Intrinsics-HMC: An Automatic Trace Generator for
Simulations of Processing-In-Memory Instructions

Aline Santana Cordeiro, Tiago Rodrigo Kepe, Diego Gomes Tomé,
Eduardo Cunha de Almeida, Marco Antonio Zanata Alves

'Department of Informatics — Federal University of Paran

{ascl2, trkepe, dgtome, eduardo, mazalves}@inf.ufpr.br

Abstract. Processor-in-Memory (PIM) architectures, such as the Hybrid Mem-
ory Cube (HMC), are emerging nowadays as a solution for processing large
amount of data directly inside the memory. In this area, several researchers are
proposing and evaluating new instructions and new PIM architectures. For such
evaluations, trace-driven simulators, as the Simulator of Non-Uniform Cache
Architectures (SINUCA), are commonly used in order to model these new pro-
posed systems. Such simulators provide fast prototyping of new architectures,
while it requires the researcher to write simulation traces manually when evalu-
ating new Instruction Set Architecture (ISA) proposals, which is an time consum-
ing and error prone task. In this work, we propose a methodology for fast gen-
eration of simulation traces focused on HMC architecture, which consists on a
high-level Intrinsics-HMC library and a modification inside the trace-generator
tool from SINUCA. Our proposal enables the researchers to write high level
code in C/C++ languages using our library, which mimics the behavior of HMC
instructions. These codes can be compiled and executed in traditional x86 archi-
tectures for verification. After ensure the code is correct and working, the user
can use our modified version of SINUCA-Tracer to translate HMC functions
into HMC instructions know by the simulator, providing a convenient solution
to generate traces and fast simulations of new PIM architectures. Results us-
ing the proposed technique applied on database application kernels show the
correct translation and simulation of new HMC instructions using SINUCA.

1. Introduction

Processor-in-Memory (PIM) architectures [Patterson et al. 1997], [Elliott et al. 1999],
[Balasubramonian et al. 2014], as the new Hybrid Memory Cube (HMC), are emerging
in the last few years after the release of 3D-stacking technologies [Olmen et al. 2008].
The HMC presents high parallelism between the Dynamic Random Access Memory
(DRAM) banks, ensuring low average latency during high pressure in memory (mem-
ory bursts). The HMC also supports PIM in order to mitigate data movement between
memory and processor, where processing occurs in the same chip from the memory.
Thus, many researchers are evaluating performance and energy consumption of existing
HMC [Jeddeloh and Keeth 2012], [Khalifa et al. 2013], [Hadidi et al. 2017] or proposed
new PIM architectures [Pugsley et al. 2014], [Alves et al. 2016].

In general, the processor designers and researchers relies on full-system or trace-
driven simulators to evaluate performance of new Instruction Set Architecture (ISA) and
architectural components. Full-system simulators require executable binaries compiled

for the specific ISA to be simulated, requiring thus a compiler ready for such new systems.
On the other hand, trace-driven simulators are more flexible and deterministic, requiring
only the simulation trace, which contains the instructions recognized by the simulator and
the dynamic execution order of such instructions. The generation of traces is usually per-
formed automatically using binary instrumentation tools for the existing ISA. However,
for new PIM architectures, the instruction traces must be manually generated, using many
times, the help of scripts to generate the dynamic traces. This manual task is error-prone
and can demand a considerable amount time, depending on the complexity of the program
to be simulated.

In this context, the main objective of this paper is to propose a method that allows
automatic generation of simulation traces that uses HMC instructions directly from a high-
level compiled program. We developed a library called Intrinsics-HMC that provides
a series of functions that emulate the HMC behavior, based on the HMC specification
version 2.1 [HMC Consortium 2017]. This library was written in C/C++ and uses x86
instructions only, so it can be normally linked, compiled and executed just to assure its
correct operation. After the developer validates the code, the trace generator can be used
to identify the HMC functions in the Intrinsics-HMC library and convert them to HMC
instructions recognizable by the simulator. In order to demonstrate our translations of
HMC functions and simulate the traces generated automatically, we used the Simulator
of Non-Uniform Cache Architectures (SINUCA) [Alves et al. 2015]. We also used the
SiNUCA-Tracer and the dynamic binary instrumentation tool Pin from Intel to extract
the simulation traces from the full execution of two database kernels developed in C++
language making use of our Intrinsics-HMC library.

