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Abstract
Recent proposals of emerging data storage devices make it necessary to reevaluate all levels of the storage hierarchy to 
optimize the software stack performance. However, these new devices are not always widely available and therefore early 
experiments may be impossible. Emulators aim at mimicking as close as possible the behavior of a component, nonetheless, 
emulating new and fast storage devices is a challenging task due to time perception. In this work, we propose an approach 
to emulate storage devices using virtual machines (VMs) allowing the evaluation of a new device within a real system. We 
use a technique called freezing time, which pauses a VM to manipulate its clock and hide the real I/O completion time. Our 
approach is implemented at the hypervisor level and it is transparent to the guest operating system or application. We evalu-
ate the technique under a real system using regular magnetic disks to emulate faster storage devices. Our method presented 
a latency error of 6.5% compared to a real device. Moreover, decoupled experiment between two laboratories, at the Bar-
celona Super Computing Center (BSC) in Spain, and the Center of Computer Science and Free Software (C3SL) in Brazil, 
demonstrated that our approach is reproducible and promising to allow the virtual evaluation of next-gen storage devices.

Keywords Virtual machine · Storage device · Dataplane thread · Emulation · Time dilation

1 Introduction

The storage gap motivates scientists and companies to inves-
tigates new ways to improve data store and retrieve perfor-
mance. Part of the performance improvements for storage 
systems can be achieved at the software level, e.g., read-
ahead operation using an intelligent storage adapter (Shah 

2016), adaptive intelligent storage controllers and associ-
ated methods (Flower and Gajjar 2016). From a hardware 
point of view, for decades the main storage technology was 
based on magnetic disks and the performance gains were 
not disruptive.

These technologies demand a reevaluation of all layers of 
the storage hierarchy, raising a series of “what-if” questions. 
It is necessary to ensure that those technologies are worth 
it when they are integrated into all the input/output (I/O) 
stack, including workloads and real applications. Simulators 
can be used to circumvent the physical unavailability of the 
devices to be evaluated. However, such simulators are too 
slow to execute a detailed simulation of all the computer 
components running a full application.

Although simulation techniques are appropriate for some 
scenarios, it can hardly capture the interactions between dif-
ferent components, for example, the processor interactions 
with the operating system. Moreover, this technique does 
not allow to extrapolate the results to the real environment.

An alternative is to use emulators which aim at mim-
icking as close as possible the behavior of a component 
such that the emulated device is indistinguishable from the 
real one. However, emulating new and fast storage devices 
is a challenging task due to time perception issues since 
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the devices used as a back end for emulation are slower 
than the devices to be emulated. A storage emulator also 
will affect the latency and throughput observed as it takes 
time to process the requested I/O. One approach for such 
an emulator is to use the main memory as a backend (Lee 
et al. 2012). However, its capacity is still at least an order 
of magnitude smaller than that of storage devices. Another 
technique that can be used is the time dilation which con-
sists in making the observed system clock move in slower 
steps which makes the emulated device relatively faster 
(Gupta et al. 2005), i.e., the time spent inside the guest is 
not the same as outside of it. If we apply a dilation of a 
10× , the guest would see 1 second for every 10 s of “real-
time”, and this will distort all the components.

Our approach for such storage device emulation is based 
on virtual machine (VM) technologies to run a full stack of 
software in the target emulated devices, so we do not need 
to face much of the performance penalties of a full-system 
simulator nor change the workloads nor the applications. 
To tackle time perceptions issue we employ a mechanism 
called freezing time (Bona et al. 2018) which explores the 
ability of a virtual machine to be paused and then resume 
execution. In this way, during the execution of the I/O 
requests a storage simulator or emulator can be called, 
meanwhile, time can be frozen without distorting any other 
components and can be done transparently for both the 
guest operating system and applications.

In this article we present the following main contri-
butions, and extend our previous published paper (Bona 
et al. 2018):

• Flexible emulator tool for storage simulation which 
requires no changes in user space applications or 
changes in the kernel.

• Whole stack approach enabling analysis from the stor-
age backend device up to the application running inside 
the guest.

• High precision emulation with an average latency dif-
ference of less than 7% considering read and write 
operations.

• Low overhead tool with less than 25% increase in emu-
lation time, enabling fast evaluation of new and future 
storage devices.

• Open source software that is available at Elias (2019), 
under GNU General Public License (GPL).

• Simulation of a new device, Intel Optane DC Persistent 
Memory (DCPMM) extracting the latency results from 
another machine. We show that it is feasible to emulate 
them. More results and workloads are left for future 
work.

• A solution able to simulate a storage device that is 
faster than the memory of the host machine.

To make this experiment reproducible, evaluations in this 
article were executed in x86 architecture machinery, using 
open-source software. The evaluation shows we were able 
to emulate disks with RAM like speeds with an overhead 
of less than 25% in I/O request time while keeping preci-
sion as high as 94% on average.

2  Related work

Lee et al. (2012) is presented an emulation technique based 
on using a RAM disk as the storage backend. One of the 
disadvantages is that memory is small and expensive, so it 
can only execute small workloads. In our work, we can use 
any backend to simulate any other storage device.

