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Abstract—Simulation is one of the main tools used to analyze
new proposals in the Network-on-Chip (NoC) field. Among
these simulators for analyzing and testing new ideas in NoC
architectures, the Noxim simulator stands out, being used by
many researchers due to the wireless support and open-source
availability. An important issue at the simulation phase is the
choice of workload, as it may affect testing the system and its
features. The correct workload can lead to rapid and efficient
system development, while the wrong one may compromise the
entire system evaluation. To ensure a more realistic simulation,
simulators usually relies on real workloads by using a trace-
driven approach. Although Noxim provides a simple support for
input traces, it is very limited to a general behavior of the system,
accepting only a generic injection rate parameter over time.
We propose in this paper an extension of the Noxim simulator
to address these issues. This extension enables Noxim to easily
receive and process a real workload traces from real applications,
considering each message sent by each processing element over
the NoC. This extension was demonstrated and evaluated using
the NAS-NPB workload. Our results show that Noxim still
generating trusty results when using our trace extension.

I. INTRODUCTION

NoC [1] is the current interconnection paradigm to design

all large-scale chips. It is scalable and can be adapted to several

computational paradigms and applicable to various areas, like

high performance multiprocessing computers [2]. The NoC

communication is performed through packets, divided into

small information units called flits, transmitted from source

to destination by routers, hubs and network interfaces over

wired or wireless links [3].

When computer designers want to evaluate new interconnec-

tion architectures and organizations, simulation is one of the

main tool used to analyze traffic and measure the performance,

power and area of NoC. It is a suitable tool for testing

and analyzing results from new concepts and ideas without

hardware prototyping. To guarantee the accuracy of the results,

the simulator must comply with the state-of-the-art proposals

and technologies.

NoC simulators must implement the most widespread con-

cepts, such as the clustered NoC and wireless NoC, in order

to achieve high acceptance by the researchers. The clustered

NoC [4] consists of a central-NoC that can be connected to one

or several sub-NoCs. It may help to reduce the communication

overhead and thus improve the network performance for

clusters of Systems-on-Chip (SoCs) by expanding resources

attaching multiple sub-NoCs. However, this solution requires

a physical interconnection backbone in which all the devices

must be connected. Wireless NoCs extends the traditional

wired NoC concept to use wireless link [5], [6], [3].

To ensure a more realistic simulation, any simulator must

provide ways to receive input from realistic executions, which

can be made using a trace-driven approach to run real data in

testing system. A trace is a log of events and usually includes:

time, type, size and other important parameters associated with

each event, varying depending on the type of simulation is

being performed. Trace-driven simulations can be used by

resource management algorithms; deadlock prevention; CPU

scheduling; cache analysis; etc. Among all advantages, trace-

driven simulation allows realistic workload very similar to the

actual implementation. However, also has some disadvantages

as the complexity and single point of validation [7].

Nowadays, there are several specific simulators for NoC in-

terconnections such as: Noxim [8]; Booksim [9]; Naxim [10];

Hornet [11]; Topaz[12]; HNOCS [13]; NoC for OMNeT++

[14]; WNoC Simulator [15]; Darsim [16]; Netrace [17]; Gar-

net [18]; gpNoCsim [19]; Nirgam [20]; NNSE [21]. Other

simulators non-specific for NoC could be adapted in some

way: Gem5 [22]; CACTI [23]; NS-3 [24]; etc. In this work,

only the specific-NoC simulator with focus on performance

and execution time that were published in scientific papers

were considered. Table I shows a brief summary of these

simulators and depicts their ability to handle traffic input

tracing, to support wireless communication and the source

code availability. The combination of all these features results

in a powerful simulator tool for realistic workloads to design

new concepts for inter and intra-chip communication.

It can be observed that none of the previous proposed NoC

simulators provides support to all these features. In this paper,

we extend the Noxim Simulator to accept external input traces

based on messages. The Noxim simulator was chosen as it

features wired and wireless communication and it is open-

source. This extension enables the Noxim simulator to receive

realistic and controlled traffic traces as input, providing ways

to compare real workloads in different NoC scenarios. For our

evaluations, the NAS Parallel Benchmark (NPB) [25] work-

load was used to perform the communication in a traditional

2D-Mesh NoC over wired and wireless communication. Along

the paper, we explain how we extracted the Message Passing

Interface (MPI) trace in order to use such workload as input

for our simulations.
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TABLE I: Summary of NoC simulators.

