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Abstract—During the parallel execution of queries in Non-
Uniform Memory Access (NUMA) systems, the Operating System
(OS) maps the threads (or processes) from modern database
systems to the available cores among the NUMA nodes using the
standard node-local policy. However, such non-smart mapping
may result in inefficient memory activity, because shared data
may be accessed by scattered threads requiring large data
movements or non-shared data may be allocated to threads
sharing the same cache memory, increasing its conflicts. In this
paper we present a data-distribution aware and elastic multi-core
allocation mechanism to improve the OS mapping of database
threads in NUMA systems. Our hypothesis is that we mitigate the
data movement if we only hand out to the OS the local optimum
number of cores in specific nodes. We propose a mechanism based
on a rule-condition-action pipeline that uses hardware counters
to promptly find out the local optimum number of cores. Our
mechanism uses a priority queue to track the history of the
memory address space used by database threads in order to
decide about the allocation/release of cores and its distribution
among the NUMA nodes to decrease remote memory access. We
implemented and tested a prototype of our mechanism when
executing two popular Volcano-style databases improving their
NUMA-affinity. For MonetDB, we show maximum speedup of
1.53×, due to consistent reduction in the local/remote per-query
data traffic ratio of up to 3.87× running 256 concurrent clients in
the 1 GB TPC-H database also showing system energy savings of
26.05%. For the NUMA-aware SQL Server, we observed speedup
of up to 1.27× and reduction on the data traffic ratio of 3.70×.

I. INTRODUCTION

In modern systems with Non-Uniform Memory Access

(NUMA) architecture, formed by multiple multi-core nodes,

the memory hierarchy becomes more complex, composed of

multiple cache levels and different memory sharing schemes

among the cores. In this context, to find data affinity for multi-

threaded applications is an open and highly relevant problem.

Therefore, the correct mapping of threads and data over the

NUMA nodes reduce data movement through the memory

hierarchy also reducing the number of cache conflicts and

invalidations between the threads leading to improvements on

the final performance.

In this context, when Database Management Systems

(DBMS) based on the Volcano query parallelism model [1]

execute Online Analytical Processing (OLAP) workloads, par-

allelism is hidden from operators. Typically, parallelism is set

in the query plan at planning time and the work is assigned

to threads statically, which usually uses inaccurate memory

estimation [2], [3]. In this model, the Operating System (OS)

is in charge of mapping the threads or processes from database

queries to as many processors and cores as possible [4]. It

means that the OS traditionally tries to allocate one thread per

core in a scattered way, among all the available NUMA nodes.

However, if multiple threads sharing the same chunk of data

are mapped far apart (e.g., onto different NUMA nodes), they

may cause vast amount of data movement increasing inter-

node traffic and the number of cache invalidations. On the

other hand, if threads acting over private chunks of data are

mapped nearby (e.g., inside the same NUMA node), they may

cause a high number of cache conflicts.

In this paper, we present a processing core allocation mech-

anism to support the thread scheduling and data allocation

across NUMA sockets. Our hypothesis is that we mitigate

data movement in NUMA nodes if the OS only maps threads

to an efficient sub-set of processing cores for each specific

workload based on database performance states. Thus, our core

allocation mechanism systematically analyses the hardware

resources usage by the running threads to set up the current

database performance state. Then, the mechanism decides if

cores need to be allocated or released with respect to the

performance state. In this sense, our proposal is orthogonal

to previous state-of-the-art works, such as SAP Hana [5], that

propose adaptive data and inter-socket thread placement strate-

gies based on hardware counters (e.g., the memory intensity

of threads). Nonetheless, results show that our mechanism can

further improve the performance for NUMA-aware DBMS,

such as SQL Server [6].

Our mechanism is implemented on top of an abstract model

of the database performance states using PetriNet theory. We

model performance goals (or predicates) that need to be sat-

isfied to trigger the allocation of CPU cores, namely PetriNet

Predicate/Transition (PrT), in order to bring the database to

a stable performance state. Figure 1 overviews our PetriNet

mechanism in the query processing ecosystem on NUMA. The

PetriNet monitors the resource usage of the worker threads

on top of OS kernel facilities to decide for the allocation

of CPU cores (e.g., cgroups, mpstat, numactl, likwid). The

correct location for the next allocation depends upon a priority

queue maintained by different policies, called allocation modes

(allocated cores are depicted in black).

As far as we know, we are the first to propose a mechanism

that provides to the OS an efficient sub-set of cores to per-

form thread mapping considering the NUMA data placement

statistics specific for DBMS. Overall, our main contribution

in this paper are the following:

473

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00050



Fig. 1: OS scheduler performing the mapping of database threads
supported by our PetriNet mechanism.

Analysis of data movement in NUMA: We discuss why

handing out all the cores available in the system to the OS

may muck up OLAP performance. We show microbenchmark

results of interconnection bandwidth usage between NUMA

nodes to present our motivation.

The abstract model: We propose an abstract model for

resource allocation in NUMA machines based on database

performance states. The model can be easily adapted to

allocate either multi-cores or remote memory in any OS and

DBMS of the user choice.

The local optimum number of cores: We present the concept

of “local optimum number of cores” to tackle the current

OLAP workload, controlling thus the allocation and release

of processing cores along the execution of queries.

An adaptive multi-core allocation algorithm: We present

different allocation modes to maintain the local optimum

number of cores and an adaptive algorithm decides the location

for the next allocation/release taking into account the accessed

memory addresses kept into a priority queue data structure.

Empirical results: We show improvements on NUMA-affinity

when executing MonetDB and SQL Server with our mech-

anism. For MonetDB, results show consistent reduction in

the local/remote per-query data traffic ratio of up to 3.87×
(2.47× on average) running the TPC-H leading to speedups

as higher as 1.53× (1.29× on average). With less data traffic,

we observed important system energy savings of 26.05% on

the overall system. For SQL Server, we observed reductions

of up to 3.70× (2.57× on average) in per-query data traffic

ratio and speedup gains up to 1.27× (1.14× on average).

