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Note that the two boolean operations ((a < b) and (a >= b)) are mutually
exclusive, being interpreted internally by the compiler as 0 (false) or 1 (true).
So, assuming that a is smaller than b, the result of the algebraic operation is
(1) * a + (0) * b which, ultimately, will return only the value of a.

The same strategy can be applied to lines 19 to 23 of Listing 1.1, that repre-
sent the third step of the first stage. The new code is shown in Listing 1.4, where
iLocalSize stores the number of active local work-items and iLI represents the
work-item’s local identifier.

Here, in each iteration of the loop, iPos is divided by 2 (iPos >>= 1) and
bF lag is expanded to either 1 or 0, thus reducing by half the number of work-
items doing a useful job. If, for the current work-item, the expression iLI <
iPos becomes true, then the expression in the last line will be interpreted as
scratch[iLI]+ = (1) ∗ (scratch[iLI + (1) ∗ iPos]), ensuring that the value stored
in position iLI + iPos will be added to the value in position iLI. On the other
hand, if the expression becomes false, it will be interpreted as scratch[iLI]+ =
(0) ∗ (scratch[iLI + (0) ∗ iPos]), ensuring that the value in position iLI will not
be considered. Since all work-items are always in the same step of computation
– doing exactly the same job (useful or not), independently of being in the same
wavefront – sync barriers are unnecessary.

Listing 1.4. Avoiding Divergences

for ( iPos = iLo c a l S i z e /2 ; iPos > 0 ; iPos >>= 1)
{
bFlag = iLI < iPos ;
s c ra t ch [ iL I ] += ( bFlag )∗ ( s c ra t ch [ iL I + ( bFlag )∗ iPos ] ) ;

}

5 Computational Experiments

In this section we compare the new approach against the proposals of Catanzaro,
Harris and Luitjens. Their original codes were publicly available and, therefore,
used in the current study. All algorithms, the existing ones and our proposal,
are in C++ language. Catanzaro’s code uses OpenCL, as previously described.
Harris and Luitjens are in CUDA. We performed experiments for comparing the
performance of the codes in two GPU platforms: an AMD GPU and a NVIDIA
GPU. For this aim, two versions of our approach were implemented: one in
OpenCL and the other in CUDA.

For the first platform, we used a computer with an AMD FX-9590 Black
Edition Octa Core CPU, with clock ranging from 4.7 GHz to 5.0 GHz, 32GB of
RAM and running Ubuntu 16.04 64-bits operating system. The computer had
a Radeon SAPPHIRE R9 290X GPU video card, with 4 GB of memory. The
architecture of the video card provides 2816 stream processing units and an
enhanced engine clock of up to 1040 Mhz. Its memory is clocked at 1300 MHz
(5.2 GHz effectively). At such speed, the theoretical GPU memory bandwidth is
332.8 GB/sec. The programming codes for this platform used OpenCL 1.2 with
the Software Development Kit 2.9.1.
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For the second platform, we used an Intel Xeon CPU E5-2650 computer,
with 20 Cores (40 visible cores using hyper thread, each clocked at 2.3 GHz),
with 128 GB of RAM and running Ubuntu 16.04 64-bits operating system. The
computer was equipped with a NVidia Tesla K40m GPU with 11 GB of memory.
This GPU architecture has 15 Multiprocessors with 192 CUDA Cores per MP,
summing up 2880 CUDA cores. Each core has a clock of 745 MHz and the GPU’s
memory is clocked at 3.0 GHz. We ran only CUDA codes at this hardware, which
were compiled using CUDA SDK 7.5.

For both platforms, we used the GNU g++ compiler version 4.8.2 and the
compilation parameters “-O3 -mcmodel=medium -m64 -g -W -Wall”.

All tests were run on two types of vectors, one of integers and one of sin-
gle precision floating points. There were no measurable differences, regarding
the execution times, between these types. We refer to vectors with 5,533,214
elements3, except when another size is explicitly mentioned in the text.

Table 2 and Figs. 1 and 2 depict the speedup gains achieved by our OpenCL
code against the code presented by Catanzaro at [2]. The performance of Catan-
zaro’s approach is shown at the first data line of the Table. The results for our
code appear in the next lines, for increasing values of the unrolling factor F . The
values were obtained with the OpenCL CodeXL profiler version 2.0.12400.0, and
are the averages of five consecutive executions for each test case.