The rest of this paper is organized, as follows: Section 2 details the basic concepts
about HMC and SiNUCA. Section 3 explains how execution traces are generated, intro-
ducing the Intrinsics-HMC and the SiINUCA-Tracer. Section 4 analyzes the simulation
results and Section 5 presents some related work. Finally, Section 6 concludes this paper
and proposes future directions.

2. General Concepts

In this section, we present basic concepts about Hybrid Memory Cube (HMC) and an
overview about the Simulator of Non-Uniform Cache Architectures (SINUCA).

2.1. Hybrid Memory Cube - HMC

HMC is a memory device formed by up to 8 stacked layers of Dynamic Random Access
Memory (DRAM) and the base is a logic layer, as illustrated in Figure 1. The HMC is
logically partitioned in 32 vaults. Each vault has a dedicated memory controller located
in the logic layer and up to 16 DRAM banks (distributed among the layers of DRAM)
connected together using Through-Silicon Vias (TSVs) [Olmen et al. 2008].

The HMC presents high parallelism for accessing data [HMC Consortium 2017],
[Jeddeloh and Keeth 2012], [Pawlowski 2011]. Theoretically, the HMC can fetch data
from the 32 different vaults at the same cycle, reaching a maximum theoretical band-
width of 320 GB/s [Jeddeloh and Keeth 2012], which is 25% higher than High Band-
width Memory (HBM) version 2 (256 GB/s) [Kim and Kim 2014]. Different from Dou-
ble Data Rate (DDR) 3 memories, which transmit 64 bits per channel, the HMC uses

HMC Vaults

A

Memory
partitions
(DRAM layers)

Vault
controller

Logic A
layer

buffer buffer

Cross-bar switch

y
DRAM

Links {E a a E "., sequencer
L

U
1
1
1
1
1
1
1
:
1
| Write Read
1
1
1
1
1
1
1
1
1
1
!

Figure 1. HMC block diagram with 32 vaults each one with 8 banks.

4 serial links formed by 16 full-duplex lanes each. These serial links can reach high
frequencies with low interference during data transmissions [HMC Consortium 2017],
[Thanh-Hoang et al. 2014]. Internally, there is a crossbar switch that allows these links to
transfer data to/from any vault.

HMC supports read and write requests from 16 bytes up to 256 bytes. It also
supports arithmetic and binary instructions that operates over 8 or 16 bytes. During the
fetch and execution of HMC instructions, the processor treats these instructions the same
way as the ordinary memory read or write requests. Thus, the processor fetches, decodes,
computes the address and sends the instruction to the HMC. The instructions may also
have an immediate operand to be used in the operation. This immediate is sent together to
the HMC. When an instruction arrives in the HMC, it is forwarded to the vault responsible
for that indicated memory address. The logic layer then interprets each instruction, fetch-
ing data and operating over it. Depending on the HMC instruction, the result is updated
in the same memory address or sent back to the processor.

HMC can save up to 70% of energy compared to DDR3-1333 memory, pre-
senting a theoretical speedup of 15x [HMC Consortium 2017, Jeddeloh and Keeth 2012,
Pawlowski 2011]. However, is not clear if all kind of applications can benefit by current
HMC instructions. In this way, studies about Instruction Set Architecture (ISA) exten-
sions are important to evaluate new architectural components.

2.2. Simulator of Non-Uniform Cache Architectures — SINUCA

During the evaluation of new processor architectures, only simulation represents a vi-
able solution for designers, as the system to be evaluated is too complex to be handled
by analytical models, and highly expensive to be prototyped [Jain 1990]. Thus, most
computer architects use simulation tools. In contrast to full-system simulation, the trace-
driven simulators do not require to actually executing the application instructions during

Table 1. Format of the SINUCA input traces.