This paper is organized as follows: next section describes

the problem of moving data around through the intercon-

nection when processing OLAP. Section III discuss the ab-

stract model and the rule-condition-action pipeline. Section IV

presents the core allocation modes and the implementation

details. Section V shows empirical results and Section VI

discusses related work. Section VII brings conclusions.
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Fig. 2: Four NUMA nodes formed by Quad-Core AMD Opteron
8000 Series, interconnected by Hyper-Transport (HT) 3.x link.

II. DATA MOVEMENT IMPACT IN NUMA MACHINES

In this section, we discuss the data movement issues during

the execution of DBMS threads in a NUMA machine. We also

study a microbenchmark to deeply understand what happens

when moving data from the NUMA nodes to cores/threads

working on data. Our microbenchmark consists of the TPC-H

query 06 (Q6), because of its data access pattern with high

spatial locality [7]. We study two versions of Q6, the original

SQL and the hand-coded C language version.

A. NUMA Architecture and Thread Scheduling

Nowadays, NUMA is widely available in multi-socket ma-

chines. For such systems, mapping threads into processors

near where the data resides helps improving overall system

performance [8]. Figure 2 presents a diagram of a NUMA

architecture using AMD Opteron 8000 processors with a

set of cores and a DDR-2 memory bank attached to each

node. This specific NUMA architecture will be used in our

evaluations, and thus it is important to understand its details.

Each NUMA node is attached to a memory bank, the nodes

and the memories are interconnected using Hyper-Transport

(HT) 3.x links. The memory access latency varies accordingly

to the distance between the node (where the core is located)

and the memory being accessed. Therefore, access to remote

memories imposes higher latency than local memories due to

the interconnection.

In Linux, the OS scheduler may determine from which

NUMA node the kernel will allocate memory with respect

to load balancing scheduling policies1. Ideally, we want the

database threads to access local memory, which occurs in the

default policy, called node-local. We assume in this paper

the Volcano-style horizontal parallelism implemented by most

of the DBMS where the execution of an operator at a time

spans many threads [2], [1]. We also assume that a non-

NUMA DBMS hands over to the OS scheduler the control

over data and thread locality, unlike a NUMA-aware DBMS

that explicitly assigns worker threads to cores (discussed in

Section VI).

On the thread startup, at the first use of a memory page,

called first touch, the OS determines its NUMA node location.

1https://www.kernel.org/doc/Documentation/vm/numa memory policy.txt

474



SELECT

    sum(l_extendedprice * l_discount) as revenue


FROM

    LINEITEM

WHERE


    l_shipdate >= date '1997-01-01'

AND l_shipdate < date '1997-01-01' + interval '1' year

AND l_discount between 0.07 - 0.01 and 0.07 + 0.01


AND l_quantity < 24;

SQL:

X_1:= algebra.thetasubselect(l_quantity)

X_2:= algebra.subselect(l_shipdate,X_1)

X_3:= algebra.subselect(l_discount,X_2,)


X_4:= algebra.projection(X_3,l_extendedprice)

X_5:= algebra,projection(X_3,l_discount)

X_6:= [*](X_4,X_5)


X_7:= aggr.sum(X_6)

MAL:

static double tpch_query6(int lineitemSize, double *__restrict__ p_quanEty, double *__restrict__   
p_extendedprice, double *__restrict__ p_discount, int *__restrict__ p_shipdate, double 

sum_revenue, double discount) { 


for (int i = 0; i < lineitemSize; i++) {

if (p_shipdate[i] >= 19970101 && p_shipdate[i] < 19980101) { 


if (p_discount[i] >= (discount - 0.01) && p_discount[i] <= (discount + 0.01)) { 


if (p_quanEty[i] < 24) { 

sum_revenue += p_extendedprice[i] * p_discount[i]; }}}} 


return sum_revenue; } 
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Fig. 3: SQL and C code versions of the TPC-H Q6 and the query
plan written in Monet Assembly Language (MAL).

These memory pages (i.e., data from the threads) can be moved

around during the execution, as well as the thread can be

moved around to a different NUMA node for performance

purposes. During the thread creation process, the OS scheduler

attempts to leave them on remote nodes balancing thus the

CPU load. This way, these CPUs far-apart will not share

cache memories. This is the case of a typical OLAP workload

with many threads spread all over the nodes in which data

movement occurs to catch up with threads in remote nodes.

The effect of data movement is more compelling when large

structures are accessed frequently with lots of data shared

among the threads. In the rest of this section, we discuss this

effect that motivates our work.

B. TPC-H Q6 evaluation

In this subsection we study the data movement effect on

NUMA showing performance and resource usage statistics.

1) Impact of remote memory access: Our first experiment

aims to show that the current OS scheduler is not optimal

for NUMA systems executing DBMS queries, leading to a

high number of remote memory accesses even when querying

over the same data concurrently. For this experiment ran the

Q6 microbenchmark on the 4-node quad-core AMD Opteron

machine depicted on Figure 2. Figure 3 shows the SQL and

C implementations of Q6 and the query plan. We compare

the data/thread scheduling performed by the unmodified OS

policy to a controlled execution with predefined sparse or

dense thread/data affinity. We also compare the hand-coded

C language version of Q6 to the SQL version on MonetDB

of the same query. Both versions were created using 1 GB

scale factor of raw data upon different numbers of concurrent

clients. For details about the experimental setup see Section V.

We experimented the C language hand-coded version of
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Fig. 4: TPC-H Q6 execution with an increasing number of concurrent
clients.

the original Q6 written using Posix threads (pthreads) for

two reasons: (1) to state the baseline of raw performance (to

establish a near-to-limit performance) and; (2) to analyze if

setting the affinity of pthreads makes the OS improving data

locality. We only implemented the columns that are part of

the query and the operations were made parallel to mimic

the Volcano model of multiple threads. The pthreads were

mapped to the cores using two different policies (dense and

sparse) setting the affinity of a thread to one or all cores

(pthread setaffinity np()). In the dense mode all the pthreads
are sent to the same node, whereas in the sparse mode pthreads
are spread to cores on different nodes. These affinity modes

follow the idea of incremental allocation presented in [9], [10].

Figure 4 compares the OS scheduling for MonetDB worker

threads (OS/MonetDB) and the hand-coded C language ver-

sion of Q6 (OS/C). It also presents the scheduling for the C-

code using two preset data affinities (Sparse/C and Dense/C).