As can be seen in the table, our implementation for F = 1 is already faster
than Catanzaro’s code. This is due to the optimization strategies implemented at
steps 1 and 3, as described in Sect. 4. Our approach performs even better when
the unrolling factor increases, reaching a speedup close to 2.8x when F = 8. It
can also be noted that the speedup stabilizes around this value (for F = 16, the
gain is around 1.5% when compared to the result for F = 8)4.

Fig. 1. Chart of the parallel reduction execution time.

3 Reduction operations on vectors with millions of values are common when computing
cost function in some real-life optimization problems. For instance, traffic assignment
computation for large urban networks involves such vectors.

4 The ideal unrolling factor strongly depends on the GPU model. In preliminary tests,
performed in older hardware not listed here, the highest gains were obtained when
F was defined as 6.
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Table 2. Parallel reduction execution times. New approach compared against Catan-
zaro’s original code.

F Time (ms) Speedup Memory bandwidth (GB/s) Bandwidth usage (%)

– 0.294679 – 75.1083585868 22.57

1 0.249780 1 88.6094002722 26.63

2 0.173930 1.4360949807 127.2515149773 38.24

3 0.139260 1.7936234382 158.9318971708 47.76

4 0.127700 1.955990603 173.3191542678 52.08

5 0.113930 2.1923988414 194.2671464935 58.37

6 0.100810 2.4777303839 219.5502033528 65.97

7 0.093740 2.6646042245 236.1089822914 70.95

8 0.089490 2.7911498491 247.3221142027 74.32

16 0.088160 2.8332577132 251.0532667877 75.44

Fig. 2. Chart of the parallel reduction speedup.

Furthermore, the version of our approach implemented in CUDA was com-
pared against Harris’ Kernel 7 and Luitjens’ code, in the second platform. The
experiments also employed the two aforementioned vectors. Several values of the
unrolling factor (F ) were tried in our code, in order to find the optimal value
for the K40m video board. It was determined that up to F = 6 the performance
gains are substantial and, with F ≥ 8, the gains are very discrete. According to
this, all experiments were conducted using F = 8, including the one presented
by [11].

Table 3 shows the running time (in milliseconds) of the three approaches and
the percentage of performance (given by the formula 100 ∗ (1 − T

TH
), where T

is the execution time of the method in the given line and TH is the execution
time of Harris’ code, as a reference. Our CUDA implementation runs in almost
the same time of Harris’ code. Luitjens approach, using the SHFL instruction in
CUDA for the K40m GPU, outperforms Harris’ code by 25.98%.
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Table 3. Parallel reduction execution times in the K40m.

Approach Exec. time (ms) % of Gain

Harris (Kernel 7) 0.19032 0

New Approach (CUDA. F =8) 0.18009 5.37

Luitjens 0.14086 25.98

Table 4 illustrates how the running time of the algorithms (also in millisec-
onds) change as the size of the vector doubles. For all cases the new approach
is slightly better than Harris’ method. Luitjens outperforms both methods, con-
strained to use a hardware with the SHFL instruction.

Table 4. Evolution of the execution times in the K40m.

Vector size Harris (Kernel 7) New approach (CUDA. F =8) Luitjens

2766607 0.18515 0.17941 0.07626

5533214 0.19032 0.18009 0.14086

11066428 0.29604 0.28219 0.24311

22132856 0.57268 0.53652 0.46887

44265712 1.13165 1.05426 0.91617

88531424 2.25516 2.09966 1.81140

177062848 4.51196 4.20577 3.60514

6 General Remarks

All parallel reduction techniques currently in use suffer from some basic issues.
Many of them only reach their peak performance by employing proprietary
strategies/technologies. That limits their use to the platforms for which they
were designed. Others, although generic, do not adopt certain procedures that
could increase their performance without loss of generality.

In the present work, we explored a combination of strategies that could
improve the performance of the original Catanzaro’s code for parallel reduction.
One highlight should be made to the employment of attributions with algebraic
expressions instead of conditional statements, in order to minimize or eliminate
the phenomenon of thread divergence and to avoid the use of synchronization
barriers.

The strategies presented in this paper are generic enough to be used with
both CUDA and OpenCL and can run on hardware of the two major GPU
manufacturers with minimal changes, just being adapted to the particularities
of each platform.
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The experiments that were carried out showed that the execution times of
our approach and of Harris’ are very similar. Therefore, we assume them to be
equivalent. It was also possible to verify that Luitjens’ proposal is more efficient
than the other approaches. We advise to choose Luitjens’ method if support to
the SHFL instruction is available. For GPUs with no SHFL support, the new
implementation described here is more advantageous, since it provides equivalent
performance to Harris’ approach [11] but with a code that is easier to implement
and works for both CUDA and OpenCL.