Simulator Trace-driven traffic Wireless communication Source available

Noxim’15 [8] • •
Booksim’13 [9] • •
Naxim’13 [10]

Hornet’12 [11] • •
Topaz’12 [12] • •
HNOCS’12 [13] • •
NoC OMNeT++’11 [14] • •
WNoC Simulator’11 [15] •
Darsim’10 [16] • •
Netrace’10 [17] • •
Garnet’09 [18] • •
gpNoCsim’07 [19] •
Nirgam’07 [20] • •
NNSE’05 [21]

The rest of this paper is organized as follows: Section II con-

tains an overview of Noxim Simulator and related proposals

for Noxim extensions; Section III present the proposed modi-

fications in the simulator to support external traces; Section IV

shows the methodology and discussion of the evaluation for

this work; Section V brings the final considerations and future

work ideas.

II. NOXIM SIMULATOR

Noxim [8] is an open-source cycle-accurate simulator devel-

oped in C++ and integrated with System-C for heterogeneous

wired and wireless NoC architectures which estimates per-

formance and energy consumption. The simulator works with

two main conceptual elements: tile nodes and communication

infrastructure. Tile nodes are computational or storage nodes.

The communication infrastructure consists of router(s) for

each tile interconnected by wired links with their neighbors

and possibly the wireless hub element. The wireless hub is

wired connected with one or more tiles and wireless connected

with other hubs. Therefore, the simulator offers three com-

munication patterns: tile-to-tile, tile-to-hub and hub-to-hub.

Communication is performed through packet split in small

parts called flits.
The modeling of the NoC system is made in a human-

readable configuration file in the YAML format. The config-

uration parameters are organized in three groups: the wired

NoC configuration, the wireless setup and the simulation

parameters. The wired NoC configuration sets the dimension

of the mesh, internal buffers, routing table, routing algorithm

and strategy for selection between multiple output directions.

The wireless configuration sets the wireless hub and their

buffers, the channels with its data rate, policy of medium

control access and bit error rate. The simulation parameters

set the clock period, time for reset, warm up time, flag to

wireless usage, flag to debug mode, output trace mode, packet

sizes, packet injection rate, probability of re-transmission and

traffic distribution.

Noxim simulator was upgraded and enhanced by several

authors. Originally, it supported only mesh topology, in [26],

authors present an enhanced Noxim Simulator for performance

evaluation of other NoC topologies. They implemented the

mesh, torus and twisted torus topologies. These authors also

proposed different routing algorithm to test the improvements.

In [27], the Noxim was used together with QEMU to form

a hardware/software co-simulator for NoC. Each CPU core

was simulated by QEMU and connected by a TCP connection

with the Noxim simulator. The Noxim simulator interacted

with QEMU as the processing elements were formed by CPU

cores.

In this paper, we propose to extend the Noxim simulator to

accept external traces formed by messages in such way that

real scenarios can be more realistic emulated. Moreover, in our

traces we introduce the message size parameter, which must

be simulated to approximate the simulate scenario to the real

life.

III. INPUT TRACE FOR NOXIM

This section presents our proposal to extend the Noxim

simulator to support external input traces. The Noxim existing

traffic table based was not modified, instead was created a

new way to input trace, called traffic trace based. Moreover,

a send-and-wait method was implemented within the traffic

trace based to represent the time for a Processing Element

(PE) receives, process and reply messages.

A. Simulator Modifications

Modifications were mainly on the YAML configuration file

and inside the source code from the simulator. The YAML

configuration file modifications are the following:

traffic_distribution: in the original Noxim, the traffic distri-
bution can be set to random, transpose, hot spot, table based,

bit reversal, shuffle and butterfly. We extended this parameter

to add the traffic trace option to support external input traces.
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traffic_trace_filename: this parameter informs the name of
input trace without the PE identification. For each PE in the

system a respective trace file must exist even if empty (in

the case the PE has zero packages). For instance, a system

with 4 PEs must have the following traces 000_trace.txt,
001_trace.txt, 002_trace.txt and 003_trace.txt.
traffic_trace_flit_headtail_size: this parameter informs the
size of packages head and tail (summed) for the modeled

network technology. This feature helps the simulator to es-

timate the data throughput considering the overhead of each

communication technology.

