
ViViD Cuckoo Hash: Fast Cuckoo Table Building in SIMD

Flaviene Scheidt de Cristo, Eduardo Cunha de Almeida, Marco Antonio Zanata Alves

1Informatics Department – Federal Univeristy of Paraná (UFPR) – Curitiba – PR – Brazil

{fscristo,eduardo,mazalves}@inf.ufpr.br

Abstract. Hash Tables play a lead role in modern databases systems during the
execution of joins, grouping, indexing, removal of duplicates, and accelerating
point queries. In this paper, we focus on Cuckoo Hash, a technique to deal
with collisions guaranteeing that data is retrieved with at most two memory ac-
cess in the worst case. However, building the Cuckoo Table with the current
scalar methods is inefficient when treating the eviction of the colliding keys.
We propose a Vertically Vectorized data-dependent method to build Cuckoo Ta-
bles - ViViD Cuckoo Hash. Our method exploits data parallelism with AVX-512
SIMD instructions and transforms control dependencies into data dependencies
to make the build process faster with an overall reduction in response time by
90% compared to the scalar Cuckoo Hash.

1. Introduction
The usage of hash tables in the execution of joins, grouping, indexing, and removal of
duplicates is a widespread technique on modern database systems. In the particular case
of joins, hash tables do not require nested loops and sorting, dismissing the need to execute
multiple full scans over the same relation (table). However, a hash table is as good as its
strategy to avoid or deal with collisions. Cuckoo Hash [Pagh and Rodler 2004] stands
among the most efficient ways of dealing with collisions. Using open addressing, it does
not use additional structures and pointers - as Chained Hash [Cormen et al. 2009] does -
and assures only two memory access to retrieve a key on the worst case.

The Cuckoo hashing method is built with two tables, each one indexed by a differ-
ent hash function. In a metaphor with the cuckoo bird behavior, when a collision occurs
during insertion, the older key is evicted from the nest1 it currently holds and rehashes
to another one in a second table. The new key now takes the old one’s position. This
eviction process repeats until a key finds an empty nest or a given threshold is reached. In
this second case, the table must be rebuilt using new hash functions.

All these evictions are costly when building a Cuckoo table, and even more, when
we perform a bulk insert of all the keys from a given relation, which will happen during
the Join execution. We hypothesize that the use of parallelism could reduce the bottleneck
caused by the eviction process. We experimented different levels and dimensions of par-
allelism, and some other developments described in the literature, such as the transforma-
tion of control structures into logical operations. The result is the ViViD Cuckoo Hash, a

1Using the analogy of the cuckoo bird, a key is a bird, and the bucket it occupies is the nest. The female
cuckoo bird ejects old eggs from nests to set her own.

This study was partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Su-
perior - Brasil (CAPES) - Finance Code 001 and by the Serrapilheira Institute (grant number Serra-1709-
16621).



vertically vectorized data-dependent method to build Cuckoo Tables. Experimental eval-
uations showed that our ViViD Cuckoo Hash technique has 10× higher throughput on
average than the scalar method, maintaining the same power consumption profile.

2. Hash Join Landscape and Literature Review
The join operation is presented by the relational algebra theory to combine data from
different relations (i.e., two tables, for instance). Taking into account the formal
definition from [Ramakrishan and Gehrke 2003], a natural join between two relations
R(A1, A2, ..., An) and S(B1, B2, ..., Bn) is denoted R on S. The natural join, or the
general definition of a relational join operation, is a binary operation to combine certain
selections (or filters on attributes σR.An=S.Bn), a Cartesian product R× S into one opera-
tion and produces a new relation with headers (or columns) R ∪ S, as follows:

R on S = ΠR∪S(σR.A1=S.B1∧...∧R.An=S.Bn(R× S))

In practice, to perform a join between two relations, we need to compare each key
in the first relation with every key in the second relation. A naive method is to nest two
loops being R and S the relations we are joining and T the resultant relation, also called
Nested Loop Join.