As expected, results show the same effect present on the C-

code and the SQL-code versions: the traffic of interconnection

increases with the number of concurrent clients, because the

OS imposes a load balance during the execution of the code.

However, the OS does a better job finding data affinity with the

C-code rather than DBMS. This happens, because the C-code

creates multiple threads from a single program, while the SQL

version generates multiple threads for every operator in the

query plan using the Volcano horizontal parallelism creating

a more complex iteration system. This reflects in the query

throughput and the increasing number of page faults when

increasing concurrency (Figures 4(a) and (b)). The difference

of interconnection usage between both versions (SQL and C)

varies from 100× with a single client and 8× when evaluating

with 256 clients (Figure 4(c)).

In this experiment, we also evaluate the number of minor

page faults per node. This metric presents important informa-

tion regarding the amount of data moved around the NUMA

nodes. Minor page faults occur in two situations: (1) in the

data first touch and; (2) in the remote access to data. The first

touch situation means the OS will allocate memory for the

thread in the local node. The remote access situation means

the same data has already been touched by another thread on
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a remote node. The new fetch generates a new minor page

fault leading to remote access with additional cost to move

data around. We ran the experiments varying from 1 to 256

concurrent clients expecting performance drop after 16 to 32

active threads due to the number of cores available.

As expected, we observe that the number of page faults

per second increases along with the number of concurrent

clients. We also observe the increasing usage of intercon-

nection bandwidth when all cores are let to the system. In

particular, we observe that 16 concurrent users executing Q6

moves around 840 MB/s of interconnection traffic jumping to

8 GB/s with 256 concurrent users (Figure 4(c)). It is clear that

more clients or more cores means more pressure: the side-

effect when the OS forces to keep load balance without an

auxiliary mechanism to detect a good thread mapping.

2) Impact of thread scheduling: We investigate the thread

scheduling performed by the OS with a single client execution.

Figure 5 presents the migration of the threads spawn by Mon-

etDB to execute Q62. The different colors indicate different

NUMA nodes and the different tones indicate the different

CPU cores with the same node. This plot shows that threads

migrate several times across the cores along the execution

time. This showcases the effort of the OS to maintain the load

balance. However, as we showed on the previous result, the

traditional scheduling policy used by the OS is not NUMA-

aware, which costs extra latency penalty to the cores access

remote memory.
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Fig. 5: Evaluating the lifespan and the migration between cores of
the threads generated by Q6 in a single-client execution with all the
16 cores available.

We also observe the execution of each worker thread when

running Q6 to understand the parallelism on MonetDB that

leads to access to data partitions and possible data movement.

Figure 6 shows the worker threads for Q6 as presented by

the Tomograph facility [11]. Notice that we removed from

our analyzes along the paper all the administrative threads.

For instance, the first operator of the query plan in gray bar

the thetasubselect (line 1 from Figure 3) is executed by 15

threads meaning parallel access to disjoint partitions of the

l quantity column internally implemented as a vector called

Binary Association Table (BAT) in MonetDB. The parallel

access to many data partitions brings pressure on the OS

scheduler to find good NUMA-locality reflecting the observed

2The number of worker threads is set one thread per core according to the
documentation: https://www.monetdb.org/Documentation/monetdb-man-page.
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Fig. 6: A screenshot of the Tomograph facility tracking the 16 threads
spawn by MonetDB to execute Q6.

numbers of cache misses and HT traffic.

III. THE ELASTIC MULTI-CORE ALLOCATION MECHANISM

In this section, we present our mechanism to guide the

dynamic allocation of CPU cores for a given OLAP workload.

We have particular interest in OLAP, because queries may pro-

vide many different CPU and memory consumption patterns in

the same workload [12]. Therefore, there is constant pressure

on the OS to update the allocation of the threads across the

NUMA nodes for keeping load balance and data affinity.

We establish the following goals of our mechanism. First, it

needs to promptly react to the fluctuations of CPU and primary

memory consumptions to help the OS allocating threads with

the lowest possible negative impact on performance. In this

context, the mechanism should easily scale-out and dynami-

cally find the number of cores to tackle current workload in

contrast to the static manner implemented by SAP Hana [13]

and Shore-MT [9]. Second, it must be straightforward to

integrate to any DBMS of the user choice to motivate and

leverage its usage.

A. Overview

Our mechanism implements an abstract model based on

performance state transitions of the running database. This

model is referred to as PetriNet Predicate/Transition (PrT)

and has the ability to define performance conditions, or pred-

icates, over monitoring information of computing resources

consumed by the database threads. The predicates validate

whether performance state transitions occurred. PrTs are com-

monly used in the literature to model performance properties

of dynamic and concurrent systems [14], [15]. A PrT is an

oriented bipartite graph representing the flow of tokens from

one place downstream to another place around the net topology
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Fig. 7: State transitions of TPC-H Q6 and the allocation of cores:
the X-axis depicts the transitions fired over time. The Y-axis on the
left edge is the CPU usage (%). The Y-axis on the right edge is the
number of allocated cores.

(i.e., no bidirected edges). A token represents an amount of

a given entity. For instance, a token represents the number of

allocated CPU-cores or their usage and interruptions.

We detail our model with CPU-load information for multi-

core allocation to ease the understanding of the PrT, although

the abstract nature of the model allows adding any other

resources and metrics to improve the allocation accuracy. For

instance, we can model the PrT with interconnection traffic in

the integrated memory controller (HT/IMC) instead of CPU-

load. Actually, in our experiments we explore the model with

these two different computing resources (see Section V).

The abstract model is formally defined as a tuple with

domain {P, T, F,R,M} starting with the disjoint finite sets

places and transitions P ∩ T = ∅. The essential net structure

is the subdomain {P, T, F}. Based on performance limits,

presented in Section IV-A, we define the places p ∈ P
as performance states of a database under execution (i.e.,

{Idle, Stable, Overloaded})

The transitions t ∈ T define the conditions to switch

the performance states according to the variables v =
{u, nalloc, ntotal}, where u represents the average CPU-load

of a NUMA node which is given in terms of percentage,

nalloc ∈ N the number of allocated cores and ntotal the

total number of cores available in the hardware. To illustrate

our definitions, we consider the allocation of cores along the

single execution of the TPC-H Q6 depicted on Figure 7. When

the load of the threads goes up, the transition is promptly

fired between performance states to allocate cores to the OS.