To support the new parameters and the package generation

described in the trace files, multiple source code files were

modified. Following we point each source code file and a brief

description of the modifications.

ConfigurationManager.cpp: the loadConfiguration() method
was altered to load the new configuration parameters of the

traffic trace from YAML file, and these new parameters are

validated in the checkConfiguration() method.
GlobalTrafficTrace.cpp: new code file added to the simula-

tion. It is responsible to receive the input traces and carry them

into the simulator.

Hub.cpp: altered to fix memory leakages (present on the cur-
rent version of Noxim). The antennaToTileProcess() and the
tileToAntennaProcess() methods contained memory allocation
flaws which lead to system crash with huge trace files.

Noc.cpp: a controller of input trace was added in the

buildMesh() method, in such way the simulator recognizes
when all the input traces are complete so it can stop the

simulation.

ProcessingElement.cpp: this file received most of our modi-
fications. In the rxProcess() method the traffic trace controller
performs two operations: i) it implements the send-wait-send
control flow to allow or not the transmission of a flit; and

ii) it implements the stop trace criteria, which permits to
stop the simulation after all the traces from all PEs are sent.

The traffic controller uses a queue to control the buffered and

transmitted flits, and it is used by rxProcess() and txProcess()
methods. In canShot() method, the loaded traces from each

PE are executed, one by one, in the following way: a) verify
the control flow if the flit can be shot; b) if the control flow
allows the shot, a new packet will be created, formed by source

and destination addresses, timestamp, payload (message size

plus head and tail size) and an eventual padding if the packet

size is smaller than the minimum packet size. Considering that

the trace file can contain millions of lines, we only generate

the packages whenever the simulator can send it, reducing the

memory overhead of our proposal.

A new flow controller called Send-Wait-Send was imple-

mented in order to control the send and receive communica-

tions. It guarantees that packets will be completely transmitted

before a new one can be sent, i.e. a new packet is only

transmitted after the tail flit of the previous packet transmitted

by the same PE reaches the destination. Notice that different

PEs can send in parallel, however only a single message from

each PE will be inside the network at the same time.

B. The Input Trace File Format

In order to be as generic as possible, we choose to use a

trace based on pure text format. The new input trace mode

and the trace file name must be informed in the YAML

configuration file. This file format is quite simple, each line

should contain the identification of destination and size of a

single message. The trace may have multiple lines to inform

the full workload (multiple messages to be sent). Figure 1

illustrates this format.

<dst_id> <message_size>

Fig. 1: Input trace format for a specific PE.

C. Usage Example

In order to fully understand the extension in the Noxim,

we present a usage example to follow step-by-step a synthetic

trace simulation. In this example we model a NoC composed

by a 2×2 mesh two-dimensional topology (i.e. four processing
elements). Each PE is connected to one router, and the routers

are interconnected to each other by a 32-bit wide wired link.

Figure 2 illustrates this NoC topology. This topology is built

declared inside the YAML configuration file, creating the

PEs, routers, channels and hubs. The filename containing the

routing table is also defined and the table is loaded, here we

consider that XY routing algorithm is defined.

R0

PE00

R1

PE01

R2

PE02

R3

PE03

Wired LinkRouter
Processing Element

Fig. 2: Example of the NoC Mesh.

An example of input trace for the PE is presented on Figure

3. This trace file is formed by 3 messages, one for each other

PE present on the system (similar to a broadcast behavior).

Inside the configuration file, the base filename trace.txt for
the trace was also set for this example, enabling the PE-00 to

load the trace file 00_trace.txt. Each line of this trace will be
interpreted as a communication packet, which will be formed

by head, payload and tail.

Whenever the simulation starts, the simulator will behave

the following way: PE-00 will load its trace file and retrieve

the first packet information. The packet is prepared by adding

the head, payload and tail, it may also have padding to attend

the minimal packet size (for tiny payloads). Once the packet
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01 32
02 32
03 32

00_trace.txt

Fig. 3: Example of the trace file.

is ready to be sent, it is inserted inside the packet queue split

in flits with 32 bits. Once the router becomes available, it will
transmit the packet over the NoC.

After sending the packet, the PE-00 will not send a new

packet until the previous one was received. This condition is

part of what we call control flow in our proposal and depends

on acknowledge signal from the receiver so the sender can

follow the trace. We believe that this control creates a more

realistic scenario, avoiding a PE to flood the network.