Gu and Zhao (2012) is employed a technique that 
freezes the system disabling interruptions and the hard-
ware clocks on the host kernel. However, another machine 
is needed to process the I/Os and, in order to communicate 
to this machine, the kernel’s network driver was modified 
to use a busy-wait system instead of an interrupt based 
system. The option to implement in the host’s kernel made 
it extremely dependent on the hardware used to implement.

The network time dilation approach was presented in 
Gupta et al. (2005), but using this method, all the compo-
nents have their time distorted: effectively making every 
operation affected by a slowdown. This approach has an 
important drawback: The time dilation factor is propor-
tional to the speed of the emulated device. This imple-
mentation also makes modifications to the virtual machine 
monitor (Xen\_Project 2015) and the guest’s kernel.

Bayati et  al. (2019) aims to evaluate Non-Volatile 
Memory Express (NVMe) devices in big data processing 
environments such as Apache Spark. To allows for testing 
NVMe related code without the need for buying expensive 
hardware they also propose a Quality of Service (QoS) 
aware NVMe emulator. This emulator has similarities 
with ours but they do not focus on improving the emula-
tor accuracy as we do but rather on accurate modeling of 
the NVMe specific mechanisms.

Our emulator’s accuracy can be improved by reducing 
overhead, Kim et al. (2016) improves the performance of 
asynchronous I/O (AIO) in the VM. On that paper, the 
author used some of the same techniques that were used 
in this article: Virtual Machine Monitor (Quick Emulator, 
QEMU), VirtIO and dataplane access mode but they used 
a custom implementation of it which improved perfor-
mance by 47% when compared to the standard dataplane 
mode. This technique could be applied to the freezing time 
approach but it will not be explored in this article.
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3  Background

The implementation of our emulator is based on the com-
bination of KVM (Kernel-based Virtual Machine) and 
QEMU (Quick EMUlator), which is an active project for 
more than 15 years, presenting low overhead and being 
widely adopted. KVM is a kernel module that gives access 
to hardware virtualization capabilities that allows proces-
sor virtualization with almost no overhead. Emulation of 
I/O devices is provided by QEMU and the VirtIO, a plat-
form for IO virtualization, one of the de facto standards for 
this task. Another important aspect to understand the solu-
tion proposed here is time virtualization. In the remainder 
of this section, we present details on these aspects.

3.1  Virtual interface for I/Os

Emulating a real hardware device is costly because every 
single step needs to be processed as the real device would, 
which causes overhead in the host machine and reduces the 
throughput and Input/Output Per Second (IOPS) (Rizzo 
et al. 2013). VirtIO was created in a way that the guest and 
host could communicate directly or without having to emu-
late a real device that needs to stop the execution (kick) of 
the guest, therefore lowering the overhead and increasing 
the performance (Gordon et al. 2012). VirtIO presents itself 
to the guest as a PCI device, this way the guest only needs 
to implement a new PCI driver, and the Virtual Machine 
Manager (VMM) needs only to add virtual ring support to 
the devices they implement  (Rizzo et al. 2013).

VirtIO unifies how virtual devices probe and con-
figuration occur in the Linux Kernel allowing multiple 
implementations to be developed by different hypervisors. 
One of the components of this architecture is a common 
Application Binary Interface (ABI) for buffer publication 
and use. The VirtIO_ring implementation was deliber-
ately conservative to avoid points that could be considered 
undesired by developers (Russell 2008).

The VirtIO driver is implemented with a separate 
abstraction level for drivers, transport, and configura-
tion. Those abstractions are provided by a set of com-
mon helpers for the virtual driver which should be simple 
and as close as to optimal as possible providing efficient 
operation.

When a VirtIO device is found the probe function 
from the driver is called. The virtual device configura-
tion happens in four steps: (1) reading and writing feature 
bits; (2) reading and writing the configuration space; (3) 
reading and writing the status bits; (4) device reset. The 
feature bits represent the features supported by a given 
virtual device, for example, the VIRTIO_NET_F_CSUM 
bit indicates whether a network device support checksum 

offload. When configuring the device the feature bits cor-
responding to the desired features must be set. Those bits 
are explicitly acknowledged by the guest, hence the host is 
sure about which features the driver understands. The next 
step is associated with the configuration space which is a 
structure containing device-specific information associ-
ated with a given virtual device that can be both read and 
written by the guest. The only requirement to add new 
features is to set the feature bit numbers and configuration 
space layout. Next, the guest indicates the status of the 
device probe through the status word (8 bits). On success, 
VIRTIO_CONFIG_S_DRIVER_OK is set showing that 
the feature probing phase was completed. As the final step, 
the device configuration and status bits are cleared (Rus-
sell 2008).

The API find_vq populates the virtqueue structures 
attributing an index number for the VirtIO device. The 
virtqueue can be seen simply as a queue in which the guest 
posts buffers to be consumed by the host. Given the cost to 
notify the host is expensive, multiple buffers can be added 
simultaneously.