Analogously, when the load goes down, cores are released.

The set F defines the arcs <pi, tj> or <tj , pi> between

places and transitions to satisfy the condition F ⊆ (P × T )∪
(T ×P ). Two functions define the flow relation: Pre(P ×T )
and Post(T × P ). The Pre function defines the outgoing

place to the incoming transition with an arc <pi, tj> if and

only if Pre(pi, tj) �= 0. For instance, “Stable− t3” means the

validation of the Stable state at transition t3. Analogously, the

Post function defines the outgoing transition to the incoming

place with an arc <tj , pi> if and only if Post(tj , pi) �= 0. For

instance, “t2−Stable” means a valid condition from transition

t2 fired the Stable state. Figure 8 presents the model structure

as an incidence matrix AT = Post− Pre.

⎛
⎝

Post t0 t1 t3

p0 0 0 0
p1 1 0 0
p2 0 1 0

⎞
⎠−

⎛
⎝

Pre t0 t1 t3

p0 1 0 0
p1 0 1 0
p2 0 0 0

⎞
⎠ =

⎛
⎝

p0 p1 p2

−1 1 0
AT 0 −1 1

0 0 0

⎞
⎠

Fig. 8: The transpose AT orients the flow relation based on pre-
conditions Pre and post-conditions Post.

Finally, the net inscription {R,M} defines the semantics

of the model, where R : T → <oper, bool>(X) is a well-

defined constraining mapping, which associates each transition

T with a first order logic formula defined in the underlying

algebraic specification [16]. This logic defines the conditions

in the network. For instance, the condition u ≥ 70 means

to fire a transition when the CPU-load overtakes 70%. M :

P → N is the initial marking with the initial token distribution

to every place. M(p): u → N is a function to tell how many

tokens reside in that place. For instance, this function tells

how many cores are available.

B. The abstract model specification

In this subsection, we specify the rule-condition-

pipeline and the definitions to build our PetriNet

model. Initially, we define the set of places

P = {Stable, Idle,Overload,Provision,Checks} and

transitions T = {t0, . . . , t7}. The first three places are

related to the database performance states and the last two

are complementary places to assess the load, where Checks
is synchronously updated with the current resource usage and

Provision informs the number of cores in usage. In order

to facilitate understanding, we partitioned the PetriNet in

sub-nets around the places Stable, Idle and Overload.

To decide whether to fire a transition, we set performance

thresholds based on resource usage (given in percentage):

thmin is the minimum threshold and thmax is the maximum

threshold. If the performance thresholds are respected, the

database is considered Stable and only monitoring is required.

Otherwise, it needs to fire transitions to bring the database

back to the Stable state.

Finally, we set the starting marks of the set M at each

state. These marks define the net execution with the ac-

ceptable range of resource usage at each place, as follows:

m0(Checks) = {0, . . . , 100}, m0(Idle) = m0(Stable) =
m0(Overload) = {0}, and m0(provision) = {r} (i.e.,

aalloc == 1 default number of cores initially allocated).

We illustrate our specification through a workload currently

using 3 out of 16 cores (nalloc == 3 and ntotal == 16) of

our AMD Opteron machine and CPU usage thresholds (given

in load percentage) based on the rules of thumb from the

literature [17] and adjustments by empirical experiments. The

thresholds are defined as thmin = 10 and thmax = 70.

1) The overload sub-net: The overload sub-net models

high CPU load when more processing cores are required to
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be allocated. The overloaded state is somehow expected for

systems with high OLAP throughput. Instead of the common

practice of letting the OS dealing with all the available CPU

cores, the cores are made available to the OS on demand.

The final goal is to provide cores accordingly to the workload

behavior, considering the load and also the data share among

the threads. For instance, Figure 9 depicts t1 firing when the

CPU load is u = 99% with thmax=70%, considering 3 cores

provisioned out of 16 cores. Next, t5 fires the transition to

Provision to allocate one more core if there are still cores

available to be allocated (i.e., nalloc < ntotal, ntotal == 16).

Figure 7 illustrates this transition as “T1−Overload− T5”,

during Q6 execution. In parallel, t5 fires Checks to validate

the CPU load, that goes down to u = 68%.
In this example, the incidence matrix of the Overhead

sub-net represents the fired arcs of connections in the pre-

conditions, as {Checks−t1, Overload−t5, P rovision−t1)}.

Notice that the arc “Overload−t6” is not set in the Pre matrix,

because the validation does not allow any post-condition for

t6, since there are still NUMA cores available. The post-

conditions are {t5−Checks, t5−Provision, t1−Overload)}.

The incidence matrix is presented, as follows:

⎛
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Provision 0 na
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Fig. 9: Tokensthrough transition in the Overload sub-net to allocate
one core with u = 99%, nalloc = 3 out of ntotal = 16 cores and
thmax = 70%.

2) The idle sub-net: The Idle sub-net models the database

in idle state when cores can be released. The condition to fire

t0 is set to low CPU usage across multiple cores. Next, t4 fires

if there are still cores to be released (i.e., nalloc > 1), otherwise

t7 fires the transition to Checks waiting further updates in the

variables. Transition t7 bounds the least number of CPU in the

system. For instance, Figure 10 depicts t0 firing when the CPU

load is u = 10% with thmin = 10% for 5 cores provisioned.

Next, t4 fires the transition to Provision to release one core

(nalloc = 4). Figure 7 depicts this transition, as “t0−Idle−t4”.

Concurrently, t4 fires to Checks to validate the load again that

goes down to 5% after the transition.
The incidence matrix of the Idle sub-net, according to the

example, depicts the fired arcs of connections in the pre-

conditions, as {Checks − t0, P rovision − t0, Idle − t4)}.

Notice the arc “Idle − t7” is not set in the Pre matrix,

because the validation does not allow any post-condition for t7.

Therefore, the fired arcs of connections in the post-conditions,

are {t4−Checks, t4−Provision, t0− Idle)}. The incidence

matrix is presented, as follows:
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Fig. 10: Tokens through transition in the Idle sub-net to release one
of the 5 CPU cores with u = 8% and thmin = 10%.

