processor pipeline,
we looked for existing hardware features associated with
execution metrics which could provide us with execution
metadata to be leveraged for SMC detection.

Intel’s processors natively support SMC execution through
mechanisms that handle SMC-imposed corner-conditions.
Despite such hardware support, few interfaces to them are
exposed to the surface (e.g., programming interfaces). There-
fore, we are required to adapt existing features for our
purposes. More specifically, we adapted existing hardware
counters to work as pipeline monitors for SMC execution.

Intel’s processors present a mechanism called Precise
Event Based Sampling (PEBS) [18], which allows a hardware
counter to store its data in OS pages and to raise an interrupt
when it reaches a user-defined threshold. The PEBS is able to
monitor the MACHINE_CLEARS . SMC event, which “counts
the number of times that the processor detects that a program
is writing to a code section and has to perform a machine
clear because of it.”.

As the PEBS works as an event counter and we are inter-
ested on detecting any SMC execution, we set the interrupt
threshold of PEBS to one. Therefore, every time an SMC
event is identified, the counter is incremented, causing an
overflow and raising an interrupt. Notice that this approach is
deterministic and does not require polling the counter value.
Also notice that the same effect can be achieved in distinct
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Fig.2 Effectiveness of event counter as a SMC detector

scenarios and platforms by setting the hardware counters to
their maximum values.

When an interrupt happens, the interrupt routine is able to
check the last scheduled process in the OS, thus identifying
which one generated such interrupt. This information is pro-
vided to an Anti-Virus (AV) solution for additional checks.
From the AV point of view, an efficient data collection pro-
cedure must be implemented, since periodic interrupt checks
(polling) would degrade the solution’s performance to the
software-based, high-overhead scenario. To provide an asyn-
chronous notification, we have implemented an inverted I/O
routine, as described by Botacin et. al [7].

To attest the feasibility of our proposal, we developed
SMC samples which modify a distinct number of instructions
in distinct binary regions. Figure 2 shows the detection of
SMC code as a function of the number of affected instructions
and the distance between the modified and the modifying
instructions. All samples were executed in a Haswell CPU,
thus the reproduction of our results is guaranteed only for
this micro-architecture.

Our approach succeeded on detecting SMC which caused
the pipeline to flush (type II), such as the example whose self-
modifying instruction modifies an instruction right before
itself. We also notice, as expected, that constructions which
do not cause pipeline flushes are not detected. For instance,
writing an instruction that will be executed in the future
and was not executed before does not affect pipeline at all.
Other constructions do not cause pipeline flushes as their data
dependencies are resolved through data forwarding.

4.4 SMC-aware MMU

Most modern processors implement the MMU between the
processor and any cache hierarchy. Hence, before accom-
plishing any cache access, the MMU will first translate the
virtual address to physical. This way, we can modify the
MMU instead of doing cache redesign, since it handles both
SMC Type-III and Type-I, and is responsible for memory
data that will be cached at some moment.

A first policy for detecting SMC at MMU level is to raise
an alert at each SMC code write. It can be accomplished
by modifying the Translation Look-aside Buffer (TLB) to

Is monitored CR3?

\Virtual Page Number (VPN) \ Page Offset \
—_—

Tag Index
T ion L
1 st. way set associative|

kaside Buffer
N th. way set associative

M Valid [ Tag[ PPN [ ASID [R W] X -{»[valid[ Tag][ PPN [ AsiD [RIW[x]

[SMC Exception

¥
Physical Page Number (PPN) | Page Offset

D)

SMC Exception|

Fig.3 MMU-based SMC detection mechanism

launch an SMC exception every time a write operation is
translated to a page with execution permission.

Every TLB entry is formed by four fields: Virtual Page
Number, Physical Page Number, Valid and Permission bits
(Read/Write/eXecution). We propose to add our monitor the
ability to check the Permission bits of used pages. In case
of a permission violation (a write on an executable page), an
alert is delivered from the mechanism to the AV solution.