Each VirtIO_ring consists of three components: (1) the 
descriptor array; (2) the available ring; (3) the used ring. 
The descriptor is used by the guest to chain pairs of guest-
physical address and length that are ready to use, the avail-
able ring indicates which descriptors chains are ready to be 
used and the used ring is like the available ring but is used 
by the host to indicate which descriptors were consumed.

Figure 1 represents the path the I/O takes in the system 
from the vCPU to the device. VirtIO block is a part of the 
VirtIO system and it is responsible for integrating those parts 

Fig. 1  Differences in the VirtIO-queue, investigating from vCPU 
until the device block (Kim et al. 2015)
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described above and exporting a block-like interface to the 
kernel. Other modules do the same thing for other peripherals 
like VirtIO-net, VirtIO-gpu, etc.

3.2  Timekeeping: choosing a clock source

The task of keeping a virtualized clock is nontrivial, especially 
over the x86 platform. One approach that offers great compat-
ibility is to emulate an existing clock device. A disadvantage 
of this approach is the performance penalty since the device 
needs to be emulated, yet almost all current VMMs offer this 
option for compatibility reasons. Common options are HPET 
(High Precision Event Timer)  (Amsden 2010a) and TSC 
(Time Stamp Counter) (Amsden 2010b). TSC mainly counts 
instruction cycles issued by the processor and is a good clock 
source since it has independent and dedicated circuitry and it 
is not affected by CPU clock changes. Sharing the TSC with 
the guest however is difficult since the guest would see time 
pass faster because the clock would still be running even when 
the VMM’s process is not running on the host, making precise 
timing and interruptions inaccurate.

Live migration is also challenging for accurate timekeeping. 
First, along with the migration, the guest disables interruptions 
and meanwhile, time may need to be caught up. Later, the time 
may need to be adjusted considering it may now running at 
different rates. The destination host may have a faster TSC and 
it cannot be exposed to the guest due to the potential for time 
running faster than normal.

To solve those problems, kvmclock was designed. The 
approach is to register a memory page that store kvmclock 
data, so the VMM will write to it until explicitly disabled, 
or the guest is turned off. As the TSC is not emulated, nor 
the host’s real clock source, the VMM writes multipliers and 
offsets compared to the host’s TSC. In this manner the guest 
can adjust those values back into nanosecond resolution, with 
a small overhead, noticing only the time it was running. Those 
functionalities are wrapped in the functions KVM_GET_
CLOCK and KVM_SET_CLOCK, and they are used on live 
VM migration.

When the VMM receives an I/O request, it will kick the 
guest and save its clock. Once the I/O request is ready, the 
VMM restores the clock and resumes the guest, so it believes 
that the time elapsed on this access was the latency of the I/O.

4  Freezing time storage emulator

The purpose of our freezing time technique is to enable the 
creation of a fast, efficient and transparent storage emulator, 
such as hard disk drives (HDD) or solid state disks (SDDs), 
that only dilates the time of the emulated device without 
interfering with other devices. This emulator allows com-
plete comparisons through benchmarks without modifying 

or even recompiling the application. For the implementation, 
the KVM hypervisor was chosen because it has open-source 
and included in the Linux Kernel; VirtIO is another compo-
nent of the solution as it is the I/O virtualization interface 
that is the current standard.

Our main approach is to modify the host code (the VMM, 
QEMU) which will detect the occurrence of I/O requests as 
soon as possible and stop the guest execution. At this time 
with the frozen clock, the I/O requested is expected to be 
completed on the device to subsequently inject the emulated 
time and then allow the guest virtual CPU (vCPU) to be 
executed again (we will call this event as KVM_RUN).

The KVM_RUN is defined by KVM’S API among other 
calls such as KVM_CREATE_VM, KVM_CREATE_VCPU. 
The KVM_RUN call is used by the host to run a vCPU. The 
vCPU thread which issued the call will get blocked until an 
event interrupts the KVM_RUN call. This event is known 
as kicking the vCPUs from guest mode and has the conse-
quence of returning back the control of vCPUs to QEMU, 
which allows us to manipulate the guest clock since it is not 
running.

Figure 2 represents the implementation proposed in this 
paper. The figure bottom half represents the host system and 
the real-time as perceived by the host system, the top half 
represents the virtual system (guest) and the virtual time 
perceived by it. The units of time measurement in this figure 
are meaningless and are only intended to show the clock 
behavior during the flow of an I/O request.

Initially, at real/virtual time 1, a user-space application 
generates an I/O request that will be received by the guest 
kernel, processed, and transformed into a request to be sent 
to the virtual disk driver at real/virtual time 6. Next, QEMU 
detects this request and kicks the guest. Note that at this time 
the guest clock will be frozen. Meanwhile, the request is 
processed and sent to the real disk. When the request is com-
pleted at real-time 14 (still virtual time 6), QEMU is notified 
via the host kernel and terminates the request handling and 

Fig. 2  Analyzing the path of an I/O request, from the guest applica-
tion through the block device in the host (the time unit are meaning-
less, it is just a reference when the guest is “frozen”)
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issues a KVM_RUN. This way the guest is resumed without 
perceiving the time taken to process the I/O. From this point 
on the request goes through the other steps until it reaches 
the application. Note that it is possible to delay notifica-
tion of I/O request completion by allowing the emulation of 
devices with different performance parameters.