In databases, join is the most expensive operation regarding time and resources.
Query processing requires combining keys from the inner relation with those on the outer
relation. The number of comparisons between keys is a trivial operation for the processor,
while access to memory is an expensive operation, figuring as the bottleneck of most join
methods. In this paper, we focus on Hash Join, that indexes keys using hash functions to
build dictionaries, avoiding excessive table scans.

25 11304402 3007

Relation R

f(x)

251304... 40213007

Hash Table

...

Figure 1. The construction of a hash table. Each key passes through a hash
function f(x), the result indicates the index where the key must be stored.

Hashing methods are separated into two big groups according to the way they deal
with collisions. A collision occurs when two different keys hash to the same position on
the table. Note that when we try to insert a key that is already on the table, we have duplic-
ity of keys and not a collision. The first method to deal with collisions is the traditional
Chained Hash [Ramakrishan and Gehrke 2003], and the second one is the Open Address-
ing, which is the most interesting when it comes to probing speed and better memory
usage.

Previous work already addressed a complete and widespread vision of the main
hashing methods used nowadays [Richter et al. 2015]. The authors analyze the impact of



each hashing method in some databases operators: Chained Hash, Linear, and Quadratic
Probing and two more sophisticated methods: Robin Hood Hash and Cuckoo Hash.

The Robin Hood Hash was introduced in 1985 coining the concept of poor and
rich keys [Celis et al. 1985]. The closer a key is stored to its index in the hash table, the
richer it is. When a collision occurs, a richer key is reallocated to give its spot to the poor
one. When using open addressing to deal with hash collisions, the worst-case scenario
occurs when the data gets clustered into certain regions, causing a chain of memory access
far from its original hash bucket. Robin Hood Hash amortize the costs of the worst-case
by switching keys to bring them close to the bucket where they should be. However, it
does not offer much improvement in the build phase; we still have to deal with the costs
of relocating keys.

Another attractive method - not disclosed on Richter’s work - is the Hopscotching
Hash [Herlihy et al. 2008]. Hopscotch is a hybrid technique between Linear Probing and
Cuckoo Hashing. It defines a neighborhood of buckets where a key may be found. It is an
advance on what concerns Linear Probing, Robin Hood, and even the Cuckoo Hash and
works well when the load factor grows beyond 90%. However, when no empty bucket is
found, the algorithm traverses the buckets sequentially, causing overhead on the building
phase of the join.

The most straightforward and powerful method remains the Cuckoo Hash-
ing [Pagh and Rodler 2004]. The most relevant development on Cuckoo Hashing re-
lated to the present paper is the conversion of control dependencies into data depen-
dencies [Zukowski et al. 2006], [Ross 2007]. Regarding Cuckoo Hashing, previous work
built fast concurrent Cuckoo tables by narrowing the critical section and decreasing in-
terprocessor traffic [Li et al. 2014]. Others also suggested an optimistic approach of a
lock-free Cuckoo table [Nguyen and Tsigas 2014].

We can observe that several papers treat the vectorization of Cuckoo Hash-
ing, for instance, presenting an excellent view of a semi vertically vectorized
probe [Zukowski et al. 2006]. Others suggest a vertical vectorization for the Cuckoo
Hash, but focus on the probing, not on the building of the table [Ross 2007]. A
robust approach was also proposed, describing the vertical vectorization and the re-
moval of most control dependencies both on the build and the probe phase, im-
plemented both in Intel Knights Landing, Haswell and Sandy Bridge microarchitec-
tures [Polychroniou et al. 2015].

Our work also focuses on the vectorization of the Cuckoo Hash, bringing improve-
ments over previous approaches. By maximizing the usage of logical expressions, we take
advantage of the most recent AVX-512 (using 512 bits registers) capabilities - such as in-
line collision detection and operations with masks - and by applying fast hash functions
that guarantee minimum collision rates. We also analyzed the impact of the usage of
some AVX-512 capabilities - such as bitmask and scatter operations - versus an AVX-256
(using 256 bits registers) implementation that tries to emulate those capabilities.