3) The stable sub-net: The Stable sub-net models the

database in stable performance state, when the current number

of cores is sufficient for the current load. This state is repre-

sented by the combined load usage u of the running cores kept

between the thresholds. The Pre matrix for the Stable sub-net

presents the arcs of connections between “Checks− t2” and

“Stable − t3” (i.e., pre conditions). For instance, Figure 11

depicts this sub-net firing t2 for a given CPU load of u = 40%
with thmin = 10 and thmax = 70.

The Post matrix shows the arcs of connections between

“t2 − Stable” and “t3 − Checks” (i.e., pos condition). The

incidence matrix for the stable sub-net shows the effect of

the t2 and t3 firing. The first line presents that firing removes

the token from Checks and adds to Stable. The second line

shows t3 that firing removes the token from Stable and adds

to Checks. No core allocation is required in this scenario.

Figure 7 depicts this transition, as “t2 − Stable − t3”. The

incidence matrix is presented, as follows:

(Post t2 t3

Checks 0 u
Stable u 0

)
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(Pre t2 t3
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Fig. 11: Tokens through transition in the Stable sub-net with u =
40% and threshold between 10% and 70%.
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IV. THE ALLOCATION OF PROCESSING CORES

Our optimization goal is to find out the number of cores

that best accommodate the current OLAP load and prevent

both under-utilization or over-utilization of the multi-cores.

Moreover, our mechanism must take into account the data al-

location across the NUMA regions allocating cores to specific

nodes (near the address space of the first touch), avoiding data

movement and thread migrations.

In this section we describe the core allocation performed by

our mechanism, called Adaptive Priority, and we also discuss

two other simpler allocation policies Sparse and Dense. We

also show the implementation details to keep the performance

counters up-to-date in the abstract model.

A. The local optimum number of cores

The Local Optimum Number of Cores (LONC) is achieved

when the CPU-load is within the Stable sub-net. We refer as

to “Local Optimum”, because we only take into account the

arithmetic CPU-load average of the active database threads.

Formally, we define the LONC, as follows:

∀ w ∃ nalloc|(thmin < u < thmax) ∧ p(nalloc) ≥ p(ntotal) (1)

where:

• w is the current workload of the database threads;

• u is the average resource usage of database threads;

• nalloc is the number of allocated CPU cores (nalloc ≤
ntotal);

• ntotal is the number of available CPU cores;

• p(x) is the performance function, where x assumes the

number of CPU cores nalloc or ntotal;

To any OLAP workload w, there is a certain number of

CPU cores nalloc such that the load of each core are between

the minimum and maximum thresholds, in which the database

performance p(nalloc) is equal or better than the performance

p(ntotal) with all the CPU cores available in the hardware. The

performance function p(x) relies on system counters provided

by the OS and the DBMS.

In our implementation, the performance function uses the

OS’s functionalities to keep the counters up-to-date in the

abstract model and improve the accuracy of the resource

allocation. Initially, we use the cgroups, which is a kernel

feature, to isolate the threads of the DBMS, and their fu-

ture children, into specific hierarchical groups (our allocation

modes). With cgroups, we gather the process identification

numbers (PID) of the threads to monitor their execution and

limit their available resources (e.g., cores). We implemented a

priority queue with the PID of the threads and their NUMA

resource usage information (e.g., their execution core and

address space). We detail the algorithm to maintain the priority

queue later in this section. We also use the MPstat for CPU

load information of the PIDs and we use the Likwid [18] tool

to get the L3 cache data misses (L3CACHE Likwid option),

the bandwidth on the NUMA interconnection links (HT at
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Fig. 12: The Sparse and Dense modes over time. Only the black
boxes (i.e., cores) can be accessed by the OS. The red boxes are the
next cores to allocate.

NUMA 0 3 Likwid option) and the memory traffic (MEM
options on Likwid) 3.

The CPU load for the LONC calculation also considers

other processes of the DBMS besides the threads from query

execution. When operations fully utilize the CPU (u = 100%),

a new core is allocated to maintain stable use and prevent

DBMS threads to stall. The expected result is to achieve better

response time with more cache hits and less remote memory

access compared to the current allocation of CPU-cores for

OLAP. Following our example, Figure 7 depicts the execution

of Q6 supported by our mechanism. This figure exemplify

the mechanism behavior, where cores allocated when the load

goes up to 99% (transition t1 → t5) and released when the

load goes down to 8% (transition t0 → t4).

B. The multi-core allocation modes

In this section, we present the core allocation modes to ad-

dress the needs of different DBMS thread models. The thread
model may present more shared memory between threads

and require to allocate them in the same node. Instead, the

process model may not present much memory shared among

the threads. In this case, threads are allocated in different nodes

to avoid memory competition. To illustrate these allocation

modes, we consider the NUMA machine depicted in Figure 2.

1) The sparse and dense modes: The Sparse and Dense
modes performs dynamic core allocation following simple

rules during the workload execution. The definition of the

general allocation mode function is straightforward. It maps

a NUMA node with index i to its jth core and is defined by

core(i, j) = d.i+ j, where 1 ≤ j ≤ d. In our function, d is a

constant to represent a d-ary node machine, shown as d = 4
by Fig. 12 to represent our four-node AMD Opteron machine.

The Sparse mode iterates over i, j to allocate one core at

a time in a different NUMA node. The Dense mode iterates

over j, i to allocate one core at time in the same NUMA node.

Fig. 12 shows the sparse and dense mode allocation over time.

2) The adaptive priority mode: The goal of our adaptive

multi-core allocation mode is to spot the next allocation

NUMA node based on memory usage information. A priority

queue is used to indicate the node with the largest/smallest

3The likwid monitoring options for the ADM Opteron is available at:
https://github.com/RRZE-HPC/likwid/tree/master/groups/k10
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amount of allocated memory (on top/bottom priority) and the

model allocates/releases a core near to such address space.

Each entry of the priority queue keeps the PIDs of the active

threads with their address spaces and the number of pages per

NUMA node.