With our approach of pausing the time in the guest as 
soon as the I/O is detected and resuming the vCPUs as soon 
as it goes into context, we make the guest believes that the 
time has not elapsed, as shown in the gap from host time 
number seven until 14 on Fig. 2. Notice that we can eventu-
ally inject virtual time after the frozen period in order to 
simulate some specific device.

In the following section, we will show the implementation 
of the emulator based on QEMU version 2.5.0.

4.1  Implementation

We used QEMU version 2.5.0 to implement our emulator, 
which was the latest version at the time of the experiments. 
The only limitation to implement the emulator in other 
VMMs systems is the availability of source code. One of the 
first challenges was to understand how QEMU interacts with 
KVM: We have one thread per vCPU, one IOThread and 
other helper threads (that are not relevant in this context). 
Every time the VMM needs to issue a privileged operation 
(for example, access to the storage), it needs to kick the guest 
and get a global mutex to serialize every I/O operation. Once 
this operation finishes, the mutex is released, and the thread 
restarts the guest with a KVM_RUN (Gordon et al. 2012).

This workflow generates an important impact on perfor-
mance, for this reason, since version 1.4, QEMU has a fea-
ture called dataplane. Thanks to this feature, a device has its 
own IOThread, so it did not affect the global mutex. Moreo-
ver, each device load is distributed in different CPU cores, 
if they are available, producing a reduced latency on each 
I/O operation. Both modes, IOThread and dataplane, are 
supported, but the latter is preferred due to its lower latency.

The dataplane thread gets blocked waiting for events in 
the FDs (File Descriptors) which represent its device. We 
added code right after this wait to identify if the event which 
causes the thread to unblock was an I/O request popped from 
the VirtIO_ring. In this case, the global mutex lock will be 
held avoiding concurrency with the IOThread or the vCPUs 
threads, next the guest will be kicked from execution and its 
virtual clock saved. At this point, the guest is out of context 
and the time elapsed from now on will be undetected by the 
guest. Then, a flush is issued causing the host to serve the 
requested I/O from the real system.

After finishing the I/O request the vCPUs threads are 
released and will wait at a barrier just before KVM_RUN. The 
global mutex lock is released unblocking other QEMU threads. 

The dataplane thread stays on a busy-wait waiting for vCPUs 
threads to reach the barrier. Then, each vCPU thread sets its 
clock back to the time that was registered when they were 
kicked and returns to KVM_RUN mode.

4.2  Analyzing the virtual I/O path, from the guest 
application to the host storage

Each guest I/O request goes through several layers from dis-
patch to arrival at the storage backend, Fig. 3 shows a simpli-
fied version of the flow of these requests across the I/O stages.

Whenever a process running on the guest generates an 
I/O request, the guest kernel checks to see if that request is 
already in the page cache. In the event of a page cache hit, 
the requested data is returned. Otherwise, the guest’s kernel 
sends the request to the generic block layer through the I/O 
scheduler until it reaches the block device driver. The VirtIO 
block driver will dispatch the request from the virtual device 
to the host via virtqueue. On the host, the KVM kernel 
module detects the request and generates a notification via 
vhost-scsi to QEMU. The data plane is awakened and begins 
processing the request as if it were a regular process per-
forming I/O on the local disk. When the host kernel finishes 
processing the I/O request, the QEMU process is notified 
and then it dispatches back the I/O response through VirtIO. 
Finally, the host notifies the guest VirtIO driver through the 
PCI bus, this way the request reaches the application that 
originated the request.

4.3  Emulating a storage device faster than the host 
memory

Emulating a faster storage device, Intel Optane DC Persis-
tent Memory Module (DCPMM) from a remote machine, 
faster than the local memory speed could be cumbersome, 
the VM needs to go back in time (clock of the guest must be 

Fig. 3  Analyzing all layers of an I/O request.  Adapted from Lu et al. 
(2016)
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set to a time before the I/O happened). However, the follow-
ing scenarios may occur when emulating it: 

 (i) The latency of the device being evaluated can be 
faster than the local memory speed, therefore the 
clock ticks must be adjusted back to when the I/O 
has been issued.

 (ii) The latency of a specific virtual I/O operation in a 
faster storage device can be greater than the host stor-
age device.

 (iii) An error can occur. We will ignore this case since it 
is treated by the kernel and is out of context of our 
analysis.

Now, let’s see an example of a DCPMM emulation using 
an HDD as a storage backend. Case (i), let’s suppose an I/O 
A issues an interruption signaling that it is ready, and its 
latency is � . Since the samples extracted from the second 
machine are faster than � , let’s say � − 1 for a particular 
I/O (unit is meaningless). The I/O B we wish to emulate to 
behave just like A, such as with a latency of � − 1 , the clock 
needs to go back in time by a factor of one unit. Indeed, if 
we wish to adjust the latency, we must subtract the difference 
of latencies and make the clock back in time to represent the 
I/Os that occurred in the device DCPMM. As we can not 
predict exactly the differences in each I/O, the algorithm 
in the following paragraph shows the effectiveness with an 
accuracy of 90% on average.