3. Our Proposal: ViViD Cuckoo Hash Join

A join operation between two relations is the most expensive operation in the query pro-
cessing [Silberschartz et al. 2006]. However, most of this cost can be mitigated by the



use of hash tables. Cuckoo Hash is the most efficient method to build and probe keys
across these tables. In practice, we build a Cuckoo Table every time we perform a join
to avoid consistency issues and unnecessary duplication of the data, and we call this join
processing, as Cuckoo Join.

3.1. Concurrent and Vectorized Cuckoo Hashing

Out first attempt to decrease the time consumed by the build phase of the Cuckoo Join is to
use multiple workers, each one of them simultaneously performing reads and writes. The
synchronization of the workers is first maintained by locking the critical regions trying to
keep these areas at a minimum size, similarly to previous work [Li et al. 2014].

However, shrinking the critical areas is not straightforward, as the cuckoo path of
a key can collide with the path of another one; both inserted simultaneously. The Cuckoo
path is the sequence of evicted keys [Nguyen and Tsigas 2014]. Every inserted key has
its cuckoo path. Figure 2 shows the insertion of the key 1304, that causes the eviction of
the key 205. In this case, the cuckoo path P of the key 1304 has only one member - 205 -
so P1304={205}, if the key 205 had to evict another key, let’s say 42, so P1304={205, 42}.
Now, if we try to insert simultaneously a second key 506 with P506={309, 42, 2000}, the
paths collide and lead to inconsistencies in the final table.

1304

f(x)

972

2010

205

1500

g(x)

403

771

1003Collision

Collision

T1 T2

(a) Collision on the in-
sertion of the key 1304.

205

972

2010

1304

1500

g(x)

403

771

1003

205

T1 T2

(b) Relocation of the
key 205.

Figure 2. The key 205 is deallocated and must be rehashed to be be reinserted
on the table 1. The set of the keys deallocated to successfully inserted a
given key is called cuckoo path.

The immediate answer to deal with path collisions is to lock all the insertion as a
critical region because we cannot support a read operation while reallocating keys. It turns
the concurrent insert into a serial process, adding the overhead of dealing with context
switches, cache invalidation and consistency between workers.

Using the cuckoo path to narrow the critical region [Li et al. 2014], and forecast-
ing path collisions to serialize the insertion only when needed are efficient strategies for
tables that suffer inserts and lookups at the same time. However, they add the overhead
of calculating the path. Then, using multiple workers to build the table is not the ideal
approach.

The next method to speed up the build phase of the Cuckoo Join is the vectoriza-
tion of the operation. Our first attempt is to bucketize the table, each bucket holding eight



keys of 32-bits unsigned integers allowing the use of SIMD registers to perform lookups.
Although this model is efficient for the probe phase, it does not satisfy the build process
that has to remain scalar. Our solution came to be the vertical vectorization - against the
horizontal one of the previous method. Instead of using buckets, we used vectors of 256
and 512 bits of length to insert multiple keys at the same time.

3.2. About Branches and Predictions
The insertion of a key in a Cuckoo Table involves a loop that goes on until an empty
spot is found, or a certain threshold of evictions is reached. The execution flow of the
conditional statements performed is unpredictable. By definition, each key has the same
probability of hashing to any bucket independently of other keys [Cormen et al. 2009]. It
causes overhead since, for each wrong branch taken preemptively, the processor has to
undo all the instructions. Previous work already discussed this issue by transforming the
control dependency into data dependency (i.e., transforming the control flow structures
into logical operations) [Polychroniou et al. 2015], [Ross 2007], although not so exten-
sively as our method does.

3.3. ViViD Cuckoo Hash Implementation
We created the Vertically Vectorized Data Dependent Cuckoo Hash (ViViD Cuckoo) by
transforming most of the control dependencies into data dependencies and using SIMD
registers to vectorize the build and the probe vertically. With ViViD Cuckoo we could
address the two main issues that caused the build to become a bottleneck for the Cuckoo
Join: the chained unpredictable control dependencies and the data dependencies between
cuckoo paths. We extended the methods described by [Polychroniou et al. 2015] and
[Polychroniou and Ross 2014] to use new capabilities of AVX-512 and to take advantage
of logical operations and the dispersion provided by the hash functions.