Notice that this policy does not require the execution of the
modified code, as it alerts the system right at the modification
time. Also notice that it does not generate a segment fault
exception, as page write permission is not removed.

A practical challenge is to implement this mechanism on
processors with Simultaneous Multi-Threading (SMT) sup-
port, where TLB needs to know what process/thread caused
the SMC. To handle such cases, we rely on the Address Space
Identifier (ASID) field in each TLB line (present in Intel and
AMD architectures released after 2008 [1,28]).

The proposed modification is illustrated in Fig. 3. For each
matching address (tag-checked), we check whether current
operation is a write (externally identified) and target address
is executable. Notice the signal is activated only for moni-
tored processes.

In current systems, such policy can only be implemented
with software support, by relying on the O.S. to mark code
pages as not writable and thus further handling the respective
page faults. By keeping a database of pages whose per-
missions were removed, the page fault handler is able to
disambiguate true faults from those caused by SMC writes.

Whereas following individual code writes is a precise
inspection trigger, it imposes a significant overhead. An alter-
native policy is to check entire modified pages. It can be
implemented by marking code pages as modified when they
are first written and generating an alert when they are required
to be executed.

This policy can be implemented in hardware by adding a
modified flag to the TLB context, as shown in Fig. 4. When an
executable page is writen, the modified flag is set, Further,
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Fig.4 MMU-based SMC detection mechanism

when the page is required to be executed, an exception is
raised if the modified bit is set.

We highlight that the introduction of a modified bit makes
the MMU looks like directory-based cache coherence pro-
tocols [10], which have a modified data state. SAP extends
such approach such that MMU now expects code to also be
modifiable.

In current systems, this policy can also only be imple-
mented using software support. The OS can flag executable
pages as not present, thus triggering page-faults at each
execution attempt. By keeping state of the pages whose
execution attribute was removed, the OS can disambiguate
ordinary page-faults from the ones caused by SMC execution
attempts.

4.5 SAP’s notification handling

An important project decision when developing a security
monitoring mechanism is how to handle the notifications trig-
gered by the solution. To evaluate the best implementation
choice, we implemented two distinct notification mecha-
nisms in SAP: (i) exception handling; and (ii) page fault
handling.

The advantage of handling SMC detection through excep-
tions is that the routines are only executed when triggered
by SAP, thus not imposing any verification overhead to the
system due to continuous execution. As a drawback, a new
handler must be added to the system. To implement such
handler, we modelled SAP exception handling on Intel PIN.

The advantage of handling SMC detection by adding veri-
fication code to the page fault handling routines is that we can
rely on the already existing CPU and OS support. As a draw-
back, the execution of such verification routines every time
a page fault is triggered will impose overhead to the system
execution even when SMC detection is not triggered. This
overhead is not negligible as it involves additional memory
accesses and branch decisions. To evaluate this implementa-
tion, we instrumented the page fault handling routines from
the Linux Kernel, as shown in Code 9.
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I static noinline wvoid
o) o

// Original Code

if (kprobes ()) ...

// Instrumentation Code

if (was_executable_page_written()) {
if (!is_allowed_process (get_pid())

{
7 //

Code 9 SMC detection routines in the Linux kernel. The added
verification instructions are executed every page fault.

_do_page_fault (

- S R

SMC Detected

The added verification routines (lines 5 and 6) are respon-
sible, respectively, for checking if this page fault is due to
SMC and, if so, if a notification should be raised. The first
check will be executed for all page faults, even those caused
by non-SMC execution, thus imposing overhead. Depend-
ing on the use case, this overhead may be acceptable or
not. Adding overhead for inserting kernel probes (line 3),
for instance, was considered as a reasonable project decision
by the Linux community. Most overhead impact is imposed
by the need of taking a branch for checking the fault reason
(line 5), thus requiring branch prediction and speculative exe-
cution and being subject to their drawbacks. Interestingly, an
effective technique that the kernel can apply to eliminate the
branch need is to leverage SMC to turn the branch into NOPs
when monitoring is disabled, as done in kernel tracing mech-
anisms [15]. However, implementing such strategy for page
fault handling is risky as the subsystem will be responsible
to modify its own code pages.