It is worth mentioning that the discussed techniques are of general use, being
reduction only one of its applications.

For future work, we intend to explore the benefits of SHFL-equivalent instruc-
tions that appear in recent AMD GPUs in our new OpenCL code.
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Abstract. The ever-increasing size of cache memories, nowadays achiev-
ing almost half of the area for modern processors, and so essential to the
performance of the systems, are leading into a crescent static energy
consumption. In order to save some of this energy and optimize its com-
ponent performance, many techniques were proposed. Cache line reuse
predictors and dead line predictors are some examples. These mecha-
nisms predict whenever a cache line shall be dead, in order to turn it
off, also applying other policies on them, such as replacement prioriti-
zation or bypassing its installation inside the cache. However, not all
mechanisms implement all these policies, that directly affect the cache
behavior in different ways. This paper evaluates the impacts of the pri-
ority and bypass policies over two dead line predictors, the Dead Block
and Early Write Back Predictor (DEWP) and the Skewed Dead Block
predictor (SDP). Both mechanisms turn off dead cache lines using Gated-
Vdd technique in order to save their static energy, thus analyzing how
each policy (Priority replacement and cache Bypass) affects the energy
savings and the system performance.

Keywords: Cache memory · Energy efficient · Cache usage predictor

1 Introduction

As technology advances and processors run faster, the performance gap between
CPUs and DRAMs increases, further increasing the relevance of cache memories.
These tiny and fast memories between the processor and the DRAM memory
act attenuating the high delay of DRAMs, being critical for computers efficiency.
In order for the processor to achieve higher performance, these cache memories
need to maintain the necessary processor data for the majority of accesses, thus
avoiding accessing to slower memory levels. Following this logic, the caches grew
in size, and nowadays occupy about 50% from processors chip, also leading to
increases in energy consumption.

The energy consumption in CMOS circuits such as SRAM and DRAM mem-
ories can be divided fundamentally into two sources. The dynamic energy used to
perform circuits gating, and the static energy, also called leakage energy, which is
c� Springer Nature Switzerland AG 2020
C. Bianchini et al. (Eds.): WSCAD 2018, CCIS 1171, pp. 185–197, 2020.
https://doi.org/10.1007/978-3-030-41050-6_12
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spent even when there are no interactions. This second source is directly related
to this component size. The bigger its storage capacity, the more static energy
it spends. Therefore, the cache memories growth leads to a higher static energy
consumption, increasing the importance of methods to save it.

Many cache line behavior predictors have already been proposed [2,6,10,
12,13,15]. Most of these mechanisms try to predict when a cache line con-
tent receives its last access, in order to apply a static energy saving technique
over it. Regarding energy saving techniques, there are multiples proposals in
the literature, where the most commonly used technique is called Gated-Vdd
technique [22]. The Gated-Vdd consists in turning off a cache line in order to
save almost all the static energy used to maintain it. This technique is applied
whenever the processing core associated with a cache line is disabled, then we
can disable the whole cache lines. Such gains may increase by using these tech-
niques together with the cache line usage predictors, helping predicting the cache
usage with cache line granularity. Despite the high savings, these shutdowns can
directly increase the applications execution time.

Besides the cache line shutdowns, dead cache line predictors also allow cache
line installation and replacement improvements, producing higher cache hit
ratios. Whenever a cache line is predicted to be dead-on-arrival (i.e., the line
is predicted to receive only a single access), that cache line can be bypassed,
not being installed inside the cache, thus reducing the cache pollution [4]. For
the cases where the cache line is predicted to have multiple accesses, whenever a
cache line is predicted to be dead (i.e., it is not going to receive any further access
until its eviction) the cache eviction policy can increase its eviction priority, in
order to keep for longer the live ones. Nevertheless, during wrong predictions,
these modifications in the installation and replacement policies may have a nega-
tive influence on energy consumption and the execution time from the programs,
because data that should be kept in the cache is going to be fetched again from
the main memory.