Case (ii), the emulator could just use the sleep mechanism 
present in Sect. 4, after all the latency is ahead of the clock 
when the I/O was issued.

To achieve the emulation of a faster storage device, we 
used the mechanism of live migration offered by QEMU. 
This mechanism freezes all vCPUs when the live migration 
occurs. Once the VM is about to start in the target machine, 
the clock needs to catch up, QEMU stores the offsets of the 
clock and does the proper adjustments in the target machine. 
Before the VM starts and after adjustments of the QEMU, 
we have a chance to adjust the clock back in time.

To adjust the clock in case (ii) sleep can be used but for 
case (i), we have more limitations. Before we start emu-
lating the latencies of DCPMM extracted from the second 
machine, we executed a set of experiments in the machine 
with DCPMM following the same methodology as described 
in Sect. 5, from those experiments we extracted the device 
behavior.

The algorithm is straightforward, we randomly generate 
a number between the minimum and maximum latency and 
after QEMU has adjusted the clock, we “scrum” it a little bit 
more, adjusting the clock according to the emulated latency 
of the DCPMM. However, this clock adjustment occurs only 
when an I/O is requested from the device that is being emu-
lated in order to avoid freezing the guest when there are I/O 

requests from other devices. Also, the clock is adjusted only 
when the clock needs to go back in time, minimizing the 
overall effect in the VM.

4.4  Overhead of our emulator

The latency of our emulator is compound of two parts: the 
biggest is from the guest’s kernel when it raises the request 
to the block device driver until the dataplane’s thread pro-
cess it and kick the guest. The small one is when the I/O 
is done, in the guest the clock is restored and in the host, 
VMM issues a KVM_RUN. We expected the time perceived 
by the guest to be zero, however it is not exactly zero. To get 
closer to zero, injection is made when the guest is frozen, so 
interruptions are not affected as time dilation occurs after all 
vCPUs are out of context.

Once a block device is set up to run in dataplane mode, 
fewer checks are needed, since the VMM allocated a thread 
with a local FD (File Descriptor) which is dedicated to 
poll I/Os for this specific block device, in this manner it is 
implicit which block device is been treated. One interruption 
is raised on the device when the guest pushes a request to 
the VirtIO_ring, so the host’s kernel translates to an event 
on the FD. Once the dataplane thread pops the request from 
the VirtIO_ring, our emulator requests a global mutex lock 
to avoid the IOThread or vCPUs threads from trying to do a 
privileged operation and introduce entropy, checks if it is a 
data (read or write) request and, if it is, save the guest clock 
and kick it. In Fig. 4, the interval labeled A is the latency 
of kicking all the vCPUs, this procedure is not serial so the 
time from kicking the first and the last vCPU is greater than 
zero. Our emulator overhead is directly affected by this time 
distortion, this fact diminishes the achievable performance.

The VMM (QEMU) mitigates the problem with multi-
ple call-back functions (Hajnoczi 2014) using the technique 
called coroutine (Knuth 1997). Our approach to adapt the 
coroutine is to sleep for a user-defined amount of time at the 
end of an I/O, so the device appears to have that latency to 
the guest. The timer is resumed after we issue KVM_RUN 
command.

The interval labeled B on Fig. 4, is the second part of the 
latency, at this point before issuing the KVM_RUN command 
we synchronize the vCPUs and restore the guest clock. B 
represents the latency of all vCPUs returning to execution.

Fig. 4  Mechanism of the time dilation inside the VMM (QEMU)
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In the following section we will validate the procedure 
described above through tracing tools and synthetic I/Os.

5  Experimental results

In this section, we show the evaluation of the emulator with 
a set of experiments. First, we showed the fastest I/O that 
technically could be achieved, using a RAM disk device 
Sect. 5.1. Then, in Sect. 5.2, our experiment shows the result 
of emulating the SSD using a slower storage backend, with 
modifications only in the VMM (QEMU). Finally, we deter-
mine the time elapsed in the experiment from the perspective 
of the guest and host (Sect. 5.5).

The results are presented simulating an SSD using the fol-
lowing devices: HDD (Hard Disk Drive) (model JPT39C), 
with a size of 1 TB, using SATA interface, speed of 3.0 Gb/s, 
200 RPMs manufactured by Hitachi Global and Server 
Grade SSD Cloud Speed 500 (model TG32C1) manufac-
tured by Smart Storage Systems. The selection was done 
to cover a mechanical device (HDD) and a non-mechanical 
device (SSD).

The host’s and guest’s operation systems were Debian 
Jessie, kernel version 4.4.4 installed on a separate HDD to 
not influence the experiments. The test bench machine was 
an AMD FX-6300 Six-Core Processor, 3.5 GHz, with 12 GB 
of DDR3. All the experiments executed in this section were 
performed on this specific system.

Synthetic workload took place using the tool fio (flexible 
I/O tester), which simulates a specific workload. It is con-
figured by the user, such as sequential or random read/write, 
block size, number of threads, and so on. Blktrace (Block 
I/O layer tracing), is a block I/O layer tracing utility that 
provides the ability to collect detailed traces from the kernel 
for each I/O processed by the block I/O layer (Axboe 2007). 
Blkparse (Block I/O layer parser), parses the output events 
stored in files generated by blktrace in a human-readable 
way.