In addition to the branch which checks SMC detection, the
whitelist check (line 6) also imposes a significant overhead
when a benign, allowed application is executing SMC. As
this check cannot be removed, the best alternative strategy
for increasing performance is to move this check to hard-
ware. By adding a monitored bit to the hardware, one can
check whether a page fault or exception should be raised,
thus avoiding the entire penalty of performing unnecessary
context-switch. The use of an additional monitoring flag
requires adding a single bit to the hardware, which can be
implemented as an ordinary register. The monitoring bit is
initially set and further saved and restored at context switches
by the process scheduler, which requires adding the moni-
tored flag to the OS structure. The addition of the monitored
flag to the structure imposes negligible overhead to context
switch but saves significant cycles while avoiding benign
SMC cases from raising warnings. To evaluate this overhead,
we implemented two page fault-based SAP’s versions: (i)
using pure software-checks within the PF handler; and (ii)
using PIN-modelled hardware-assisted whitelists.
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Table2 SMC detection.

Solutions comparison App./ SMC Cache Cache Pipeline MMU Whitelisted

packer type change flush flush

SPEC - X X X X X
SMC 1 4 X X 4 X
SMC Flush 1 X 4 X 4 X
UPX 3 X X X 4 X
Themida 2 X v v v X
Python 3 X X X v v

5 Evaluation

We here present an evaluation of hardware-support for SMC
execution regarding detection efficiency and performance
overhead for distinct applications.

Detection Table 2 presents an evaluation of all presented
detectors (columns 3-6): the proposed alert for cache inval-
idation, the forced cache flush heuristic, machine clear
hardware counter, and the proposed MMU change, respec-
tively. The last column specifies whether processes were
whitelisted during experiments or not.

As non-SMC, benign applications, we considered all the
29 binaries from the SPEC-CPU 2006 benchmark in addi-
tion to Python-powered scripts, to exercise the whitelisting
solution. As SMC, we considered the examples from Code 4
and 7 and a set of 20 distinct samples packed with UPX and
Themida (packing solutions known to employ SMC in their
constructions).

As expected, SPEC binaries were not detected by any
mechanism, since they do not perform code modifications.
Our first SMC example, in turn, was detected by the modi-
fied cache invalidation protocol. However, only this simple
example was detected by such change, since the cache flushes
performed by the remaining codes were effective ways to
defeat code change monitoring.

In this scenario, the cache flush monitoring policy was able
to detect six forced cache flushes during the execution of the
Themida’s loader. We confirmed this result by inspecting the
instructions associated with the SMC-pointed code regions.
We found the flush instructions presented in Code 10.

1 17aa388: 0f ae 7b 74 clflush 0x74 (%
ebx)

> 198b964: 0f ae 7e bc clflush -0x44 (%
esi)

3 1cbb375: 0f ae 7a ea clflush -0x16(%
edx)

4 1d8ff8e: 0f ae 7e f9 clflush -0x7 (%
esi)

5 20368e6: 0f ae 7f 18 clflush 0x18 (%
edi)

6 2349866: 0f ae 3Db clflush (%ebx)

Code 10 SMC Code. Forced Cache flush in Themida’s loader.

Another raised detection flag was for the pipeline clear
counter. Despite being activated during Themida execution,

this detector did not detect UPX execution, since the code is
modified on a distinct system page. The MMU change is able
to detect all cases due to its system-wide memory view. As a
drawback, the Python interpreter was also flagged, requiring
its process to be whitelisted.