Static Dynamic Memory
Trace Trace Trace
| #main 11 1 R 4 0x1701448 1
2 Q1 2 2 2 #
3 MOV 1 0x95727 4 1 14 1 34 14 01 00000 3 2 3 R 4 0x1701448 2
4 #main 4 R 4 0x1701452 2
5 @2 5 W 4 0x1701452 2
6 MOV 8 0x95717 3 1 14 1 6514 01 00000 6 R 4 0x1701448 2
7 ADD 1 0x95720 3 2 14 65 1 34 14 01 01000 7 W 4 0x1701448 2
§ ADD 1 0x95723 4 1 14 1 34 140101000 8 R 4 0x1701448 2
9 CMP 1 0x95727 4 1 14 134140100000 9 #
10 JBE 7 0x95731 2 2 3534 13500000100 10 R 4 0x1701448 2
11 R 4 0x1701452 2
12 W 4 0x1701452 2
13 R 4 0x1701448 2
14 W 4 0x1701448 2
15 R 4 0x1701448 2

the simulation. In fact, they just need to consider the behavioral details (algorithmic) and
microarchitectural latencies for the given traced application. These simulators use exe-
cution traces of real applications. These traces are formed by one or multiple files that
contains the flow of instructions observed during the program execution. The traces can
be generated manually by researchers or automatically by binary instrumentation tools.

In this work, we use SINUCA, which is a validated cycle-accurate, trace-driven
simulator [Alves et al. 2015]. SiNUCA i1s based on x86 architecture and simulates the
execution of mono and multi-threaded applications. It provides an adjustable number of
out-of-order processor cores, modeling technologies such as Non-Uniform Cache Archi-
tecture (NUCA), Non-Uniform Memory Access (NUMA), Network-on-Chip (NoC) and
DDR. SiNUCA also simulates components used in current state-of-the-art architectures,
such as data prefetchers, non-blocking cache memories, detailed DRAM memory con-
troller and branch predictors.

SiNUCA splits the simulation traces in three types: static, dynamic and memory,
as illustrated in Table 1. The static trace consists of instructions formed by asm code,
SiNUCA opcode number, size, read and write registers and other flags. The instructions
are grouped in basic blocks, indicated by "@". The dynamic traces contain the sequence
calls of basic blocks (from the static trace) performed by the application during normal
execution. The memory traces contain the memory address and the instruction size for
each memory access performed by the application.

3. The Trace Generator

Emulators and binary instrumentation tools are commonly used to generate trace for trace-
driven simulators. Binary instrumentation tools such as Pin, has fast execution and low
overhead as advantage. However, these tools depend on complete execution of an appli-
cation in a real machine for generating an execution trace. Therefore, it becomes very
difficult to generate traces of nonexistent instructions in current architectures. Emulators
could also be used to generate such traces, but it would require modifications in it to rec-
ognize the new ISA as well a new compiler for such architecture. It is clear then, that a
new methodology for fast and accurate trace generation is required. In this section, we
describe the Intrinsics-HMC library and the trace generation with the SINUCA-Tracer
and Pin tools.

3.1. Proposal Overview

Figure 2 presents the steps required to generate simulation traces referred to HMC ISA.
The Intrinsics-HMC library is composed of functions that mimics the behavior of HMC
instructions [HMC Consortium 2017]. These functions are called in C/C++ programs and
can be successfully compiled to the binary files using the x86 ISA. This binary is later exe-
cuted with SINUCA-Tracer (part of our proposal) and the Pin instrumentation to generate
execution traces. During this trace generation phase, all occurrences of Intrinsics-HMC
functions are converted in simulation HMC instructions.

*
Intrinsics-HMC
Library

*

Pin + SINUCA-Tracer execution
HMC functions ->HMC instructions

Simulation II

traces

C/C++ code
using HMC
functions

Executable

Linkand 1] binary code

compile

SiNUCA
simulation

Figure 2. Sequence of steps to generate the simulator input traces (* indicates
our main contributions).

3.2. Intrinsics-HMC Library

The logic layer of HMC devices can execute arithmetic instructions and bitwise oper-
ations. Therefore, in this section we present functions for creating the Intrinsics-HMC
library in order to reproduce the behavior of HMC statements. The types of implemented
functions, together with the description of their functionalities are listed below, and in
this case, the read and write instructions are not implemented in the library because their
traces are generated from the traditional instructions (i.e., load or store requests) normally
decoded and executed by the processor being simulated. We split the HMC instructions
into four classes of operations, as follows:

Arithmetic: the sum (add) and the increment (inc) operations. The add operation is
performed over the operand coming from the DRAM and the immediate, both informed
in the HMC instruction. This add operation works either with 2x 8-bytes or with 1x 16-
bytes operands. The inc operation uses only one operand to read a value from the DRAM,
increment it by one, and then store it back.