The ViViD Cuckoo Hash can be implemented in two different ways, according
to the AVX extension supported by the target microarchitecture. The first approach is a
more general implementation of the method, using AVX-256 extensions. Intel introduced
AVX-256 (or AVX-2) in 2013 in the Haswell family of processors extending the AVX
architecture2 to support 256-bit vectors operations and adding 30 new instructions to the
set. AVX-256 does not support scattered loads from memory directly, so we emulated
those operations by storing the keys and addresses in two C language vectors and then
store the keys scalarly. The downside of this solution is the reminiscence of some branch
structures.

The second implementation uses the AVX-512 extensions, that allow operations
with 512-bit-vectors and also bring scatter operations, prefetching and opmasks. Intel
MIC based co-processors, such as Xeon-Phi, have been already working with 512-bit vec-
tors for a while, but they were not introduced on other Xeon families until the launching
of the Skylake-X processor. AVX-512 extends and refines the 512-bit operations present
on earlier Xeon Phi’s architectures, but they are not compatible [Reinders 2017]. We
could find one previous work that implemented vectorized Cuckoo Hashing on Xeon-Phi
x-100 using 512-bit-vectors and operations [Polychroniou et al. 2015], but unfortunately,
we could not compare the performance of their implementation using our metrics because
of the incompatibility stated above.

2present on Intel processors since 2008, presented with the Sandy Bridge family



AVX-512 also has special registers to hold masks exclusively, that may be of 8, 16,
32 and 64-bit length. A whole set of instructions was added to deal solely with these mask
registers, and almost all AVX-512 instructions operate with masks. AVX-256 has opera-
tions involving masks, but there are no special registers, so the masks are held on standard
vector registers of 32-bit integers. We emulated the operation of masks instructions with
logical operations.

The AVX-256 ViViD Cuckoo uses SIMD registers of 256-bits, holding eight keys
of 32-bits unsigned integers each. As for the AVX-512, we implemented two versions,
the first one with 256-bit registers and the second one with 512-bit registers. We used two
tables stored sequentially with 262 K positions, each position holding a single key. It is
possible to access the table using both scalar and vectorized methods.

Figures 3, 4 and 5 present three of the eight phases of the ViViD Cuckoo Hash.
Each SIMD variable is a boolean mask or holds integer values that represent keys, hashed
keys, and counters. We split the build process into 8 phases to better understand and
present the insertion of three keys to exemplify a collision-free successful insertion, an
insertion with collision and a duplicated key. The collision-free insertion is exemplified by
the key 675. The second key is 543, that collides with the keys 954 and 786, respectively
on the first and second table. The duplicated key is 9087, that is already present in the
second table.

 0   0   0   0   675   9087   543   98 
keysVector

LoadORDERS

 654   563   76   34567   675   9087   543   76 
keysVector

 1   1   1   1   0   0   0   0 
loadMask

Figure 3. Load of keys from the relation Orders. News keys are loaded when the
bit is set on the mask for that given position.

Phase 1 is the load of the keys; if it is the first iteration, eight or sixteen keys must
be loaded, depending on the vector size. Otherwise, loadMask will indicate how many
keys need to be loaded. Old keys occupying the positions indicated by the loadMask are
not set, and the new keys are set. Figure 3 shows the load of four keys into a 256-bit vector
that holds eight 32-bit keys. Only four keys are loaded because those are the positions
set on loadMask. The remaining keys already on keysVector are the ones deallocated on
the previous iteration. On the first run, since there are no keys in the table, all positions
on loadMask are set and keysVector is empty and must be loaded entirely with new keys.
The same occurs when all the keys find empty spots in the table on the previous iteration.
The keys 675, 543 and 9087 are loaded on this iteration respectively on the fourth, sixth
and fifth positions of keysVector.