In this paper, our objective is to evaluate the influence caused by the early
cache line eviction and the bypass techniques in the last level cache when using
information from cache line predictors. We evaluate two cache dead line pre-
dictors, the Dead Block and Early Write Back Predictor (DEWP) [2] and the
Skewed Dead Block Predictor (SDP) [13]. Our focus is to assess and understand
the impact of these two techniques in the base implementation of each one of
the cache line usage predictors evaluated, in terms of energy consumption and
execution time. Our main contributions are:

Implementation: we present the idea of merging the DEWP and SDP mech-
anisms with the dead line priority eviction and the bypass policies.

Energy Impact: we evaluate different combinations of mechanism and policies
that save from 30% to 60% of the energy consumed by a traditional cache and
DRAM memory sub-system with performance variation of ±2%, offering an
interesting trade-off between energy savings and performance.
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2 Motivation

The increase of static energy consumption in cache memories [1] leads to the
research of many dead line predictors [2,8,13–15]. These mechanisms try to pre-
dict when a cache line receives its last access in order to turn it off. In addition
to this, the predictions can be used to change the cache lines install and replace-
ment policy, prioritizing dead lines and making bypass from dead-on-arrival lines.
According to each application’s memory access pattern and the predictor accu-
racy, these policy change can lead to gains or losses in an execution.

Fig. 1. Number of LLC accesses before eviction

We designed two main experiments using all the 29 applications from the
SPEC-CPU 2006 benchmark suite, to understand the possible impact when pri-
oritizing dead lines and performing bypass from dead-on-arrival lines. Further
methodology details are present in Sect. 4.

In the first experiment, we evaluate the number of accesses per cache line
before it gets evicted from the LLC. Figure 1 shows a histogram that counts
the number of accesses each cache line from a 2MB LLC received before it was
invalidated. We can observe that on average more than 95% of the last level
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Fig. 2. Misses per kilo instruction (MPKI) showing potential improvements when
increasing the cache size.

cache lines receive only single accesses and then they can be considered dead.
From this first plot, we can learn it is possible to bypass multiple cache lines
without harming the performance.

In the second experiment to motivate this work, we executed the same appli-
cations with two different LLC sizes, 2MB, and 4 MB as can be seen in Fig. 2.
Considering that both techniques, bypassing and prioritization of dead cache
lines, will virtually increase the cache memory size, by reducing the number of
dead cache lines inside the LLC, this second experiment aims to show the pos-
sible reduction in the MPKI (misses per kilo instruction) metric whenever the
cache memory gets its size increased. We can see that MPKI reduces on average
14% when doubling the LLC size, showing the potential to achieve performance
improvements.
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Our results from previous work [17,18] showed that for half of applications
tested, more than 75% of the time, the circuit wasted static energy because the
cache lines already received its last access and are waiting for its eviction. For
most of the applications, a perfect mechanism could turn-off the cache lines for
more than 40% of the execution time, with potential to save a high portion of
static energy.

It is important to note that performance and energy consumption results will
suffer significant influence from the dead cache line predictor accuracy. Whenever
the mechanism correct predicts the cache line behavior, energy and time can be
saved. On the other hand, during miss predictions, two different things can occur:
(1) the system will consume extra time and energy to bring the cache line from
the DRAM; or (2) the system will lack the opportunity to save energy and time.

Thus, we aim to evaluate the influence of dead lines priority and the bypass
policy using two different dead cache line predictors, SDP and DEWP, in order
to understand how each policy affects these dead line predictors.

3 Mechanisms and Techniques

This section details the dead cache line predictors DEWP and SDP, the gated-
Vdd technique and the cache policies evaluated in this paper.

3.1 DEWP

The DEWP mechanism uses an access history table (AHT) with 512-entries, in
order to store the number of reads and writes that a cache line content received
before its last eviction. Based on historical data stored in the AHT, the predictor
can determine when a cache line received its last access, declaring the line as
dead. Moreover, it can reduce the memory controller pressure by detecting when
the cache lines received their last write and performing early write-backs. Besides
AHT, this predictor requires some additional information stored in each cache
line, in order to make specific predictions to them.

Figure 3 illustrates the components requires by our DEWP implementation
[17]. Unlike its original version, the read and write counters were replaced with an
access counter, with the view to simplify the mechanism operation and analyze
only its dead line predictions influence over the improved LRU and the bypass
policy. The DEWP operations are triggered by some cache events; these events
and its consequences are described below:
During a cache line hit:

• If the cache line and its training flag are on, the access counter from the AHT
entry pointed by the AHT pointer in the cache line is incremented.

• If the cache line is on and the training flag is off, the access counter from
the cache is decremented, denoting that one of the predicted accesses was
performed.