The VMM (QEMU) works with two types of backend 
support, dataplane (Oh et al. 2014) and IOThread. The first 
presented itself one order of magnitude more efficient than 
the IOThread mode, so the first has been chosen to execute 
all of the experiments.

The approach we followed in our experiments are: 

1. Execute blktrace to collect I/O events. We are interested 
only in the response time.

2. While the above is executing, run the workload using fio, 
generating I/Os to the device we wish to evaluate.

3. When the workload finishes, stop the blktrace utility 
(thus saving all traces over the entire workload).

4. The pertinent I/O information is extracted from the 
traces saved by blktrace using the blkparse utility.

The order of the experiments is: running the fio program five 
instances, one at a time; on the RAM disk, SDD and HDD 
devices described above, operations, synchronously reading/
writing. The data size of 4 GB with chunks of 4 KB to the 
backend storage device. The evaluation was executed with 
one and four vCPUs with a fixed amount of 2 GB of RAM 
in the guest. The cache was flushed after each iteration of 
the experiment, also QEMU was configured to not cache I/
Os, to guarantee the effectiveness of each I/O issued through 
all the layers.

5.1  Empirical evaluation of the maximum device 
speed

In this first experiment, we seek to evaluate the limitations 
of the implementation of the time freeze technique. For this 
we will try to emulate I/O requests that are instantaneous, 
that is, with a time of completion equal to zero.

We setup QEMU to use the RAM as the storage backend 
to show the fastest I/O that can be achieved, as observed 
in Fig. 5 in CDF (Cumulative Distribution Function) for-
mat. The samples saturated at less than 100 μs . This value is 
the minimum I/O that can be achieved using RAM (fastest 
device) as a storage backend, values lower than that will 
need extra support as we introduced in Sect. 4.3.

5.2  Evaluation of the SSD

This section presents how the HDD and SSD react to the 
evaluation without the emulator, then emulate the SSD but 
using the HDD as the storage backend. A set of experiments 
was made with the SSD to empirically obtain the time to be 
injected, so this value was used to inject time at each I/O 
when simulating the SSD.

Fig. 5  Technically fastest I/O that can be reach on disk in RAM as 
backend; cumulative distribution chart
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The Cumulative Distribution Function (CDF) in Fig. 6 
shows the HDD behavior in the guest without any modifi-
cations in the VMM (QEMU). The I/O completion on the 
chart shows writes requests below 0.125 (or a 12.5%) are 
very fast due to the HDD buffer (before 2000 μs ). Also it 
shows 100% of write requests are below 5 ms and reads are 
between 2.5 and 10 ms. The samples in the experiment show 
that HDD is multiple orders of magnitude more heterogene-
ous than the RAM or an SSD.

Figure 7 show the SSD behavior without the emula-
tor, 100% of write requests are below 200 μs and reads are 
between 200 and 400 μs . It is closer to RAM devices than 
HDD but still near an order of magnitude worse.

In order to show the results of the experiments using 
our emulator to simulate the SSD using the HDD storage 

backend. Figure 8 aims our technique to provide results 
inside the observed variability of the original device. The 
results are divided by operation and by the number of vCPUs 
used and each box-plot1 shows the distribution of the error 
difference between the mean SSD request and each of the I/O 
requests of the emulated SSD with the HDD backend (for 
each scenario). The original variability of the I/O requests 
in the SSD is shown with a transparent shade rectangle, as 
we can see the emulation is inside the rectangle on most of 
the scenarios.

In these experiments, we show that it is possible to 
emulate an SDD using an HDD as a back end. The results 
obtained are quite satisfactory and show that the proposed 
implementation is feasible. The results could be better if the 
model to determine the emulated time of each I/O request 
was more complex since we used a very simplistic approach, 
which was the average service time.

5.3  Emulation of an intel DCPMM

Simulations of new or theoretical devices could be cumber-
some to emulate. In the first case, device manufactures offers 
detailed information about the overall workload, the second 
case the model needs to determine such details. In our case 
study, we are investigating new technology, Intel Optane 
DC Persistent Memory Module (DCPMM). To achieve the 

Fig. 6  Using HDD as backend with emulator off; 100% of write 
requests are below 5 ms and reads are between 2.5 and 10 ms

Fig. 7  Using SSD as backend with emulator off; 100% of write 
requests are below 200 and reads are between 200 μs and 400 μs

Fig. 8  The original variability of the I/O requests in the SSD is 
shown with a translucent rectangle, the emulation is inside the rectan-
gle on most of the scenarios, even with a simple delay measurement. 
SSD emulation using an HDD as the storage backend

1 Boxplots give an impression of how values of a group are distrib-
uted. The middle 50% of all values are within the box itself and the 
so-called whiskers have a length of at most 1.5-times the interquartile 
range.
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emulation precisely, cooperation between the two groups 
took place. At Barcelona Supercomputing Center (BSC) in 
Spain, they extracted the latency information through the 
fio workload, from the DCPMM storage device, present at 
the NEXTGenIO prototype. At Center of Computer Science 
and Free Software (C3SL) in Brazil, it was emulated the 
DCPMM storage device through the freezing time emula-
tor, based on the information out of the benchmark from 
Barcelona.