Phase 2 is the hash, we used FNV1a [Fowler et al. 2011] for the first table and
Murmur3 [Appleby 2016] for the second table. We choose Murmur3 and FNV1a hash
functions based on the work of [Estébanez et al. 2014], that state Murmur3 and FNV1a
as having the lowest collision rate between all the functions analyzed. These two hash



 654   563   76   34567   675   9087   543   76 
keysVector

 876   834   4   965   823   245   10   4 
hashedVector1

FNV1a Mumur3

 27   9   32   945   532   124   268   32 
hashedVector2

Cuckoo
Table Load

 800  0   765   0   0   864   786   0 
valuesVector1

 0   0   22  0   0   9087   954   0 
valuesVector2

Figure 4. Phase 2: The keys to be inserted are hashed using two hash functions.
Phase 3: We then gather the keys, already stored on the given positions,
from both tables and store them in two vectors.

functions are also the most straightforward to vectorize and are fast to compute.

On Phase 3 all the keys are hashed with both hash functions, and the values are
retrieved from both tables to detect duplicated values on the next phase. Since the two
sides of the Cuckoo table are stored as one unique table in memory, each side occupying
half of the physical structure, we use logical operations to find the correct indexes.

Phase 4 involves the detection of duplicated keys, conflicts, and successful inser-
tions. Part 1 of Figure 5 presents the duplicates detection; we compare the values gathered
with the keys being stored. If there is a value on keysVector already present in the Cuckoo
table, we set the remotionMask on that position to identify that these values must not be
stored. The key 9087 is already present in the second table, so we set the fifth position
of the remotionMask, indicating that this key must not be stored. AVX-512 has a single
instruction that detects conflicts inside the vector. We used this instruction on both AVX-
512 implementations, even the in-vector collision being a relatively rare event; in fact, we
did not detect any in-vector collisions for the workload used on our experimental evalua-
tion. When a conflict occurs, the second occurrence of the key gets set on remotionMask,
as shown in Part 3 of Figure 5 on the example of the key 9087.

Part 2 of Figure 5 shows the detection of successful insertions. An insertion is
considered successful if it finds an empty spot. In our implementation, we test only the
value retrieved from the table assigned to the key on the current iteration, not looking
to the other table. Most implementations of Cuckoo Hashing test both tables for empty
spots to minimize unneeded deallocations. We opted for not implementing this way to
avoid another calculation of the table assigned for the key; instead, we do an or operation
between the values gathered from both tables using table1Mask to indicate the table from
where the key will be deallocated. The key 675 is due to be stored on the first table on
the position 823; since this position is empty, the insertion is successful without the need
to reallocate any keys, so we set the fourth position of the loadMask to indicate that a
new key will be loaded from the relation. The key 543 finds its position on the first table
occupied by the key 786, that will be deallocated and will now occupy the sixth position



 800  0   765   0   0   864   786   0 
valuesVector1

 0   0   22  0   0   9087   954   0 
valuesVector2

CMPEQ 654   563   76   34567   675   9087   543   98 
keysVector

 0   0   0   0   0   1   0   0 
remotionMask

 1   1   1   1   0   1   0   1 
table1Mask

 800   0   765   0   0   864   954   0 
valuesVector

CMPEQ

0

 0   1   0   1   1   0   0   1 
loadMask

CONFLICT 0   0   0   0   0   1   0   0 
remotionMask

 1   1   1   1   1   0   1   1 
storeMask

STORE

Cuckoo
Table

1

2

3
4

Figure 5. Phase 4 and a simplification of Phase 7. Duplicated values, conflicts
and successful insertions detection and actual store of keys. Part 1 com-
pares the keys gathered from the table with the keys we are trying to in-
sert to detect duplicated keys. Part 2 selects the keys according to the
table they must be stored and compares to zero, to find insertions that do
not need reallocations. Part3 detects in-vector duplicated keys and Part 4
shows the insertion of keys on the Cuckoo table.

on keysVector to be inserted on the second table on the next iteration.

At the end of Phase 4, we have a storeMask, indicating all the values that will
be stored, i.e., the values that are not duplicated. We use this mask to store the keys on
the Cuckoo table. At this point, loadMask indicates all the position where the keys were
successfully inserted or are duplicated. Those are the positions that receive new keys from
the relation.