Bitwise: the bit write (bwr) and the swap operations. The bwr operation sends inside the
immediate two fields, the bit mask and the write data. For a given address, two operands
of 8-bytes each will be loaded and using the bit mask, only specific bits will be updated.
In the swap operation, the 16-bytes immediate is written to the memory, and the old value
is returned to the processor.

Boolean: and, nand, or, nor and xor operands are used between memory operations and
immediate addresses.

Comparison: There are four operations in this class, the compare and swap if greater
than (casgt), compare and swap if less than (caslt), compare and swap if zero (caszero)
and equal to (eq). These operations perform over 1x 8-bytes or 1x 16-bytes operands.

Notice that each operation class supports different operand formats and sizes.
There are also variations in the return type sent back to the processor by the HMC. For

further details regarding these operations please refer to the HMC specification version
2.1 [HMC Consortium 2017]. The Intrinsics-HMC library, written in C++ language, cov-
ers all the functions described in specification and uses a data type standard to reproduce
the HMC operations, described in table 2.

Table 2. Intrinsics-HMC library data types standard.
Data type Description
__hlell Data type equivalent to a short unsigned
__h6411 Data type equivalent to a long unsigned
__h6412 Data type equivalent to a vector of 2 log unsigned
__h1281l1 Data type equivalent to a long long unsigned

We define the new data types starting with ’__/A’ to denote that this data type refers
to the HMC ISA. The number in sequence indicates the data length in bits (16, 64 or 128),
together with the letter '/’ used to refer to long unsigned, or ’ll’ to long long unsigned.
Finally, the last number indicates how much variables that data type allocates (one or two)
for each instruction.

1 #include "../hmc.hpp"

2 1 _ h128111 _hmcl28_nor_s

3 int main(int argc, char xargv([]) { 2 (__h128111 *mem_op, __h128111 imm_op) {

4 uint128_t mem_ret; 3 _ h128111 r = *mem_op;

5 mem_ret = _hmcl28_nor_s 4 *smem_op = ~ (smem_op | imm_op);

6 (&mem_opl, imm_op2); 5 return r;

7} 6 }
Code 1. Intrinsics-HMC function Code 2. Intrinsics-HMC source
call example. code for nor HMC operation.

Codes 1 and 2 present a nor operation between a memory operand and an imme-
diate performed by the function call to _hmc128_nor_s(). Notice that, during the function
call, the programmer is free to use the usual data types defined by the compiler instead
of the ones defined in our library because they are equivalent. However, these new data
types are declared to maintain the data type standard of the HMC. Once the program is
compiled, the programmer can perform tests and code debug to ensure correctness before
the trace generation step.

3.3. Modified SINUCA-Tracer

With the binary code in hand, the Intel Pin instruments it with the Pin tool called SINUCA-
Tracer. Pin is developed by Intel and integrated with SINUCA to instrument and analyze
code, allowing program developing with routines provided by its own called Pin tools.
These Pin tools can be integrated to a program to determine which code parts will be
analyzed and inspected and in sequence, what kind of analysis/operation should be done
in these parts (memory, execution, cost and performance).

The Pin tools should be applied in binary code when source code does not need
more changes. The analysis tools should be developed in C or C++ and analysis occurs
at the same time as execution, this is why Pin is known as a just-in-time compiler. In our
work, we are using Pin in version 3.2 (revision number 81205).

SiNUCA-Tracer starts opening the program binary image and traverses it. For
each routine identified it records into the static trace output file all the instructions present
in that routine. The instructions are split into Basic Blocks (BBL). These BBLs contains

all the instructions starting from the instruction after some branch/jump (target instruc-
tion) and ends at the first branch/jump found in the execution flow. This way, the static
trace may contain the same instruction present in more than one BBL.