In the workflow of the adaptive mode, the number of pages

per NUMA node is recorded in a counter to acknowledge the

node with the biggest amount of pages. The NUMA node

with highest priority is the one with the biggest counter value.

Analogously, the NUMA node with the smallest counter value

is the one with lowest priority. If a new CPU-core is needed,

it is allocated in the highest priority NUMA node. If a CPU-

core needs to be released, a core in the NUMA node with the

lowest priority is deallocated.

V. EXPERIMENTAL ANALYSIS

We implemented our prototype as an application program

on top of Debian Linux 8 (“Jessie” with kernel 3.16.0-4-

amd64) and we compare our mechanism to the OS scheduling

of threads spawn by the MonetDB (v11.25.5) DBMS. We also

evaluate the mechanism with the NUMA-aware DBMS SQL

Server (v2017 Developer RC2) with column store index in

Section V-C as both DBMS implement similar thread model

based on Volcano and implement similar parallel access to col-

umn data structures (i.e., BAT or vectors) [6]. We performed

the experiments on a NUMA machine (previous illustrated on

figure 2) formed by 4-node with a Quad-Core AMD Opteron

8387 each, executing at 2.8 GHz. Each Opteron socket is

formed by four cores with private L1 cache (64 KB) and

L2 cache (512 KB) and a shared L3 cache (6 MB), with the

NUMA nodes interconnected by Hyper-Transport (HT) link

3.x achieving 41.6 GB/s maximum aggregate bandwidth (32-

bit). This machine includes 64 GB of DDR-2 main memory

and 1.8 TB SATA disk. We let all the 16 cores available

to the DBMSs when running without the support of our

mechanism. We present the results considering the average

over 10 executions for each allocation mode.

Inside the mechanism, we coded the thresholds to thmin =
10 and thmax = 70 following the rules of thumb in the

literature [17] and these values are kept in all the experi-

ments. Nevertheless, such parameters could be used to de-

fine trade offs between core utilization and performance, we

experimented different thresholds, but decreasing thmin lets

too many cores in idle state, while increasing thmax leads

to contention with too many busy cores. We measured the

overhead of our mechanism in terms of the flow of tokens in a

5×8 matrix to trigger a transition in our abstract model. In the

dense mode the flow of tokens takes on average 0.017 seconds,

while the sparse mode takes 0.021 seconds and the adaptive

mode 0.031 seconds. The CPU load average computing the

state transition is less than 1%. Notice that we require only a

single instance of our mechanism to support all DBMS clients.

A. Analysis of the TPC-H Q6

In this section, we investigate the impact of our mechanism

(Adaptive), the normal OS scheduling (OS/MonetDB), and two
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Fig. 13: Performance metrics when processing an increasing numbers
of concurrent clients running the thetasubselect.

static modes also supported by our mechanism (Sparse and

Dense). We focus our analysis on the thetasubselect operator,

because it moves large amounts of data prior to other operators

in the plan, which is the l quantity column with uniform

distribution and 45% of selectivity (see Section II-B). This

scenario benefits the dense mode (and the adaptive), because

the OS scheduler is expected to map threads close to the

memory address space of the column.

1) Impact of scheduling: In this section, we present the

impact of the allocation modes on thread scheduling as we

increase the concurrency, that is number of clients in parallel.

We performed the same execution protocol described by [13],

but limited to 256 concurrent users running the modified

version of Q6 in 1 GB (size of raw data).

Figure 13 shows NUMA-related performance metrics. The

query throughput metric showed its peak at 64 concur-

rent users, but the performance improvements happened in

all scales (Figure 13 (a)). Overall, the adaptive presented

higher efficiency and performance, achieving 25% more query

throughput than the OS scheduler. The metrics of CPU load

and tasks remained similar in all the modes (Figures 13 (b)

and (c) respectively). However, the OS effort to keep load

balance resulted in 46% more stolen tasks than our adaptive

mode (Figure 13 (d)).

Figure 14 shows memory usage in order to understand the

impact of the stolen tasks. The results show the difficulty of

the OS scheduler to find thread/data locality. We observed that

our mechanism (adaptive) decreased the L3 cache misses in

43% improving memory throughput by 27% (Figures 14 (a)

and (b)). With poor thread mapping, the OS scheduler achieved

the highest interconnection usage (HT Traffic) among all the

experiments meaning high data movement (Figure 14 (c)).

With less data movement, the adaptive mode exploited better

the memory bandwidth of all sockets simultaneously matching

the memory throughput behavior observed in NUMA-aware

DBMS: SQL Server (see Sec. V-C) and SAP Hana (see [13]).

Considering the simple dense and sparse modes, the dense

mode let underused the last socket S3, while the sparse mode

showed more interconnection traffic than the other modes and

consequently lower memory throughput. This result shows the
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impact of each allocation mode: nearby (dense) and far apart

(sparse). Nevertheless, both modes presented less stolen tasks

and better memory throughput than the OS scheduler.
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Fig. 14: Memory access metrics with 256 clients running the
thetasubselect.

2) Impact of selectivity: In this section, we present the

impact of different allocation modes when 256 concurrent

clients fetch different amounts of data in 1 GB database.

This means measuring the impact of memory-intensive column

scans in different levels of selectivity.

Figure 15 depicts the results of L3 cache misses. The lower

the value, the better is the memory usage, which is observed in

all our allocation modes when compared to the OS scheduler.

Figure 15 (a) shows that the cache size is insufficient to keep

the materialization of Q6 with more than 64% of selectivity

with a spike in L3 load misses. Our allocation modes (adaptive,

dense and sparse), present on Figures 15 (b), (c) and (d)

respectively, offset the cache insufficiency with better memory

throughput. Interestingly, none of our modes at any selectivity,

even retrieving 100% of the column, presented more L3 cache

misses than the OS scheduler when retrieving more than two-

thirds of the column (i.e., 64% of selectivity).
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Fig. 15: Evaluating L3 cache misses with different selectivities and
256 clients processing the thetasubselect.

3) Impact of the Migration of Threads: In this section, we

compare the migration of threads during their lifetime and in

which cores they executed. Here, we evaluated the complete

query plan of the Q6 statement to study the impact of the
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Fig. 16: Lifespan and the migration of cores of each thread of the
original TPC-H Q6 with a single client.

migration of threads to access the materialized data in different

nodes along the query pipeline. We ran this experiment with 1

client in 1 GB database to compare to the results of Section II.