In Phase 5, we calculate the number of evictions already made to store each key.
If the number of evictions (or ”hops” because we hop between table 1 and 2) is equal
or greater than a given threshold, the table must be rebuilt. Phase 6 calculates the table
where each key must be stored in the next iteration. All the keys that hold an odd number
of hops will be stored in table 1 in the next iteration, and the ones that have even number
of hops goes to the second table. New keys loaded from the relation are always inserted
in the first table. The sixth position of keysVector holds now the key 786, and the sixth
position of hopsVector will indicate that a deallocation has already been made, as this
vector indicates an odd number of hops, in the next iteration the on the sixth position will
be stored on the second table.

Phase 7 is when we store the keys in the Cuckoo table. On the AVX-256 version,
this store occurs sequentially with the use of two auxiliary C language vectors. On AVX-
512 version we used the scatter operation. Part 4 of Figure 5 shows this operation.

Phase 8 permutates the keys putting on the right side the keys that must remain on



keysVector for the next iteration, i.e., the keys gathered on Phase 3 and are not duplicated
or zero, in this case the key 9078. The left side receives all the keys that will be replaced
for new ones from the relation, in the example the keys 675 and 76. This process is based
on [Polychroniou and Ross 2014] approach using a permutation table kept in memory to
speed the process.

4. Experimental Methodology
To verify the effectiveness of the vertical parallelism and the data dependency brought by
the ViViD Cuckoo on the building of Cuckoo tables, we performed experiments analyzing
the throughput of keys, power and energy consumption and memory behavior. All the
experiments were compiled and executed using Linux Ubuntu 18.04.1 LTS Bionic Beaver
on an Intel® Xeon® Silver 4114 at 2.20GHz based on Skylake-X architecture. All the
code3 was compiled with GCC 7.3.0 specifically for the Skylake-X micro-architecture
using AVX-512 with -O2 optimization flag. The automatic vectorization provided by the
compiler was also enabled for the scalar version. However, the logs showed almost no
vectorization because of the many branches inside the loops.

The data was generated based on TPC-H Benchmark [Council 2008] (scale factor
of 1) with some adaptations for varying the selectivity of the join. All the results presented
are for the build phase of the Cuckoo Join, since previous works have already studied the
probe phase [Ross 2007], [Zukowski et al. 2006].

The query used in the experiments (below) comprehends an anti-join operator that
can be understood as an implicit exclusive left join. We implemented this anti-join based
on the strategy taken by the PostgreSQL optimizer 4. This anti-join creates the hash table
based on the relation Orders instead of Customer, as it would be done if the optimizer
chose a left join.

1 SELECT C ACCTBAL
2 FROM CUSTOMER
3 WHERE NOT EXISTS (SELECT * FROM
4 ORDERS WHERE O CUSTKEY = C CUSTKEY) ;

Query used on the experiments

The metrics analyzed are throughput, power and energy consumption, and cache
bandwidth between L2 and L1. All the metrics were collected from the Intel model-
specific registers (MSR) and running average power limits (RAPL) registers using
the Likwid wrapper [Treibig et al. 2010]. Those registers measure hardware events
[Intel® 2011] that are then read by the Likwid wrapper and reported on a readable form,
giving the maximum value, the minimum value and the average value of each metric for
each execution. All the values plotted are the average values of each metric for 101 exe-
cutions. The Likwid wrapper was also used to pin the process to a single core, avoiding
issues caused by interprocessor traffic and cache coherence.

5. Experimental Results
For our results we considered three different implementations of the ViViD Cuckoo -
AVX-256 using 256-bit vector and AVX-512 using 512-bit and 256-bit-vectors - and the