Performance overhead Despite effective for SMC detection,
a detection mechanism must not degrade performance while
running benign applications, which is a drawback for many
solutions. Ether [14], for instance, is a hardware-assisted
VM solution that performs code unpacking, including SMC
support. Its step-by-step operation imposes overhead of the
same magnitude as the code being executed, not being
suitable for real-time cases. Even solutions targeting end-
users are affected by considerable overhead. OmniUnpacker,
for instance, reports penalties of 11% and 6% on SMC
and non-SMC programs, respectively. JAVA’s JIT compiler
Instrumentation [23] reports a 2x slowdown with a signifi-
cant impact on benign programs.

To evaluate how significant is the imposed monitor-
ing overhead, we measured the impact of each proposed
mechanism while executing the same aforementioned SPEC
applications and SMC binaries. Execution cycles overhead
was measured by running the samples in a non-instrumented
environment and further comparing it with the measured
cycles in the instrument environment.

To evaluate the proposed cache modification, we executed
all binaries in the PIN-modelled, SAP’s prototype. As the
SPEC binaries do not perform SMC execution, they did not
trigger any code invalidation, thus not imposing any over-
head.

To evaluate the proposed pipeline monitor, we executed all
binaries on a physical machine (Haswell CPU) with enabled
hardware-counters and SAP’s driver loaded to handle its
interrupts. As for the cache, no SPEC binary triggered a
pipeline flush due to SMC, thus not imposing overhead.

To evaluate the proposed MMU modification, we have
considered the instrumented Linux PF handler (with software
whitelisting) and the PIN prototype (with hardware whitelist-
ing and exception handling).

For the PF-based prototype, we identified the base cost of
handling a PF is, on average, 1000 cycles. Additional 100
cycles are required to perform the SMC detection check;
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Table 3 Estimated overhead of

Software-based SMC detectors Benchmark Penalty (%) Benchmark Penalty (%) Benchmark Penalty (%)

during page fault trapping on bzip2 3.47 mef 376 wrf 391

SPEC applications
namd 1.54 bwaves 3.73 perlbench 6.49
h265ref 4.61 calculix 3.57 dealli 3.12
astar 2.12 sjeng 2.74 hmmer 2.62
gobmk 3.10 cactusADM 3.70 libquantum 3.24
gce 6.25 gromacs 4.01 sphinx3 3.76
Ibm 4.27 zeusmp 3.48 povray 4.64
tonto 4.53 GemsFDTD 3.48 xalancbmk 3.85
gamess 4.05 leslie3d 3.46 specrand 3.36

another 20 cycles are required for whitelist checking in soft-
ware. Table 3 shows the experimental results in terms of the
relative overhead for all SPEC binaries.

We notice that performance penalties up to 6% may be
imposed even to applications that do not perform any SMC-
related changes, given the additional processing (whitelist-
ing, process retrieval and flags checking) within the page
fault handler. The imposed performance penalty when han-
dling benign applications depends on how many PFs the
application triggers. The more PFs, the more the added instru-
mentation code influences the final cycles overhead.

When leveraging the PIN prototype, no overhead was
observed, as whitelist is performed in hardware and no instru-
mentation code is added to the PF handler. Therefore, we
conclude that exception-based handling is more suitable for
implementing SMC detectors than PF-based handling, as
implemented by actual solutions, such as OmniUnpack.

6 Discussion

SAP allows moving SMC detection from software to hard-
ware, thus reducing current solutions’ imposed monitoring
overhead. SAP allows calling an AV on-demand to check
whether a given execution is malicious or not. To whitelist
benign processes executions, SAP leverages a hardware-
based whitelist.

Contributions SAP advances current SMC detection by not
relying on a whitelist of benign process known a priori. By
outsourcing this decision to a third-party AV, SAP allows
benign SMC applications to run while still detecting mali-
cious ones.

SAP also presents a precise, hardware-based mechanism
for detecting SMC code changes, not requiring AV solutions
to poll system memory, thus reducing the imposed perfor-
mance penalty.