During the packet transmission, the flits follow the routing

present in the routing table or the routing algorithm. Consider-

ing that we used an XY routing algorithm, it would mean that

first the flits would flow in the horizontal direction and then

on vertical direction until achieve the final destination. When

modeling a wireless NoC where each router can be connected

or not to a wireless hub, this routing algorithm would be valid

between the source and the wireless hub, and from the wireless

hub (from a different NoC) until the destination. Moreover,

depending on the configuration parameters, the routers may

have input and output buffers to store the incoming and

outgoing flits.

Following the example, when the destination (PE-01) re-

ceives the packet coming from PE-00 internally the simulator

unlock the PE-00 to perform the next packet transmission (if

any left). Notice that any other PE (01, 02 and 03) can perform

communications in parallel to the PE-00. Whenever all the

PEs fully performs the transmission of their trace files, the

simulator recognizes it and finishes the simulation.

IV. EVALUATION

This section brings a validation of the simulator function-

alities that were implemented in our extension. In order to

show the potential of our proposal, we created a MPI wrapper

inside the MPE2-2.4.7 from MPICH implementation version

3.21. During the application execution, this wrapper can trace

information regarding message size, origin and destination

split per thread basis.

This wrapper writes in different trace files all the messages

sent by the different MPI processes which used the MPI primi-

tives (i.e. send, isend, bsend, bcast, gather, reduce, scatter, etc).

Thus we are able to simulation this MPI application as it was

executing in a system interconnected by different interconnec-

tions, such as Ethernet (Eth) 10 Gbps [28], Wireless Gigabit

(WiGig) [29], InfiniBand (IB) [30], Wireless Interconnection

1The file /mpe2-2.4.7/src/wrappers/src/trace_mpi_core.c was instrumented

to trace all the communication messages sent by the MPI.

with Code Division Multiple Access (WI-CDMA) [31] and

Wireless Interconnection Token-based (WI-Token) [32]. We

modeled each of these interconnection standards as if they

were the external link, which connects four NoC systems

together. A very brief explanation for each interconnection

technology used in our evaluations is present bellow:

a) Ethernet: The Eth is a known wired connection

widely used in local area networks. The Ethernet 10 Gb

standard differs from earlier Ethernet standards because it

operates only over fiber and in full-duplex mode [28]. The

Media Access Control (MAC) parameters were maintained

unaltered, with the maximum and minimum frame size being

1518 B and 64 B, respectively. Considering the head and tail,
the minimum and maximum packet size in Eth is 72 B and
1526 B, respectively.

b) Wireless Gigabit: The new WiGig standard [33] is a

wireless connection that works at 60 GHz with four channels

and each channel transmission rate varies between 7 Gb/s

and 10 Gb/s. Although the specification of 60 GHz [33]

reports that the information may have 8 B at minimum size,

considering the Protocol Adaptation Layer (PAL) for wireless

bus extension [34], the packet payload field has variable size.

The maximum packet contains the maximum payload size

(128 B), plus overhead encapsulation (up to 16 B) and the
PAL header is 4 B. Thus, the maximal packet size of the
WiGig is 148 B.

c) Infiniband: The IB is an architecture which supports a
range of applications on the backplane wired interconnection,

such as the clustered hosts and I/O components. It works at

full duplex transmission between any two fabrics elements.

For the data rate, this work considers 50 Gb/s as predicted by

authors for the year of 2017 [30]. The minimum payload in

IB is 256 B and the maximum is 4096 B, and their head and
tail packet has 126 B. In this way, the maximum packet size

of infiniband is 382 B and the minimum is 4222 B.
d) Wireless NoC: WI-CDMA and WI-Token are de-

signed for a seamless hybrid wired and wireless intercon-

nection network for multi-chip systems. Nevertheless, [31]

proposes the use of Code Divison Multiple Access (CDMA)

achieving only 6 Gb/s in the wireless link, [32] uses a token
based collision avoidance method reaching 16 Gb/s. In both,
the packet size is fixed in 256 B and the payload, head and
tail size was not informed.