As expected, the dense and adaptive modes made the

scheduler run the threads in the same NUMA node most

of the time (Figs. 16 (b) and (d)), while the OS scheduler

mapped MonetDB’s threads all over the nodes (Fig. 16 (a)).

Interestingly, the threads migrated several times from one

core to another and sometimes they even returned to the

same core. This shows that the current OS scheduling is

not NUMA-friendly to the database load and is constantly

migrating threads to find NUMA-affinity. The sparse mode is

the closest to the expected behaviour of the OS scheduling

assigning threads far-apart, however, Fig. 16 (c) shows less

thread migration when gradually offering less cores to the OS.

Next, we analyze the performance metrics when our mech-

anism exposes only the efficient subset of cores to the OS

scheduler. Figure 17 (a) shows that the response time of

Q6 was 27% faster with the adaptive mode. Figures 17 (b)

and (d) respectively show 9× more HT traffic and 2× more

L3 cache misses for the OS scheduler than for our adaptive

mode, impacting negatively in the performance and energy

consumption. With less cores available for mapping threads,

our mechanism helped the OS to take good scheduling deci-

sions resulting in higher cache hits and less remote accesses.

B. PetriNet with HT/IMC State transition

In this experiment, we switch the state transition strategy

of the PrT from CPU-load to the ratio of traffic in the

integrated memory controller (HT/IMC). Our goal is to show

the flexibility of our model, that can fit different strategies

and metrics to take decisions. The HT/IMC ratio defines how

NUMA-friendly is the system: the system is able to process

more data with less interconnection traffic. Thus, we can

observe if the interconnect usage achieves a better allocation

strategy than CPU load. We empirically set the HT/IMC ratio

thresholds to thmin = 0.1 and thmax = 0.4 based on the best

achieved results. We extract the HT/IMC ratio of individual

queries from their PIDs in the priority queue.

Figure 17 compares side-by-side the PrTs configured with
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Fig. 17: Performance metrics of Q6 with 1 client in 1 GB database
running our model with two different state transition setups: CPU
load and HT/IMC.

both state transition strategies. Overall, we observe similar

behavior in the migration of the threads with slightly different

results in response time, HT traffic and L3 misses, Figs. 17 (a),

(b) and (d) respectively. In some cases the CPU load presented

half of the HT traffic. With the HT/IMC metric, the OS started

filling in the L3 cache, but when the mechanism chooses to

allocate a new core far apart all data loaded into L3 is lost,

generating more cache misses and increasing the execution

time (Fig. 17 (c)). Therefore, the PetriNet with HT/IMC state

transition takes longer to make the allocation with impact in

thread movements.

C. TPC-H Benchmark

In this section, we analyze the impact of our mechanism

running the entire TPC-H query stream using two workloads.

Moreover, we analyze our mechanism with MonetDB and the

NUMA-aware DBMS SQL Server. We do not aim to make

a comparison between DBMSs. Instead, our goal is to show

that our mechanism is orthogonal to their thread and data

placement strategies improving their NUMA-affinity with the

elastic allocation of cores that assists the OS scheduler.

1) Stable phases workload: In this section, we present the

impact of our mechanism with a more dynamic data access

pattern. We present the results for the concurrent execution

of all the TPC-H queries to show that our address mapping

scheme self-adapts to the changing workload and keeps the

processing in specific NUMA nodes. The workload is divided

in phases, where each phase is the concurrent execution

of each query at a time by 256 users in 1 GB database.

Figure 18 shows the results for memory throughput (y-axis)

and execution time (x-axis).

Using MonetDB, the adaptive mode improved the OS

scheduling task of finding thread-data affinity. It was 41%

faster with higher memory throughput than the OS/MonetDB.

For instance, the execution until the 50th second shows that

our scheme focused on sockets S0 and S2, while between the

200th and 220th seconds it switched to sockets S1 and S3.

Besides, we observe that the OS is oblivious to the database
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Fig. 18: Stable phases workload with 256 concurrent clients in 1 GB
database.

load without our mechanism and constantly uses the cores on

socket S0 over the whole execution (Figs. 18 (a) and (b)).

When executing with SQL Server, we observed that a

NUMA-aware DBMS better exploit the sockets simultane-

ously, and even so, our mechanism decreased response time.

SQL Server associates threads and cores to improve affinity,

but with less cores available, for instance between the 40th

and 60th seconds, there is less effort to maintain coherence of

such association (Figs. 18 (c) and (d)).

2) Mixed phases workload: Here, we present the results

executing 256 concurrent users continuously running a ran-

dom query out of the 22 queries of TPC-H. Figures 19(a)

and 19(b) show the speedup split per query of our mechanism

compared to the OS scheduler with MonetDB and SQL Server,

respectively, and the proportion of the interconnection traffic

in relation to the traffic of the HT/IMC as described in [9].

The adaptive mode presented the best per query speedup,

achieving up to 1.48× and up to 4× smaller per query HT/IMC

ratios than the OS scheduler with MonetDB. For SQL Server

the speedup was as higher as 1.27× achieving 4× smaller

HT/IMC ratio. In MonetDB, we observed 3× smaller HT/IMC

ratios for queries Q8 and Q9 (in SQL Server 2× smaller).

These queries implement the largest number of join operations

and present a high degree of parallelism. The result shows

that the threads spanned from Q8 and Q9 are finding more

data in local memory compared to the DBMSs without the

adaptive mode. We conclude the same for queries Q19 and

Q22 with almost 3× smaller HT/IMC ratios in both MonetDB

and SQL Server, because we reduce the number of cores where

threads process “IN” predicates (a series of constant values

shared in a list). The decrease in the interconnection usage

is a direct reflect of the adaptive mode: cores allocated on

nodes with more accessed pages and cores released with the

least number of accessed pages. Therefore, threads require less

remote accesses and migrations, increasing the efficiency to

find data affinity.