The detection mechanism operates on a per-process basis,
thus allowing processes to be blocked or allowed to run indi-
vidually, a significant advance over traditional whitelisting-
based solutions which flags entire application classes. As an

@ Springer

example, SAP can whitelist individual python scripts/pro-
cesses whereas traditional whitelisting mechanisms would
flag all python interpreter instances as benign.

SAP also reduces the imposed monitoring overhead by
moving the whitelist from software to hardware. Whereas
software-based solutions have to first be interrupted—for
instance, by a page fault—to further whitelist a given exe-
cution, SAP does not generate interrupts for whitelisted
processes, thus not interrupting their executions at any time.
Also, as SAP whitelist is runtime-generated, processes can
be added and removed from the monitoring list at any time,
whereas current O.S whitelists are static.

Legacy support Whereas newly developed applications could
be implemented in an SMC-aware way and provide OS with
more fine-grained indicators about which pages should be
marked as executable and writable, SAP’s main advantage
is to support COTS binary execution. Therefore, SAP offers
legacy systems support to monitor SMC execution without
requiring binary recompilation.

W & E policy The security policy implemented by SAP’s
MMU can be considered as a runtime, hardware-enforced,
conditional version of the usual (W@E) policy. By proposing
such policy implementation, we are not arguing that tradi-
tional software-based WHE—e.g. stack protection—should
be eliminated, but extended. It is worth to notice that the tradi-
tional, static W@E policy is not as effective against malware
as itis against external code injection attacks, because, on the
contrary to external code, running malware samples may con-
trol their own flags by calling OS memory protection APIs,
disabling the protection mechanisms and thus bypassing any
software-based defense solution.

AV cooperation We must make clear that our goal is not to
entirely replace existing AV solutions, but to assist them with
new, efficient inspection triggering mechanisms. Therefore,
our solution is fully compatible with existing AV solutions as
well as present the same drawbacks. As an AV complement,
we focused SAP on SMC detection because obfuscated-like
code may prevent AV solutions of doing their best: matching
malicious patterns. Other classes of attacks, however, will
still require specific AV knowledge to be detected.
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Interpreters A particular class of attacks which will still
require AV knowledge is the script-based/interpreter-based
ones, as the case of Python and Java. On the one hand, as
all interpreted code will generate binary code at runtime,
our solution will not be able to characterize a given code
as particularly interesting for scan without external help. On
the other hand, AV can instrument and monitor bytecode
pieces in a less intrusive way than ordinary binaries [9,27],
our focus on this work. A SAP-AV joint operation may
allow for individual processes to be monitored by SAP and
runtime whitelisted by the AV as they are characterized as
benign. Moreover, already AV-scanned scripts could also be
constantly monitored by SAP while looking for new SMC
behavior without requiring AV to instrument the script byte-
code.

Whitelisting Besides the case of interpreters, such as Python,
ordinary binaries can also be whitelisted on-demand. How-
ever, it is important to understand the implications of such
decision. Whereas binary whitelisting ensures the proper exe-
cution of a benign, SMC application, it may give opportuni-
ties for defense bypasses, as a trust relationship is established.
The most noticeable evasion opportunity is related to soft-
ware updates. A trojanized binary may present a legitimate
behavior until be whitelisted and then turn itself into a dis-
tinct, malicious payload. Such cases must be handled by a
third party mechanism, either by checking the binary is still
not malicious, or by removing it from the whitelist after any
update.

7 Conclusions

We revisited the SMC problem and its impact on hardware
architectures, such as cache invalidation and pipeline flushes,
and introduced a taxonomy for SMC code and its detection
mechanisms based on their effects over distinct architectural
points and detection window. We based on that to present
processor changes (SAP) at cache, pipeline and MMU levels
to enable it to alert upper instances (OS and AVs) about SMC
execution and triggering on-demand checks, reducing tradi-
tional AV’s overhead. SAP presented a perfect detection ratio
(100%) with a considerable reduction on overhead penalty
(0% for whitelisted and/or non-SMC code). As future work,
we aim to identify non-SMC-specific counters able to assist
other SMC types detection.
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