During the identification of instructions and BBLs, all the instructions that can
perform load or store requests are instrumented in order that, whenever it is executed,
the memory address accessed will be written into the memory trace file. Notice that
we are dealing with x86 ISA, which may contain a single instruction that perform up
to 3 memory accesses (two loads and one store). The head of each BBL identified will
receive an identification and will be instrumented in such way that, whenever such BBL.
is executed, it will write into the dynamic trace file its identifier. This way, a loop over a
BBL present in the execution will only store the BBL identification in the dynamic trace
to denote each repetition.

After understanding the SINUCA-Tracer mechanism, we modified it first to iden-
tify all the Intrinsics-HMC functions. Each function call must be translated to the correct
HMC operation. In this case, the goal is to simulate traces as they have executed by a com-
puter that has an architecture with support to HMC ISA, therefore, the SINUCA-Tracer
suppresses temporarily the generation of x86 traces.

Notice that compiler may have created real dependencies between the registers
from outside and inside each Intrinsics-HMC function. After the translation of these
functions to HMC instructions, such dependencies must be kept. During the binary in-
strumentation, we analyze all the input and output dependencies. We call input depen-
dency, all registers that are read inside the function, but the register was written before
the function call. The output dependency corresponds to all registers written inside the
function that can be read after the function return. Therefore, for each HMC instruction,
it contains as read registers a list of all input dependencies, and for the write registers a
list of all the output dependencies.

Figure 3 illustrates the analysis performed to keep the right dependencies during
each HMC function translation. In this example, we can observe the static trace code for
the add function (lines 1~27). The lines 28~30 contains the translated HMC instruction
to perform the add operation. This figure brings read (bold with shade), write (bold),
base and index (underlined) registers for each instruction. We can see that registers 5 and
6 (line 3) are first read before any previous write, it means that such registers are real
dependencies, and thus must be present on the final HMC instruction. The same does not
occur for read register 10 (line 10), it was previous written by instruction on line 9, so it
does not represent a real dependency to the HMC instruction. This way, when performing
the trace generation for HMC, our mechanism analyzes all the input and output registers
(inside the circles in the figure) from our function and we use these as read and write
registers respectively in the simulable HMC instruction.

In order to replace the functions call by simulable HMC instructions, we added
new basic blocks in the static trace, each containing just one HMC instruction according
to the function provide by the library. When generating the dynamic trace, we replaced
each call to HMC function by the call to one of these basic block containing the respective
HMC instruction. Nevertheless, the memory trace will have the specific memory address
used by the HMC function. Such address is extracted from routine parameters by Pin tool.

Summary of dnput/output regs.

Read Write Base/
1 #_717_hmc128_saddimm_s Regs. Regs. Index
2 @3430
3 PUSH 9 167 1256 16600013000 ®
4 MOV 11683 1615000003000 6 ®
5 SUB11714162625000003000 6 6 @5
6 MOV 91754253 0500013000 5@ 5
7 MOV 9179 42540500013000 5@ 5
8 MOV 9183 42580500013000 5@ 5
9 MOV 8 187 9 1231100 01003000 [-5) @
10 MOV 9 196 42510 0500013000 5 10 5
11 XOR 1 200 2 2 56 56 2 56 25 9 0 0 0 0 3 0 0 0 6956 | 66 25
12MOV 8 2024 1511050100300 0 5 10 5
13MOV 8 2064 1518501003000 5 ® 5
14MOV 8210 41519501003000 5 ©), 5
15MOV 121431914000003000 9 @ 9
16MOV 1217 311013000003000 10 ©) 10
17 CALL 7 220 52266 2266600011000 X @96 6
18 #_7Z17_hmc128_saddimm_s
19 @3474
20 MOV 8 2254 15110501003000 5 10 5
21MOV 8 22941519501003000 5 5 5
22XOR 1233 929232925001003000 9 23 9 25
2337 7242 222625126000004000 26 25 26
24 #_717_hmc128_saddimm_s
25 @3476
26 LEAVE 8 249 13556256501003000 3 56256 5
27RET 7250 1 162266601002100 6 26 6 6

. Number of read registers
28 #_hmc128_saddimm_s . .
Number of write registers
29 @1

30 HMC_ADD_S1280P 12 167 16 8 5 6 3 4 8 23 56 26 11 6 5 25 10 56 8 943 262001003000
\—L Instr. size
Instr r
Operation code
Assembly code

Figure 3. Example illustrating the x86 function translated to HMC instruction,
also presenting the read and write register dependencies.