Emulating a storage device like DCPMM is challenging, 
emulating very low latencies is difficult as in practice there 
are inaccuracies between stopping the clock and restarting 
it. To work around this problem we use an additional adjust-
ment in the virtual clock as explained in Sect. 4.3.

For this experiment we employed the same methodol-
ogy explained in Sect. 5. However, here we used a machine 
AMD Opteron Processor 6136 2.4 GHz, 32 cores compound 
of 8 NUMA nodes, 128 GB of RAM, memory manufacturer 
Samsung, DDR3 1333 MHz. The virtual storage device to 
emulate the DCPMM was a RAM disk of 16 GB. The VM 
was executed with 4 vCPUs, pinned in one of the NUMA 
nodes, limited to 2 GB of RAM. The fio workload is 10 GB 
of random read operations.

The observation about the problem of emulating a faster 
storage device than the one available in the target machine, 

raised when we ran with the naive solution. The mecha-
nism of the time dilation is not accurate enough to emulate 
a device that is faster than a storage device in RAM. As 
observed in Tables 1 and 2, the average latency of the emu-
lation in the Opteron machine is three orders of magnitude 
slower than DCPMM in the Optane machine at BSC. All 
the percentile shows a great difference in latencies in all ten 
slices, also the dispersion of the samples is observed by the 
standard deviation with a great difference.

Table 2 presents the latencies observed on the DCPMM 
extracted from the Optane machine at BSC. Those values 
are all target to emulate at C3SL on the Opteron machine.

Since the time dilation mechanism is not accurate enough, 
we used the new algorithm presented in the Sect. 4.3. In 
Table 2 we extract the parameters for the new proposed algo-
rithm. The minimum and the maximum latencies are used to 
generate a random number between them, convert to a clock 
and adjust before the guest is started, therefore moving the 
clock back in time, mimicking the DCPMM.

In the following Table 3 we present the latencies when 
emulating the DCPMM on the Opteron machine at C3SL, 
with the storage backend in RAM.

The minimum latency presented on Table 3 is 98% simi-
lar of the min latency presented on Table 2. On the other 
hand, the max value is 2547% different. Nevertheless, if we 
analyze the statistics presented in Table 3 and compare with 
Table 2 we can observe that the max value is an outlier. 
The standard deviation is 98% similar, which gives us the 
intuition that the dispersion is similar. To consolidate this 
conjecture of similarity we observe the percentiles: 1% of 
the samples are at most 1784 ns, 99% similar, percentile 10th 
are at most 1960 ns, 94% similar, we can verify a suitable 
similarity when observed until 99th percentile, the similar-
ity is 90% on average. We can conclude that 1% are outliers, 
therefore a feasible solution.

Table 1  Minimum, maximum, average and standard deviation 
and percentiles ( μs ) of completed I/Os latencies while applying the 
time dilation mechanism, therefore freezing for the average value 
(2192.31 ns) of the latency of DCPMM (naive solution)

min = 132, max = 4365, average = 318.30, stddev = 47.08

Percentiles

1.00th = 171 5.00th = 205 10.00th = 274 20.00th = 298
30.00th = 310 40.00th = 318 50.00th = 326 60.00th = 330
70.00th = 338 80.00th = 346 90.00th = 366 95.00th = 378
99.00th = 418 99.50th = 430 99.90th = 478 99.95th = 506
99.99th = 588

Table 2  Minimum, maximum, average and standard deviation and 
percentiles (ns) of completed I/Os latencies of the DCPMM from the 
Optane machine, obtained at BSC

min = 1614, max = 170885, average = 2192.31, stddev = 458.18

Percentiles

1.00th = 1768 5.00th = 1800 10.00th = 1848 20.00th = 1912
30.00th = 1944 40.00th = 1992 50.00th = 2096 60.00th = 2256
70.00th = 2352 80.00th = 2448 90.00th = 2544 95.00th = 2736
99.00th = 3120 99.50th = 3472 99.90th = 7776 99.95th = 8256
99.99th = 10048

Table 3  Minimum, maximum, average, standard deviation and per-
centiles (ns) of completed I/Os latencies when emulating DCPMM on 
the Opteron machine at C3SL (storage backend in RAM)

min = 1642, max = 6709, average = 2577.73, stddev = 451.88

Percentiles

1.00th = 1784 5.00th = 1880 10.00th = 1960 20.00th = 2128
30.00th = 2256 40.00th = 2416 50.00th = 2576 60.00th = 2736
70.00th = 2896 80.00th = 3056 90.00th = 3184 95.00th = 3280
99.00th = 3376 99.50th = 3408 99.90th = 3440 99.95th = 3472
99.99th = 3600
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5.4  Evaluation of a user space application in our 
emulator

Our concern about the emulator is the performance and 
the time distortion of a user space program. In this section, 
we evaluate a simple userspace program, in a real environ-
ment compared with our emulator. We picked a common 
tool that handles videos, the ffmpeg [Fast Forward MPEG 
(Motion Picture Experts Group)], this tool is CPU bound. 
Our target is to convert the video, this task implies read 
some chunks of the video (read I/Os), convert the video 
(CPU bound) and write the converted video (write I/O).