3Available at https://github.com/FlavScheidt/MHaJoL
4PostgreSQL v.11.2 Optimizer: https://www.postgresql.org/docs/current/planner-optimizer.html



single scalar implementation. Figure 6(a) shows the throughput in million keys per sec-
ond when building a Cuckoo table using the scalar Cuckoo hashing and ViViD Cuckoo
implemented with AVX-256 and AVX-512, varying the selectivity of the join operation.
It is important to note that the number of duplicated keys contract according to the growth
of the selectivity to maintain the same size of the relations for each selectivity. The ViViD
Cuckoo in any version improved the throughput in almost 10× on average. The AVX-256
version had the poorest throughput, but still showed an average improvement of 8× over
the scalar version. For selectivities bellow 50%, the 256-bit vector version of the AVX-
512 implementation showed the same throughput as the 512-bit vector version when the
selectivity is equal or greater than 50%. This happens because the experiments were per-
formed on a Skylake-X based processor, which uses the AVX-512 ISA extension. This
ISA extension implements 256-bit registers by using the lower 256 bits of the first sixteen
512-bit registers [Intel® 2019].

60

70

80

90

Scalar
ViViD AVX-256

ViViD AVX-512 / 256 vector
ViViD AVX-512 / 512 vector

10 20 30 40 50 60 70 80 90
Selectivity

6

8

10

M
ili

on
 K

ey
s 

pe
r S

ec
on

d 
[M

kp
s]

(a) Throughput of the build phase measured in a
million keys per second (MKPS) using AVX-256,
AVX-512, and the scalar method. The upper plot
shows the throughput of the vectorized versions;
the bottom plot shows the throughput of the scalar
method.

10 20 30 40 50 60 70 80 90
Selectivity

2000

4000

6000

8000

10000

Scalar
ViViD AVX-256

ViViD AVX-512 / 256 vector
ViViD AVX-512 / 512 vector

L2
 to

 L
1 

lo
ad

 b
an

dw
id

th
 [M

B
yt

es
/s

]

(b) Load bandwidth of data from L2 to L1 cache
on the build of a Cuckoo Table.

Figure 6. Throughput and Load Bandwidth.

This improvement of 10× on the average throughput of keys occurred because
the 8 or 16 keys stored each time did not depend on their neighbors path during the
insertion. There is just one step to verify collisions within the same iteration. Without the
control dependencies, throughput improved without the overhead caused by the wrong
predictions made by the branch predictor.

Vectorization improves energy efficiency by reducing the number of instructions
occupying the pipeline, but increases the pressure on the whole memory hierarchy, since
the request of data at each cycle is higher than on scalar executions [Cebrián et al. 2014].
This pressure increased power consumption for the memory system. Figure 7 shows
that the absolute amount of energy spent by our three implementations of ViViD Cuckoo
is 10× smaller than the scalar version when considering the chip package or only the
DRAM memory. This follows the trend of the execution time, which also achieved great
performance results.



4.0

4.5

5.0

5.5

6.0

Scalar
ViViD AVX-256

ViViD AVX-512 / 256 vector
ViViD AVX-512 / 512 vector

10 20 30 40 50 60 70 80 90
Selectivity

0.00

0.25

0.50

0.75

1.00

E
ne

rg
y 

[J
]

(a) Energy consumed by the package in Joules on
the build of a Cuckoo table.

0.55

0.60

0.65

0.70

Scalar
ViViD AVX-256

ViViD AVX-512 / 256 vector
ViViD AVX-512 / 512 vector

10 20 30 40 50 60 70 80 90
Selectivity

0.00

0.05

0.10

0.15

E
ne

rg
y 

D
R

A
M

 [J
]

(b) Energy consumed by the DRAM in Joules on
the build of a Cuckoo table.

Figure 7. Energy consumed by the Package and the DRAM.

Figure 6(b) show the bandwidth between L2 and L1. The scalar Cuckoo Hash
shows the lowest values, while the three ViViD variants present the highest. As stated in
the previous subsection, vectorization shrinks the pressure over the pipeline but increases
the pressure over the memory hierarchy. Wider registers mean more data required by each
instruction, and a higher volume of data across the cache levels and the DRAM.

Between the three ViViD variants, the AVX-256 has the lowest bandwidth, as
expected considering the size of the vector. However, the highest bandwidth belongs
to the AVX-512 with 256 bits vectors, the same vector size as AVX-256. It should be
expected the 512-bit vector variant to show the highest pressure, however, we could also
notice that the functional unit bandwidth when using 512 bits vector increases compared
to 256 bits, reducing thus the pressure on the memory controller.