At the end of the execution, the generated traces can be used to feed the SINUCA in order
to simulate the program execution considering an ISA containing HMC instructions.

Currently, only the instructions provided in the HMC specification, are available
in the Intrinsics-HMC library. However, such library is easy to extend, thus enabling the
creation of new functions that still do not exist. For such extensions, few modifications
are required inside the Intrinsics-HMC library and the SINUCA-Tracer, so that the correct
translation of the function is made to a new instruction supported by the simulator.

4. Methodology and Experimental Results

In this section we present the features of the micro benchmark used describing the process
to prepare the traces. We also present the results generated by the simulations describing
the benefits of using Intrinsics-HMC.

4.1. Benchmark applications

In order to validate our approach, we evaluated the simulation with a micro benchmark
composed of a database join algorithm and select scan from a real query from TPC-H!.
Those programs were chosen due to their behavior of data streaming which is suitable to
exploit in-memory processing coupled with HMC data processing capabilities.

'A standard benchmark for decision support in database systems: http://www.tpc.org/tpch.

#include "../hmc.hpp"

1

2

3 wvoid nljoin(vector<__h6411> souter, vector<__h6411> &inner,
4 vector<__h641l1> g&join_index) {

5 for(size_t i=0; 1 < outer.size(); ++i) {

6 for(size_t j=0; j < inner.size(); ++3j) {

7 if (_hmc64_equalto_s (outer[i], inner[j]) == 1) {

8 join_index[i] = j;

9 break;

S

}

}

>

Code 3. Nested Loop Join using Intrinsics-HMC.

The Join algorithms are the kernel of the join operator in Database Management
System (DBMS) which combines two relations (tables) by comparing the join attributes
and generating a set of tuples (records or rows in a table) that matching these attributes.
Commonly, the join attributes are primary and foreign keys. One of the forerunner join
algorithm is the nested loop join (NLJoin), depicted in code 3. That algorithm traverse
two vectors, each one representing a relation, the outer loop interact in the largest relation
and the inner in the smallest one. Inside inner loop is performed a comparison between
the join attributes, in which the HMC intrinsic function _hmc64_equalto_s is used, case
these attributes match a join index? is performed.

From TPC-H was selected the query 6 because it scans some columns and their
values are accessed just once, i.e., the values, after used, are not touched anymore in the
query plan. The query 6 is presented in code 4, it performs a select scan by applying
predicates in three columns (WHERE clause) and projecting a sum of two columns just
for the tuples that passed in the predicates evaluation.

Code 5 is an implementation of query 6, using Intrinsics-HMC. It encompasses
a loop to traverse four columns stored in arrays, the columns involved in the WHERE
clause are evaluated by the intrinsic functions: _hmc64_cmpswapgt_s (compare and swap
if greater than) and _hmc64_cmpswaplt_s (compare and swap if less than). Just the tuples
that passed by the predicates evaluation are added to the resulting variable.

1 void query6 () {

2 for(size_t i=0; 1 < 1_date.size(); ++1i) {

3 _hmc64_cmpswapgt_s (&1_date[i], 19940101);
4 _hmc64_cmpswaplt_s(&1l_date[i], 19950101);
5 _hmc64_cmpswapgt_s (&1_disct[i], 5);

6 _hmc64_cmpswaplt_s(&1l_disc[i], 7);

7 _hmc64_cmpswaplt_s (&1l_quant[i], 24);

8

1 SELECT if(1_date[i] != 19940101 &&

2 sum(l_price » 1_disc) as revenue 9 1_date[i] !'= 19950101 &&

3 FROM 10 1 _disc[i] !'= 5 &&

4 lineitem 11 1_disc[i] '= 7 &&

5 WHERE 12 1_quant[i] != 24)

6 1_date >= date 71994-01-01" 13 {

7 AND 1_date < date 71994-01-01" + 14 res += 1_price[i] * 1_disc[i];

interval '1l’ year 15 }

8 AND 1_disc between 0.05 AND 0.07 16 }

9 AND 1_quant < 24; 17}
Code 4. Query 6 from TPC-H in Code 5. Query 6 using Intrinsics-HMC
SQL code. in C code.

*More explanations about join index can be found in http://cs-www.cs.yale.edu/homes/
dna/papers/vldb.pdf.