3) Energy evaluation: Now, we analyze the effect of our

mechanism on the energy consumption. We performed es-
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Fig. 19: Mixed phases workload split per query with 256 concurrent clients in 1 GB database. On the y-axis, the HT/IMC ratio shows how
NUMA-friendly is the system (the smaller, the better). Topmost is the performance speedup for adaptive mode.

timates of energy consumption considering our best policy

(adaptive) to the traditional OS scheduler with MonetDB. We

used the values regarding the Average CPU Power (ACP)

for the processor used in our experiments. We also obtained

the average energy per bit transferred for HT [19]. Thus,

we performed estimates for all the benchmark executed on

previous experiment using the results from hardware counters.

Figure 20 shows the energy consumption given in Joules

consumed during the execution of each one of the 22 queries

(split between CPU and HT). We notice that most of CPU

energy savings came from the smaller execution time, while

HT energy savings came from the reduced number of data

transfers. We can observe minimum savings of 9.67% for

CPU (Q17) and minimum savings of 46.22% for HT (Q12).

Analyzing the geometric mean, we saved 22.93% for CPU

and 63.20% for HT, across the queries leading to a total

energy saving of 26.05% on the system consumption. All in

all, we observe that our mechanism improved the scheduling

of database threads with direct reduction on data transfers be-

tween the NUMA nodes leading to better energy consumption.

VI. RELATED WORK

The impact of the NUMA effect motivated several recent

work on query processing focusing either on particular query

operators or on parallel execution frameworks. Our paper is

related to those improving the resource allocation for the

parallel execution frameworks, but we refer to [2], [20] for

reading on NUMA-aware query operators.

A number of papers focus on thread/data placement strate-

gies with some differences on the allocation of NUMA cores.

The Shore-MT storage manager presents static “hardware

islands” for processing OLTP in pinned threads [9]. Different

from our mechanism, the “hardware islands” do not scale-

out and the optimum size of the island is yet undetermined.

Likewise, SAP Hana and the ERIS storage engine also allocate

NUMA cores statically at the startup [13], [21]. As observed in

our paper, the static allocation of cores may lead to inefficient

thread mapping when many different access patterns of stable

and mixed phases workloads hit the system.
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Fig. 20: Energy estimations for CPU and HT, executing the 1 GB
TPC-H queries with 256 concurrent clients in MonetDB.

The scheduler of HyPer [2] and DB2 BLU [22] assume

explicit control over the dispatching of query fragments, called

“morsels”. In this model, the parallelism degree can change at

runtime to execute “morsels” in local nodes opposed to Vol-

cano where parallelism is statically set at planning time with

identical pipelined segments of the query plan. The distribution

of morsels occurs to threads statically pinned to the cores

upon the location of the shared data structures (input/output

buffers) to avoid moving threads and loose NUMA-locality.

For instance, threads run the grouping operation in two phases

to avoid remote access: (1) locally building hash tables and (2)

picking partitions to merge the corresponding entries remotely.

However, none of these work clearly focus on the elasticity of

cores needed by OLAP and the number of threads are statically

pinned to the available cores. Instead, our mechanism presents

an orthogonal approach that can deliver to morsels a dynamic

sub-set of cores on top of a priority queue to efficiently adapt

to OLAP workloads. In addition, different priority policies

can be implemented as needed due to the abstract nature of

PetriNets, as shown with CPU load and HT/IMC ratio.

Recent work on Volcano-style schedulers also assume the

static allocation of cores and threads, which usually uses

inaccurate memory estimation [3]. In Oracle the individual
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operators are unaware of parallelism [2], which leads to

inefficient thread placement and eventually increases data

movement, although an adaptive data distribution scheme is

presented in [23]. A recent prototype of SAP Hana implements

an adaptive algorithm to decide between data placement and

thread stealing when load imbalance is detected [5] (Li et

al. [20] presented a similar tradeoff strategy). However, the

number of threads changes based on the core utilization

opposed to MonetDB [24] and SQL Server [6] that bound

the number of worker threads and maximum data partitions

to the number of cores available per socket. MonetDB and

SQL Server implement similar vector structures internally (i.e.,

BAT) to boost parallel access to disjoint partitions of columns

(discussed in Section II). However, they differ on the thread

placement strategy, as observed in our results. MonetDB let to

the OS the thread scheduling responsibility, while SQL Server

is NUMA-aware associating threads and processors to improve

affinity. All in all, the thread stealing and interconnection

traffic are more compelling with dynamic partitioning when all

the cores are available to the system, as shown in our results,

which highlights the potential of the elastic core allocation

provided by our mechanism.

VII. CONCLUSIONS

In this paper, we presented an elastic multi-core allocation

mechanism for database systems implemented on top of an

abstract model. Our hypothesis was that we mitigate the

data movement if we only hand out to the OS the local

optimum number of cores in specific NUMA nodes. Indeed,

our mechanism is able to improve OLAP performance by

keeping track of the performance states of the DBMS on

top of monitoring facilities. Results showed performance im-

provements when our mechanism offered to OS only the local

optimum processing cores, instead the traditional approach of

making all the cores visible to the OS all the time.

Our adaptive multi-core allocation algorithm improved the

OS scheduling accuracy when the cores were gradually made

available. Our results showed less thread migrations with

less available cores and also less remote memory accesses

compared to the traditional OS scheduler with MonetDB. We

exploit the potential of implementing allocation algorithms in

the abstract level exploring the internal computing resource

information from the OS and DBMS. Therefore, we observed

an important speedup of up to 1.53× and up to 3.87× smaller

per query HT/IMC ratios when compared to the traditional OS

scheduler. Our estimates show that such reduction on the num-

ber of remote accesses lead to a total energy saving of 26.05%

on the NUMA system. When evaluating our mechanism with

the NUMA-aware SQL Server, we observed speedup of up to

1.27× and up to 3.70× smaller per query HT/IMC ratios. This

highlights the need for the adaptive core allocation model to

improve NUMA-affinity.

As future work, we plan to improve our model to seek

for the local optimum number of cores with respect to query

predicates and also evaluate the benefits of our strategy in the

cloud computing context when accessing cores as needed, like

meeting service level agreements (e.g., energy or data traffic).

Besides, we also plan to study extensions to DBMS sched-

ulers to take benefit from under-utilized cores to concurrent

applications (e.g., mixed OLAP/OLTP).
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