A. NAS-NPB Workload

After creating the MPI wrapper proper to trace all the

communication from MPI workloads. We used the NPB 3.3-

MPI suite as workload to generate our traces. This benchmark

suite contains MPI parallel applications that solves numerical

methods for aerodynamic simulation problems. The following

NPB applications run double-precision floating-point and were

written in FORTRAN: Block Tri-diagonal (BT), Conjugate

Gradient (CG), Fast Fourier Transform (FT), Lower and Upper

triangular system (LU), Multigrid (MG) and Scalar Pentadi-

agonal (SP); while application Data Traffic (DT) and Integer

Sort (IS) were written in C and uses mainly integer and logical
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TABLE II: Network parameters.

Parameter Ethernet Wireless Gigabit InfiniBand WiNoc CDMA-based WiNoC Token-based

Head and Tail (Bytes) 26 4 126 - -

Minimum Payload (Bytes) 46 4 256 - -

Maximum Payload (Bytes) 1500 144 4096 - -

Minimum Packet Size (Bytes) 72 8 382 256 256

Maximum Packet Size (Bytes) 1526 148 4222 256 256

Data Rate (Gb/s) 10 8 50 6 16

operations. The more details for each application can be found

in [35], the impact of NPB workload in NoC architectures are

presented in [36] and their pattern communication in [37].

B. Metrics and Parameters

The applications from NPB suite have different problem

sizes (benchmark classes) named in ascending order as S, W,

A, B, C and D [35]. Our evaluations used the problem size

A, which is the most used in real machine tests, due to its
medium size and reasonable execution time to be evaluated in

a simulated environment.

The number of threads was set to sixteen in order to simulate

four systems with 2 × 2 mesh size each, with a total of 16
PEs. Each NPB application have a different communication

pattern, already published in different papers [38], [25]. The

table II shows the parameters for each network interconnection

evaluated in this paper. These parameters are the input values

to setup the YAML configuration file for Noxim simulator

(extended version). The simulation of the same system was

performed with these different parameters to realize a network

technology comparison on NoC architecture.

C. Results and Discussion

Table III shows the communication overhead for each

interconnection network in order to process the messages from

the NPB applications. The estimate in this table were obtained

using the analytical model. In this table, the columns WI-

CDMA and WI-Token are exactly the same as these wire-

less interconnections have the same minimum and maximum

package size. It is possible to observe that WiGig has a

tiny overhead compared with others communication networks

for all NPB applications while the IB has the highest one

on average due to the minimum packet size restriction. It

is possible to correlate the overhead with the performance

results (Figure 4). For instance, when comparing IB for the

applications with less than 15% overhead (BT, DT, FT, IS, LU,

MG, SP), it can be seen that Eth performed on average roughly

69% worse. However, when comparing the CG application

which achieved 49% overhead on IB the performance is 61%

worst. It is possible to see that the performance difference is

reduced to only 8%.

Figure 4 depicts the execution time necessary for each inter-

connection network to transmit all messages of the workload

applications. The results for all the evaluated interconnections

are normalized to the Ethernet execution time. The comparison

shows that IB has the better performance in relation to Eth,

WiGig, WI-CDMA and WI-Token even with larger overhead.

This result is because its data rate overcome the overhead is-

sue. This simulation and analysis evidences that our extension

on the Noxim simulator generates fair results while accepting

external input traces extracted from real applications.

V. CONCLUSIONS AND FUTURE WORK

Simulation is one of the main tool used to analyze new

proposals in the NoC field. Among all proposed simulators,

the Noxim simulator stands out due to its accuracy near to

a real system. However, traces of real applications were not

easily supported by the trace table method (present on Noxim),

which requires the researcher to inform the general behavior

of the system (traffic injection rate) not even considering the

packet size parameter. However, such method present clear

limitations to model more close to application behavior.

In this work, we improve the Noxim simulator in order to it

accept external input traces formed by source, destination and

size for each specific packet to be sent over the interconnection

system. We performed this extension by modifying the Noxim

source code files. A list of the files and required modification

was presented together with a validation of these changes.

Our validation was based on the simulation of messages

from 8 real application modeling 5 different interconnection

systems. The performance results fits to the overhead estimates

using analytical formulas that consider the minimum packet

size, head and tail overheads. In this way, the presented Noxim

extension will help researchers during performance tests of

new proposals through real application traces. Future work

includes the support of wireless broadcast, virtual channels for

communication and improvement in the deadlock avoidance.
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