4.2. Generated Traces and Simulation Results

The results of the simulations with the generated trace from Intrinsics-HMC are illustrated
in figure 4. The simulations illustrates the execution of the select scan and join operations
from typical DBMS.

Selection Scan Join Selection Scan / Join
2 280200 [280174 @ 840000 4000 3742
2 2 808627 2=
[ey B £
S 2 280150 S 3 £ S 3000
EE £ € 800000 5 219
£ g 280100 280074 23 771163 § 8 2000
T 2 760000 S E 910
£ £ 280050 £E £ Eo00 22
g g B]
[}
S 280000 2 720000 0
Ex86 OHMC Ex86 OHMC Ex86 OHMC

Figure 4. Simulation results for two database operations: select scan and join.

Figure 4 presents the total number of processed instructions and the execution
time for each experiment, representing both selection and join operations with HMC in-
structions compared with x86 instructions only. When the operations are executed inter-
leaving x86 and HMC instructions the total number of instructions reduces since some
x86 instructions (from HMC-intrinsics) are replaced by HMC instructions. Comparing
the results from the number of executed instructions, it is clear the complete translation
of the code through our proposal, but the result also demonstrates an increase in the exe-
cution time when using HMC instructions such as the results presented in previous work
[Alves et al. 2016], [Hadidi et al. 2017].

5. Related Work

The arrival of the HMC motivated several work over the past decade[Alves et al. 2016],
[Hadidi et al. 2017], [Oliveira et al. 2017]. Together with HMC, the High Bandwidth
memory (HBM) emerged with a 2.5D stacked memory architecture. In the case of HBM,
the vendor can supply a logical die with a memory controller and a set of specific instruc-
tions. Thus, we could easily apply our technique to HBM. However, in this paper we
choose HMC because it uses a simple and well documented ISA. Moreover, HMC offers
a higher bandwidth of 320 GB/s compared to HBM, which achieves only 128 GB/s in the
first release, and 256 GB/s on the second version [Kim and Kim 2014].

Most of Processor-in-Memory (PIM) researchers proposed to improve the archi-
tecture efficiency, using simulators to perform its analysis. On [Alves et al. 2016], the
HMC receives a mechanism called HMC Instruction Vector Extensions (HIVE) to exe-
cute vectorized instructions in the logic layer of the HMC. However, the researchers had
to generate simulation traces manually to evaluate the mechanism (HIVE). Due to lack
of emulators and compilers capable of generating vector codes running in memory, this
work refrained from using only simple workloads. On a different direction, the work pro-
posed in [Hadidi et al. 2017] uses a FPGA that generates and sends customized requests
to a coupled physical HMC. Although they make use of a physical hardware, any evalu-
ation of new architectural components or different ISA should demand modifications to
the compiler also requiring hardware prototypes, which is a costly task.

The work proposed in [Oliveira et al. 2017] presented the Precise Cycle Parallel
PIM Simulator (CLAPPS) that allows the modeling of custom PIM architectures for sim-
ulation. Compared to gem5 simulator with SMC Simulation Environment (SMC-Sim)
[Azarkhish et al. 2016], CLAPPS was developed to provide a more precise model for
PIM architectures. In this way, the authors have created an architecture similar to the
HMC, based on the specification 2.0 [HMC Consortium 2017]. However, on CLAPPS
there is still a necessity of an efficient way to generate input workloads that uses the
HMC instructions. Moreover, CLAPPS only simulates HMC memory and it depends on
integration to some processor simulator in order to obtain realistic results. The CasHMC
[Jeon and Chung 2017] is a cycle-accurate simulator for HMC. It was developed in C++
and covers most specific architecture details of HMC specification. Different from SiN-
UCA, CasHMC models the HMC as a simple memory, without any PIM capability. Our
proposal in this paper improves the SINUCA features by allowing the automatic genera-
tion of traces with HMC instructions from binary code, while also allow some customiza-
tion in the operation size. Furthermore, our methodology is adaptable to other simulators,
and it can be extended to support a different ISA.