6. Conclusions and Future Work
The ViViD Cuckoo Hash is a fast way to build Cuckoo Tables to perform hash joins.
It uses SIMD vertical vectorization and transforms most of the control dependencies
into data dependencies. Experiments conducted on the Skylake micro-architecture us-
ing AVX-256 and AVX-512 registers and operations show that our method improves the
throughput of the build ten times on average compared with the scalar Cuckoo Hash-
ing described in the literature. We were also able to maintain the power consumption
of the package at the same as the scalar method while greatly reducing the total energy
consumption. However, ViViD Cuckoo increased the pressure over the memory system,
since wider SIMD registers mean that more data is needed to perform each instruction.

ViViD Cuckoo enhanced the performance of the build phase of Cuckoo tables,
maintaining the same power consumption of the scalar method and 10× less energy on av-
erage. Future work is required on applying the ViViD method on different hash strategies
- such as Robin Hood and Hopscotching - and compare the results with the Cuckoo Hash
version. It would also be interesting to investigate the impact of using ViViD Cuckoo
Hash on the build of Cuckoo Filters, comparing with the already existent vectorized ver-
sions of Bloom Filters.



References
Appleby, A. (2016). Smhasher. https://github.com/aappleby/smhasher/.

Accessed: 2018-03-22.

Cebrián, J. M., Natvig, L., and Meyer, J. C. (2014). Performance and energy impact of
parallelization and vectorization techniques in modern microprocessors. Computing,
96(12).

Celis, P., Larson, P.-A., and Munro, J. I. (1985). Robin hood hashing. In SFCS.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
algorithms. MIT press.

Council, T. P. P. (2008). Tpc-h benchmark specification.

Estébanez, C., Saez, Y., Recio, G., and Isasi, P. (2014). Performance of the most common
non-cryptographic hash functions. Software: Practice and Experience, 44(6).

Fowler, G., Noll, L. C., Vo, K.-P., Eastlake, D., and Hansen, T. (2011). The fnv non-
cryptographic hash algorithm. Ietf-draft.

Herlihy, M., Shavit, N., and Tzafrir, M. (2008). Hopscotch hashing. In DISC.

Intel® (2011). Intel® 64 and ia-32 architectures software developer’s manual. Intel®.

Intel® (2019). Intel® 64 and IA-32 Architectures Optimization Reference Manual. Intel®.

Li, X., Andersen, D. G., Kaminsky, M., and Freedman, M. J. (2014). Algorithmic im-
provements for fast concurrent cuckoo hashing. In ACM EuroSys, page 27.

Nguyen, N. and Tsigas, P. (2014). Lock-free cuckoo hashing. In ICDCS, pages 627–636.

Pagh, R. and Rodler, F. F. (2004). Cuckoo hashing. Journal of Algorithms, 51(2):122–
144.

Polychroniou, O., Raghavan, A., and Ross, K. A. (2015). Rethinking simd vectorization
for in-memory databases. In ACM SIGMOD, pages 1493–1508.

Polychroniou, O. and Ross, K. A. (2014). Vectorized bloom filters for advanced simd
processors. In ACM Damon, page 6.

Ramakrishan, R. and Gehrke, J. (2003). Database Management Systems. McGraw-Hill,
8th edition.

Reinders, J. (2017). Intel® avx-512 instructions.

Richter, S., Alvarez, V., and Dittrich, J. (2015). A seven-dimensional analysis of hashing
methods and its implications on query processing. PVLDB, 9(3).

Ross, K. A. (2007). Efficient hash probes on modern processors. In IEEE ICDE, pages
1297–1301.

Silberschartz, A., Korth, H. F., and Surdashan, S. (2006). Database System Concepts.
McGraw-Hill, 5th edition.

Treibig, J., Hager, G., and Wellein, G. (2010). Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments. In IEEE ICPPW.

Zukowski, M., Héman, S., and Boncz, P. (2006). Architecture-conscious hashing. In
ACM Damon, page 6.