For this experiment, we picked a random video with 
3.5 GB in size and a total of 229,838 frames. The conver-
sion from MP4 (MPEG Layer-4 Audio), original video 
format, to h264 (Hikvision 264) makes uses of several 
resources of the target architecture, which generates some 
workload. The experiment was done using a RAM disk 
as the storage backend, giving us a reference point to our 
experiment. We picked this block device due to the well-
known behavior, as observed in the Sect. 5.1. In this man-
ner, we decreased the entropy that may arise. The freezing 
time emulator parameters were set to simulate the RAM 
storage device, but using the HDD as the storage backend. 
So we evaluated the experiment in the regular environ-
ment, then in our emulator. To validate the experiment we 
executed ten times in each environment and the results can 
be seen in Table 4.

Results in Table 4 show that we were able to mimic the 
RAM storage backend behavior. The accuracy is 98% on 
average, it is really close to the time elapsed to process the 
conversion of the video using the RAM storage backend. 
These values can be confirmed by the same value of the 
Frames per Second (FPS), which is also 98% as expected. 
According to the coefficient of variation, the low value 
indicates that the accuracy of the ten runs was enough to 
validate the results. The overhead of the emulator com-
pared to the wall clock was just 223 s (25% of the real 
machine time), when we are emulating the RAM storage. 
Notice that, when using simulators this overhead would 
be much greater [e.g. the simulation time would take a 
thousand times more (Sanchez and Kozyrakis 2013)].

5.5  Overhead of the emulator

As described in Sect. 4.4, the overhead of the emulator relies 
mostly on the mechanism of kicking the guest, this occurs 
because it is not instantaneous and cannot be run in parallel, 
which means that with an increased number of vCPUs we 
have increased overhead. The next chart shows the overhead 
of the emulator with the increase of vCPUs.

Figure 9 represents how many I/O requests were faster 
or slower than the default behavior of the SSD. The repre-
sentation on the x-axis are: negative values are how much 
faster the I/O request was, positive values how much slower 
the I/O request was. The Y-axis indicates how many I/O 
requests occurred. Each type of I/O request is limited by the 
vertical lines where 95% of the samples are. The intervals 

Table 4  Ffmpeg comparison of regular environment and our emulator

Statics type HDD RAM Emulating RAM

Average time (s) 65.46 3.52 3.58
Coefficient of variation 0.01 0.02 0.09
Frames per seconds 3637 73,311 74,292
Wall clock time (s) 669 48 892
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with one vCPU are represented by a continuous vertical line 
and symbol + , while four vCPUs are dashed vertical lines 
and symbol x.

On both Figs. 9 and 10 the curves are slightly offset from 
center (0%), this means that the value we chose to simulate 
the SSD was not accurate enough, setting a smaller value 
should just offset the curves to the center. Also, the precision 
of the emulator is about 80% of the real behavior although 
previous tests show higher precision on average.

On the other hand, the overhead using an HDD backend 
to simulate a RAM device (which should be the worst case) 
is shown in Fig. 11. We can see how the overhead goes from 
37.5 to 20.6 μs in absolute terms. On percentage-wise, this 
overhead may seem big, but the absolute time is small com-
pared even with the usual RAM variability observed.

Section 5.3 presents a new approach to emulate a device 
that does not exist in the machine that emulation would take 
place. The method moves the clock back in time and pos-
sibly could insert some entropy on the latencies. However, 
an evaluation of the user-space process already has been 
done in Sect. 5.4. Nevertheless, we agree that a higher depth 
overhead analysis would bring more insights. We consider 
such a broader evaluation as future work.

6  Conclusions

Recently, a large number of new storage devices have been 
proposed. Being able to emulate these devices in real condi-
tions is quite useful. However, the emulation of these devices 
is challenging because their performance is superior to the 
available back end. In this work, we demonstrated the use of 
an emulator that uses a time manipulation technique called 

freezing time. This technique was implemented using the 
emulator for virtual machines QEMU. The code of the emu-
lator is available for free under GPL license on (Elias 2019).

Among several experiments present, we were able to 
emulate an SSD using a regular HDD obtaining accurate 
results. The average latency observed with the emulated 
device was only 7% lower than those observed in the vali-
dation with a real device for both read and write I/O opera-
tions. An additional experiment with a newer device, the 
Intel DCPMM, also showed promising results. Future work 
includes conducting evaluations using macro benchmarks to 
verify that the results on the emulated and real devices show 
compatible results.

In addition to the accuracy of the emulation, it is impor-
tant to note that the proposed approach only requires modi-
fication of the hypervisor code. The guest’s operating system 
is unaware of the emulation and for the measurement tools 
the existence of the device emulation is completely transpar-
ent. Besides, it was demonstrated that our implementation 
has a small overhead and is feasible in practice.
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