6. Conclusions and Future Work

In this paper, we present a methodology for aiding the simulation of emergent HMC
architectures and new instructions. Our Intrinsics-HMC library allows writing full codes
in high-level languages by utilizing functions that emulate new instructions for in-memory
HMC processing. This saves time and reduces errors when writing assembly / simulated
code language, which is a major benefit for PIM architecture designers and researchers.

Our proposal also allows the generation of simulated traits through the SINUCA-
Tracer that translates the HMC behavioral functions to HMC simulated instructions. We
focused our proposal on the SINUCA simulator as use case, but other simulators can
also benefit from the presented outcomes. Besides, the trace generator SINUCA-Tracer
can also be extended allowing to simulate new PIM architectures. Our Intrinsics-HMC
library is freely available and can be accessed in the repository https://github.
com/AlineS/intrinsics—hmc.

As future work, we consider to modify the SPEC-CPU 2006 [Henning 2006]
benchmark suite in order to use the Intrinsics-HMC library. Moreover, we also consider
to re-validate previous work that performed the evaluation of new PIM architectures.

References

Alves, M. A. Z., Diener, M., Moreira, F. B., et al. (2015). SiNUCA: a validated micro-
architecture simulator. In High Performance Computation Conf.

Alves, M. A. Z., Diener, M., Santos, P. C., and Carro, L. (2016). Large vector extensions
inside the HMC. In Conf. on Design, Automation & Test in Europe.

Azarkhish, E., Rossi, D., Loi, L., and Benini, L. (2016). A case for near memory compu-
tation inside the smart memory cube. In Workshop on Emerging Memory Solutions.

Balasubramonian, R., Chang, J., Manning, T., et al. (2014). Near-data processing: insights
from a MICRO-46 workshop. IEEE Micro, 34(4).

Elliott, D. G., Stumm, M., Snelgrove, W. M., et al. (1999). Computational RAM: Imple-
menting Processors in Memory. Design and Test of Computers, 16(1).

Hadidi, R., Asgari, B., Mudassar, B. A., Mukhopadhyay, S., Yalamanchili, S., and Kim,
H. (2017). Demystifying the characteristics of 3d-stacked memories: a case study for
hybrid memory cube. arXiv preprint arXiv:1706.02725.

Henning, J. L. (2006). Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4).

HMC Consortium (2017). HMC specification 2.1.

Jain, R. (1990). The art of computer systems performance analysis: techniques for exper-
imental design, measurement, simulation, and modeling. John Wiley & Sons.

Jeddeloh, J. and Keeth, B. (2012). Hybrid memory cube new DRAM architecture in-
creases density and performance. In Symp. on VLSI Technology.

Jeon, D.-I. and Chung, K.-S. (2017). Cashmc: A cycle-accurate simulator for hybrid
memory cube. I[EEE Computer Architecture Letters, 16(1).

Khalifa, K., Fawzy, H., El-Ashry, S., and Salah, K. (2013). Memory controller architec-
tures: A comparative study. In Int. Design and Test Symp.

Kim, J. and Kim, Y. (2014). Hbm: Memory solution for bandwidth-hungry processors.
In Hot Chips Symposium.

Oliveira, G. F,, Santos, P. C., Alves, M. A. Z., and Carro, L. (2017). A generic processing
in memory cycle accurate simulator under hybrid memory cube architecture. In Int.
Conf. on Embedded Computer Systems: Architectures, MOdeling and Simulation.

Olmen, J. V., Mercha, A., Katti, G., et al. (2008). 3D stacked IC demonstration using a
through silicon via first approach. In Int. Electron Devices Meeting.

Patterson, D., Anderson, T., Cardwell, N., et al. (1997). A case for intelligent RAM. IEEE
Micro, 17(2).

Pawlowski, J. (2011). Hybrid memory cube (hmc). Hot Chips, 23.

Pugsley, S., Jestes, J., Balasubramonian, R., et al. (2014). Comparing Implementations of
Near-Data Computing with In-Memory MapReduce Workloads. IEEE Micro, 34(4).

Thanh-Hoang, T., Shambayati, A., Deutschbein, C., Hoffmann, H., and Chien, A. (2014).
Performance and energy limits of a processor-integrated fft accelerator. In High Per-
formance Extreme Computing Conf.

